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Abstract 28 

Introduction. Bacteroides fragilis is a Gram-negative anaerobe that is a member of the human 29 

gastrointestinal microbiota and is frequently found as an extra-intestinal opportunistic pathogen. B. 30 

fragilis comprises two distinct groups – division I and II – characterised by the presence/absence of 31 

genes [cepA and ccrA (cfiA), respectively] that confer resistance to β-lactam antibiotics by either serine 32 

or metallo-β-lactamase production. No large-scale analyses of publicly available B. fragilis sequence 33 

data have been undertaken, and the resistome of the species remains poorly defined. 34 

Hypothesis/Gap Statement. Reclassification of division I and II B. fragilis as two distinct species has 35 

been proposed but additional evidence is required. 36 

Aims. To investigate the genomic diversity of GenBank B. fragilis genomes and establish the prevalence 37 

of division I and II strains among publicly available B. fragilis genomes, and to generate further 38 

evidence to demonstrate that B. fragilis division I and II strains represent distinct genomospecies. 39 

Methodology. High-quality (n=377) genomes listed as Bacteroides fragilis in GenBank were included in 40 

pangenome and functional analyses. Genome data were also subject to resistome profiling using The 41 

Comprehensive Antibiotic Resistance Database. 42 

Results. Average nucleotide identity and phylogenetic analyses showed B. fragilis divisions I and II 43 

represent distinct species: B. fragilis sensu stricto (n = 275 genomes) and B. fragilis A (n = 102 genomes; 44 

Genome Taxonomy Database designation), respectively. Exploration of the pangenome of B. fragilis 45 

sensu stricto and B. fragilis A revealed separation of the two species at the core and accessory gene 46 

levels. 47 

Conclusion. The findings indicate that B. fragilis A, previously referred to as division II B. fragilis, is an 48 

individual species and distinct from B. fragilis sensu stricto. The B. fragilis pangenome analysis 49 

supported previous genomic, phylogenetic and resistome screening analyses collectively reinforcing 50 

that divisions I and II are two separate species. In addition, it was confirmed that differences in the 51 

accessory genes of B. fragilis divisions I and II are primarily associated with carbohydrate metabolism 52 

and suggests that differences other than antimicrobial resistance could also be used to distinguish 53 

between these two species. 54 

 55 

 56 

 57 



Impact statement 58 

Bacteroides fragilis is an opportunistic pathogen that poses a major risk to public health due to its 59 

capacity to cause anaerobic infections in extraintestinal sites. In addition, B. fragilis clinical isolates 60 

possess some of the highest levels of antimicrobial resistance genes among anaerobes. Concerningly, 61 

multidrug-resistant B. fragilis clinical isolates have become increasingly reported over the past decades 62 

and represent a challenge in treating infections caused by this bacterium. B. fragilis divisions I and II 63 

were distinguished based on the presence/absence of β-lactam antimicrobial resistance genes. The B. 64 

fragilis pangenome was also interrogated, with findings indicating that B. fragilis sensu stricto (division 65 

I) and B. fragilis A (division II) also possess noticeable differences in carbohydrate-metabolising gene 66 

composition. This suggests that B. fragilis is continuously adapting to accommodate the degradation 67 

of certain carbohydrates. 68 

 69 

Data summary 70 

Supplementary material detailing all genome data included in this study is available from figshare 71 

(10.6084/m9.figshare.23516403, 10.6084/m9.figshare.24077736).  72 



Introduction 73 

The composition and function of the gut microbiota are increasingly appreciated as factors influencing 74 

human health and disease [1, 2]. A reduced number of colonising members of the phylum Bacteroidota 75 

has been associated with gut-localised and systemic diseases such as rheumatoid arthritis [3–8]. The 76 

phylum Bacteroidota can be divided into six classes (Bacteroidia, Chitinophagia, Flavobacteriia, 77 

Sphingobacteriia, Saprospiria and Cytophagia) [9, 10]. Of the Bacteroidota present within the human 78 

large intestine, bacteria belonging to the order Bacteroidales are among the most prevalent and 79 

represent almost half of the entire bacterial populations localised to this microbially dense region of 80 

the gastrointestinal tract [11]. At the species level, Bacteroides spp. represent ~25 % of all anaerobes 81 

present in the large intestine. Bacteroides caccae prevents invasion of enteric pathogens through its 82 

ability to colonise the luminal mucosa of the intestine, whilst species such as Bacteroides 83 

thetaiotaomicron and Bacteroides ovatus have roles in the breakdown of many indigestible 84 

polysaccharides that in turn supply the host with up to 15 % of daily metabolic requirements [12–16]. 85 

Bacteroides fragilis represents an estimated 2 % of all gut Bacteroides spp. in colonised individuals [17, 86 

18]. Although the abundance of B. fragilis in the colon is 10- to 100-fold less than other intestinal 87 

Bacteroidales (including B. thetaiotaomicron, Phocaeicola vulgatus and Parabacteroides distasonis) 88 

that are present at 1010 per gram dry weight of faeces, B. fragilis is an important contributor to the 89 

development of an effective immune system and maintenance of an anti-inflammatory environment 90 

within the intestinal lumen [13, 18, 19]. Enterotoxigenic B. fragilis (ETBF) secretes a zinc-91 

metalloprotease toxin, Bft, that exists in three isoforms (Bft1, Bft2 and Bft3), each of which can disrupt 92 

intestinal barrier permeability through cleavage of E-cadherin, an intercellular adhesion protein also 93 

involved in tumour suppression [20–22]. Although the Bft protein is associated with diarrhoea, 94 

inflammatory bowel disease and colon cancer, it has been reported that up to 67 % of individuals who 95 

are colonised by ETBF are asymptomatic [23]. This may be due to asymptomatic individuals harbouring 96 

a greater number of non-toxigenic B. fragilis strains that utilise type-6 secretion systems to limit 97 

intestinal colonisation by ETBF [24]. 98 

B. fragilis is the most common cause of Gram-negative anaerobic infection and accounts for 60 % or 99 

more of clinical isolates. These infections arise due to a loss of integrity of the intestinal epithelium 100 

and are potentially lethal. The precise nature of B. fragilis virulence remains to be resolved; however, 101 

a combination of within- and between-strain surface polysaccharide diversity, multiple extracellular 102 

enzymes targeting host components, outer membrane vesicle production, iron scavenging 103 

mechanisms and oxygen tolerance likely contribute to multifactorial virulence. Interestingly, the B. 104 

fragilis enterotoxin is not an essential virulence determinant; it is absent in, for example, 80 % or more 105 



of blood culture isolates (reviewed in [25]). Infections caused by B. fragilis are typically treated with 106 

multiple antibiotics, including metronidazole, chloramphenicol, carbapenems and β-lactam agents 107 

administered in combination with β-lactamase inhibitors [26, 27]. An increase in the prevalence of 108 

antimicrobial resistance (AMR) genes and resistance mechanisms encoded by B. fragilis has occurred 109 

globally in recent years [19, 28–31] along with reports of multidrug-resistant isolates [27]. The 110 

chromosomally encoded cephalosporinase genes cepA and cfiA (ccrA) have been used to separate B. 111 

fragilis into two divisions: I and II, respectively [26, 32, 33]. cepA encodes a class 2e cephalosporinase 112 

(β-lactamase) that confers resistance to commonly administered β-lactam antibiotics; cepA+ strains 113 

remain susceptible to treatment with cephamycins, carbapenems and β-lactamase inhibitor 114 

combinations [32, 34]. The cfiA gene encodes a metallo-β-lactamase and is a greater threat to public 115 

health due to its ability to hydrolyse carbapenems and resist β-lactamase inhibitors that are commonly 116 

administered to treat anaerobic infections [35–37]. 117 

In addition to cepA and cfiA, B. fragilis divisions I and II can be differentiated based on recA (a 118 

ubiquitous protein involved in DNA repair and homologous recombination) and glnA (a glutamine 119 

synthetase encoding an enzyme associated with nitrogen metabolism and ammonia assimilation) gene 120 

sequences [38, 39]. Despite the phenotypically homogenous appearance of B. fragilis isolates, 65-70 121 

% intergroup and 80-90 % intragroup similarities have been confirmed between division I and II B. 122 

fragilis strains by DNA-DNA hybridisation experiments [33, 40, 41]. Furthermore, the application of 123 

species delimitation methods, including genome BLAST distance phylogeny (GBDP) [10] and average 124 

nucleotide identity (ANI) [42], has facilitated recent whole-genome sequencing studies that continue 125 

to propose that division I and II B. fragilis are two distinct species [43, 44]. Interestingly, it was recently 126 

highlighted that genetic differences between division I and II go beyond AMR genes, with the core and 127 

accessory genomes between these subspecies displaying considerable amounts of genetic diversity 128 

[44]. Nonetheless, the proposed reclassification of division I and II B. fragilis as two distinct species is 129 

yet to be approved by the International Journal of Systemic and Evolutionary Microbiology and 130 

reinforces that additional evidence is required for this to occur. 131 

The present study aimed to investigate the genomic diversity of GenBank B. fragilis genomes, to 132 

establish the prevalence of division I and II strains among publicly available B. fragilis genomes, and to 133 

generate further evidence to demonstrate that B. fragilis division I and II strains represent distinct 134 

genomospecies. 135 

Methods 136 

Identification of B. fragilis genomes used in this study. Bioinformatics analyses were done using the 137 

cloud infrastructure for microbial bioinformatics (CLIMB) [45] and HPC facilities of Nottingham Trent 138 



University. Non-redundant genomes (n = 187) listed as ‘Bacteroides fragilis’ were downloaded from 139 

GenBank during 2020, with an updated dataset created on 25 August 2022 (Supplementary Table 1). 140 

Completeness and contamination of the 418 genomes were assessed using CheckM2 v0.1.3 [46]. 141 

Average nucleotide identity (ANI) analysis was done with all GenBank genomes >90 % complete and 142 

with <5 % contamination [47] (n = 379) using fastANI v1.33 [48] against 111 representative Bacteroides 143 

genomes (Supplementary Table 2) from the Genome Taxonomy Database (GTDB) Release 07-RS207 144 

(8th April 2022) [49, 50]. A 95 % ANI threshold was set to assign species affiliation, as recommended 145 

by Jain et al. (2018) [48], and similarly applied by Tortoli et al. (2019) [51]. Strains with <95 % genomic 146 

sequence similarity to B. fragilis NCTC 9343T were not considered B. fragilis sensu stricto. FastANI 147 

results were summarised and visualised using R (tidyverse v1.3.1; reshape2 v1.4.4; gplots 3.1.3). The 148 

‘Bacteroides fragilis’ genomes were annotated using Bakta v1.4.2 (database release 3.1) [52]. 149 

Phylogenetic analysis of the genomes was carried out using PhyloPhlAn v3.0.58 [53], to confirm species 150 

affiliations. The tree was visualised using iToL v6.6 [54] and annotated using iToL and Adobe Illustrator. 151 

Phylogenetic analyses of 16S rRNA gene sequences encoded within genomes. barrnap v0.9 was used 152 

to identify ribosomal RNA genes within genome sequences. All 16S rRNA gene sequences >1300 nt 153 

identified were used to generate a multiple-sequence alignment (Clustal Omeaga v.1.2.2) in Geneious 154 

Prime 2023.0.1. Unrooted neighbour-joining (Jukes-Cantor; 100 bootstrap replications) and maximum-155 

likelihood (PhyML 3.3.20180214; substitution model JC69; 100 bootstrap replications) phylogenetic 156 

trees were generated from the alignment. Trees were visualized and annotated using iToL v6.6 and 157 

Adobe Illustrator. Alignment, similarity matrix and newick files generated from these analyses are 158 

available from figshare as Supplementary Material. 159 

Characterisation of AMR genes among the genomes. The Resistance Gene Identifier (RGI) v6.0.0 160 

[Comprehensive Antibiotic Resistance Database (CARD) v3.2.4] was used to identify AMR genes 161 

encoded within B. fragilis and B. fragilis A genomes [55]. Data for strict and perfect matches were 162 

extracted from the .txt output files and visualised using R (tidyverse v1.3.1; ggtree v3.4.1; aplot v0.1.8) 163 

with a phylogenetic tree generated for the 377 genomes using PhyloPhlAn v3.0.58. 164 

Analysis of pangenome. Panaroo (v.1.3.0) was used to generate a pangenome and core genome 165 

alignment of all isolates (default settings; -a core, --remove-invalid-gene, --clean-mode strict, --166 

threshold 0.98) [56]. Principal component analysis (PCA) was undertaken with the accessory genes 167 

(present in 5-95 %) of isolates using a binary gene presence/absence file in R Studio (v. 4.1.2 with 168 

FactoMineR (v.2.6) and factoextra (v.1.0.7) [57, 58]. A core single nucleotide polymorphism (SNP) 169 

maximum likelihood tree was generated using IQTree (v.1.16.10, maximum bootstrap: 1000, default 170 

settings) and best fit model determined using ModelFinder [59]. The core genome alignment output 171 



from Panaroo was input to snp-sites (v.2.5.1; default settings) [60]. The genomes were clustered 172 

according to hierarchical Bayesian clustering algorithm using fastbaps [61]. 173 

Functional analysis of pangenome. The pan reference genome fasta file generated from Panaroo was 174 

input to eggnog mapper server (accessed: 31/10/2022; default settings; [56, 62]). The KEGG orthology 175 

(KO) terms assigned to genes within the accessory genome were retained and duplicate KO terms 176 

across multiple genes were collated. A KO table of the occurrence of each KO term within B. fragilis 177 

and B. fragilis A isolates was generated and input to FuncTree for visualisation [63]. Wilcoxon test with 178 

Benjamini-Hochberg adjustment was used to determine the KO values that were significantly different 179 

(adjusted P value <0.05) between both groups.  180 

 181 

Results and Discussion 182 

Confirmation of identities of genomes included in this study 183 

Of the genomes listed on NCBI GenBank as ‘Bacteroides fragilis’ (n = 418), 379 were considered to be 184 

of high quality [<5 % contamination, > 90 % complete; criteria of [47] after CheckM2 analysis 185 

(Supplementary Table 1)]. ANI analysis showed 275 of these genomes belonged to B. fragilis and 102 186 

genomes belonged to B. fragilis A (Supplementary Table 3; Supplementary Figure 1), based on 187 

comparison with GTDB reference genomes (Supplementary Table 2). One genome (accession 188 

GCA_019583405) that represented a novel species within the genus Bacteroides (<95 % ANI with the 189 

representative genome of B. fragilis A, assembly GCF_002849695) and one (accession 190 

GCA_000699685) that belonged to B. ovatus (>97 % ANI with the reference genome, assembly 191 

GCF_001314995) were excluded from further analyses (Supplementary Table 3; Supplementary 192 

Figure 1). Phylogenetic analysis of the 377 genomes with GTDB reference genomes confirmed the 193 

affiliations of the 275 and 102 genomes with B. fragilis and B. fragilis A, respectively (Figure 1). This 194 

supports recent work by Wallace and colleagues who also confirmed that division II (i.e. cfiApositive) 195 

B. fragilis genomes share <95 % ANI with the B. fragilis type strain NCTC 9343T, and ultimately do not 196 

meet the threshold required for species-level identification [44, 48, 64].     197 

16S rRNA gene sequence-based analyses 198 

Among the 377 high-quality B. fragilis (A) genomes, 231 (170 B. fragilis – division I; 61 B. fragilis A – 199 

division II) encoded 16S rRNA genes that were ≥80 % complete (length range 1302–1586 nt; mean 200 

1519 ± 30 nt; median 1525 nt). Our dataset included a mixture of publicly available complete and draft 201 

genomes, with (unsurprisingly) many draft genomes not encoding any or encoding only truncated 16S 202 

rRNA gene sequences. It was common for genomes to encode more than one almost-complete copy 203 



of the 16S rRNA gene (copy number range 1–8; mean 2 ± 2; median 1). The genome of B. fragilis NCTC 204 

9343T encoded six copies of the 16S rRNA gene, sharing 100 % similarity with one another. B. fragilis 205 

sensu stricto (division I) 16S rRNA gene sequences shared between 95.89 and 100 % similarity with 206 

those of B. fragilis NCTC 9343T, while B. fragilis A (division II) 16S rRNA gene sequences shared 207 

between 94.89 and 97.92 % similarity with those of B. fragilis NCTC 9343T. There was no significant 208 

difference (P = 0.13, unpaired Student’s t test) in the number of copies of the 16S rRNA gene encoded 209 

by B. fragilis and B. fragilis A genomes. Phylogenetic analyses of the 16S rRNA gene sequences showed 210 

they clustered according to division with high (≥90 %) bootstrap support (Supplementary Figure 2 and 211 

Supplementary Figure 3). Given the wide range of sequence divergence among 16S rRNA gene 212 

sequences from B. fragilis and B. fragilis A genomes (as noted above, but also refer to the similarity 213 

matrix available as Supplementary Material), we recommend that alternative genes – such as recA and 214 

glnA [38, 39] – be used to distinguish between these bacteria. 215 

AMR genes encoded in B. fragilis genomes 216 

The 275 B. fragilis and 102 B. fragilis A genomes were analysed using RGI with the most-recent release 217 

of CARD. All authentic B. fragilis genomes were predicted to encode variants of cepA, a β-lactamase-218 

encoding gene conferring resistance to cephalosporin antibiotics [26, 29, 65]. Division II B. fragilis 219 

genomes were characterised by the presence of variants of the AMR gene cfiA (also referred to as ccrA) 220 

[26, 66, 67]. Of the authentic (division I) B. fragilis genomes subject to resistome screening, 100 % 221 

generated both ‘perfect’ and ‘strict’ hits, as described by Alcock et al. [55], for the presence of cepA, 222 

which confers resistance towards penicillins and cephalosporins [68]. In addition, all genomes with <95 223 

% ANI to B. fragilis NCTC 9343T were confirmed to encode ccrA/cfiA, as expected (Figure 2). It has been 224 

reported previously that these AMR genes are present in different regions of division I and II genomes, 225 

as confirmed by analysis between B. fragilis NCTC 9343T, which acts as a reference genome for the 226 

identification of division I strains, and B. fragilis IHMA_4, that while not included in this study is a 227 

division II B. fragilis strain due to the presence of the cfiA gene [44]. Therefore, our AMR-based analysis 228 

complements findings from previous studies to demonstrate that the B. fragilis sensu stricto genomes 229 

belonged to division I B. fragilis and the B. fragilis A genomes belonged to division II B. fragilis, as 230 

confirmed by the presence of cepA and cfiA genes as well as phylogenetic clustering (Figure 2). Aside 231 

from cepA and cfiA, variants of the cfxA gene were identified in 23 of the B. fragilis sensu stricto 232 

genomes; this also confers antibiotic resistance through the expression of β-lactamases. For example, 233 

CARD analysis confirmed 14 and 9 hits for the presence of cfxA2 and cfxA3 AMR genes, respectively. 234 

Similar to cepA and cfiA, cfxA genes also encode a class A cephalosporinase and, as a trio, these genes 235 

are primarily responsible for β-lactamase expression among Bacteroides species [34, 69, 70]. 236 

Nonetheless, it is the class B metallo-β-lactamase that enables the hydrolysis of carbapenems and 237 



poses the greatest threat given the reliance on these antibiotics to treat multidrug-resistant infections 238 

[37, 71]. Despite being considered as the largest of the β-lactamase families, AMR genes encoding the 239 

OXA class-D β-lactamases were relatively scarce among genomes investigated, with 2 and 8 hits being 240 

generated for B. fragilis sensu stricto and B. fragilis A, respectively. This suggests that OXA AMR genes 241 

are not utilised as frequently by B. fragilis to confer resistance to β-lactam antibiotics unlike pathogenic 242 

bacteria including Acinetobacter baumannnii, Pseudomonas aeruginosa and Klebsiella pneumoniae, 243 

where these genes are found in greater abundance [72, 73].  244 

It was confirmed by CARD analysis that a total of 31 different AMR genes were encoded by the 245 

authentic B. fragilis genomes (Figure 2), while out of 102 B. fragilis A genomes, perfect and strict hits 246 

were generated for the presence of 23 different AMR genes. AMR genes including adeF and 247 

tetracycline resistance gene variants were among the most common AMR genes detected among both 248 

B. fragilis sensu stricto and B. fragilis A genomes. Specifically, a total of 538 and 204 hits were 249 

generated among B. fragilis sensu stricto (n = 275) and B. fragilis A (n = 102) genomes for the presence 250 

of adeF that confers resistance to fluoroquinolone and tetracycline antibiotics by acting as an efflux 251 

pump component [74]. This AMR gene has been detected previously among Bacteroides clinical 252 

isolates as well as being prevalent among other gut-associated bacteria including Akkermansia 253 

muciniphila and the pathogen Acinetobacter baumannii [75–78]. Tetracycline resistance gene variants 254 

were also detected among B. fragilis sensu stricto and B. fragilis A genomes, including tetB, tetC, tetM, 255 

tetQ and tetX. Of these, tetQ was the most prevalent with 203 and 93 hits generated among B. fragilis 256 

sensu stricto and B. fragilis A genomes, respectively, potentially mediating resistance by protecting 257 

ribosomal proteins of encoding strains from antibiotic activity [79, 80]. Both adeF and tetQ have been 258 

reported previously as the most abundant AMR genes present in the gut during metagenomic analysis, 259 

with the prevalence of the latter of these two AMR genes thought to have almost tripled in the last 260 

decades among Bacteroides isolates [79, 81]. The presence of the tetQ on mobile genetic elements, 261 

such as conjugative transposons which are transferred at increased frequency on exposure to low 262 

concentrations of tetracycline, is likely to facilitate the spread of this AMR gene via horizontal gene 263 

transfer (HGT) among Bacteroides species [82]. This has been reinforced by earlier studies that 264 

demonstrate the genetic homology between tetQ genes present in Bacteroides species, including B. 265 

fragilis [81]. In addition, tetQ was the most abundant AMR gene detected among Bacteroidota present 266 

in the faecal microbiota of animals treated with oxytetracycline [83]. The high prevalence of tetQ 267 

among B. fragilis may also facilitate the dissemination of this AMR gene to fellow intestinal colonisers 268 

that also act as clinically important opportunistic pathogens. An example of this would be the Gram-269 

positive bacterium Enterococcus faecalis, which has the ability to acquire the tetQ from B. fragilis and 270 



reinforces the concern that the spread of AMR genes among gut bacteria poses to public health [84, 271 

85].  272 

Resistome screening also revealed perfect and strict hits for the presence of nim genes in B. fragilis 273 

sensu stricto and B. fragilis A genomes. Out of the 11 nim genes that have been identified to date, six 274 

were detected among the B. fragilis genomes investigated, namely nimA, nimB, nimD, nimE, nimG and 275 

nimJ (Figure 2). Of these, nimB and nimG were restricted to B. fragilis A and B. fragilis sensu stricto, 276 

respectively, while the other nim gene variants were detected among both genomospecies. nim genes 277 

are, however, more prevalent among B. fragilis A genomes in contrast to B. fragilis sensu stricto and 278 

suggests that these strains previously considered as division II B. fragilis have a greater capacity to 279 

acquire these AMR genes and ultimately facilitate resistance to the antimicrobial agent metronidazole, 280 

which is commonly administered to treat and prevent anaerobic infections [86]. These AMR genes are 281 

a growing concern and have been identified among B. fragilis clinical isolates in recent studies [87–282 

90]. While the nitroimidazole reductase enzyme that is encoded by nim genes is responsible for 283 

contributing to reduced metronidazole susceptibility in encoding strains, by inhibiting the formation 284 

of toxic nitroso residues, metronidazole resistance can occur in the absence of these AMR genes and 285 

indicates that other mechanisms can confer metronidazole resistance [88, 91]. Such unrelated nim 286 

gene mechanisms include overexpression of multidrug efflux pumps and the DNA repair protein, RecA, 287 

as well as ferrous iron transporter deficiency [92–94]. Nonetheless, given that nim genes are typically 288 

accompanied by upstream insertion sequence elements which contain the B. fragilis consensus 289 

promoter sequence, it is likely that these genes are spread throughout bacterial communities. 290 

Furthermore, the fact that metronidazole resistance can be induced in nim+ strains, also reinforces 291 

that even if nim+ B. fragilis are not initially resistant to this antimicrobial, exposure to sub-lethal 292 

concentrations may encourage an increase in resistant strains within the gut and make treating B. 293 

fragilis infections more challenging [95]. Continued resistome screening of clinical B. fragilis isolates is 294 

therefore encouraged on a regular basis to help monitor the changes in nim gene prevalence and tackle 295 

the burden posed by antimicrobial-resistant microbes. 296 

AMR genes associated with resistance to the glycopeptide antibiotic vancomycin, used to treat 297 

infections by Gram-positive pathogens by acting as an inhibitor of cell wall synthesis, were prevalent 298 

among B. fragilis sensu stricto and B. fragilis A genomes, with 274 and 100 hits being generated, 299 

respectively (Figure 2). Given the presence of an outer membrane in Gram-negative bacteria, 300 

glycopeptides are unable to interact with the bacterial cell wall component peptidoglycan and are 301 

therefore not the antibiotic of choice when treating infections caused by Gram-negative bacteria. The 302 

vanT gene in the vanG cluster was the most common vancomycin resistance gene detected among B. 303 

fragilis sensu stricto and B. fragilis A genomes. In enterococci, vancomycin resistance gene clusters are 304 



involved in the expression of membrane-associated enzymes that lead to the synthesis of 305 

peptidoglycan precursors with reduced compatibility to vancomycin, thereby aiding resistance against 306 

this drug [96]. While B. fragilis possesses an outer membrane that will limit the interaction of 307 

glycopeptide antibiotics, such as vancomycin, with the cell wall and intracellular environment, it is 308 

likely that encoding strains have potentially acquired these genes from fellow intestinal colonisers and 309 

possibly act as an additional mechanism of resistance. Given that AMR genes can be transferred 310 

between Gram-positive and Gram-negative species, the high prevalence of van genes among B. fragilis 311 

sensu stricto and B. fragilis A represents a risk for their dissemination to susceptible bacteria and 312 

ultimately reduce the efficacy of this drug in treating infections caused by Gram-positive bacteria [97].        313 

Other AMR genes with lower prevalence include erm gene variants, particularly ermF, with 52 and 42 314 

hits for this gene being generated among B. fragilis sensu stricto and B. fragilis A genomes, respectively. 315 

The erm genes are responsible for counteracting the inhibitory activity of erythromycin on protein 316 

synthesis through the expression of a methylase that facilitates modification of the 50S ribosomal 317 

subunit that acts as the target site for this antibiotic. For instance, the role of ermF in erythromycin 318 

resistance has been reported previously in the bird pathogen and fellow member of the phylum 319 

Bacteroidota, Riemerella anatipestifer [98], while other studies have confirmed the high prevalence of 320 

this gene in environmental B. fragilis isolates, including those from hospital wastewater [99]. 321 

Furthermore, the high prevalence of such AMR genes among isolates from these environments is likely 322 

to aid their dissemination among bacteria, particularly due to their association with mobile genetic 323 

elements and the sub-lethal antibiotic concentrations present in wastewater that select for resistant 324 

strains [100]. The AMR gene mef(En2) encodes an efflux pump that also confers resistance to macrolide 325 

antibiotics such as erythromycin and clindamycin, and was predicted to be present among B. fragilis 326 

sensu stricto and B. fragilis A genomes, with 45 and 17 hits being generated, respectively. Of the B. 327 

fragilis A genomes predicted to be mef(En2)+, genome GCA_014639005 was central to a previous 328 

publication that also proposed cfiA+ B. fragilis as a distinct genomospecies [101]. This genome was 329 

included in the current study, with findings from resistome screening analysis supporting those made 330 

previously that also detected the presence of both cfiA and mef(En2) in this strain. 331 

Of the B. fragilis sensu stricto strains, genome GCA_000601055 (B. fragilis S23L17) was predicted to 332 

carry the most antibiotic resistance genes, with 18 hits being generated for the presence of AMR genes 333 

that include aadS, adeF, cepA, ermF and tet gene variants. aadS is not likely to be relevant as 334 

Bacteroides are intrinsically resistant to aminoglycoside antibiotics; however, it may contribute to the 335 

pool of horizontally transmissible resistance genes with the gut microbiota. This strain has been 336 

confirmed in previous studies to express a type-6 secretion system that is likely to facilitate modulation 337 

of the surrounding environment, while others reported the presence of a CRISPR-Cas system within its 338 



genetic architecture that may also contribute to antibiotic resistance [102, 103]. Despite generating a 339 

smaller number of hits for the presence of AMR genes, three B. fragilis A genomes, namely 340 

GCA_000297695 (B. fragilis strain HMW610), GCA_001693695 (B. fragilis strain O:21) and 341 

GCA_001695355 (B. fragilis strain BF8) were predicted to harbour 11 AMR genes that include ccrA, 342 

cfiA14, ermF as well as nim and tet gene variants, among others. Of these, B. fragilis strains O:21 and 343 

BF8 were central to a previous study by Sóki and colleagues who sequenced both genomes and 344 

confirmed the multidrug-resistant properties of these strains due to the presence of AMR genes, all of 345 

which were also detected in the current study [104]. Although these genomes are predicted to harbour 346 

fewer AMR genes than the individual B. fragilis sensu stricto genome, the presence of genes that help 347 

confer resistance towards commonly administered antibiotics such as carbapenems and 348 

metronidazole make monitoring the prevalence of B. fragilis A strains a top priority for the benefit of 349 

public health.   350 

Although resistome screening analysis in the current study has determined the type and abundance 351 

of AMR genes among publicly available B. fragilis sensu stricto and B. fragilis A genomes, it is 352 

noteworthy that the presence of AMR genes may not confer phenotypic resistance. For example, the 353 

tetX AMR gene that was detected in 31 and 8 B. fragilis sensu stricto and B. fragilis A genomes, 354 

respectively, was initially identified in Bacteroides spp. and yet did not confer resistance to the host 355 

strain [105]. However, transfer of the B. fragilis associated transposons, Tn4351 and Tn4400, that 356 

harbour the tetX gene led to tetracycline resistance in aerobically grown Escherichia coli [106, 107]. 357 

This is likely due to the fact that the TetX protein requires the presence of oxygen to transform 358 

tetracycline antibiotics, which is relatively scarce in the anaerobic mucosa of the gut where B. fragilis 359 

exists [105]. Such findings suggest that B. fragilis sensu stricto and B. fragilis A act as reservoirs for 360 

silent AMR genes that have the capacity to become incorporated into clinically relevant pathogens via 361 

the frequent HGT that occurs in the gut [108]. It is therefore important that the resistome of intestinal 362 

bacteria, including B. fragilis, is closely monitored in future studies even if strains lack phenotypic 363 

resistance. Ultimately, this would facilitate our understanding of the silent AMR genes that are present 364 

among bacterial populations and prevent the threat of their dissemination via HGT being 365 

underestimated. 366 

Pangenome analysis of division I and division II B. fragilis genomes 367 

Panaroo analysis revealed a total of 24,451 genes in the pangenome of 377 genomes. The core genome 368 

accounted for 8.8 % (present in 99-100 % of isolates) of the total pangenome and contained 2,175 369 

genes (Table 1). The majority of genes were identified within relatively few isolates, as noted previously 370 

with non-clinical pangenome studies [109, 110]. Compared to pathogenic bacteria, the core 371 



pangenome of B. fragilis was found to be smaller [111–113]. The core genome of 4,401 E. coli isolates 372 

was reported to be 53 % of the total gene count (128,193 genes). Additionally, the core genome of 373 

Staphylococcus aureus was 75 % of the total pangenome (21,133 genes) [114]. Bifidobacterium 374 

longum, a commensal intestinal microbe, has also exhibited a small core genome (3.2 %) similar to B. 375 

fragilis [115]. The small core genome observed in this study suggests that the core housekeeping genes 376 

necessary for basic survival are conserved between both B. fragilis sensu stricto and B. fragilis A, as 377 

noted with Bifidobacterium longum. 378 

Generation of a PCA revealed that 15.1 % of variation was explained by Dimension 1 and 4.8 % was 379 

explained by Dimension 2 (Figure 3).  380 

A clear division between the accessory genes of B. fragilis and B. fragilis A was observed, suggesting 381 

functional differences existed between the two groups of bacteria. The top 49 accessory genes 382 

contributing to the variation in dimensions 1 and 2 were present in all B. fragilis division isolates 383 

(Supplementary table 4). Within the accessory genome, there were 49 genes present in all B. fragilis 384 

sensu stricto isolates and 42 genes present in all B. fragilis A isolates; however, the absence of these 385 

genes from a division does not infer the gene and its function are missing from the other division. It is 386 

important to be aware of the sequence identity cut-offs used during pangenome analysis. A core SNP 387 

maximum likelihood phylogenetic tree was generated using IQTree with GTR+F model according to 388 

Bayesian information criteria (Figure 4). B. fragilis sensu stricto and B. fragilis A isolates formed two 389 

distinct monophyletic clades, as seen in the accessory gene-based PCA (Figure 3). According to 390 

fastbaps, B. fragilis sensu stricto and B. fragilis A formed two clusters (outer ring, Figure 4).  391 

Functional analysis of pangenome  392 

The majority of KO values within the accessory genome were assigned to metabolism, specifically 393 

carbohydrate metabolism (Figure 5; Supplementary table 5). Of the 825 KO values, 213 were 394 

significantly (adjusted P value <0.05) different between B. fragilis sensu stricto and B. fragilis A 395 

(Supplementary table 6). Several KO values were found in either only B. fragilis or B. fragilis A 396 

genomes. The majority of these were hydrolases or transporter proteins (Table 2). Additionally, the 397 

significant KO values appeared to be involved in glycan biosynthesis/metabolism, metabolism of 398 

cofactors/vitamins and carbohydrate metabolism (Figure 5). The diversity of capsular polysaccharide 399 

biosynthesis loci within the B. fragilis pangenome is reflected in observed capsular antigenic diversity 400 

between clonal isolates, with more than 30 divergent microcapsule biosynthesis operons identified 401 

[116, 117]. A recent study explored the pangenome of B. ovatus and B. xylanisolvens and revealed only 402 

17.5 % (2,264 genes) were shared among the selected strains, a similar core genome sized observed 403 

during this study. Several key components of Bacteroidota polysaccharide metabolism (2 classes of 404 



core polysaccharide utilization loci, SusC/D homologs and degradative CAZymes) were heavily 405 

represented in the accessory genome and not common to all strains [118]. Members of the genus 406 

Bacteroides are well-known polysaccharide degraders and can adapt to changes in available dietary 407 

fibres [119, 120]. For example, B. thetaiotaomicron, B. ovatus, and B. cellulosilyticus encode over 250 408 

CAZymes that target nearly all commonly available dietary polysaccharides. Although no specific gene 409 

subsets within the accessory genome were explored in this study, it is possible that the main 410 

diversification between B. fragilis sensu stricto and B. fragilis A is due to genes involved in 411 

polysaccharide metabolism. A recent study revealed constant adaptation of B. fragilis within the 412 

intestinal microbiome is a common feature of within-person evolution [121]. Therefore, the variation 413 

within the accessory genome and large number of genes present in single isolates could be due to the 414 

adaptation of B. fragilis to fill specific carbohydrate degradation niches within individual microbiomes.  415 

 416 

Conclusion 417 

Here, we confirm that 275/377 genomes listed as B. fragilis on the NCBI public database are B. fragilis 418 

sensu stricto and share >=95 % ANI with B. fragilis NCTC 9343T. Of the remaining genomes with <95 % 419 

ANI, 102 were assigned as B. fragilis A by the GTDB. Findings from fastANI analyses were reinforced by 420 

phylogenetic analyses and emphasised the importance of investigating the identities of publicly 421 

available genomes. These findings indicate that B. fragilis A, previously referred to as division II B. 422 

fragilis, is an individual species and distinct from B. fragilis sensu stricto. Whether this divergence is 423 

the result of barriers to HGT or occupation of micro-environments in different gut locations remains 424 

to be determined. Furthermore, it has yet to be confirmed whether individuals are colonised with B. 425 

fragilis sensu stricto, B. fragilis A or both simultaneously, and therefore highlights an avenue for future 426 

investigation.  427 

Resistome screening, facilitated by CARD, confirmed that all B. fragilis sensu stricto genomes encoded 428 

cepA, an AMR gene that was absent in all B. fragilis A genomes analysed in the present study. In 429 

contrast, all B. fragilis A genomes encoded ccrA, an AMR gene that encodes a different class of β-430 

lactamase that was absent from all B. fragilis sensu stricto genomes. This supports findings from 431 

previous studies that distinguished division I and II B. fragilis based on the presence or absence of 432 

these AMR genes in the genomic architecture of B. fragilis strains. The AMR gene adeF, which leads to 433 

the expression of an efflux pump component, was among the most prevalent resistance genes 434 

predicted during resistome screening analysis among B. fragilis sensu stricto and B. fragilis A genomes 435 

and suggests that this may be an important mechanism in conferring resistance. Additionally, AMR 436 

genes predicted to confer resistance to tetracycline were also abundant among B. fragilis sensu stricto 437 



and B. fragilis A, with tetQ being the most frequently detected tet gene variant among all genomes 438 

investigated and reinforces that tetracycline should no longer be considered in treating B. fragilis 439 

infections. Resistome screening analysis from the current study also emphasises the concern regarding 440 

metronidazole resistance by determining the prevalence of nim genes among publicly available 441 

genomes. Given that the treatment of B. fragilis infections is often dependent on metronidazole 442 

administration, the prevalence of nim genes among clinically isolates should be closely monitored in 443 

the future.  444 

Exploration of the pangenome of B. fragilis sensu stricto and B. fragilis A revealed separation of the 445 

two groups at the core and accessory genome level, confirming separation of two subdivisions into 446 

two species. This separation was confirmed by phylogenetic analysis of the core genome and PCA of 447 

the accessory genome. Significant functional differences were observed between both groups, mainly 448 

in genes associated with amino acid, carbohydrate, and glycan metabolism. While this study did not 449 

explore specific gene subsets, future studies should aim to identify mobile DNA signatures in the 450 

accessory genes and intergenomic recombination between species in core genes to determine if there 451 

are hot spots for genome transfer within each group. Importantly, this study adds to the growing body 452 

of evidence that B. fragilis A, previously referred to as division II B. fragilis, should be considered a 453 

distinct species of Bacteroides. To ensure that the clinical association with the potential for lethal 454 

infection arising from these bacteria remains easily memorable, while enabling understanding of the 455 

different antimicrobial susceptibilities, we propose that in a formal nomenclature change Division II 456 

Bacteroides fragilis A is renamed Bacteroides fragila. Compilation of the taxonomic details necessary 457 

for a formal proposal are ongoing. 458 

 459 
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Table 1: Summary statistics generated from Panaroo pangenome analysis of 377 B. fragilis 783 

genomes 784 

Pangenome 

component* 

Present in strains No. of genes Proportion of genes 

(%) 

Core 99 % <= strains <= 100 % 2,175 8.8 

Soft core  95 % <= strains <99 % 517 2.1 

Shell  15 % <= strains <95 % 2,519 10.3 

Cloud  0 % <= strains <15 % 19,240 78.6 

Total  0 % <= strains <= 100 % 24,451 100 

* The accessory genome comprises shell and cloud pangenome components. 785 

 786 
787 



Table 2: Overview of KO IDs that were found exclusively in either B. fragilis sensu stricto or B. fragilis 788 

A. KEGG description, BRITE description, adjusted P value (Benjamini-Hochberg) and count in species 789 

also shown.  790 

KO Adjusted P 

value 

Count in B. 

fragilis  

Count in B. 

fragilis A  

KEGG description BRITE description  

K08998 7.67×10-81 275 0 Unknown Unknown  

K08717 7.67×10-81 275 0 Urea transporter (utp) Transporters 

K07267 7.67×10-81 275 0 Porin (oprB) Transporters 

K05989 2.90×10-80 549 0 Alpha-L-rhamnosidase 

(ramA) 

Hydrolases 

K03498 2.90×10-80 276 0 trk/ktr system potassium 

uptake protein 

Transporters 

K03551 9.35×10-80 274 0 Holliday junction DNA 

helicase RuvB 

DNA repair and 

recombination  

K01424 1.09×10-78 273 0 L-asparaginase (ansA,ansB) Hydrolases 

K18369 1.10×10-72 267 0 Alcohol dehydrogenase 

(adh2) 

Oxidoreductases 

K03648 1.10×10-72 267 0 Uracil-DNA glycosylase DNA repair and 

recombination  

K05520 7.67×10-81 0 102 Protease I (pfpI) Peptidases and 

inhibitors 

K00865 7.67×10-81 0 102 Glycerate 2-kinase (garK) Transferases 

 791 
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FIGURE LEGENDS 793 

Figure 1. Phylogenetic tree showing relationships of ‘Bacteroides fragilis’ genomes with members of 794 

the genus Bacteroides. Taxonomic information based on GTDB annotations. Most (n = 275) genomes 795 

(shown in yellow) were affiliated with B. fragilis sensu stricto, with the remainder (n = 102; shown in 796 

green) affiliated with Bacteroides fragilis A. The tree was created using PhyloPhlAn. Scale bar, average 797 

number of amino acid substitutions per site. 798 

Figure 2. AMR genes predicted to be encoded in B. fragilis (Division I; n = 275) and B. fragilis A (Division 799 

II; n = 102) genomes. The phylogenetic tree was generated using PhyloPhlAn, and rooted at the 800 

midpoint. Strict CARD match, not identical to a CARD entry but the bit score of the matched sequence 801 

is greater than the curated BLASTP bit score cut-off; perfect CARD match, 100 % identical to the 802 

reference CARD sequence along its entire length. Loose matches are not shown to avoid presenting 803 

false positives based on sequences with low homology and bit scores below CARD BLASTP cut-off 804 

recommendations. 805 

Figure 3. PCA of the accessory genome (genes present in 5-95%) of all Bacteroides fragilis sensu stricto 806 

(Division I; n = 275 and Bacteroides fragilis A (Division II; n = 102) genomes.  807 

Figure 4. B. fragilis sensu stricto (Division I; n = 275) and B. fragilis A (Division II; n = 102) core SNP 808 

maximum likelihood tree generated from the core genome alignment. The inner ring shows 809 

classification (B. fragilis sensu stricto or B. fragilis A) and outer ring shows the designated fastbaps 810 

cluster (Cluster 1 or Cluster 2). The phylogenetic tree was generated with IQTree and iToL. The scale 811 

bar represents the average number of SNPs per site.  812 

Figure 5. Accessory gene-based functional map of B. fragilis sensu stricto and B. fragilis A. The figure 813 

was generated from eggnog mapper server output using the Panaroo pangenome reference fasta file. 814 

The KOs associated with the accessory genome were retained and KO table input to FuncTree2 for 815 

visualisation. Significant KO values (adjusted P value <0.05; Benjamini-Hochberg) were determined 816 

using Wilcoxon test. Each ring of the circular dendrogram represents a different functional layer of the 817 

KEGG functional hierarchy (inner ring to outer ring: Biological Category, Biological Process, KEGG 818 

Pathway, KEGG Module; see labels). The module coverage of each functional layer is represented by 819 

the size of the circle and coloured according to Biological Category (e.g. all layers associated with 820 

Metabolism have yellow-coloured circles). The columns within the circle show the total of each KO 821 

value associated with B. fragilis (yellow columns) or B. fragilis A (green columns) with 100 % stacking. 822 

The significant KO values have been annotated in the outer ring of the circle and show the location 823 

within the functional hierarchy. See Supplementary Material for KOs that could not be assigned to a 824 

pathway. 825 
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SUPPLEMENTARY FIGURES ASSOCIATED WITH ENGLISH ET AL. 

Genomic analyses of Bacteroides fragilis: subdivisions one and two represent distinct 

species 

 



 

Supplementary Figure 1. Bidirectional clustered heatmap showing results from an ANI analysis of high-quality ‘Bacteroides fragilis’ genomes (n = 379) 

downloaded from NCBI GenBank. Genomes were subject to an all-versus-all fastANI analysis along with Bacteroides spp. reference genomes 

(Supplementary Table 2) to confirm species identities. Most genomes clustered with the reference genomes of B. fragilis or B. fragilis A (n = 275 and n = 

102 genomes, respectively). 



 1 

Supplementary Figure 2. Maximum-likelihood tree showing the phylogenetic relationship 2 

between 16S rRNA gene sequences encoded within 170 B. fragilis (division I) and 61 B. fragilis A 3 

(division II) genomes. Some genomes encoded more than one copy of the 16S rRNA gene. The tree 4 

was generated from a multiple-sequence alignment of 522 16S rRNA gene sequences. Bootstrap 5 

values (represented by circles, size relative to a percentage of 100 replications) are shown at nodes. 6 

Scale bar, average number of nucleotide substitutions per position. 7 



 8 

Supplementary Figure 3. Neighbour-joining tree showing the similarity between 16S rRNA 9 

gene sequences encoded within 170 B. fragilis (division I) and 61 B. fragilis A (division II) 10 

genomes. Some genomes encoded more than one copy of the 16S rRNA gene. The tree was 11 

generated from a multiple-sequence alignment of 522 16S rRNA gene sequences. Bootstrap values 12 

(represented by circles, size relative to a percentage of 100 replications) are shown at nodes. 13 


