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Computational Model of Functional Connectivity
Distance Predicts Neural Alterations

Tanu Wadhera, Member, IEEE, Mufti Mahmud, Senior Member, IEEE

Abstract—Modelling brain signals play a crucial role in
analysing the brain’s architecture, functions and associated
disorders. This paper aims to model the brain topology by
exploring the relationship between complex neural correlates and
functional connectivity-based distances. A computational model
inspired by multivariate visibility graphs (VG) algorithm and
Euclidean distance is proposed to analyse quantitatively the
brain network data. When applied to resting-state EEG signals
from three groups (typically developing (TD), autism spectrum
disorder (ASD), and epilepsy (E)), the network topological prop-
erties (e.g., global efficiency, modularity, small-worldness, and
betweenness centrality) demonstrate variations in connectivity
distance probabilities among brain regions (e.g., frontal, tempo-
ral, parietal, and occipital) via the model’s delay and connection
distance parameters. The results showed a higher delay and
skewed distribution towards short functional connections in ASD
than in TD, while a lower delay in E than in ASD and TD.
Additionally, ASD had more short-distance connections, while E
had more long-distance connections compared to TD. ASD and
E significantly overlapped over short-distance connections within
the temporal lobe. In summary, the proposed model illustrates
that delay parameter and connection distance obtained from
brain network data have the potential to objectively identify and
associate co-occurring neurological conditions (e.g., ASD and E).

Index Terms—Autism, Brain Network, Functional Connectiv-
ity, EEG, Epilepsy, Euclidean Distance, Brain Topology, Visibility
Graph

I. INTRODUCTION

EXPLORING brain network data and understanding brain
functions via different data analytics techniques, such as

efficient information exchange among different regions, is a
challenging problem. Recent years have seen an increased
number of research reports for the screening [1], [2], detection
[3]–[5], management [6]–[10] and understanding [11]–[13]
brain disorders such as Autism Spectrum Disorder (ASD). To
dig deeper, the analysis of complex brain networks and their
complex connections play a crucial role in analysing brain
topology in disorders ASD and Epilepsy (E) [12], [14]. Brain
functional connectivity (FC) serves as a means to study inter-
regional communication of the brain in people with disorders
as well as in Typical Developing (TD) individuals [15]. The
neuro-computational models have already uncovered how the
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human connectome limits the cross-regional connectivity of
the brain networks [16]–[19]. The topology of brain FC
networks modelled using a single parameter-based probability
model extracts anatomical distances (Euclidean) to explain
coordination in brain regions [20]. The theory-based data
investigation methods depict neighbouring brain areas are
more likely to interact with each other, reducing the metabolic
costs [21]. Simultaneously, they also maintain a few long-
distance connections to accelerate data transmission. Thus,
the data analytics model has revealed complex topology as
a trade-off factor between constraints on anatomical distances
and trends for clustered connections [16]. However, the studies
have majorly focused on correlating regions with the anatom-
ical distance but failed to provide information on connection
distance-based alterations in the brain network and to compute
the connectivity distances in case the brain signals are in the
form of multivariate data.

The present paper aims to extend the work on brain data
analysis methods and investigates how the alterations in the
whole-brain FC can detect alteration in terms of connection
among brain units/structures representing brain topologies,
which leads to conditions like ASD and E and their co-
occurrence [12]. A data-driven method that models the FC
distances extracted from brain signal (i.e., EEG) is proposed
to check the suitability of brain connections in detecting
the neurological conditions (i.e., ASD, E, and TD) more
precisely. This work uses graph-based algorithms to map brain
signals into complex networks comprising edges and nodes
and analyse modification in the edges using complex metrics.
Here, in the case of multichannel EEG signals, each channel is
considered a node, and the relation between the two channels
is regarded as an edge. To form an edge, the association
between the channels is computed via different parameters
such as correlation coefficient, synchronisation likelihood,
coherence, and mutual information [21]–[23]. Afterwards, a
certain threshold value of the computed parameter is decided
to consider the network’s corresponding edges (>threshold
value). The formulated graph can be analysed by extracting
complex network features, such as clustering coefficient and
characteristic path length [24]. However, all these methods
are biased to threshold criteria leaving many brain patterns
unexplored and even unnoticed.

One of the techniques, namely the Visibility Graph (VG),
has the potential to overcome some of the shortcomings
of the existing methods as outlined in [25]. It provides a
connection (i.e., an edge) between two nodes by defining
a visibility criterion between them. This contributes to the
formulation of a graph (i.e., a network formed by nodes and
edges connecting them) as described in section III-B1 [25].
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Since the brain signals represent orchestrated and complex
interactions of correlating brain units/regions, the VG can
map this complexity at the network level. The VG method
allows the construction of graph networks from the acquired
EEG signals. Therefore, the VG method provides a possible
representation of the brain’s structural/regional units in a graph
format enabling the application of powerful graph theoretical
metrics to study subtle patterns seen during the inter- and
intra-unit (region/structure) communication in the brain which
otherwise are difficult to study and compare.

The brain contains modulatory neurotransmitter systems
with extensive projections that influence overall brain activity
[26]. Disruptions in these systems are associated with various
neuropsychiatric disorders [27]. By adjusting specific neural
processes, these systems impact perception, cognition, and be-
haviour [28], [29]. This makes the VG method very powerful
in capturing the spontaneous variability of brain signals, which
is considered one of the brain’s inherent physiological aspects.
The VG method also allows these signals to be translated into
a scale-free and random graph for further analysis to study the
variability of the network.

The VG method can be extended to a multivariate form
to construct a multiplex network with layers generated from
multiple EEG channels. The multivariate VG mainly uncovers
dependency among different layers of the multiplex network
by describing and quantifying the interlayer synchronisations.
This provides whole-brain connectivity information using the
multiplex network formulated for each time instance of the
multichannel EEG data. Relevant metrics extracted from the
connectivity information can help in understanding neural
alterations pertaining to different neurological conditions such
as ASD, E and TD.

Based on this, the current work puts forward the following
contributions:

• Propose a multivariate VG-based computational model of
FC distance to analyse multichannel brain signals.

• Provide a probability density-based delay metric to reflect
connection variations in predicting brain network topol-
ogy of ASD, E, and TD.

• Provide a quantitative means to identify co-occurring
neurological conditions (e.g., ASD with E) derived from
multichannel brain signals.

The rest of the paper is organised as follows: section II
summarises the existing literature on the topic while section
III discusses the demographic and EEG data of participants,
followed by a detailed description of multivariate VG-based
complex network construction, validation parameters, simu-
lated probabilistic network models, hypothesis framing for
identifying network differences. Finally, sections IV, V and VI
present the results, discussion and conclusion with the future
scope of the proposed model.

II. LITERATURE REVIEW

Priorly, the researchers have worked on modelling brain
connection distance to find out the neural markers leading to
neuro-[degenerative/developmental] disorders [16], [30]. One
of the data-driven modelling studies has brought forward the

concept of the relationship between geometric distance, FC,
and network topology to evaluate neurological conditions such
as schizophrenia [16]. Another study investigated the balance
between anatomical wiring cost and brain data complexity,
suggesting that any disruption in wiring might contribute to
neuropsychiatric disorders [31]. Researchers also successfully
revealed the dependence of FC on the distance between
different brain regions [32]. This dependence provided an
estimation of neural complexity under a cognitive demand and
metabolic cost of sustaining links between brain elements [33],
[34]. Based on this concept, the present paper has proposed
distance metrics-based algorithms to build complex networks
and find out perturbations in brain connectivity of individuals
with ASD and E.

Researchers have used neuroimaging and electrophysiolog-
ical data such as Magnetic Resonance Imaging (MRI) and
Electroencephalogram (EEG) to investigate brain connectivity
under resting state and different experimental conditions [35]–
[37]. Investigations using resting state have been more infor-
mative compared to a task-based state in understanding the
alteration and synchronisation of brain regions. The variations
in the interplay of different brain regions provide useful
insights into understanding various neurological conditions
such as ASD and E [34]. Transforming brain signals, such
as EEG, into complex graph networks and extracting graph-
based measures from them have shown the potential to reveal
hidden information and patterns from these signals [38] to
describe brain connectivity networks of individuals with ASD
and E [24]. For example, a recent study constructed a complex
brain network from fMRI data using graph-theory-based meth-
ods and utilised phenotype information of individuals with
ASD as edge weights. The study computed the correlation
coefficient of the resulting network and detected ASD with
70.4% accuracy [39]. A similar study reported that both over-
connectivity and under-connectivity in different brain regions
could differentiate ASD and TD individuals [40].

Researchers used VG algorithm to convert single-channel
EEG into a complex network to extract parameters, namely
average degree as features to classify ASD and TDs with high
accuracy or to quantify network complexity [41]. Similarly,
the VG was used to convert the brain univariate EEG dy-
namics into a complex network and classify epileptic signals
with 100% accuracy using an SVM classifier [42]. Thus,
the univariate series-based studies proved the VG approach
is promising for transforming the brain signals into a graph
network for better analysis of the pathological condition.

A. Computational Data Analytics Models and Limitations

The authors in [16] utilised an anatomical Euclidean
distance (ED)-based model to evaluate the brain’s FC in
schizophrenia from fMRI data. The study compared con-
nectivity with the anatomical distances and found excessive
pruning of short connections as a reason for topological
disturbances in schizophrenia [16]. Another study utilised the
same anatomical ED-based model to investigate FC variations
across the lifespan [43]. It concluded that FC reorganisation
over a lifespan could be characterised using mean connection
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TABLE I
DEMOGRAPHIC DATA OF THE PARTICIPANTS.

Measures ASD E TD Statistical Test
Number of Participants 34 34 32 Value *p-value

Male / Female Ratio 13:4 12:5 5:3 Chi-square (df) 0.92 (1) 0.53

Age (Years) 13.26 ± 3.4
(7-20 y)

14.21 ± 4.2
(8-20 y)

12.82 ± 2.4
(6-19 y)

t-test (df)

TD vs ASD: 3.32
TD vs E: 4.51 0.34

ADOS-2 Total Score 8.92 ± 1.23 - - - -

MISIC (IQ)

Verbal 102.4 ± 7.3 104.5 ± 4.2 114.3 ± 12.9 TD vs ASD: 12.14 (33)
TD vs E: 8.56 (33)

0.62
0.54

Performance 105.2 ± 10.1 107.3 ± 6.3 108.7 ± 12.0 TD vs ASD: 12.14 (33)
TD vs E: 8.56 (33)

0.43
0.36

Full-scale 104.7 ± 9.2 107.6 ± 8.7 113.4 ± 13.2 TD vs ASD: 12.14 (33)
TD vs E: 8.56 (33)

0.18
0.22

density and mean anatomical ED of the network. Following the
same model, the authors in [44] proved that the distance metric
in complex networks is a fundamental concept for interpreting
the dynamical features of temporal networks.

In cases of ASD, it is found that connection length plays a
major role in defining short- and long-distance FC in posterior
cingulate and prefrontal cortex regions. However, from the lit-
erature, the majority of the model-based studies in ASD and E
focus on short- and long-distance connections computed using
the distance penalty metric among brain regions are limited
in number. Moreover, there are no studies to quantitatively
model the neural associations of both conditions. As a result,
neuroscientists struggle to reproduce the findings and precisely
diagnose co-existing neurological conditions such as ASD and
E. The lack of a mathematical model motivates us to propose
a simple exponential decay model that can find the variations
in the brain FC via the distance penalty metric. The complex
network from a multi-variate time series is tailored using the
VG algorithm and Multivariate Euclidean Distance (MED) to
detect brain topologies in ASD, E and TD.

B. Purpose

The goal of the study is to design a quantitative data-
driven model for identifying altered connectivity in ASD and E
conditions based on brain connectivity parameters. This paper
puts forward a simple method, where the edge distance metric
is computed using MED to find atypicality in brain networks.
The proposed method is also applied to detect commonality
and variability in brain connectivity of atypicalities (i.e., ASD
and E conditions) with TD. The present paper utilised ED,
despite strongly curved connections, as this metric proved
to be a better one in capturing the variance of connections
across the brain regions. Many connections in the brain are
strongly curved (e.g., 15% of the prefrontal cortex connections
are curved) and it becomes difficult to find the link length of
such connections. In such cases, ED has outperformed other
metrics like topological length and fibre length in representing
the multi-factorial nature of network connectivity [30], [45].
Furthermore, a probabilistic model is utilised to explore how
variation in the penalisation of long-distance connections can
represent changes in the topological metrics of brain networks.

III. MATERIALS AND METHODS

A. Dataset Description

The data collection procedure was approved by the insti-
tutional ethical committee of Dr B R Ambedkar National
Institute of Technology, Jalandhar 144 011, India (approval
number: NITJ/EC 568,712,092,018) and carried out according
to the APA standards. As summarised in Table I, thirty four
participants with ASD (age range: 7–20 years, mean: 13.26
years) who fulfilled clinical diagnostic criteria as per DSM-5
and ICD-10, were selected for the present work. The hospital
team conducted ASD diagnosis using the Autism Diagnostic
Observation Schedule–2 (ADOS-2) tool, which took 30–60
minutes to investigate social and communication interaction.
The mean ADOS-score value in ASD was 8.92±1.23. Thirty-
four age- and IQ-matched participants with E condition (age
range: 8–20 years, mean age: 14.21 years) and thirty-two TD
(age range 6–19 years, mean age: 12.82 years) were also
recruited. The hospital team provided additional data of the
individuals with E condition who were instructed to stop any
related medication and treatment for a period of a week.
The IQ of the participants was evaluated using the Malin’s
Intelligence Scale for Indian Children (MISIC) scale. The
individuals with ASD and E were found to have a similar IQ
(mean difference: 3.56, t(33): 7.91, p: 0.08). The IQ was also
compared with TD, and the difference was found insignificant
among TD vs ASD (mean difference: 8.56, t(33): 12.14, p:
0.18) and TD vs E (mean difference: 5.83, t(33): 8.56, p: 0.22).

The subjects were checked for the exclusion criteria (i.e.,
any prior medication, medical history, language or cogni-
tion impairment, IQ>70). EEG signals with closed eyes
were recorded for 30 seconds using the EEG-1200 machine
(Neurofax, Nihon Kohden, Tokyo, Japan) following recording
parameters listed in Table II. For the individuals with E
condition, the signals were recorded from the epileptogenic
zones corresponding to seizure and epileptiform activity. The
data preprocessing was done using EEGLAB (e.g., runica()
function) and visually to remove noises, eye blinks (>100
µV), and signal portions with large amplitudes (> 3× mean
amplitude). The recording of the brain signals simultaneously
from different brain regions is defined as multivariate time
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TABLE II
EEG SIGNAL RECORDING PARAMETERS SET BY THE HOSPITAL UNIT

Parameters Values
Electrode System 10-20 standard system

Sampling Frequency 128 Hz

Filters (in recording system) 0.5–70 Hz (Bandpass) & 50 Hz (Notch)

Reference Right and Left Mastoid

Electrode & Impedance Ag/AgCl & <10 KΩ

Recording Software Neurofax, Nihon Kohden, Tokyo, Japan

series. To analyse the acquired multivariate data of 30 seconds
per participant, 4 segments of 960 samples each were created.

B. Model Construction

In the present paper, brain networks were constructed us-
ing the proposed multivariate VG method and the extracted
network metrics were validated using a traditional simulated
probabilistic model.

1) Multivariate VG-based Complex Network Construction:
The multivariate VG method was utilised to construct edges
using MED for the visible links. The MED was advantageous
as it could build VG-based networks for the brain signals both
within and between the electrodes. This allowed the construc-
tion of complex networks for each electrode of interest (EoI)
leading to multiplex networks for each time instance from
different EoI. To attain the complex weighted graph network
consisting of nodes, visible edges, and weights defined by ED,
the steps listed below are followed:

a) Step 1: Each data-point in the time series (X) of an
EoI is a node of the complex network such that, X(tk) =
{x(t1), x(t2), . . . , x(tN )}; 1 ≤ k ≤ N with N = len(X).

b) Step 2: Build edges between visible nodes for within
and among EoI as per the visibility criteria (Eq. 1) [25]:

x(t2) < x(t1) + (x(t3)− x(t1))
t2 − t1
t3 − t1

(1)

where, x(t1), x(t2), x(t3) are data values (i.e., nodes) at
t1, t2, t3 times.

c) Step 3: For multivariate series like EEG, each of the
series (i.e., channels or EoI) yields a VG, giving a multi-layer
graph whose layers are equal to the number of electrodes [25].
In such a multi-layered graph, the nodes are naturally aligned
across different layers, and it is possible to form a complex
network for differential layers (e.g., X − Y ). As a result, the
multi-layer graph effectively forms a multiplex network; that
is, the nodes are aligned across layers based on timestamps
with intra-connection weights defined by Eq. 2.

em(X) =

 1

n2
X

nX∑
i=1

nX∑
j=1

∥x(ti)− x(tj)∥2

 (2)

Here, n is the number of visible nodes with n ≤ N .
d) Step 4: Each graph layer has same number of nodes

which facilitates the comparison of the graphs via edges. For
finding the distance between visible nodes across layers, i.e.,
the link between the inter-layer nodes, an inter-ED (i.e., MED)
is computed between any two nodes using Eq. 3 [46].

em(X,Y ) =
nXnY

nX + nY

 2

nXnY

nX∑
i=1

nY∑
j=1

∥x(ti)− y(tj)∥2

− 1

n2
X

nX∑
i=1

nX∑
j=1

∥x(ti)− x(tj)∥2

− 1

n2
Y

nY∑
i=1

nY∑
j=1

∥y(ti)− y(tj)∥2


(3)
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Fig. 1. Schematic diagram describing the construction of the multiplex network using the visibility graph method.
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Here, X and Y represent time series of two EoI, X =
{x(t1), x(t2), . . . , x(tN )} and Y = {y(t1), y(t2), . . . , y(tN )}
with x(t) and y(t) as nodes, and ∥ ∥2 is the 2-norm.

If X and Y have same node distribution, then the parameter
em(X,Y ) (as in Eq. 3) provides the inter-distance without
considering any intra-distance such that ∥x(ti)− x(tj)∥2 = 0
and ∥y(ti)− y(tj)∥2 = 0.

If X and Y are not identical to each other, then both
intra- and inter-distances are evaluated, respectively. Based
on the median-split approach, the MED values are divided
into short-distance and long-distance values [16]. Although
there is no strict definition, the median split approach has
given a more appropriate categorisation for FC. The steps
to form the multiplex network from three data segments are
diagrammatically shown in Fig. 1.

2) Validation Metrics: The topological properties of FC
networks are analysed using the graph metrics that have
already been used in brain network-based studies. Based on the
edges computed between nodes as described in section III-B1,
the following topological parameters are evaluated for partic-
ipants of each group: (i) global efficiency, which measures
network integration and is inversely related to average path
length, (ii) modularity, which measures the decomposition of
a network into a set of different densely intra-connected nodes
and sparsely inter-connected groups of nodes or modules, (iii)
small-worldness, which is a ratio of average path length to
clustering coefficient and provides an estimation of complexity
of brain networks, and (iv) betweenness centrality, which
measures how many times a node is bridged in between
strongly connected nodes, i.e., estimation of shortest paths in
the network.

3) Simulated Probabilistic Network Model: To compute
how variation in the distance can account for the variation
in topological properties of the functional brain network, a
probabilistic model is simulated based on edge connection
probability and ED. A probabilistic model can be used to
calculate the link probability between any two nodes as an
exponentially decaying function of distance between those
nodes [33]. This work has utilised this concept to discover the
interplay between connection distances and topological aspects
of the brain network organisation. The connection probability
based on the visibility criterion can be given as:

P (X ↔ Y ) = eλ(em(X,Y )) (4)

where λ is the decay rate of the links/edges in the network. The
large values of λ reflect a lack of long-distance connections
in the brain, while small values reflect poor modular networks
indicating inefficient brain connectivity. The larger values of
the exponential parameter will reduce the connection proba-
bility of the two regions. The exponential model for a range
of various values of parameter λ can generate networks with
different degrees dictating connection probability between the
nodes. Thus, the model with a spectrum of λ parameter values
can help in comparing the neural profile of ASD, TD, and E
groups of individuals.

4) Hypothesis Testing for Identifying Network Differences:
For testing the networks, a null hypothesis is formed: all
participants (ASD, E, and TD) from the three groups have

the same delay with the distance in their connection strength.
Thus, the null hypothesis is:

H0 : λASD = λE = λTD

The alternative was that at least one of the group participants
had a different delay rate. The hypothesis is tested statisti-
cally using ANOVA and t-tests to determine whether we can
detect the brain network variations induced by the connection
probability function.

IV. RESULTS

A. Functional Connection Probability and Connectivity Dis-
tance

The variation of connection probability with the connectiv-
ity distances of EoI is shown in Fig. 2A. The pooled data
within each group reflect that connectivity proportion decays
with the increasing distance in all participants. The variation in
the mean values of the participants in all three groups provided
a good approximation of the linear decay trend.

The initial overlap in Fig. 2A indicates that for a minimum
connection distance, the connection probability depicts the
existence of essential brain connectivity among individuals.
The curves depict that an exponential function yielded a
reasonable fit to the variation of connection probability density
over different connectivity distances in ASD, E, and TD
participants. For each subject, the distance between each pair
of connected nodes is estimated and compiled as an empirical
probability distribution of anatomical distance. As shown in
Fig. 2A, the network topology is found to have asymmetric
distance distribution for all the participants such that more
skewness is seen towards short-distance connections. It is evi-
dent that the individuals with ASD showed more connectivity
in short-distance compared to long-distance. Individuals with
E condition showed greater strength between nodes separated
by short distances which is attenuated for the ASD and TD
individuals. The proportion of long-distance connections was
greater for individuals with E condition compared to ASD and
TD. The paired sample t-test reflected that mean connection
distance in E condition (mean=58.2) was significantly higher
compared to TD (mean=52.3, t(58)=4.32, p-value=0.001) and
ASD (mean=45, t(58)=5.11, p-value=0.03) Here, the mean
connection distance refers to the average ED of overall visible
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pairs of connected nodes for the different EoI in the graph. The
curves in Fig. 2A show exponential delay that satisfies Eq.
4 for each group. The calculated best-fitting value of delay
parameter (λ) significantly differentiates the three groups. As
shown by the Box plots in Fig. 2B, a range of values for
λ are attained in ASD, E, and TD. A paired-sampled t-
test provided significant comparison among the participants
with significantly higher values in ASD (mean=0.56±0.036)
than TD (mean=0.43±0.054, t(58)=7.87, p-value=0.001) and
E (mean=0.29±0.047, t(58)=11.31, p-value=0.02) conditions.

B. Connection Distance and Topological Metrics

ANOVA was used to evaluate the effect of connection
distance and group on topological metrics. A 3 (group: ASD,
E, TD) × 2 (distance: Short and Large) × 4 (lobes: Frontal,
Parietal, Occipital, Temporal) ANOVA was designed with
distance and lobes as within-subject factors and the group as a
between-subject factor. The summary of the results is provided
in Table III which shows that the main effect of distance,
group, and lobs are much more significant (p-value≥0.001)
compared to other effects and interactions for the metrics
defined in section III-B2.

TABLE III
SUMMARY OF 3× 2× 4 ANOVA IN ASD, E AND TD PARTICIPANTS

Interaction F-Value

MD GE SW BC
Distance 25.4* 18.7** 11.2** 8.9**

Group 16.8* 9.3* 13.4** 11.8**

Lobes 23.7* 20.6** 13.4** 15.9**

Legend– MD: Modularity, GE: Global Efficiency, SW: Small-Worldness,
BC: Betweenness Centrality.

The Spearman correlation, as shown in Fig. 3, reflected that
the between-subject variability in mean ED is strongly asso-
ciated with the individual variations in the functional network
topology. For TD participants, the mean connection distance
was significantly correlated with modularity (r2=-0.69, p-
value=0.03), betweenness centrality (R2=0.88, p-value=0.02),
and global efficiency (R2=0.88, p-value=0.01). An insignif-
icant correlation with the small-world index (R2=-0.002, p-
value=0.41) reflects the robustness of the brain network to
connection distance variations. Thus, the brain network in TD
is less clustered, less modular, and more globally efficient with
the increasing distance between different EoI.

In ASD, the mean connection distance was significantly cor-
related with modularity (R2=-0.63, p-value=0.001), between-
ness centrality (R2=0.23, p-value=0.003), and small-worldness
(R2=0.42, p-value=0.037). An insignificant correlation with
global efficiency (R2=0.06, p-value=0.24) was found, which
reflects a poor integrated network in ASD. The correlation
reveals a more clustered and modular network with short-
distance connections in ASD. In E participants, the connection
distance was significantly negatively correlated with small-
worldness (R2=-0.57, p-value=0.003), modularity (R2=0.74, p-
value=0.02), betweenness centrality (R2=0.40, p-value=0.01),
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Fig. 3. Correlation of connection distance with brain topology metrics–
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with connection distance in ASD, E, and TD participants.

and global efficiency (R2=0.65, p-value=0.001). It reveals that
the brain network in E is, although less clustered, less modular,
and more globally efficient with the increasing distance be-
tween different EoI, the connections are longer over the entire
brain network compared to ASD and TD.

The mean proportion of short- and long-distance connec-
tions among all the participants of ASD, E, and TD groups
is shown in Fig. 4. The strength of short-distance connections
is high in ASD compared to E and TD. For the long-distance
connections, E showed much more connections than TD and
ASD. The inter-module mean connection distance was higher
in the E (mean=69.4±15.24) than in TD (mean= 59.6±13.89;
t(58)=23.67, p-value=0.001) and ASD (mean= 51.8±11.32;
t(58)=18.9, p-value=0.02). The intra-module mean connection
distance was lower in ASD (mean=23.81±11.6) compared
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to TD (mean=29.62±10.4, t(58)=32.5, p-value=0.03) and E
(mean=35.01±9.85, t(58)=29.8, p-value=0.02).

C. Hemispherical and Lobe-wise Connection Distance

Based on the presented definition of short- (< 50 mm) and
long-distance connections (>50 mm), out of 300 total connec-
tions, 135 short-distance and 165 long-distance connections
satisfied the visibility criterion. In ASD, 48 long-distance and
24 short-distance connections have not shown any connectivity
on applying the visibility criterion. In TD, 36 long-distance
and 19 short-distance connections were found absent. In E,
38 short-distance and 24 long-distance connections were not
visible out of the total connections. The comparison of the
edge connections within different lobes in ASD, E, and TD
individuals concerning connection distance is shown in Fig. 5.

In TD, the intra-module distance was 32.67±7.81 while
the inter-module distance was 59.67±12.34. In E, the mean
connection distance was 55.12±11.54 and 34.67±9.54 for the
inter-module and intra-module, respectively. In ASD, the mean
connection distance values were found lower in comparison to
E and TD, such that the intra-module was 24±12.67 and the
inter-module was 52±13.21.

The frontal and occipital lobes showed high edge den-
sity in ASD (Frontal mean= 0.35±0.12) compared to
TD (mean=0.32±0.09, t(58)=11.32, p-value=0.01) and E
(mean=0.26±0.19, t(58)=8.17, p-value=0.03). The temporal
and parietal lobes have higher density in TD (Temporal
mean=0.37; Parietal mean=0.38) compared to ASD (Temporal
mean=0.32, t(58)=14.02, p=0.03; Parietal mean=0.34±0.09,
t(58)=15.10, p-value=0.001) and E (Temporal mean= 0.29,
t(58)=10.12, p=0.001; Parietal mean=0.27±0.09, t(58)=11.32,
p-value=0.01). Among ASD and E participants, an association
was found in the temporal lobe reflected by insignificant dif-
ferences in the mean values (mean difference=0.0213, t(58)=,
p-value=0.53). Among ASD and TD participants, an overlap
was found in the occipital lobe such that there was no
significant difference among both groups (mean difference:
0.02, t(58)=14.36, p-value=0.52).

D. Probabilistic Modelling of Brain Network

A probabilistic model was developed with the delay pa-
rameter (λ; 0 < λ < 1) and it was tuned for the variation
of topological metrics with connection lengths. After finding
the best-fit values of λ (see Fig. 2B), the connection length
of the complex network was computed for each topological
metric of the brain network (see Table IV). The findings
from the probabilistic model provide a proof-of-concept that
abnormality in the brain network’s topological properties of
individuals with E condition can be determined through short-
distance connections, whereas for ASD, it can be determined
from long-distance connections.

V. DISCUSSION

The present paper aims to find a relationship between
connection distance and topological properties of functional
brain networks to predict the brain network topology. A com-
putational model of the brain network topology is proposed

TABLE IV
MEAN CONNECTION LENGTHS IN BRAIN NETWORKS

Metrics ASD (λ) E (λ) TD (λ)

Global
Efficiency - 34.6±0.32 45.6±(0.40)

(0.31) (0.40)

Modularity 64.7±0.34 21.5±0.14 39.3±0.26
(0.53) (0.24) (0.45)

Small-Worldness 59.3±0.26 26.4±0.11 -(0.57) (0.28)

Betweenness-
Centrality

68.9±0.52 23.5±0.20 37.5±0.21
(0.51) (0.26) (0.43)

and is exploited to associate the complex neural correlates and
FC-based distances. The model is inspired by multivariate VG
network algorithm and MED, which are utilised to map the
EEG time series into a complex brain network. The topological
properties based on MED were computed to find correlations
between connection distances and functional brain topologies.
A state-of-the-art probabilistic model is also utilised to find
the delay rate (λ) in connection probability with the distance
in brain regions. The topological properties were matched
to a range of values of λ to find the connection length for
different topological metrics, which can aid the identification
of neurological conditions more accurately. It is worth noting
that the effect of sampling rates on the estimation of the
topological properties from the multiplex graphs generated
using the VG method is negligible (data not shown).

Information transmission in intra- and inter-regional brain
units is key to the typical functioning of brain circuitry, leading
to correct behavioural and perceptual outcomes. The transmis-
sion is precisely governed by the exact firing of neurons at
appropriate timings, forming active neuronal networks. For
important tasks related to perceptual, motor and cognitive
functions, delay can lead to several intra- and inter-regional
communication anomalies causing brain disorders [47]. One
way to find these anomalies is to identify the connection
distance among brain units which helps characterise the topo-
logical structure of inferred brain networks [48]. Computing
long- and short-range connections (i.e., connection distances)
and degrees of connection of brain regions can shed light
on the efficiency of intra- and inter-regional communication
[49]. For example, with a growing number of long-distance
connections, a network’s global efficiency increases and local
efficiency decreases, as observed in the case of individuals
with E conditions. On the other hand, when the number of
short-distance connections grows, a network’s local efficiency
increases and global efficiency decreases, as observed in the
case of individuals with ASD conditions. Therefore, a balance
between long- and short-distance connections is needed for a
locally and globally efficient network [50], as observed in the
case of TD individuals. The VG method captures these phe-
nomena quite well, as in the case of long-distance connections,
more EEG time points are visible from other relatively farther
points, while fewer EEG time points are visible in the case of
a higher number of short-distance connections.
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Fig. 5. Mean edge density with connection distance based on visibility criterion in (A) Frontal, (B) Temporal, (C) Parietal and (D) Occipital lobes in ASD,
E and TD participants.

A. Contribution

The present paper quantitatively revealed the brain net-
work topology that can identify ASD and E conditions by
exploring the association of complex neural correlates and
FC-based distances. It has demonstrated the objective marker
to identify ASD and extended the existing literature [23],
[51] by evaluating the range of λ values in identifying the
disorder. The results reflect that the ASD network profile is
skewed towards short-distance connections. A total of 117
long-distance and 111 short-distance connections have shown
visible connectivity, whereas E individuals have 97 short-
distance and 141 long-distance connections in the visible
category. Thus, in the future, ASD can be identified by ex-
tracting topological properties over long-distance connections
only. In comparison, the network profile for individuals with
E can be identified by computing the topological properties
for short-distance connections since the network has higher
long-distance connections. Thus, the presented quantitative
evaluation in this work contributed to investigating the extent
to which variations in the distance of FC can explain the
variations in the network topology of ASD, E, and TD.

B. Comparison with Related Work

The multivariate weighted VG method put forward in this
paper proves to be robust and efficient in providing the
edges compared to the traditional method, which depends
upon (n(n− 1)/2) links. Based on the connections following
visibility criteria among all the participants (ASD, E, and
TD), a skewed distribution with connections towards short-
distances is found, which favours that efficient functioning
in brain network is biased towards short-distance connections
[52], [53]. However, ASD is characterised by higher short-

distance and lower long-distance connections, whereas E con-
dition possesses high long-distance connections and low short-
distance connections. Analysing FC with connection distances
provides strong evidence of neural differences underlying
ASD and E conditions. The best-fitting values of the delay
parameter (λ) indicated significant group differences between
the participants. The value of λ is 0.56 in ASD, 0.43 in
TD, and 0.29 in E condition. This finding is in line with
a study that has differentiated between three sub-populations
revealing λ = 0.6, 0.8, and 1 under certain neuropathologies
[33]. The variation in λ values leads to the rejection of the null
hypothesis and suggests that brain connectivity in individuals
with ASD, E, and TD function at different delay rates or
penalties. It favours the conclusion that diagnosis-by-distance
can evaluate the neural mechanisms underlying disorders like
ASD [51], [54]. Thus, the delay parameter (λ) has the potential
to explore altered neurological conditions.

The variability of extracted topological properties with
connection distance in different EoI has also differentiated
all the conditions. ASD individuals have reduced modularity,
small-worldness, and betweenness-centrality without any rise
in global efficiency among more distant regions. The TD
individuals possess lower modularity and betweenness cen-
trality with an increase in global efficiency that results in a
network with a small-worldness topology. The probability of
the connection between different nearby EoI is higher, but it
declines sharply with the increasing distance. On comparing
ASD and E participants, common FC is found for short-
distance within the temporal lobe, whereas variability in both
the groups is detected for short- and long distances. The
connection probability over short distances has also reflected
the association between both conditions, whereas the different
delay rates and connectivity distribution in other EoI for
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both conditions have reflected the variability, which has the
potential to untangle both conditions.

The higher number of short-distance connections in ASD
indicated modular and clustered networks in participants with
ASD compared to E. The comparison of modular connec-
tions further revealed more densely connected intra-module
nodes in participants with ASD compared to E condition.
The individuals with ASD demonstrated an early decay (i.e.,
high λ values) as a function of distance within the short-
distance EoI (i.e., within the frontal, parietal, occipital, and
temporal lobes), while a faster decay in the long-distance inter-
module connections (e.g., from frontal to temporal and frontal
to occipital lobes). The loss of long-distance connections
indicated inefficient global and nodal brain network topology
in ASD. Like the TD group participants, the individuals with
ASD showed greater strength of FC between EoI separated
by short distances and poor strength for EoI with long-
distance. The TD group brain network topology comprises
of strong short-distance connections supporting clustered and
modular topology and a higher number of long-distance con-
nections among inter-module hubs in different brain areas.
This balanced topology of connections in TD favours the
previous theoretical studies indicating the distribution of a
few long-distance connections among a large number of short-
distance connections [23], [39]. The correlation of the topol-
ogy metrics and distance-based links reveals that higher global
efficiency in the TD group can be attributable to the existence
of strong long-distance connections between different EoI.
The exponential probability distribution showed more long-
distance connections in the E group and more short-distance
connections in the TD group.

VI. CONCLUSION

The present paper has quantitatively extended the research
on analysing neural connections and their distances in reveal-
ing brain architecture, their interactions and associated brain
diseases. The proposed model incorporates the multivariate
VG algorithm and ED to quantitatively analyse resting-state
brain networks using EEG signals in terms of delay and
connection distance parameters that reflected variation in the
probability distribution of brain connections. In ASD, a higher
delay rate and more skewed distribution towards short-distance
functional connections are reported, whereas, in E, a lower
delay and more long-distance connections are found com-
pared to TD. Furthermore, the model illustrated a significant
overlap over short-distance connections within the temporal
lobe. Thus, the presented model can process brain data via
delay parameter and connection distance with the potential to
identify neurological disorders like ASD and E. Future studies
focusing on structural and FC dynamics are required to provide
better quantification of ASD and E conditions.
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[45] S. Oligschläger et al., “Gradients of connectivity distance are anchored
in primary cortex,” Brain Struct. Funct., vol. 222, no. 5, pp. 2173–2182,
2017.

[46] K. Yu et al., “Individual morphological brain network construction based
on multivariate euclidean distances between brain regions,” Front. Hum.
Neurosci., vol. 12, p. 204, 2018.

[47] R. Hari and L. Parkkonen, “The brain timewise: how timing shapes and
supports brain function,” Philos. Trans. R. Soc. B: Biol. Sci., vol. 370,
no. 1668, p. 20140170, 2015.

[48] Q. Cai, Z.-K. Gao, Y.-X. Yang, W.-D. Dang, and C. Grebogi, “Multiplex
limited penetrable horizontal visibility graph from eeg signals for driver
fatigue detection,” Int. J. Neural Syst., vol. 29, no. 05, p. 1850057, 2019.

[49] S. Sannino, S. Stramaglia, L. Lacasa, and D. Marinazzo, “Visibility
graphs for fmri data: Multiplex temporal graphs and their modulations
across resting-state networks,” Netw. Neurosci., vol. 1, no. 3, pp. 208–
221, 2017.

[50] J. Zhang, J. Xia, X. Liu, and J. Olichney, “Machine learning on visibility
graph features discriminates the cognitive event-related potentials of
patients with early alzheimer’s disease from healthy aging,” Brain Sci.,
vol. 13, no. 5, p. 770, 2023.

[51] L. L. Gollo et al., “Fragility and volatility of structural hubs in the human
connectome,” Nat. Neurosci., vol. 21, no. 8, pp. 1107–1116, 2018.

[52] D. Meunier, R. Lambiotte, A. Fornito, K. Ersche, and E. T. Bullmore,
“Hierarchical modularity in human brain functional networks,” Front.
Neuroinformatics, vol. 3, p. 37, 2009.

[53] T. Wadhera, “Brain network topology unraveling epilepsy and asd
association: Automated eeg-based diagnostic model,” Expert Syst. Appl.,
vol. 186, p. 115762, 2021.

[54] Z. Long, X. Duan, D. Mantini, and H. Chen, “Alteration of functional
connectivity in autism spectrum disorder: effect of age and anatomical
distance,” Sci. Rep., vol. 6, no. 1, pp. 1–8, 2016.

Tanu Wadhera received the Bachelor of Technol-
ogy (B.Tech.) degree in Electronics and Commu-
nication Engineering from the Govt GNE College,
Punjab, India, in 2013 and the Master of Technology
(M.Tech.) degree in Signal Processing from the Pun-
jabi University Punjab, India in 2015. She completed
her PhD from the National Institute of Technology
(NIT) Jalandhar, India, in July 2021. She also served
as a Research Associate in the Department of Elec-
trical Engineering, Indian Institute of Technology
(IIT) Delhi, from Nov 2020 to July 2021. Now she is

serving as Assistant Professor in the School of Electronics, Indian Institute of
Information Technology Una, Una, Himachal Pradesh -177209, India. She has
published her work in reputed journals; including Elsevier Springer, Taylor &
Francis; Wiley and many other platforms. She is Review editor of Frontiers
in Psychology and serving as a reviewer of different journals, Biomedical
signal processing and control, Expert System with Applications, Frontiers
in Neuroscience, to name a few. Her Research Interests include Biomedical
signal processing, Biosensors, Artificial Intelligence, Assistive Technology,
and Cognitive neuroscience.

Mufti Mahmud (GSM’08, M’11, SM’16) received
his PhD degree in information engineering from the
University of Padova, Italy, in 2011. He is cur-
rently serving as an Associate Professor of Cognitive
Computation at Nottingham Trent University (NTU),
UK. He has been listed among the top 2% cited
scientists worldwide in computer science since 2020
and was the recipient of the NTU VC outstanding
research award 2021 and the Marie-Curie postdoc-
toral fellowship. Dr Mahmud is the coordinator
of the Computer Science and Informatics research

excellence framework unit of assessment at NTU and the deputy group leader
of the Cognitive Computing & Brain Informatics and the Interactive Systems
research groups. Dr Mahmud is an expert in computational intelligence,
applied data analysis, and big data technologies, focusing on healthcare
applications. As of August 2023, he has published over 290 peer-reviewed
articles and papers in leading journals and conferences and (co-)edited 6
volumes and many journal special issues on those domains. As an active
researcher, Dr Mahmud has secured grants totalling ¿ £4.0 million and
supervised over 50 research students (PhD, Master and Bachelor). He is a
Senior Member of IEEE and ACM, a Professional Member of the British
Computer Society, and a Fellow of the Higher Education Academy, UK.
During the year 2022-2023, he has been serving as Chair of the Intelligent
System Application and Brain Informatics Technical Committees of the
IEEE Computational Intelligence Society (CIS), a member of the IEEE CIS
Task Force on Intelligence Systems for Health, an advisor of the IEEE R8
Humanitarian Activities Subcommittee, the Publications Chair of the IEEE
UK and Ireland Industry Applications Chapter, and the Project Liaison Officer
of the IEEE UK and Ireland SIGHT Committee. He has also served as
the coordinating chair of the local organisation of the IEEE-WCCI2020; the
General Chair of the Brain Informatics conference in 2020, 2021, and 2022;
the founding chair of the Applied Intelligence and Informatics conference
series; and the Symposium Chair of IEEE-CICARE 2017, 2018, 2019, 2020,
2021 and 2022. He serves as a Section Editor (Big Data Analytics) for
the Cognitive Computation journal, an Associate Editor of the Frontiers in
Neuroscience, and a Regional Editor (Europe) for the Brain Informatics
journal. He also serves as lead editor-in-chief of Applied Intelligence and
Informatics (Springer Nature) and Smart Healthcare Systems: From Data to
Knowledge (Taylor & Francis) book series.


