
Robust Simulation Functions with Disturbance Refinement

Ben Wooding, Abolfazl Lavaei, Vahid Vahidinasab and Sadegh Soudjani

Abstract— Simulation functions are Lyapunov-like functions
defined over the Cartesian product of state spaces of two
(un)perturbed systems, a.k.a., concrete and abstract systems,
to relate output trajectories of abstract systems to those
of concrete ones while the mismatch between two systems
remains within some guaranteed error bounds. In this work,
we approximate concrete systems with abstractions with lower
dimensions (reduced-order models) and develop robust simu-
lation functions further to consider the perturbation in the
abstract system by designing an interface function for the
disturbance. The proposed approach allows concrete systems
to have large disturbances, which is the case in many real-
life applications, while noticeably reducing the closeness error
between the two systems. Accordingly, this enables controller
design using a reduced-order form of the concrete system and
reducing the computational load required for formal synthesis.
We demonstrate the efficacy of our approaches by synthesising
a formal controller for a 9-state area of the known New England
39 Bus Test System, using only a 3-state abstract system.

I. INTRODUCTION

Motivations and State of the Art. Cyber-physical sys-
tems (CPS) are complex networked models combining both
cyber (computation and communication) and physical com-
ponents, which tightly interact with each other in a feedback
loop [1]. In the past few years, CPS have gained remarkable
attentions as an important modelling tool for engineering
systems spanning a wide range of real-life applications such
as autonomous vehicles, medical devices and power systems,
to name a few. The interconnection of CPS components in
the models often results in high-dimensional systems with
complex behaviour specifications that are safety critical in
nature.

Providing safety and reliability guarantees on the be-
haviour of these complex systems is therefore essential but
also incredibly challenging as formal methods, which can
achieve such guarantees, often suffer from the curse of
dimensionality and cannot handle high-dimensional models
[2]. In particular, formal methods give a strong mathematical
framework to provide guarantees over CPS, whether that
is verifying the behaviour of a system or synthesising a
controller to create (or enforce) system behaviour [3].

To alleviate the encountered computational complexity,
symbolic control is one of the promising techniques, pro-
posed in the relevant literature, for formal analysis of CPS
[4]. In this regard, symbolic abstractions replace concrete
systems to provide a more appropriate medium for formal
verification or controller synthesis of CPS. Since the mis-
match between outputs of concrete systems and those of their
symbolic abstractions are well-quantified, one can guarantee
that concrete systems also satisfy the same property of
interest as abstract ones with some quantified error bounds.
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Fig. 1. Hierarchical control system architecture employed in this work. The
dashed part considers the need for the disturbance in the low-dimensional
abstract system Σ2 for the sake of control over large measurable distur-
bances.

In order to relate output trajectories of abstract systems to
those of concrete ones, simulation and bisimulation functions
(where both systems can simulate each other) are powerful
techniques, proposed in the related literature [4]. If concrete
and abstract systems are (bi)similar, one can consider the
abstract system as an appropriate substitute in the controller
design process with reduced computational loads while still
preserving closeness guarantees between the two systems.
For underlying systems where expecting the same output
may be too strict, approximate (bi)simulation functions have
been developed in the literature [5], [6].

Approximate (bi)simulation functions aim at establishing a
formal relation between the abstract system which is similar
to the concrete one, while bounding the closeness between
the outputs of two systems by some maximal threshold ϵ,
known as the simulation relation error. An interface function
is then designed to map the control inputs from the abstract
system to the concrete domain enforcing the ϵ-closeness.
This notion is extended in [7] to robust simulation func-
tions, which considers small disturbances inside the concrete
system, while the abstract system remains unperturbed, to
establish an approximate simulation relation between the two
systems.

Original Contributions. Our main contribution in this



work is to extend the notion of simulation functions to
its robust versions by incorporating the disturbance in the
abstract system via designing an interface function for the
disturbance, see Fig. 1. This reduces the simulation relation
error ϵ, particularly when one is dealing with concrete sys-
tems with large disturbances. Incorporating the disturbance
in the abstract system enables formal controller synthesis
design for the concrete system using the abstract system
where ϵ is included in the controller process. Consequently,
formal controllers designed on a low-dimensional abstract
system can be refined back to control any high-dimensional
concrete systems models. We demonstrate the efficacy of our
approach on a case study of the New England 39-Bus Test
System (NETS).
Related Works. There have been some results, proposed in
the past two decades, on establishing (bi)simulation functions
for dynamical systems. In this respect, the work [7] extends
the approaches of simulation functions to consider small
disturbances in the concrete domain providing robustness
in the simulation relation. However, for controlling safety-
critical CPS, the proposed approach may not be practical
given that the simulation relation error increases proportion-
ally to the size of the disturbance. The works [8], [9] demon-
strate systems that are approximately equivalent (bisimilar)
to their symbolic models. The results in [10] provide an
approximation framework that applies to both discrete and
continuous systems. The approaches in [11] demonstrate
formal control for safety and reachability specifications over
complex dynamical systems.

Approximate simulation techniques for switched systems
and networks of nonlinear control systems are, respectively,
studied in [12], [13] and [14]. The results of [15] employ
approximate bisimulations for decentralised supervisory con-
trol design, and [16] reduce the number of states in fuzzy
automata with approximate bisimulations. The proposed ap-
proach in [17] employs approximate bisimulation in transient
power systems, which is mainly used for model order reduc-
tions: they consider differential-algebraic equations as their
model of NETS with bounded disturbances. Reachability and
formal analysis of power systems have been studied in [18],
[19]. A controller designed based on abstract models for
frequency regulation of smart grids is studied in [20]. A data-
driven method for constructing the finite abstract model with
formal guarantees is proposed in [21].

The rest of the paper is structured as follows. Preliminaries
and the formal definition of underlying systems are presented
in Section II. Section III contains the solution methodologies
while considering the disturbance refinement. We demon-
strate our approach over NETS in Section IV and conclude
with future directions in Section V.

II. PRELIMINARIES

We employ the following notation throughout the paper.
We denote the set of natural numbers, real and non-negative
real numbers with, respectively, N, R and R+. A function
γ : R+ −→ R+ is a class-κ function if γ is continuous,
strictly increasing and γ(0) = 0. We use |·| for the absolute

value, ∥·∥ for the euclidean norm, and ∥·∥∞ for the infinity
norm. Symbol In is the identity matrix in Rn×n and a≪ b
represents a much less than b. All derivatives are taken with
respect to time, additionally, notation often omits time for
simplicity (e.g., x(t) → x).
Class of Systems. We consider two general dynamical sys-
tems Σ1 and Σ2, modeled as:

Σi :

{
ẋi = fi(xi,ui,di),

yi = gi(xi),
i ∈ {1, 2}, (1)

where xi ∈ Rni are system states, ui ∈ Rpi are control
inputs, yi ∈ Rm are system outputs, d1 ∈ Rq is a measurable
large disturbance in Σ1 and d2 is derived from d1 with an
interface function dV . Without loss of generality, we consider
Σ1 as our original system and Σ2 as the lower-dimensional
abstraction. It can then be taken that n2 ≤ n1.

Linear Temporal Logic Specifications. For the dynamical
systems in (1), we consider linear temporal logic (LTL)
specifications with syntax [22]

ψ := true | p | ¬ψ |ψ1 ∧ ψ2 |⃝ψ |ψ1 U ψ2,

where p is the element of an atomic proposition. Let ω
be an infinite word, that is, a string composed of letters
from the power sets of the atomic proposition, and ωk be
a subsequence (suffix) of ω. Then the satisfaction relation
between ω and a property ψ, expressed in LTL, is denoted
by ω ⊨ ψ. Furthermore, ωk ⊨ ¬ψ if ωk ⊭ ψ and we say
that ωk ⊨ ψ1 ∧ ψ2 if ωk ⊨ ψ1 and ωk ⊨ ψ2. The next
operator ωk ⊨ ⃝ψ holds if the property holds at the next
time instance. The temporal until operator ωk ⊨ ψ1Uψ2 holds
if ∃i ∈ N : ωk+i ⊨ ψ2, and ∀j ∈ N :0 ≤ j < i, ωk+j ⊨ ψ1.
Disjunction (∨) can be defined by ωk ⊨ ψ1 ∨ ψ2 ⇔ ωk ⊨
¬(¬ψ1 ∧ ¬ψ2). The operator ωk ⊨ 3ψ is used to denote
that the property will eventually happen at some point in the
future. The operator ωk ⊨ 2ψ signifies that ψ must always
be true at all times in the future.

III. SOLUTION METHODOLOGIES

The main contribution of our work is to extend the notion
of simulation functions to its robust versions by considering
disturbance refinement using an interface function for the
disturbance in the concrete system to be visible in the ab-
stract domain. Our proposed approach enables the controller
synthesis for systems with large disturbances.

In the following section, we show how incorporating the
disturbance of the concrete system into the abstract one
through the interface function dV can further reduce the
simulation relation error ϵ between Σ1 and Σ2. This enables
one to perform controller synthesis on the abstract domain
and refine it back over the high-dimensional original system
while improving the scalability of the control scheme.

A. Robust Approximate Simulation with Disturbance Refine-
ment

Given the systems in (1), a robust approximate simulation
with disturbance refinement is defined with a robust simula-



tion function V and two interface functions uV and dV . The
function V has the following Lyapunov-like properties:

Definition 1. Consider the two systems in (1). Let V :
Rn1 × Rn2 −→ R+ be a differentiable function, uV : Rp2 ×
Rn1 × Rn2 −→ Rp1 and dV : Rq × Rn1 × Rn2 −→ Rq

be continuous functions. Then the function V is called a
robust simulation function from Σ2 to Σ1 with the associated
interface functions uV and dV if there exists class-κ functions
γ1 and γ2 such that for all x1 ∈ Rn1 and x2 ∈ Rn2 ,

∥g1(x1)− g2(x2)∥ ≤ V(x1,x2), (2)

and for any d1 and u2 satisfying γ1(∥d1∥) + γ2(∥u2∥) ≤
V(x1,x2),

∂V
∂x2

f2(x2,u2, dV(d1,x1,x2))+

∂V
∂x1

f1(x1, uV(u2,x1,x2),d1) ≤ 0. (3)

We say Σ1 robustly approximately simulates Σ2 if there exists
a robust simulation function V of Σ2 by Σ1.

Remark 1. Definition 1 is a generalisation of the robust
approximate simulation notation proposed in the literature
[7]. In particular, when dV = 0, then the existing robust
approximate simulation is recovered.

In the next subsection, we focus on the class of linear
control systems with potentially large measurable distur-
bances and propose an approach to construct its reduced-
dimensional abstractions together with a robust simulation
function as presented in Definition 1.

B. Linear Systems under Large Measurable Disturbance

Here, we focus on the class of linear control systems
with (potentially large) measurable disturbances, defined as
follows:

Σ1 :

{
ẋ1 = A1x1 +B1u1 +D1d1,

y1 = C1x1,
(4a)

Σ2 :

{
ẋ2 = A2x2 +B2u2 +D2d2,

y2 = C2x2,
(4b)

where Ai, Bi, Ci, and Di are matrices of appropriate di-
mensions, and d1 is the measured disturbance having some
known bound ∥d1∥∞ ≤ dmax. We now state the main
problem that we aim to solve in this paper.

Problem 1. Given a linear system Σ1 as in (4a) un-
der (potentially large) measurable disturbances and an
LTL specification ψ, construct its reduced-dimensional
abstraction Σ2 as in (4b) together with robust simu-
lation functions according to Definition 1. Employ the
constructed abstraction Σ2 and design a formal controller
through robust simulation relations with disturbance re-
finement such that the specification is satisfied over the
original system.

In order to address Problem 1, we need to raise the
following lemma and theorems. Note that the next lemma
is similar to the one presented in [5] but it is adapted here
to our setting by incorporating the measurable disturbance
inside our dynamics.

Lemma 1. If Σ1 is stabilisable, there are matrices
K2, P,D2, Q1 such that (A1+B1K2−PD2Q1) is Hurwitz,
and there exist a positive definite matrix M and positive
scalar constant λ such that the following matrix inequalities
hold:

CT
1 C1 ≤M, (5a)

(A1 +B1K2 − PD2Q1)
TM+

M(A1 +B1K2 − PD2Q1) ≤ −2λM. (5b)

Remark 2. The matrices M and K2 in Lemma 1 can be
computed using semi-definite programming by letting K̄ =
K2M

−1 and M̄ =M−1. We then gain the equivalent linear
matrix inequality conditions:[

M̄ M̄CT
1

C1M̄ I

]
≥ 0, and

M̄AT
1 +A1M̄ + K̄TBT

1 +B1K̄

+ M̄QT
1D

T
2 P

T + PD2Q1M̄ ≤ −2λM̄.

Under Lemma 1, we now propose the next theorem to
construct the robust simulation function V .

Theorem 1. Consider two systems of the form (4). Assume
that Σ1 is stabilisable, a feedback gain K1 exists for Σ2

and that there exist matrices P , K2, Q1 and Q2 such that
(A1+B1K2−PD2Q1) is Hurwitz, and the following matrix
equalities hold:

A1P +B1Q2 = PA2 + PD2Q1P, (7a)
C2 = C1P. (7b)

Then V in the form of

V(x1,x2) =
√
(x1 − Px2)TM(x1 − Px2)

is a robust simulation function from Σ2 to Σ1 with its
associated interfaces

uV = R2u2 +Q2x2 +K2(x1 − Px2), (8a)
dV = R1d1 +Q1x1 +K1(x1 − Px2). (8b)

In addition, the class-κ functions γ1 and γ2 are designed as

γ1(ν) =
∥
√
M(D1 − PD2R1)∥

λ
ν, (9)

γ2(ν) =
∥
√
M(B1R2 − PB2)∥

λ
ν, (10)

where R1 and R2 are some arbitrary matrices of appropriate
dimensions and M,λ are such that (5) holds.

Proof. From (5a) and (7b), we have

V(x1,x2) ≥
√
(x1 − Px2)TCT

1 C1(x1 − Px2)

= ∥C1x1 − C2x2∥,



so condition (2) holds. We proceed to showing condition (3),
as well. Using conditions (5b) and (7a), one has

∂V
∂x2

(A2x2 +B2u2 +D2dV)

+
∂V
∂x1

(A1x1 +B1uV +D1d1)

≤ −λV(x1,x2)

+ ∥
√
M(D1 − PD2R1)d1 +

√
M(B1R2 + PB2)u2∥

≤ −λV(x1,x2) + ∥
√
M(D1 − PD2R1)∥∥d1∥

+ ∥
√
M(B1R2 + PB2)∥∥u2∥

Therefore, for all d1 and u2 satisfying

∥
√
M(D1 − PD2R1)∥

λ
∥d1∥+

∥
√
M(B1R2 − PB2)∥

λ
∥u2∥

≤ V(x1,x2),

we have

∂V
∂x2

(A2x2 +B2u2 +D2dV)

+
∂V
∂x1

(A1x1 +B1uV +D1d1) ≤ 0.

We now leverage the constructed V in Theorem 1 and
quantify the mismatch between output trajectories of Σ1 and
Σ2 with measurable disturbances as presented in the next
theorem.

Theorem 2. Consider two systems of the form (4). Let V be a
robust simulation function from Σ2 to Σ1 with its associated
interface function uV . Let u2(t) be an admissible input of
Σ2 and x1(t) be a state trajectory of Σ1 satisfying

ẋ1 = A1x1 +B1uV +D1d1. (11)

Then

∥y1(t)− y2(t)∥ ≤
max{V(x1(0),x2(0)), γ1(∥d1∥∞) + γ2(∥u2∥∞)}.

Proof. For the sake of an easier presentation, we slightly
abuse the notation and denote V(x1(t),x2(t)) by V(t). Let

ϵ = max{V(0), γ1(∥d1∥∞) + γ2(∥u2∥∞)}.

We show V(t) ≤ ϵ for all t. As (11) involves a feedback
composition, we assume the composition is well-defined and
for any initial state there exists a unique solution defined on
the interval t ⊆ R+. Showing V(0) ≤ ϵ is straightforward
due to the definition of ϵ. Assume there exists τ > 0 such
that V(τ) > ϵ. Then there also exists some 0 ≤ τ ′ < τ such
that V(τ ′) = ϵ and ∀t ∈ (τ ′, τ ],V(t) > ϵ. Note that we have,
∀t ∈ (τ ′, τ ],

γ1(∥d1∥) + γ2(∥u2∥) ≤
γ1(∥d1∥∞) + γ2(∥u2∥∞) ≤ ϵ < V(t).

From (3), we then have ∂V(t)
∂t ≤ 0 for all t ∈ (τ ′, τ ], which

implies

V(τ)− V(τ ′) =
∫ τ

τ ′

∂V(t)
∂t

∂t ≤ 0.

This contradicts V(τ) > ϵ = V(τ ′). Therefore, V(t) ≤ ϵ,∀t.
Finally from (2) we have:

V(x1(t),x2(t)) ≤ ϵ =⇒ ∥y1(t)− y2(t)∥ ≤ ϵ.

IV. CASE STUDY

To show the efficacy of our proposed approach, we employ
a model of the New England 39-Bus Test System (NETS)
which is similar in design to the three-control area power
system in [23], [24]. NETS has 10 machines, 39 buses and
three areas. Here, we consider just one area of this model,
containing 9 states with one input and one disturbance. The
single line diagram for this system is depicted in Fig. 2.
A linear model for Area 1 of NETS is acquired using the
Simulink Model Linearizer on the closed-loop system.

We assume that the large disturbance d1 is measurable in
the power system domain as the disturbance may represent
changes in the behaviour of generation and load components,
e.g., generators, plug-in electric vehicles (EVs) and energy
storage systems (ESSs). The generation or load values of
these components may be known to operators and the
connection and disconnection of these components could be
tracked through sensors in a smart grid. We assume we have
access to a fleet of EVs which can connect/disconnect from
the power grid almost instantaneously. Such responsive loads
are flexible and can be used for load shedding [25] and
frequency regulation of smart grids [20].

The dynamics of the model can be presented as a lin-
ear system Σ1 equivalent to (4a) whose matrices can be
found in the Appendix. A power loss disturbance of 1 per
unit (100 MW, equivalent to a typical generator or 35,000
households) is applied to Σ1 in all the scenarios of this case
study. We construct our abstract system Σ2 using MATLAB’s
balreal function by truncating the matrices to a reduced-state
order of 3. We employ YALMIP [26] and MOSEK [27] for
solving LMIs and optimisations in MATLAB on macOS with
8 GB RAM and Intel Core i5 Processor. Simulations are run
over a time horizon of 6 seconds, with a time step of 0.005
seconds.

A. System Specification
For this system we consider a specification for primary

frequency control. The frequency f can deviate away from
its steady state value f0 = 50Hz, this deviation is denoted
by ∆f = f − f0. We bound two regions that the frequency
deviation should never transition into; Aub = (BW:0.5,+∞)
and Alb = (−∞,−0.35). Additionally, whenever there
are deviations, it should come back the target range T =
[−0.3,BW:0.5]. Therefore the desired system behaviour can
be described by the LTL formula:

ψ = 2(ψ1 ∧ ψ2) with ψ1 = 3T , ψ2 = ¬(Aub ∨ Alb).
(12)



Fig. 2. A single line diagram of Area 1 of the New England 39 Bus Test
System.

We modify the specification in (12) appropriately with the
error ϵ of the robust simulation function to get a more con-
servative specification ψ̂ on Σ2. This modification ensures
that whenever Σ2 satisfies ψ̂, we get that Σ1 satisfies ψ
by applying the appropriate input and disturbance interface
functions for refining the controller. Then, we have the
modified specification

ψ̂ = 2(ψ̂1∧ ψ̂2) with ψ̂1 = 3T̂ , ψ̂2 = ¬(Âub∨Âlb), (13)

with T̂ = [−0.3+ ϵ,BW:0.5− ϵ], Âub = (BW:0.5− ϵ,+∞)
and Âlb = (−∞,−0.35 + ϵ).

B. Simulation Relation Error

Our primary goal of employing robust simulation func-
tions is to construct an abstract system Σ2 which is ϵ-close to
the concrete system Σ1, where ϵ remains small enough. Note
that in the modified specification (13), any value ϵ ≥ 0.3
results in T̂ = ∅ and the set of controllers enforcing the
specification becomes empty. Therefore, our approximation
approach must provide error thresholds small enough to give
a feasible controller on the abstract system.
Uncontrolled system. If the response of EVs is not included
in the system (u1 = 0), the open-loop Σ1 has the maximum
frequency deviation of ∆f = −0.6872Hz, which clearly
violates the specification ψ. Therefore, the contribution of
EVs is essential to satisfy the specification on the frequency.
Abstraction without disturbance refinement. We minimise
the error threshold ϵ under the assumption of no disturbance
refinement (D2 = 0), λ = 1.7, ∥u2∥∞ = 0.5, and 0.01 I9 ≤
M̄ ≤ 120 I9. This gives the value ϵmin = 3.9156, which
makes the specification ψ̂ unsatisfiable.
Abstraction with disturbance refinement. We now use the
approach from Theorems 1–2 with the proposed disturbance
interface function. We assume λ and the bounds on M̄
and ∥u2∥∞ are selected as before, R1 = 1, and Q1 =

Fig. 3. Top. Target range T is shown in green, Aub and Alb are shown
in red as two regions that the system should never transition into. The
baseline controller notably improves the frequency response of the system
in compare with the uncontrolled system. However, both curves still fall
into the red unsafe region. Bottom. The input uV is a byproduct of the
simulation relation interface keeping Σ1 and Σ2 ϵ-close. No controller is
synthesised over Σ2, so u2 = 0.

K1 = 0. We optimise D2 and B2 to minimise (9) and (10),
respectively. Accordingly, we get the value ϵmin = 0.1019.

In both cases of the approach with and without disturbance
refinement, we construct the same matrices for Σ2. These
matrices can be found in the appendix. The only difference
is that D2 = 0 for the case without disturbance refinement.

C. Controller Synthesis Process

Baseline controller. We consider our robust simulation func-
tion with the designed abstract system Σ2 and the interface
functions (8) but we put u2 = 0 in (8a). As Q2 and K2

are non-zero in (8a), control inputs are chosen automatically
based on the current states of Σ1 and Σ2 to maintain the
outputs of the two systems within distance ϵ. When the
power system frequency moves away from its steady-state
value, the input interface function uV generates a control
input for Σ1, which we consider as the baseline controller.
Fig. 3 shows the frequency response in Σ1 without EV
participation (uncontrolled system with u1 = 0) against the
baseline controller. Although the baseline controller reduces
the frequency deviations, it is still unable to satisfy the
required specification ψ.

Controller using robust simulation functions. We employ
the constructed abstraction Σ2 as an appropriate substitute
in the controller synthesis process. In particular, by knowing
ϵ as the maximum error between outputs of Σ1 and Σ2, a
symbolic controller can be first designed for the reduced-
order model Σ2 to satisfy ψ̂ and then be refined back to Σ1

with the guarantee on satisfying ψ. To do so, we consider the
tool SCOTS [28] for the synthesis of the symbolic controller
using a high-performance computer with 2 nodes and 11 GB
memory per core, taking 55 minutes. Note that applying such
a symbolic design directly to the 9-dimensional system Σ1 is



Fig. 4. Top. Target range T is shown in green, unsafe regions Aub

and Alb are shown in red. The controller designed using SCOTS and the
robust simulation function with disturbance refinement successfully satisfy
ψ, compared with the baseline controller which violates the specification.
Bottom. The control input u2 designed using SCOTS for Σ2 and the refined
control input u1 for Σ1 using our robust simulation function.

infeasible due the required exponentially large computational
time and memory space.

Fig. 4 compares the baseline controller against the con-
troller designed by combining our robust simulation function
with SCOTS. The input u2 designed by SCOTS is taken
as the minimum value that guarantees satisfaction of the
specification ψ (to use participation of EVs only if needed).
Successful synthesis of the controller over Σ2 by SCOTS
proves formally that ψ holds on Σ1. Fig. 4 (bottom) shows
that over the time interval t ∈ [0.5, 1], the controller designed
on Σ2 takes non-zero values to bring back the frequency to
the intended target region, thus enabling Σ1 to satisfy ψ.

Overall, we have provided formal guarantees using sym-
bolic control over a 9-dimensional system while only requir-
ing the computational load of a 3-dimensional system. Ver-
ifying Theorem 2, we calculate the maximum mismatch be-
tween the output trajectories of Σ1 and Σ2 from simulations.
We acquire 0.6872 for the approach without disturbance
refinement and 0.0449 for the approach with disturbance
refinement. This confirms our theoretical error bounds ϵ for
both cases.

V. CONCLUSION AND FUTURE DIRECTION

In this work, we extended the notion of simulation func-
tions to its robust version by considering large disturbances
in the dynamics and introducing an interface function for
the disturbance refinement. To do so, we approximated
concrete systems with abstractions with lower dimensions
(reduced-order models) and developed robust simulation
functions to consider the perturbation in the abstract system.
The proposed approach enables controller design using a
reduced-order form of the concrete system and reducing
the computational load required for formal synthesis. We
illustrated the applicability of our approach by synthesising

a formal controller for a 9-state area of the known New
England 39-Bus Test System, using only a 3-state abstract
system. Future directions could consider all three areas of
NETS with assume guarantee conditions used to formally
guarantee control across the whole of NETS. Developing
a construction scheme for robust simulation functions as
proposed in this work but for nonlinear dynamical systems
is under investigation as a future work.
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APPENDIX

The matrices of the NETS single area Σ1 are given as:

A1 =



−12.5 0 0 0.09 −0.65 0 0 0 −0.09
0 −16.67 0 0.09 −0.65 0 0 0 −0.09
0 0 −14.29 0.05 −0.61 0 0 0 −0.05
0 0 0 0 0.93 0 0 0 0
0 0 0 −6.28 −0.09 2.5 2.78 2.38 0

12.5 0 0 0 0 −2.5 0 0 0
0 16.67 0 0 0 0 −2.78 0 0
0 0 14.29 0 0 0 0 −2.38 0
0 0 0 6.28 2.08 0 0 0 0


B1 =

[
0 0 0 0 1 0 0 0 0

]T
D1 =

[
0 0 0 0 −1 0 0 0 0

]T
C1 =

[
0 0 0 0 2.05 0 0 0 0

]
The reduced-order model Σ2 is constructed as:

A2 =

−0.6333 3.0028 0.4428
−3.0028 −0.0026 −0.0263
−0.4428 −0.0263 −1.5159


B2 =

[
−0.8580 0.5378 0.6956

]T
D2 =

[
0.8580 −0.5378 −0.6956

]T
C2 =

[
−1.7990 0.1141 0.5998

]
Note that we have D2 = 0 for the method without the dis-

turbance refinement. The matrices obtained for establishing

our robust simulation relation are as follows:

M =



0.22 0 0 0 0.01 −0.01 0 0 0
0 0.26 0 0 0.01 0 −0.01 0 0
0 0 0.26 0 0.01 0 0 −0.01 0
0 0 0 82.14 20.22 0 0 0 16.80

0.01 0.01 0.01 20.22 11.62 0 0 0 11.68
−0.01 0 0 0.01 0 0.02 0 0 0

0 −0.01 0 0.01 0 0 0.02 0 0
0 0 −0.01 0.01 0 0 0 0.02 0
0 0 0 16.80 11.68 0 0 0 29.44


P =

 0.04 0.03 0.03 0.02 −0.88 0.025 0.044 0.03 0.66
−0.01 −0.01 −0.01 0.29 0.06 −0.10 −0.98 −0.99 0.36
−0.03 −0.18 −0.018 −0.18 0.29 −0.33 −0.25 −0.31 0.52

T

Q1 = K1 =
[
0 0 0 0 0 0 0 0 0

]
K2 =

[
−0.2 −0.2 −0.2 −482.5 −278.9 −2.5 −2.8 −2.4 −279.9

]
Q2 =

[
0.0238 −0.0407 0.3401

]
R1 = R2 = 1.

SS: After finishing this paper, I would like you to look into
documents on primary and secondary frequency response, to
have a section of specifications required the frequency to
satisfy. The current specification is very simple, reach-avoid
and safety.


