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Abstract—This paper considers an internet of vehicles (IoV)
network, where multi-access edge computing (MAEC) servers are
deployed at base stations (BSs) aided by multiple reconfigurable
intelligent surfaces (RISs) for both uplink and downlink
transmission. An intelligent task offloading methodology is
designed to optimize the resource allocation scheme in the
vehicular network which is based on the state of criticality of
the network and the priority and size of tasks. We then develop
a multi-agent deep reinforcement learning (MA-DRL) framework
using the Markov game for optimizing the task offloading
decision strategy. The proposed algorithm maximizes the mean
utility of the IoV network and improves communication quality.
Extensive numerical results were performed that demonstrate
that the RIS-assisted IoV network using the proposed MA-DRL
algorithm achieves higher utility than current state-of-the art
networks (not aided by RISs) and other baseline DRL algorithms,
namely soft actor-critic (SAC), deep deterministic policy gradient
(DDPG), twin delayed DDPG (TD3). The proposed method
improves the offloading data rate of the tasks, reduces the mean
delay and ensures that a higher percentage of offloaded tasks are
completed compared to that of other DRL-based and non-RIS-
assisted IoV frameworks.

Index Terms—Internet of vehicles (IoV), multi-access edge
computing (MAEC), reconfigurable intelligent surface (RIS),
multi-agent deep reinforcement learning (MA-DRL).

I. INTRODUCTION

W ITH the advent of 5G, the past decade has witnessed
an enormous proliferation in the fields of the Internet

of Things (IoT) and artificial intelligence (AI). This has
led to immense inflation in the amount of data being
generated from these applications on a daily basis. The wide
application of vehicular networks based on AI has drawn
extensive attention to internet of vehicles (IoV) networks
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which involve heterogeneous computation-intensive and delay-
intolerant tasks. Some of the potential applications of the
IoV networks include (but not limited to) tasks related to (i)
Intelligent transportation system (ITS): enhancement of traffic
management, congestion reduction, improved road safety, real-
time information on traffic conditions, road conditions, and
vehicle locations, (ii) Connected and autonomous vehicles
(CAVs): V2V communication, V2I communication, etc.,
(iii) Telematics: remote diagnostics, predictive maintenance,
vehicle tracking, etc., (iv) Navigation and location-based
services: real-time navigation, traffic, and weather update,
route optimization, etc., (v) Smart charging: optimized
charging times, load balancing during peak hours, (vi)
Infotainment services: entertainment and information services
such as movie, music, news, current affairs, etc. Until recently,
such tasks were mostly handled by the cloud, which has been a
promising computing paradigm to provide adequate resources.
Due to the centralized nature of the data centers, the cloud
infrastructure faces specific challenges while dealing with
large-scale and complex IoT applications involving mobility
and geographical distribution that require very low latency
communication. Such applications have strict delay constraints
and cannot afford transmission latency or network congestion.
Low latency communication is crucial for IoV networks since
it directly affects the safety and efficiency of the vehicular
and transportation system since vehicular tasks involve several
highly integral and delay-intolerant applications related to
road safety, traffic information, safety information, real-
time decision-making such as navigation, lane changing,
speed adjustment, surrounding information, etc. These tasks
are critical tasks which, if not completed in time might
compromise the safety and efficiency of the vehicle as well as
the driver. For example, if a vehicle fail to detect an accident
or object in front of the vehicle and fail to take lane-changing
decision in time, it might lead to major accidents which can
also prove to be life-threatening. Thus, ensuring fast, low
latency, and reliable communication improve efficiency while
ensuring the safety and sustainability of an IoV framework.
Fog computing is an advanced decentralized architecture
that uses edge devices to carry out a substantial amount
of computation and communication locally and routed over
the core network, thus solving the issues that plague cloud
computing [1] [2]. However, the onboard resources of a low-
cost consumer vehicle may not be able to accommodate the
computing needs of a vehicular fog computing (VFC) network,
thereby affecting the quality of experience (QoE) of the fog
vehicular network. Accordingly, to meet the requirement of
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such networks researchers have introduced multi-access edge
computing (MAEC) which can extend the computation power
of a vehicular network by allowing the vehicles in an IoV
network to offload part of their task to the MAEC server
located on the roadside or at the BS [3]–[5].

Irrespective of the task offloading schemes in the physical
layer, to ensure low delay and achieve high QoE, IoV networks
require ubiquitous ultra-reliable low-latency high-rate wireless
communications. Furthermore, long-range communications
from vehicle to BS encounter several obstacles in the line-
of-sight link such as trees, buildings, etc., which significantly
affects the communication quality by blocking the line-of-sight
(LoS) signal. In this regard, reconfigurable intelligent surface
(RIS) has been envisioned as a revolutionary technology in
the future 6G wireless communication systems, owing to
its potential to actively customize the wireless propagation
environments. Recently, the concept of RIS has generated a
lot of attention in both the industry and academic communities
as an exquisite way to improve the quality of wireless
communication by adjusting the wireless propagation paths
incident on the surface. The main advantage of RIS is that
it can improve the quality of communication at the cost
of very low energy consumption [6]. RIS, unlike traditional
relay technologies, operates as a passive device for managing
incoming signals without relying on radio frequency chains
or complicated signal processing methods. This satisfies the
demand of MAEC systems [7]. Thus, RIS combined with
MAEC can further enhance the performance of these systems
since end-users in such networks can offload tasks to the
MAEC server via RIS, thereby enhancing the quality of the
network. Accordingly, authors in [8] explored the concept
of RIS-aided MAEC and proposed an optimal offloading
decision strategy using DRL. Similarly, in [9] the authors
studied the RIS-aided MAEC system and optimized the task
scheduling strategy in a vehicular network. In particular,
RIS is a panel that integrates a vast quantity of passive
reflection elements, capable of precise reflect beamforming to
amplify the signal strength at authorized receivers and prevent
information leakage to unauthorized eavesdroppers through
adjusting the phase of incoming signals [10]. The authors
in [11] put forward a comprehensive survey of different
RIS applications and their advantages such as enhancement
in signal strength, physical layer security, and accuracy in
deployment position. On the same note, the authors in [12]
surveyed the optimality of RIS-assisted resource allocation
techniques in vehicular networks while some address future
research scope and direction for the same. In [13], the authors
proposed an alternating optimization algorithm combined with
a genetic algorithm to jointly optimize the active and passive
beamforming at the RIS, the authors in [14] investigated
the max-min computation efficiency problem for enhancing
the security in task offloading. Explicitly, RIS technology
has the potential to enhance the offloading rate and improve
the physical layer security (PLS) of the devices/vehicles by
optimizing its reflection coefficients [15]. Thus, RIS combined
with MAEC can achieve substantial improvement in the
overall performance of a task-offloading system.

Recently, the use of reinforcement learning (RL) in

vehicular communication networks has seen a steep
insurgence. In particular, in a VFC framework, the aim
is to solve a sequential decision process, which can be
formalized under the classical settings of RL, where the
agent is required to learn and represent its environment
as well as act optimally at a given instant. The optimal
action is referred to as the policy. Since vehicular networks
involve large-scale dynamic and complex environments, RL
algorithms such as Q-learning might not be able to handle
massive state spaces in some complex environments. For such
environments, deep RL (DRL) algorithms can be an ideal
alternative that uses neural networks (NNs) to increase the
RL algorithm’s scalability and adapt to the VFC environment
[16], [17]. Accordingly, the authors in [18] minimize the
energy consumption and formulate a DRL-based approach
to offload the tasks to roadside units (RSU) or to other
vehicles. Similarly, in [16], [19]–[21], the authors used a
DRL-based approach for task offloading, while the authors
in [22] proposed a dynamic pricing system for offloading
tasks to an unmanned aerial vehicle (UAV) mounted in the
MAEC server. The authors in [23] designed a dynamic task
offloading strategy to achieve optimal task offloading using
the twin delayed deep deterministic policy gradient algorithm
(also known as TD3), which is one of the state-of-the-art
DRL algorithms. Likewise, in [24], the authors formulated a
task allocation problem in a UAV-assisted MAEC system and
solved it using the TD3 algorithm.

While the use of DRL techniques has proven to achieve
promising results, recently the concept of multi-agent DRL
is being explored by researchers, particularly for complex
environments. Accordingly, while in [25], the authors proposed
a multi-agent DRL-based approach for a multi-tier framework,
the authors in [26] proposed a multi-agent DRL approach to
provide an optimal task offloading solution and minimize the
task processing delay. Further, the authors in [27] proposed
a multi-agent DRL-based approach for device-to-device
communication, and likewise in [5], the authors formulated
a multi-agent reinforcement learning-based algorithm for
optimal offloading by using the improved Kuhn-Munkres
(KM) algorithm for task scheduling. Although several DRL-
based algorithms for MAEC and RIS-aided networks have
been studied, researchers have not yet used multi-agent DRL-
based algorithms in the domains of MAEC and RIS systems.

Accordingly, in this article, we develop a priority-aware
resource allocation and task offloading strategy based on a
multi-agent DRL algorithm that jointly maximizes the utility
of a RIS-aided IoV network and improves the quality of
communication between vehicles and the BS. We compare
the proposed algorithm with other baseline DRL algorithms,
namely soft actor-critic (SAC), deep deterministic policy
gradient (DDPG) and twin delayed DDPG (TD3). The primary
contributions are summarized below.

• We consider a RIS-aided IoV network involving
a MAEC framework that involves vehicle-to-vehicle
(V2V), vehicle-to-pedestrian (V2P), and vehicle-to-
infrastructure (V2I) computation offloading. The network
consists of vehicles on the move, parked, and pedestrians
carrying computation resources to assist task vehicles.
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• We formulate the utility functions based on the state of
the criticality of the network and the priority and size
of tasks and then develop an analytical framework for
the RIS-assisted communication network comprising of
uplink and downlink.

• We propose an intelligent task offloading methodology
for the IoV network to optimize the resource allocation
scheme. In particular, we develop a novel MA-DRL
solution using the Markov game (MG) for optimizing
the task offloading decision strategy. The proposed model
maximizes the mean utility of the IoV network and
improves the communication quality between vehicles
and BSs.

Extensive numerical simulations were performed to evaluate
the performance of the developed solution and the impact of
key network parameters. Compared to other baseline DRL
algorithms, namely soft actor-critic (SAC), DDPG, and TD3
the proposed MA-DRL algorithm achieves higher utility. The
proposed method also improves the offloading rate of the
tasks as well as ensures that a higher percentage of offloaded
tasks are completed compared to that of other DRL-based
frameworks. Further, the results also verified the usefulness of
deploying RISs in an IoV network towards improving the ratio
of completed tasks, average offloading data rate, and reducing
the mean delay in the network.

Structure of the paper: The flow of the paper is organized
as follows. Section II provides a detailed explanation of the
considered system model along with the network architecture,
communication model, and task model and formulates the
utility functions. In Section III, the proposed multi-agent
DRL algorithm modeled by markov game is discussed. The
simulation setup is discussed in Section IV and the simulation
results are discussed in Section V. Finally, the conclusions are
drawn in Section VI.

II. SYSTEM MODEL

Table I shows the list of variables used in this paper.

A. Network Architecture

We consider a RIS-aided IoV network that involves vehicle-
to-vehicle (V2V), vehicle-to-pedestrian (V2P) and vehicle-to-
infrastructure (V2I) computation offloading using vehicular
fog computing (VFC) as illustrated in Fig. 1. The V2P
scenario includes pedestrians on the roadside with resources
within close proximity of the task vehicles as service
providers and the V2I scenario allows the task vehicles to
communicate with base stations (BSs) equipped with MAEC
servers that aid in the computation of tasks. Both RIS-
assisted as well as direct links are considered. We assume
that there are Q={BS1,BS2,. . . ,BSq ,. . . ,BSQ} BSs such
that BSq has M RISs within its coverage area denoted as
RIS1,RIS2,. . . ,RISm,. . . ,RISM . The M RISs are attached
to a central controller which dynamically tunes the best-
reflected signal towards the intended node. It is to be noted
that a RIS can be within the range of several BSs. With
regards to the VFC scenarios, the V2V scenario consists
of multiple task vehicles (Vt), service vehicles (Vs), and

pedestrians with resources. The mobility of task vehicles
are bi-directional while the service vehicles can either be
on the move (bi-directional) or parked. BSs are deployed
which provide uniform coverage throughout the system during
the period of consideration. All service vehicles within the
communication range of a task vehicle qualify to provide
computation service. Moreover, each task vehicle can be
simultaneously involved with multiple service vehicles and
likewise, each service vehicle can aid multiple task vehicles
at the same time.

We consider that the network has T time periods, where
every period is divided into multiple time frames. A free-flow
traffic model is considered where all the vehicles are within
the range of a BS and the velocity of the vehicles remains
constant in one time frame but may differ over different time
frames. Accordingly, we assume that during period t, Vt has K
resource providers (Vs or pedestrian) within its scope such that
K={V1,V2,. . . ,Vk,. . . ,VK}. The bandwidth is split into several
orthogonal spectrum bands where the available frequency
range is divided into multiple non-overlapping channels, and
each channel is used for a specific transmission. The vehicles
and pedestrian exchange information with the BS and offloads
tasks using these channels. However, in the case of large-
sized tasks, we consider that only one task can be offloaded
at one-time frame. We assume that each vehicle or pedestrian
entering the coverage area of a base station (BS) transmits
a vector message packet containing information about its
position, computation capacity, speed, available resources, etc.
The task vehicles also notify the BS if it has any offload
requests at the beginning of each time slot. Next, the BS
sends back a message packet to the task vehicle which contains
information such as the unique id of the most eligible Vs where
the task is to be offloaded and simultaneously inform the Vs
regarding the same. The task vehicles receive this message
packet via downlink communication and finally offloads the
task to the allocated resource unit via uplink transmission. We
consider the message packet containing the information of the

Fig. 1: An illustration of the considered RIS-aided IoV network for the VFC
framework.
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TABLE I: List of variables

Variable Description Variable Description
Vt task vehicle Θm phase shift matrix of the mth RIS
Vs service vehicle hLoS

k,m , hLoS
m,b ,

hLoS
b,m , hLoS

m,k

line of sight components

t time period hnLoS
k,m , hnLoS

m,b ,
hnLoS
b,m , hnLoS

m,k

non-line of sight components

K resource provider ξ rician factor
Z number of tasks Yb received signal at bth BS
ρz priority of task ϕz Pv transmit power of vehicles
Dz data size of task ϕz nb Gaussian noise at BS
Cz computation size of task ϕz Ok,t ∈ {0, 1} binary, indicating if communication is aided by RIS or

not
τz maximum tolerable delay task ϕz wk,t ∈ {0, 1} binary, indicating if a vehicle is offloading tasks or not
hk,b channel gain from kth vehicle to BS Pb power of transmitter at the BS
hb,k channel gain from BS to kth vehicle λVs,t distance between Vt and Vs

l pathloss hVs,t
channel gain from Vt to Vs

∆ path-loss exponent rVs,t
transmission between Vt to Vs

λk,b distance between the kth vehicle and bth BS rk,t transmission between Vt to BS
λk,m distance between the kth vehicle and mth RIS bw1 , bw2 allocated bandwidths
λm,b distance between the mth RIS and bth BS Υh, Υc, Υl high, common, low priority classes
h̃k,b, h̃b,k random scattering components Ss, Sm, Sl small, medium, large size categories
Nx, Ny number of RIS elements along the x-axis and y-axis α,β network criticality parameters
tz task completion time α,β network criticality parameters
τz maximum tolerable delay actit actor module
−C(Υh) task failure penalty ft−1 previous state information vector data packet
ηp number of small-sized high priority tasks ait, sit, θi action, state and parameters at t
C(Υc) positive constant for successful task ini

t environment information packet
ηc number of medium and large high priority tasks and

all common tasks
rit reward at t

C(Υl)
positive utility constant for low priority tasks Uk

t overall utility
ηl number of low priority tasks or sub-tasks Ωk

t binary, task is offloaded or not
G set of g agents D replay buffer
χz energy required for task ϕz ϱ discount factor
ηks number of local high priority tasks px distribution of st
ϕτs delay in computation of tasks ω cumulative observation of all agents
νi set of continuous policies with parameters θi agt action of gth agent at time t
ν′ set of target policies with parameter θ′i ϕτs delay in computation of tasks

allocated resource unit to be constant in size for all cases.
The eligible Vs is determined based on the properties of the
task that needs to be offloaded such as maximum tolerable
delay of the task, expected contact time between Vt and Vs
which can be calculated from the relative velocity and distance
between the two vehicles, expected delay and computation
resource availability in the Vs. For the purpose of this study,
we ignore the transmission delay involved in offloading service
and assignment of Vs. Furthermore, we assume that Vt has Z
tasks in a time period T denoted by Z={ϕ1,ϕ2,. . . ,ϕz ,. . . ,ϕZ}
where task ϕz is characterized by data size (Dz), computation
size or number of CPU cycles needed (Cz), delay constraint
(τz) and priority of task (ρz).

B. Communication Model
The channel between kth vehicle and BS is denoted by

h0 ∈ C1×1 while the channel gain of the vehicle follows
Rayleigh fading, respectively given as

hk,b =
√
lλ−∆
k,b h̃k,b , (1)

hb,k =
√
lλ−∆
k,b h̃b,k , (2)

where l denotes path-loss and ∆ denotes the path-loss
exponent. λk,b denotes the distance between the kth vehicle

and BS and h̃k,b and h̃b,k are random scattering components
following Gaussian distribution [9], [28]. In order to avoid
penetration loss due to obstacles such as buildings, RISs with
N=Nx × Ny elements are deployed on the roadside units
to reflect the signal and control the propagation paths. Here
Nx and Ny are the number of RIS elements along the x-
axis and y-axis of the metasurface panel, respectively [13].
Accordingly, the phase shift matrix of the mth RIS can be
expressed as Θm = diag[ejψ1,m , ejψ2,m , . . . , ejψN,m ]. The
channel vector between kth task vehicle and RIS is denoted
by hk,m ∈ C1×N and between RIS and BS is denoted by
hm,b ∈ CN×1. Thus the channel gains from vehicle to RIS
and RIS to BS are modeled using Rician distribution and are
given by the following equations, respectively

hk,m =
√
lλ−∆
k,m

(√ ξ

1 + ξ
hLoSk,m +

√
1

1 + ξ
hnLoSk,m

)
, (3)

hm,b =
√
lλ−∆
m,b

(√ ξ

1 + ξ
hLoSm,b +

√
1

1 + ξ
hnLoSm,b

)
. (4)

Here, equation (3) and equation (4) are the channel gains from
the kth vehicle to mth RIS and from mth RIS to bth BS,
respectively. λk,m and λm,b denote the distance from the kth

vehicle to mth RIS and from mth RIS to bth BS, respectively,
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while ξ represents the Rician factor. hLoSk,m and hLoSm,b are the
line of sight (LoS) components and hnLoSk,m and hnLoSm,b are
the non-line of sight (nLoS) components [29]. Similarly, the
channel gains from bth BS to mth RIS and from mth RIS to
the kth vehicle are respectively given as

hb,m =
√
lλ−∆
m,b

(√ ξ

1 + ξ
hLoSb,m +

√
1

1 + ξ
hnLoSb,m

)
, (5)

hm,k =
√
lλ−∆
k,m

(√ ξ

1 + ξ
hLoSm,k +

√
1

1 + ξ
hnLoSm,k

)
. (6)

Thus, the received signal at bth BS can be expressed as

Yb =
√
Pv

(
K∑
k=1

[hk,bqk +

M∑
m=1

hHk,bΘmhm,bqk]

)
+ nb , (7)

where Pv denotes the transmit power for communications of
all vehicles, E[q2k] = 1 is the transmitted signals and nb is the
additive white Gaussian noise at BS. The channel gain from
kth vehicle to BS can be given as |Ok,thHm,bΘmhk,m + hk,b|

2,
where Ok,t ∈ {0, 1} denotes a binary value such that if the
communication is aided by RIS, the value will be Ok,t = 1.
On the contrary, if the communication is not aided by RIS,
Ok,t = 0. Thus, if the communication is not aided by RIS,
the equation of SINR from vehicle to base station will only
consider the direct channel between vehicle to BS denoted
by hk,b. hHm,bΘmhk,m is the cascaded channel and hk,b is
the direct channel. Thus the uplink signal to interference
plus noise ratio (SINR)from vehicle to BS at time t can be
expressed as

γk,t =
wk,tPv|Ok,t

∑M
m=1 h

H
m,bΘmhk,m + hk,b|

2

∑Y
i=1,i̸=k wi,tPv|Oi,t

∑M
m=1 h

H
m,bΘmhi,m + hi,b|

2
+ σ2

.

(8)

Here, wk,t ∈ {0, 1} indicates if a vehicle is offloading
tasks or not, if the vehicle is not offloading task then
wk,t = 0, otherwise wk,t = 1. Pv is the transmit power for
communications of the vehicle, σ2 is the additive Gaussian
noise and

∑Y
i=1,i̸=k wi,tPv|Oi,t

∑M
m=1 h

H
m,bΘmhi,m + hi,b|

2

symbolizes the aggregate interference where Y is the
number of vehicles using a sub-channel. Similarly, the
channel gain from BS to kth user can be given as
|Ok,thHr,khΘmhb,m + hb,k|

2. Thereby, the SINR from BS to
vehicles can be expressed as

γb,t =
Pb|Ok,t

∑M
m=1 h

H
m,kΘmhb,m + hb,k|

2

∑Y
i=1,i̸=k Pb|Oi,t

∑M
m=1 h

H
m,iΘmhb,m + hb,i|

2
+ σ2

,

(9)

where Pb is the power of the transmitter at the BS.
Alternatively, the SINR for V2V offloading can be expressed
as

γ
Vs,t

=
Pvλ

−∆
Vs,t
|h

Vs,t
|2∑

i∈K,i̸=k Pvλ
−∆
Vi,r
|h

Vi,r
|2 + σ2

, (10)

where λVs,t is the distance between Vt and Vs, hVs,t
denotes

the desired channel gain and
∑
i∈K,i ̸=k Pvλ

−∆
Vi,r
|hVi,r

|2

represents the aggregate interference [3]. We assume that
the wireless channel remains constant when a task is being
executed. Accordingly, the rate of transmission between Vt to
Vs and Vt to BS can be respectively given as

r
Vs,t

= bw1 log2(1 + γ
Vs,t

) , (11)

rk,t = bw2
log2(1 + γk,t) , (12)

where bw1 and bw2 denote the allocated bandwidths for the
two scenarios.

C. Task Model

In general, tasks from the vehicles can be classified on
the basis of three main factors: task priority, size, and
criticality of the network which can further be categorized into
three hierarchical priority classes namely high priority (Υh),
common (Υc) and low priority tasks (Υl). Υh tasks are highly
delay-intolerant compared to that of Υc and generally include
fundamental tasks such as navigation, security, sensing, etc.
On the contrary, Υl tasks are delay-insensitive and generally
involve tasks such as entertainment services, etc. Furthermore,
the computational tasks can also be categorized as small
(Ss), medium (Sm), and large (Sl) sized tasks based on
the computation bits involved. Network conditions such as
congestion, collision, lower throughput, etc., affect the quality
of the network. Hence in order to improve the quality, we
consider the criticality condition of the network as one of the
main parameters. For measuring the criticality we introduce
a pair of tunable parameters [α,β] such that α = 1 − β,
0 < α, β < 1. If α > 0, α < β the network is less critical,
while in case of β > 0, α > β, the network is critical. Hence,
α is directly proportional to the state of network criticality.
The value of α or β can never be zero because, in a real-
time atmosphere, a network can neither be too critical that
all operations fail nor can it be unrealistically smooth with
zero adverse impact from the environment [3]. In the proposed
model, tasks are executed in three ways: local execution,
V2V offloading, and V2I offloading. The first-hand tasks of
a vehicle are generally small in size. Hence, we consider
the high-priority small tasks (Υh + Ss) as crucial tasks (e.g.,
sensing, navigation, etc.), which need continuous computation
for the smooth operation of the vehicle. Hence these tasks are
executed locally by the in-vehicle processor. Conversely, Υl
tasks are delay tolerant, and Υl + Sl needs more processing
power. Therefore, such tasks are offloaded directly to the BS
equipped with a MAEC server so as to conserve the processing
capability of the vehicles for future tasks of the Vts. If there
are no Vs within the range of a Vt, then all the tasks except the
crucial ones are directly offloaded to the BS. If the size of tasks
is larger compared to available computation resources, tasks
are divided into multiple sub-tasks and offloaded to different
locations.

D. Utility

High-priority tasks are highly delay-sensitive and it is
essential for these tasks to complete within time. Thus, the
utility function for small sized high priority tasks are designed
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to gain a positive value upon completion of tasks within the
deadline, i.e. task completion time (tz) < maximum tolerable
delay (τz). This positive utility gained will be higher if the
task is completed sooner. The utility gain will logarithmically
decrease with increasing tz . However, if the task is not
completed in time and the task completion time exceeds the
maximum tolerable delay, the utility will gain a negative
constant as a penalty for task failure. Thus the utility for high-
priority tasks of small size can be calculated as

UΥh
n =

{
α ∗ log (1 + τz − tz) /η

β
p , tz ≤ τz,

−C(Υh), tz > τz ,
(13)

where ηp denotes the number of high-priority and small-sized
tasks and −C(Υh) is the negative penalty.

Similarly, the second utility function calculates the utility
of the medium and large-sized high-priority tasks and all
common tasks. In this case, if the task completion time is
less than the maximum tolerable delay of the task then the
utility will gain a positive score denoted by C(Υc). However,
if the task completion time exceeds the maximum tolerable
delay, the utility of the tasks decreases exponentially with the
increasing time beyond the maximum tolerable delay. Thus,
the utility for medium and large sized high priority tasks and
all common tasks can be calculated as

UΥc
n =

{
α ∗ C(Υc)/η

β
c , tz ≤ τz,

C(Υc)e
−u(tz−τz), tz > τz ,

(14)

where ηc is the number of medium and large sized high priority
tasks and all common tasks and u > 0 is a constant.

Since Υl tasks are delay tolerant, they are offloaded directly
to the BS. However, these tasks may still lose their value due
to communication failure or other technical errors resulting in
tz = ∞, subsequently making the utility zero. Accordingly,
the utility of Υl tasks can be defined as

UΥl
n =

{
α ∗ C(Υl)/η

β
l , tz ≤ τz,

0, tz > τz ,
(15)

where C(Υl) is the positive utility constant for Υl tasks and
ηl is the number of Υl tasks or sub-tasks. If there are no Vs
within the range of a Vt at time t, or the available resources
in the Vs are insufficient, the tasks are directly offloaded to
the BS. Nevertheless, the utility of the task is calculated using
the respective utility function according to the task priority.
Therefore, the final utility of the network is calculated as

Un=1(Γ(Υh)
)UΥh

n +1(Γ
(Υc)

)UΥc
n +1(Γ

(Υl)
)UΥl

n −χzCz ,
(16)

where Γ
(Υh)

, Γ
(Υc)

, Γ
(Υl)

are priority constants, 1 is the
indicator function and χz is the energy required for task ϕz in
Vs. Let the service vehicle Vk have ηks local high-priority tasks
and ϕlocal is the ratio of the minimum required computation
frequency for execution of local tasks to the total available
frequency. Then, the utility of local task is given by

Ulocal(ϕ) =
∑ηks

s=1
log (1 + τs − ϕτs) , ϕ ∈ [ϕlocal, 1] , (17)

where ϕτs is the delay in computation of tasks. When a vehicle
executes an offloaded task, part of its frequency is assigned

to that task. As a result, it changes the utility of its local task
from Ulocal(ϕk) to Ulocal(ϕ′

k) such that χzCz = Ulocal(ϕk)−
Ulocal(ϕ′

k). Additionally, if more tasks are offloaded to the
vehicle then Ulocal(ϕ′

k) is updated to Ulocal(ϕ′′
k), where ϕ′′

k is
the consumed energy for the new task [3], [4].

III. MULTI-AGENT DEEP REINFORCEMENT LEARNING

We assume that at a certain time period, there are
multiple Vt within the coverage area of a BS and each
of them makes offloading decision based on the dynamic
VFC environment statistics. Since the VFC environment is
dynamic, these statistics change in every time slot which
makes the future states of the environment unpredictable.
In the considered framework, we consider an actor-critic-
based MA-DRL algorithm where g agents interact with the
environment to make an optimal decision for achieving the
predefined objective. We aim to maximize the utility of this
framework by using multiple agents associated with the BS
such that each agent corresponds to a different Vt or a
different set of Vt. The dynamics of the state and reward get
updated when all the agents mutually join their actions. MA-
DRL approach can reduce the instability in a multi-vehicular
environment and can be modeled as a Markov game (MG),
where a set of agents work towards optimizing a common
reward. The details of the architecture of the MA-DRL for the
considered framework including components and algorithm
are described below.

A. Markov Game and vehicle clustering

In MG, each game can be represented as a matrix,
where joint actions can be calculated from the matrices
[30], [31]. In general, MG can be represented by the tuple
(G,S,A, T ,R, ϱ), where

• G is the set of g agents;
• S denotes a finite state space;
• A = A1 × A2 × A3 × . . . × Ag denotes the joint action

space;
• T : S ×A× S → [0, 1] denotes the transition function;
• R such that Ri : S ×A → Reward;
• ϱ denotes the discount factor.

In the proposed architecture we consider the interaction among
the agents to be simultaneous and cooperative. Let n(Vt) and
n(agent) represent the number of Vts and number of agents,
respectively. Accordingly, if n(Vt) ≤ n(agent), one agent will
correspond to one Vt, whereas if n(Vt) > n(agent), Vt with
similar parameters will correspond to the same agent. Such Vts
with similar parameters are clustered for the same agent using
k-means algorithm considering relative parameters such as
speed, location, direction, etc., as measures for feature scaling
[5], [26], [31]. Algorithm 1 illustrates the k-means algorithm
used for vehicle clustering.

B. MA-DRL Components

The MA-DRL is modeled as MG as illustrated in Fig. 2.
The algorithm consists of four major components as described
below.
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Algorithm 1 k-means algorithm for vehicle clustering

1: Initialize g agents.
2: Initialize k vehicles.
3: Shuffle vehicles and randomly select g vehicles as

centroids.
4: Repeat until no change in centroids.
5: Take parameters as features for feature scaling.
6: Compute the sum of squared distance or similarity among

the values of the features among all vehicles and all
centroids.

7: Assign each vehicle with the closest centroid vehicle, thus
forming a cluster with the centroid vehicle.

8: Assign one agent to each cluster.

Fig. 2: Block diagram of the MA-DRL modeled as MG.

• Actor: Each agent has its individual and independent actor
module(s) (act). The module actit accepts information
packet init from the environment at time t. Each module
shares the information about its previous states with
other actor modules by converting the information as
a vector data packet. At time t, an actor module will
share the information vector data packet of its previous
state at time t− 1, denoted as ft−1. Every agent chooses
its action based on the actor such that the action (ait)
corresponds to the mapping function µi(st; θi) where st
and θi are the approximate overall state and parameters
at time t, respectively and st ≈ {ft−1, in

i
t}. An agent

gets corresponded to a vehicle when it is in an idle state
at the beginning of a time period and does not consider
any vehicle whose service is in use or being computed.
Each agent follows their own strategy µi(st) and for each
action ait, it receives a reward rit = r(st, a

i
t) from the

environment following which the state gets updated to
st+1.

• Critic: Multi-agent DRL consists of one global critic,
which observes the actions of each actor and evaluates
the performance of all the actors centrally. The global
critic value function can be given by Q(st, a1t , . . . , a

g
t ).

• Information exchange: The communication is based
on the artificial neural network-based long short-term
(LSTM) algorithm [32]. The LSTM algorithm converts
the relevant information about observations, states, and
actions of all agents and converts it into a vector data
packet that is shared among the agents simultaneously.
This packet is the previous state information data packet
ft−1. Each actor of every agent receives this packet at

the beginning of a state and updates the packet by adding
their own observed information and actions in the current
state. This data packet then gets updated from ft−1 to ft,
which contains the information of actor actt and action
at of all the agents at time t. Thus, the decision made by
every agent is dependent upon the current and previous
state of its own as well as other agents, which allow the
agents to take global decisions [5].

• Reward: According to the observations, the agents take
action ait and receives reward rit. Thus the overall reward
is represented by

R(st, at) =
1

T

∑T−1

t=0

∑K

k=1
Ωkt Ukt , (18)

where Ω ∈ {0, 1} signifies whether a task is offloaded or
not.

The main experimental protocol for the MA-DRL algorithm
includes the following steps:

1) Environment definition: The VFC environment is
defined which includes the definitions of the state space,
action space, and reward function.

2) Initialization of the agents: Next, the agents are defined
to make decisions based on the environment. Each of
the agents maps the state of the respective section of
the network to actions.

3) Agent training: During the training process, each of
the agents interacts with the environment and collects
experiences, and stores them in the replay buffer.
Consequently, the updates its policy based on these
experiences and repeats the process for a fixed number
of episodes or until convergence is reached.

4) Agent evaluation: After the training process, the
performance of the agent is evaluated by analyzing its
ability to optimize the reward or utility function.

C. MA-DRL Algorithm Design

During the training process, the actor and the critic
networks are trained centrally, while the target is trained in a
decentralized manner. The joint state, action, reward, and next
state to replay buffer D. The main critic network is updated for
each agent the action-value function for states (sit), actions (ait)
at the time (t) for the considered network can be represented
by Bellman equation given as

Qi
t(s

i
t, a

i
t) = E[r

t
i + ϱE[Qi

t(s
′i
t , a

′i
t )] . (19)

Here, the Q value is defined as

Q = E[ri + ϱE[Qi(s
′, a′1t , . . . , a

′g
t )]] , (20)

where ϱ is the discount factor. Now, let the parameters for the
policies and set of agent policies be given by θi = {θ1, . . . , θg}
and πi = {π1, . . . , πg}, respectively. Then, for the ith agent,
the gradient can be written as

∇θiJ(θi) = E
(st∼px,at∼πi)

[∇θi log πi(ai|si)Qπ
i (ω, a

1
t , . . . , a

g
t )] ,

(21)

where px is the distribution of st, ω denotes the cumulative
observation of all agents, and Qπ

i (ω, a
1
t , . . . , a

g
t ) is the central
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action-value function. The first vector is determined by
calculating the weighted average of the policy gradient,
while, second-moment vector is determined by calculating the
weighted average of the squared gradient of the policy with
respect to the parameters at each step. Thus the mean and
variance are updated as y1 ∗meant−1 + (1− y1) ∗ (∇θiJ(θi))
and y2 ∗ vart−1 + (1− y2) ∗ (∇θiJ(θi))

2, respectively, where
y1 = 0.9 and y2 = 0.999 denotes the decay rate. meant and
vart denotes the updated mean and variance at time t.

We consider a deterministic-based policy approach such that
νi denotes the set of continuous policies with respect to the
set of parameters θi. The tuple (ω, ω′, ait, . . . , a

g
t , r

i
t, . . . , r

g
t )

are stored in D as information of the g agents. Now, Qν
i is

updated as

L(θi) = E
(fi

t ,ω,a
i
t,r

i
t,ω

′)
[(Qν

i (ω, a
i
t, . . . , a

g
t )− y)

2
] , (22)

y =rit + ϱQν′

i (ω′, a′it , . . . , a
′g
t ) . (23)

Here, (22) calculates the loss of the critic network, (23)
computes the target, and ν′ denotes the set of target policies
with parameter θ′i. Thus, the gradient for continuous policy is
updated as [33]

∇νiJ(θi) = E
(ω,at∼D)

[∇θiνi(ai|si)∇aiQν
i (ω, a

i
t, . . . , a

g
t )].

(24)

The policy iteration continues until convergence. The above
MA-DRL algorithm is summarized in Algorithm 2.

IV. SIMULATION SET-UP

A two-way roadway set-up with multiple task and service
vehicles in the range of a BS is accounted for and the BSs are
deployed with a distribution of 1BS/km. The types of tasks
within the network are classified based on priority and size
while considering the criticality of the network. The simulation
parameters are given in Table II.

For the selection of the most eligible service vehicle in V2V
offloading, we propose a multi-agent DRL algorithm, called
MA-DRL as illustrated in Algorithm 2. The stopping criteria
of the proposed algorithm is based on the convergence of
the network policy which is determined based on the average
reward obtained per 100 episode i.e. when the average reward
does not increase per 100 episode. Additionally, we evaluate
the performance of the system with and without RIS as the
transmission paths between the BS and vehicles can be direct
as well as via RIS. The RISs are assumed to be installed on
buildings or roadside units and are equipped with a central
microcontroller.

The proposed MA-DRL algorithm is compared against three
baseline single-agent DRL (SA-DRL) algorithms. The SA-
DRL algorithms are modeled on markov decision process
(MDP) framework. The MDP environment includes a set of
probable states, actions, and rewards. In MDP, one agent
interacts with the environment in a discrete time step and
decides the action based on the current state information at
each time frame. A brief description of the algorithms are
summarized below.

Algorithm 2 MA-DRL algorithm

1: Input: current environment
2: Initialize parameters θi = {θ1, . . . , θg} and δ for actor and

critic network, respectively.
3: Initialize replay buffer D.
4: Initialize main actor and critic networks with weights θ

and δ, respectively.
5: Initialize target actor and critic networks θ′ and δ′.
6: for all training steps do
7: Initialize vector data packet f0

0 , t = 0.
8: for each episode do
9: Initialize a random process for action exploration.

10: Retrieve initial state.
11: while t < T do
12: for i = 1 : g do
13: Select action ait for all agents at time t

w.r.t. current policy.
14: Execute actions.
15: Receive reward rit and update state sit+1.
16: Update vector data packet by

f it−1 =LSTM(f i−1
t−1 , [s

i
t, a

i
t])

17: Store transition (f it , ω, a
i
t, r

i
t, ω

′) in D
18: end for
19: Updated f0

t = mg
t−1

20: t = t+ 1
21: end while
22: for do agents i=1 to g
23: Randomly sample a mini-batch of transition

from D.
24: Update critic network using equation (22).
25: Update actor using equation (24).
26: Update LSTM.
27: Soft-update target actor and target critic

networks:

θ′i ← κθi + (1− κ)θ′i ,

δ′i ← κθi + (1− κ)θ′i .

28: end for
29: end for
30: end for
31: until convergence

A. Deep Deterministic Policy Gradient (DDPG)

DDPG is used for continuous action space which combines
the concept of deterministic policy gradient (DPG) and deep
Q-network (DQN). The algorithm uses off-policy data and
learns the Q function using the Bellman equation. The loss
function of the critic and the target is given respectively as

L(θQ) = E
(st∼ρx,at∼x,Rt∼x)

[(Q(st, at|θQ)−Ψt)
2] , (25)

Ψt = R(st, at) + γQ(st+1, ϱ(st+1)|θQ) , (26)

where θQ denotes the parameter values and px denotes the
distribution of st. The policy updation can be formulated as

∇θϱJϱ ≈ E
(st∼ρx)

[∇aQ(s, a|θQ)|st,a=ϱ(st)∇θϱϱ(s|θ
ϱ)|st ] ,
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TABLE II: Simulation Parameters

Parameters Values Parameters Values

[Υh, Υc, Υl] [0.5, 1, 2] computation size [1, 3, 5]

max. tolerable delay (Υh) [0.5, 1, 2, 4]s traffic [20− 70] vehicles/km
max. tolerable delay (Υc,Υl) [5, 6, 7, 9]s max. relative distance 500m
data size [3, 5, 10]MB max. relative velocity ±60Km/hr
max. tasks/vehicle 55 batch size 256

max. local tasks/vehicle 7 vehicle computation power [5− 12]GHz
number of RIS 3 number of RIS elements 128GHz
LRactor 0.001 ϱ 0.95

LRcritic 0.02 κ 0.01

HLactor [512, 128] replay buffer 106

HLcritic [512, 256] random seeds 10

bw1 15MHz bw2 20MHz
Optimizer Adam Adam optimizer tolerance 10−6

actor fully connected layers 4 critic fully connected layers 3

activation function Softmax dataset samples 60, 000

training sample 42, 000 validating & testing samples 9000

dataset generation library OpenAI Gym [34] ML library Tensorflow

≈ 1

H

∑
t

[∇aQ(s, a|θQ)|st,a=ϱ(st)∇θϱϱ(s|θ
ϱ)|st ] , (27)

where ∇ denotes the parameters of the policy and H denotes
the batch of transition in the replay buffer. The policy iteration
continues until convergence.

B. Twin Delayed DDPG (TD3)

TD3 is a successor to DDPG which overcomes the problem
of overestimation of the Q function in DDPG. It was designed
to counter drawbacks of other actor-critic type algorithms
[35]–[37]. The additional features in TD3 are: it adds delay
to policy updation and regularizes the noise. TD3 also uses
two critic functions and hence adds two Q functions and both
functions are chosen in succession to compute a single target.
The Q-function giving minimum target value is used first. The
Q-functions are computed by using mean square Bellman error
minimization and the target is defined as

Ψt = R(st, at) + γ min
i=1,2

Qθci ,θ
′
i
ϱ(st+1)|θiQ) , (28)

where θi
Q denotes the parameter values. The actions which

form the Q-learning target policy are defined as Lθtarg
, where

the added noise is clipped for noise regularisation. Thus the
target action is formed as

a(s) = clip(Lθtarg
(s) + clip(ϵ, c1, c2, alow, ahigh)), (29)

where ϵ ∼ N (0,∇) is the clipped noise, c1 and c2 are the
two critics such that the valid actions lie within the range
alow ≤ a ≤ ahigh. Each of the Q functions are computed
using different loss functions defined as

L(θc1) = E
(st∼ρx,at∼x,Rt∼x)

(Qc1(st, at|θQ)−Ψt)
2] . (30)

L(θc2) = E
(st∼ρx,at∼x,Rt∼x)

[(Qc2(st, at|θQ)−Ψt)
2] , (31)

The policy updation of TD3 is similar to DDPG and the policy
iteration continues until convergence.

C. Soft Actor-Critic (SAC)

SAC acts as a link between stochastic policy optimization
and DDPG-style-based approaches. This algorithm works on
the basis of entropy regularization which is formulated using
Bellman equation. The policy of SAC is updated using
Kullback-Leibler divergence [38] formulated as

πn = argmin
π′∈Π

IKL

(
π′(.|st)||

exp((1/∆)Qπ(st, .)

Zπ(st)

)
, (32)

where Π is set of policies and IKL is the amount of
information lost. (32) can be further minimized by parameter
updation given as

Jπ(θ) = E
(st∼D)

[
E

at∼πθ

[∆ log(πΘ(at|st))−Qθ(st, at)]
]
.

(33)

The policy iteration continues until an optimal value is
reached.

V. SIMULATION RESULTS

In this section, we simulate the considered VFC framework
and numerically analyze the communication performance of
the proposed algorithm with and without RIS. We compare the
proposed MA-DRL with other benchmark DRL algorithms,
namely SAC, DDPG, and TD3, and one baseline greedy
algorithm, that chooses the most eligible service vehicle on
the basis of maximum remaining computation power.

A. Mean Utility

In the considered VFC system, the speed of the task vehicles
are set to 40Km/hr with a maximum relative velocity
between two vehicles being 60Km/hr. Fig. 3a and Fig. 3b
show the mean utility of the network under moderate and
critical network conditions, respectively. Moderately critical
network is defined by setting the values of α and β as 0.3 and
0.7, respectively, and critical networks are defined by setting
the α and β as 0.7 and 0.3, respectively. For both cases,
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(a) Moderately critical network, [α, β]=[0.3,0.7].
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(b) Critical network, [α, β]=[0.7,0.3].

Fig. 3: Mean utility with respect to different traffic conditions.

the mean utility of the network for the proposed MA-DRL
is compared with benchmark single-agent actor-critic type
DRL algorithms such as TD3, DDPG, and SAC. Additionally,
the DRL algorithms are also compared with a non-DRL
algorithm called the Greedy algorithm which considers the
available computation power of the vehicles as the primary
parameter for selecting service vehicles. From the figures, it
can be observed that in both cases the multi-agent approach is
outperforming the single-agent approaches. But we can also
see that when the traffic is very less, TD3 tends to have a
slightly higher utility compared to MA-DRL. This justifies the
fact that multi-agent algorithms perform better than single-
agent environments in more complex networks. It is to be
noted that in our simulation we have considered vehicles
moving in four directions, i.e., we have considered two-way
roads with intersections. Moreover, high traffic density and
multiple-directional mobility make the network more complex.
Further, in Fig. 3a, we can see that the pattern of TD3 and
DDPG is almost similar during mid-traffic density and high-
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Fig. 4: Mean delay in task execution for different traffic conditions.

traffic density. However, the performance of SAC is seen to
be improving from low to high making it an ideal alternative
for high traffic but not suitable in low traffic. While in critical
condition, both DDPG and TD3 outperform SAC throughout.
However, in the overall scenario, if the network layout is much
less complex, TD3 can be considered as an ideal alternative
for MA-DRL.

B. Delay

In Fig. 4, we show the mean delay in task execution of
the proposed MA-DRL algorithm for low traffic (20Km/hr)
and high traffic (70Km/hr) conditions. In particular, Fig. 4a
shows the mean delay for high-priority tasks considering the
maximum tolerable delay ranges between [0.5 − 4]seconds
since high-priority tasks are strict on delay tolerance. While
Fig. 4b shows the mean delay for common and low-priority
tasks where the maximum tolerable delay ranges between [5−
9]seconds, common and low-priority tasks are comparatively
more delay tolerant. For delay evaluation, we consider an
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Fig. 5: Ratio of successfully offloaded tasks that are completed for various
traffic conditions.

average critical network with the values of [α, β] = [0.5, 0.5].
In both cases we consider the number of task vehicles to be
the same, hence when traffic density is low, it implies that the
number of service vehicles are less and when traffic density
is high, the number of service vehicles are more. Thus the
task vehicles do not have to queue for offloading to other
service vehicles until a service vehicle completes the ongoing
tasks and needs to offload comparatively fewer tasks to the BS
during high traffic which reduces the mean delay. Comparing
Fig. 4a and Fig. 4b we can see a significant difference between
the mean delay in high-priority tasks compared to the mean
delay in common and large tasks which justify that high-
priority tasks are more delay sensitive.

C. Successful tasks

In Fig. 5, we compare the ratio of high-priority offloaded
tasks successfully completed to that of common and low-
priority offloaded tasks successfully completed. High-priority
tasks are offloaded only to other service vehicles, however
common and low-priority tasks are offloaded partly to vehicles
and partly to the BS. Fig. 5 shows that the task completion
rate of high-priority tasks is higher compared to common and
low-priority tasks. This justifies the objective that high-priority
tasks are crucial and that completion of these tasks are more
important than other tasks for a vehicle to operate smoothly
in an IoV network.

D. RIS assisted task offloading

1) Rate of data successfully computed: Fig. 6 shows the
ratio of the amount of total data transmitted by the vehicles
to the total data computed. Even though only a fraction of
the total data is offloaded to the BS while the rest of the
data are computed in the V2V infrastructure, the graphs show
a significantly increased amount of data being computed at
the BS when the network is being aided by RIS. Moreover,
the part of task offloading within the V2V infrastructure is
offloaded from one vehicle to another vehicle via a direct
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Fig. 6: Ratio of computed data to total data transmitted.
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Fig. 7: Ratio of tasks offloaded to BS that are successfully completed.

link where no RIS is involved. Hence the improvement in
performance seen in Fig:6 when the network is being aided
by RIS is due to the bits involved in the tasks offloaded to the
BS via RIS. Consequently, it implies that the incorporation
of RIS improves communication and allows more data to be
offloaded and computed at the BS.

2) Ratio of tasks offloaded to BS that are successfully
completed: In Fig. 7 we show the ratio of tasks that are
offloaded to the BS and are successfully completed when
assisted by RIS versus the scenario without RIS. This figure
shows that when the communication is being assisted by RIS,
it improves the quality of communication and allows more
data to be transmitted as justified by Fig.6. Thus, it reduces
the amount of data lost in transmission compared to that of a
communication that is not supported by RIS and reduces the
rate of task failure. Hence, the rate of successfully completed
tasks is relatively higher with RIS.

3) Average offloading rate of tasks to BS: In Fig. 8, we
show the average offloading rate of tasks from vehicles to
the BS with and without RIS. From the figure, it can be
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Fig. 8: Average offloading rate of tasks to the BS.
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Fig. 9: Mean utility vs traffic for m = [1− 7] number of RIS.

seen that with the aid of the RIS, the offloading rate is
higher as compared to the scenario without the RIS. This is
because the RIS mitigates signal attenuation and dispersion,
thus improving the signal-to-noise ratio at the vehicles. Thus,
during high traffic conditions or when there is a higher number
of tasks to be offloaded to the BS, the aid of RIS can help
with faster offload and thereby faster processing of data.

4) Mean utility for different number of RIS: Fig. 9 shows
the mean utility for the proposed MA-DRL algorithm at
different traffic conditions. We compare the mean utility of the
framework for different number of RIS m. We can see that the
mean utility is less when m = 1 and it significantly increases
when the value of m increases. However, we can also observe
that the difference between the mean utility graphs gradually
decreases, i.e. the difference between m = 1 and m = 3
graph is more than the difference between m = 3 and m = 5.
Additionally, the effect of number of RIS on the mean utility
is more in higher traffic.

5) Mean utility vs number of RIS elements: Fig. 10
illustrates the performance comparison of the proposed MA-
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Fig. 11: Mean delay for the tasks offloaded to BS directly vs via RIS.

DRL algorithm with the other three DRL algorithms and the
baseline greedy algorithm for different RIS elements. For the
comparison in Fig. 10 we have considered vehicles/km = 50
and criticality parameters as [α, β] = [0.3, 0.7], i.e., the
network is moderately critical. The number of RIS elements
is within the range [60− 128]. We can see that except for the
greedy algorithm, the mean utility of all the other algorithms
increases as the number of RIS elements increases. This is
because increasing the number of RIS elements increases the
achievable rate of the RIS-assisted channels which as a result
improves the task offloading quality for all the algorithms.

6) Mean delay for the tasks offloaded to BS: In Fig. 11,
we show the mean delay for only tasks which are offloaded
to the BS when the maximum tolerable delay lies within the
range [5-9]. Here, we compare the mean delay when with and
without the presence of RIS. It can be seen that when the
network is aided by RIS, the delay is significantly reduced.
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E. Mean delay for all tasks

Fig. 12 shows the overall mean delay for Υh, Υc and Υl
tasks cumulatively with traffic density of 30, 40, 50 and 60
vehicles/km. The figure shows that when vehicle density is
lower, the mean delay is higher irrespective of the algorithm.
This observation can be justified by considering the fact that
when vehicular density is low, task vehicles have fewer options
for service providers. Therefore, tasks are either queued to
the available service providers or offloaded to the BS. In
either situation delay increases which eventually leads to an
overall increase in mean delay. Similarly, when the density of
vehicle is high, most of the tasks can be offloaded in V2V
offloading mode which reduces the mean delay. Additionally,
it can be observed that the delay in TD3 is significantly
higher compared to other algorithms despite the fact that it
performs better in terms of utility compared to SAC and
DDPG. Although at 30vehicle/km, SAC performs with the
least mean delay, as vehicular density increases, MA-DRL
tends to outperform all the other algorithms with minimum
mean delay.

F. Execution time for DRL algorithms

Fig. 13 shows the execution time for all four DRL
algorithms. The execution time for the multi-agent approach
is seen to be higher compared to that of the single agent
approaches since this method involves complex calculations
and is specially designed for complex networks. From the
previous results, we can also draw the conclusion that the
results of the multi-agent approach outperform the others
since in this framework we have considered a complex urban
setup for the vehicular model. However, for simpler and less
complex frameworks or more rural networks with less number
of vehicles, the multi-agent model would not perform well. For
such scenarios, single-agent methods can prove to be more
ideal.
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Fig. 13: Execution time for MA-DRL, TD3, DDPG and SAC.

G. Complexity Analysis

Table III shows the complexity of all four actor-critic type
algorithms. For all the algorithms, we consider that the number
of variables in the state space is Ns

2 and the space complexity
is Sp. Let us assume that the algorithms have actor networks J
fully connected layers and critic layers with E fully connected
layers where ∫actor,j denotes the size of the actor in the jth

layer of actor-network and ∫critic,i is the size of the critic
in the ith layer of critic network. We assume that each fully
connected layer contains M × N matrix with N bias as a
vector. Therefore, (M + 1)N can be considered as the space
complexity of one layer. The SAC algorithm is stochastic
while the other three algorithms, i.e., DDPG, TD3 and MA-
DRL are deterministic. Hence SAC has a discrete action space
while the other three algorithms have continuous action space
which is one of the main differences between SAC and DDPG.
Thus, the complexity of the SAC algorithm is given in the
first row of Table III, where

∑T
t=1 (Ns) is the complexity

of the action space for a discrete time period. While O (Sp)
is the complexity of state space. Similarly, the complexity
of DDPG and TD3 is represented in the second and third
row of Table III, respectively, where the complexity of action
space is represented by Ns. Additionally, TD3 is a modified
version of DDPG which uses two critics, hence, the complexity
of the critic network in TD3 is 2 ∗

(∑E−1
i=0 (∫critic,i)2 + 1

)
.

On the same note, MA-DRL has multiple agents and each
agent performs different actions, hence, the size of joint action
space can be defined as |A|g where g is the number of
agents. Since MA-DRL algorithm uses multiple agents and
the global critic monitors the overall actor networks, the
complexity of the actor-network is exponential to the number
of agents used and given by (

∑J−1
j=0 (∫actor,j)2 + 1g . The

complexity of the critic network also increases since only
one critic network is responsible for multiple actors, and
is represented as

(∑E−1
i=0 (∫critic,i)2 + 1

)
C, where C is a

constant. Additionally, the complexity of the joint action space
can be represented as O ((Ns)g − C) where C is a constant.
Although, the complexity of the multi-agent algorithm is
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TABLE III: Computation complexity of the algorithms

SAC O

((
J−1∑
j=0

(∫actor,j)2 + 1

)
+

(
E−1∑
i=0

(∫critic,i)2 + 1

))
+O

(
T∑

t=1

(Ns)

)
+O (Sp)

DDPG O

((
J−1∑
j=0

(∫actor,j)2 + 1

)
+

(
E−1∑
i=0

(∫critic,i)2 + 1

))
+O (Ns) +O (Sp)

TD3 O

((
J−1∑
j=0

(∫actor,j)2 + 1

)
+ 2 ∗

(
E−1∑
i=0

(∫critic,i)2 + 1

))
+O (Ns) +O (Sp)

MA-DRL O

((
J−1∑
j=0

(∫actor,j)2 + 1

)g

+

(
E−1∑
i=0

(∫critic,i)2 + 1

)
C

)
+O ((Ns)

g − C) +O (Sp)

exponentially higher than that of the other algorithms, from the
simulations we can see that for complex urban environments,
MA-DRL algorithm achieves significantly better results than
single-agent algorithms. However, this algorithm may not
be suitable for non-complex environments as it will reach
unnecessary overhead [39]–[41].

VI. CONCLUSION

An intelligent task offloading strategy in a RIS-aided
MAEC IoV network was designed considering the state of
the criticality of the network and priority-based size-based
tasks of the vehicles. We developed an MA-DRL framework
using MG that maximizes the mean utility of the IoV network
and improves communication quality. The designed framework
takes into consideration a hybrid workflow, where vehicles and
the MAEC server located at the BS with unused resources are
stimulated to share their resources with nearby task vehicles
to provide auxiliary computation support. V2V offloads are
done via direct links between vehicles since it is a short-
ranged transmission, whereas V2I transmissions are aided by
both direct links from vehicles to BS as well as via multiple-
RISs. The numerical results demonstrated that the RIS-assisted
IoV network using the proposed MA-DRL algorithm achieved
higher utility than current state-of-the-art networks (not aided
by RISs) and other baseline DRL algorithms. The proposed
method improves the data rate of the offloaded tasks, reduced
the mean delay, and also ensured that a higher percentage
of offloaded tasks were completed compared to that of other
DRL-based and non-RIS-assisted IoV frameworks.
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