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Abstract—Mobile edge computing (MEC) offers promising
solutions for various delay-sensitive vehicular applications by
providing high-speed computing services for a large number of
user vehicles simultaneously. In this paper, we investigate non-
orthogonal multiple access (NOMA) assisted secure offloading
for vehicular edge computing (VEC) networks in the presence of
multiple malicious eavesdropper vehicles. To secure the wireless
offloading from the user vehicles to the MEC server at the base
station, the physical layer security (PLS) technology is leveraged,
where a group of jammer vehicles is scheduled to form a NOMA
cluster with each user vehicle for providing jamming signals to
the eavesdropper vehicles while not interfering with the legitimate
offloading of the user vehicle. We formulate a joint optimization
of the transmit power, the computation resource allocation and
the selection of jammer vehicles in each NOMA cluster, with
the objective of minimizing the system energy consumption
while subjecting to the computation delay constraint. Due to the
dynamic characteristics of the wireless fading channel and the
high mobility of the vehicles, the joint optimization is formulated
as a Markov decision process (MDP). Therefore, we propose an
asynchronous advantage actor-critic (A3C) learning algorithm-
based energy-efficiency secure offloading (EESO) scheme to solve
the MDP problem. Simulation results demonstrate that the agent
adopting the A3C-based EESO scheme can rapidly adapt to the
highly dynamic VEC networks and improve the system energy
efficiency on the premise of ensuring offloading information
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security and low computation delay.
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I. INTRODUCTION

A. Background

The great progress of vehicular networks with their wide
applications in recent years has motivated a large amount
of data-hungry and delay-sensitive services, such as crash
warning, traffic flow prediction and unmanned driving. Various
computation-intensive tasks are generated by these services
and require considerable communication and computation
resources to process. Recently, mobile edge computing (MEC)
has become a promising technology in the Internet of Vehicles
(IoV) by deploying edge computing servers with sufficient
computation resources at the edge of the networks, such as
base stations or roadside units, that can address the task
computation requirements. With the deployment of MEC in
vehicular networks, multiple vehicles can offload their tasks
to the MEC servers simultaneously and acquire high-speed
computing services. Accordingly, the great potential of MEC
has drawn lots of attention [1], [2]. In this field of research,
energy consumption is a key concern since the MEC approach
involves the transmission energy consumption in the offloading
process, which is absent in the traditional local computing
methods. The authors in [3] minimize the energy consump-
tion of a multi-cell MEC system by jointly optimizing the
computation and radio resources. Under the constraint of task
time delay, the authors in [4] propose an offloading strategy
to reduce the energy consumption of the users. By optimizing
the power allocation and offloading decision, the authors in [5]
reduce energy consumption and meet the requirements of low
system delay.

So far, researchers mainly focus on various energy con-
sumption performances and do not consider the security of
the communication process from the vehicle users to the edge
server. Due to the open feature of the wireless networks, during
the offloading process, malicious eavesdroppers intercept the
data transmitted through the wireless channel, which leads to
confidential information leakage [6], [7]. In the past, encryp-
tion methods were often used to prevent eavesdroppers from
decoding confidential messages correctly [8]–[10]. However,
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with the rapid development of the computing performance of
the devices, it is difficult to protect the security of information
only by relying on the key.

To address the security issues, many works have investigated
the potential of physical layer security (PLS) techniques to
deteriorate the reception of eavesdroppers in wireless networks
during signal transmission phases, exploiting the inherent
physical characteristics of the wireless channel and thus en-
hancing the secrecy performance of the networks [11]–[17].
There are also a few kinds of research on PLS in MEC
networks [18]–[20]. The authors in [18] design an artificial
noise (AN) assisted beamforming method to improve the se-
crecy performance of the computation offloading. The authors
in [19] use full-duplex communication technique to propose
the corresponding physical layer assists privacy-preserving
offloading scheme to prevent information interception. In [20],
the authors propose a PLS method to safeguard the offloading
process to the MEC server and minimize the weighted sum-
energy consumption for all users.

To further improve the confidentiality performance and
reduce the system latency, it is also necessary to utilize
suitable access strategies. Non-orthogonal multiple access
(NOMA) has been identified as one of the key technologies to
achieve high-frequency spectral efficiency and a large number
of connections in future networks. In the NOMA scheme,
multiple users can access the same frequency band and exploit
the successive interference cancellation (SIC) to mitigate the
co-channel interference. The inherent feature of multi-user
superposition transmission will inevitably cause interference
depending on the decoding order of multiple users. Therefore,
with proper design, we can leverage the interference of the
NOMA scheme as jamming signals to deteriorate the reception
of the eavesdroppers. In this context, PLS in NOMA-assisted
networks has attracted a lot of research interest [21]–[26].
In [21], the authors consider a single-input single-output
NOMA system and maximize the secrecy sum rate. In [22],
a minimum transmit power scheme, considering a multiple-
input single-output NOMA cognitive radio (CR) network, is
proposed. The authors in [23] use the inter-user interference
scheme to confuse eavesdroppers while improving the signal
quality of legitimate users. In [24], the remaining idle user is
used as a friendly jammer to confuse the eavesdroppers in the
uplink NOMA system and enhance the secrecy performance of
the system. In [25], the authors secure a large-scale downlink
system by using the AN scheme. The authors in [26] intro-
duce a half-duplex decode-and-forward relay to safeguard the
NOMA networks.

In addition, the NOMA scheme is also used to secure
the MEC networks [27], [28]. The authors in [27] optimize
the transmit power, the offloaded workload and the NOMA-
transmission duration to enhance the security and reduce the
power consumption of the MEC network. In [28], the authors
investigate the cooperative mechanism between NOMA user
pairs to improve the security of the MEC system. Nevertheless,
the schemes in the above works are all designed in static
scenarios where the locations of the users remain unchanged
and cannot be directly applied in the dynamic vehicular
networks.

Due to the high mobility of the vehicles, the algorithm
should make fast decisions according to the current environ-
mental state. However, the traditional intelligent optimization
algorithm needs a certain amount of time to iterate and obtain
the relatively optimal solution, which will cause an intolerable
delay in the actual scene. Therefore, the joint optimization of
security and energy consumption requires an algorithm that
can obtain the optimal solution in a short time. Deep learning
(DL) is one of the efficient methods to solve the problem [29],
[30]. In [29], the authors propose a deep learning-based
workload orchestrator for mult-access multi-tier vehicular edge
computing (VEC) architectures to Orchestrate the dynamic
and heterogeneous resources in the VEC systems. In [30], the
authors propose a deep learning-based vehicle-to-everything
(V2X) wireless channel prediction model using a long short-
term memory (LSTM) network. Reinforcement learning (RL)
is the other way to solve the problem [31], [32]. In [31],
the authors use the actor-critic RL algorithm to provide non-
interfering resources to vehicles before they enter the out-
of-coverage area. In [32], the authors use the RL algorithm
to minimize the system consumption cost and maximize the
transaction throughput of the blockchain system. DL requires
large amounts of labeled data and RL has a small action space
and state space.

Compared to DL and RL algorithms, deep reinforcement
learning (DRL) algorithm can have a huge action and state
space. Besides, the DRL algorithm does not need labeled
data for training, which is convenient for training a model.
Therefore, the DRL scheme attracts more interest in task
offloading [33]–[36]. Once the model is completely trained,
it can meet the latency and reliability requirements by mak-
ing a quick decision, which is robust in the highly mobile
vehicular network [33], [34]. In [35], the authors propose an
asynchronous advantage actor-critic (A3C) learning algorithm-
based scheme to minimize the cost of the cloud service center
(CSC). In [36], the authors use A3C based learning algorithm
to maximize the system utility by making the optimal task
and resource scheduling policy. All the studies above do not
consider the security of information during the offloading
process.

B. Motivations and Contributions

The importance of secure offloading and energy efficiency
in VEC networks is demonstrated by all of the above studies.
With the help of NOMA technology and resource allocation
scheme, the user vehicles can improve their secrecy perfor-
mance and reduce the overall energy consumption of the
system to a lower level. However, due to the high dynamics
of vehicles in VEC networks, it is difficult for traditional opti-
mization algorithms to make real-time decisions according to
the external environment. Therefore, we have the motivation to
design a new DRL-based solution for the challenging dynamic
NOMA-aided multi-user offloading scenario. To the best of
our knowledge, the existing literature has not studied the
scheme to reduce the overall energy consumption of the system
while considering information security and computation delay
with the NOMA technique in the VEC networks.
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In this paper, we investigate a scenario where multiple users
attempt to offload messages to the edge computing server when
multiple eavesdroppers attempt to intercept them. Idle Vehicles
are selected to form a NOMA cluster with the user vehicle to
send jamming signals which can confuse the reception of the
eavesdroppers. In addition to the security design, the energy
efficiency is also maximized through a DRL-based approach
in highly dynamic VEC networks. The main contributions of
this work are summarized as follows.

1) Using NOMA and PLS techniques, we propose an
energy-efficient secure offloading (EESO) scheme based
on DRL in a multi-user offloading scenario. We minimize
the overall energy consumption of the VEC network by
jointly optimizing the transmit power of vehicles, the
computation resource allocation and the NOMA clus-
ter selection. The NOMA scheme is also designed to
enhance the jamming signal strength received by the
eavesdroppers, thus protecting the offloaded information
from eavesdropping.

2) Considering the high dynamic characteristics of the VEC
networks and high-dimensional systems with a large
action space, we solve the joint optimization problem
of the EESO scheme by adopting the A3C-based DRL
algorithm, where two deep neural networks are deployed
respectively in the critic and actor part. The on-policy
A3C algorithm uses the Monte Carlo method to obtain
an unbiased estimation of the current value function
and hence promotes the stability of the decisions. The
simulation results show that the agent adopting the EESO
scheme adapts to the rapidly changing environment and
improves energy efficiency on the premise of ensuring
the information security.

3) To simulate a real VEC environment, we use queuing the-
ory to model vehicle movements and consider a dynamic
eavesdropping scenario, including multiple eavesdropper
vehicles. In addition, we introduce the computation delay
constraint in designing the EESO scheme, which can bal-
ance the energy consumption and the total task processing
delay. By leveraging the powerful A3C-based decision-
making capabilities, the agent can find an intelligent
strategy that reduces the system delay while minimizing
the energy consumption.

C. Organization of the Paper

The remainder of this paper is organized as follows. Sec-
tion II illustrates the system model of the VEC networks.
Section III describes the NOMA-assisted secure offloading
scheme. In section IV, the details of the DRL-based EESO
scheme are introduced. Simulation results are provided in
Section V and a conclusion is drawn in section VI.

II. SYSTEM MODEL

We consider a highly dynamic VEC network, as shown
in Fig. 1. There are three types of vehicles in the network,
namely user vehicles, jammer vehicles and eavesdropper ve-
hicles. The user vehicles are denoted by Vu = {vui , i =
1, 2, · · · , Nu}, where Nu is the number of user vehicles.

By using the cellular interface, the Nu user vehicles can
offload the task to the base station. Jammer vehicles are
denoted by Vh = {vhj , j = 1, 2, · · · , Nh}, where Nh is
the number of jammer vehicles. The user vehicles want to
send the computation-intensive data to the MEC server for
processing. The jammer vehicle performs NOMA pairing with
the user vehicle, and the eavesdropper vehicles eavesdrop on
the information transmitted from the user vehicle to the MEC
server. In addition, we assume that there are multiple dynamic
eavesdropper vehicles in the network. Eavesdropper vehicles
are denoted by Ve = {ven, n = 1, 2, · · · , Ne}, where Ne is the
number of eavesdropper vehicles. Besides, all transceivers use
a single antenna to transmit information.

Base 

Station MEC Server

User Vehicle

Eavesdropper Vehicle

Jammer Vehicle

Eavesdropping 

Path

NOMA 

Cluster

Cooperative 

Jamming

Fig. 1. Illustration of the VEC network model. Multiple user vehicles offload
their computation tasks to the MEC server for execution.

TABLE I
NOTATIONS AND EXPLANATIONS

Notation Explanation
Nu Number of user vehicles
Nh Number of jammer vehicles
Ne Number of eavesdropper vehicles
λ Average arrival rate
gT,R Channel gain
Ri

b Channel capacity of user vehicle link
Ri

e,n Channel capacity of eavesdropper vehicle
Ri

s Secrecy rate of user vehicle
tli Local execution delay of the tasks
texei Execution delay of the MEC server for computing tasks
ttri Secure transmission delay
Etr

i User vehicle transmission energy consumption
El

i User vehicle local computing energy consumption
EM

i User vehicle MEC energy consumption
Es System energy consumption
Ts System computation delay
Ps Secrecy probability
re Energy consumption-related reward
rd Computation delay-related reward
θ Global actor network parameter
θc Global critic network parameter
θ′ Actor network parameter in each worker thread
θ′c Critic network parameter in each worker thread

To practically simulate a dynamic traffic flow, we model



4

the arrival process of the vehicles (including the user vehicles,
jammer vehicles and eavesdropper vehicles) by utilizing Queu-
ing Theory [37]. The time interval ∆t between two arriving
vehicles follows a negative exponential distribution. Therefore,
the probability density function of the time interval ∆t can be
expressed as

f(∆t) =

{
λe−λ∆t, if ∆t ≥ 0,

0, Otherwise,
(1)

where λ is the average arrival rate of vehicles. The different
traffic flows can be simulated by adjustment of the value of
λ.

In each time slot, multiple user vehicles simultaneously
offload their computing tasks and select jammer vehicles for
NOMA clusters. At this time, multiple eavesdroppers attempt
to wiretap the transmission of user vehicles. Therefore, ap-
propriate strategies should be designed to reduce information
leakage. In this paper, in order to achieve secure offloading of
all user vehicles and reduce the system energy consumption,
we will jointly optimize the NOMA cluster selection, the
transmit power and the computation resource allocation.

III. NOMA-ASSISTED SECURE OFFLOADING SCHEME

In this section, we first propose a NOMA-assisted jamming
scheme, followed by the computation task execution model for
the VEC network. Then, the optimization problem to minimize
the system energy consumption is formulated.

A. NOMA Jamming Scheme

Due to the open characteristics of the wireless channel,
user vehicles of the offloading process to the base station risk
eavesdropping. We consider a more practical eavesdropping
scenario where the wireless offloading links are eavesdropped
by multiple dynamic eavesdropper vehicles, compared to the
traditional single eavesdropper scenario [18]–[20]. we adopt
the NOMA technology in our EESO scheme to introduce
jamming signals that can confuse the reception of eavesdrop-
pers while not interfering with legitimate user vehicles. The
idle vehicles in the network are used to play the role of
jammer vehicles. We divide the user vehicles and jammer
vehicles into Nu NOMA clusters. Each cluster contains one
user vehicle and one or more jammer vehicles, resulting
in no inter-user interference to the user vehicle. Different
clusters use different frequency bands. This ensures that there
is no inter interference in different NOMA clusters. In each
cluster, the user vehicle and jammer vehicles share the same
frequency band and leverage the NOMA scheme to transmit
and decode messages. The mechanism of SIC decoding in
the NOMA scheme determines that the signals of other users
will not interfere with the last decoded user. Therefore, by
properly designing the NOMA scheme, we can guarantee
that the signals transmitted by the jammer vehicles will not
interfere with the user vehicle in its own NOMA cluster. Thus,
we set the user vehicle as the last decoded signal in each
cluster at the base station. Different from the SIC reception
of the base station, the eavesdroppers receive all the jamming

signals generated by the jammer vehicles. Thus, the signal-to-
interference-plus-noise ratio (SINR) at the eavesdroppers will
significantly decrease.

During one coherence time period, the channel gain gi,B
from the ith user vehicles to the base station can be expressed
by

gi,B = αi,Bhi,B , (2)

where αi,B is the large-scale fading effect, which represents
the path loss. Besides, hi,B is the small-scale fading com-
ponent and follows the exponential distribution with the unit
mean. Similarly, gi,n represents the channel gain from the
ith user vehicle to the nth eavesdropper vehicle, and gj,n
represents the channel gain from the jth jammer vehicle to
the nth eavesdropper vehicle.

The uplink NOMA allows an arbitrary decoding order.
Besides, the base station can know which vehicle is the user
vehicle and which one is the jammer vehicle. Therefore, we
consider that the received signals of the ith NOMA cluster
are decoded in the order of vhi1, vhi2, · · · , vhiNhi

and the user
vehicle vui finally. Therefore, the received SINR of the ith user
vehicle can be described as

ξui =
Pu
i · gi,B
σ2

, (3)

where Pu
i is the transmit power of the ith user vehicle and

σ2 is the noise power. Then the channel capacity from the ith
user vehicle to the base station can be formulated as

Ri
b = W log(1 + ξui ), (4)

where W is the bandwidth.
We assume that the eavesdropper vehicles have strong

eavesdropping capabilities and that all the information sent by
user vehicles which they can eavesdrop. The reason for consid-
ering strong eavesdropping capabilities is that once the security
of information is guaranteed, the offloading channel capacity
is larger than the highest channel capacity of eavesdropper
vehicles. Therefore, our proposed scheme can also guarantee
the security of the information when one eavesdropper vehicle
can only eavesdrop on one user vehicle. Then the channel
capacity of the nth eavesdropper vehicle that is wiretapping the
offloading information of the ith user vehicle can be expressed
by

Ri
e,n = W log(1 +

Pu
i gi,n

σ2 + Iei,n
), (5)

where Iei,n is the received interference, given by

Iei,n =

Nh∑
j=1

ρj [i]P
h
j gj,n, (6)

where the binary indicator ρj [i] is exploited to indicate the
selection of the NOMA cluster. ρj [i] = 1 represents that
the jth jammer vehicle is selected by the ith user vehicle to
transmit jamming signal in its NOMA cluster, while ρj [i] = 0
otherwise. Particularly, each jammer vehicle can be selected
by only one user vehicle, i.e.,

∑Nu

i=1 ρj [i] ≤ 1.
To protect the wireless transmission of the offloading pro-

cess, we leverage a physical layer wiretap coding scheme to
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encode the offloaded messages [38]. We define Rt and Rs as
the codeword rate and the secrecy rate, and their difference
Rt − Rs describes the redundancy rate which is utilized to
resist eavesdropping. If the redundancy rate exceeds the chan-
nel capacity of the eavesdropper vehicle, the decoding process
at the eavesdropper vehicle can be completely confused, and
the security is guaranteed [39]. Thus, the gap between the
codeword rate and the channel capacity of the eavesdropper
vehicles should be widened by an appropriate design. The
base station can correctly decode the information sent by the
user vehicles if the channel capacities of the user vehicles Ri

b

are higher than the codeword rate. Therefore, to obtain the
highest redundancy rate Rt −Rs to confuse the eavesdropper
vehicles, we set the codeword rate to its maximum value Ri

b,
i.e., Rt = Ri

b.
There are two kinds of eavesdropping scenarios, namely

the non-colluding eavesdropping and the colluding eavesdrop-
ping scenarios. In the non-colluding eavesdropper scenario,
each eavesdropper vehicle individually decodes confidential
messages, and the eavesdropper vehicle that has the best
performance of the received signal is considered. In the col-
luding eavesdropper scenario, multiple eavesdropper vehicles
adopt the maximal ratio combining to process the wiretapped
confidential information. The expressions of these two eaves-
dropping scenarios are only different in the expression for the
eavesdropping channel. This paper mainly focuses on the non-
colluding eavesdropping scenario, where the Eve with the best
performance of the received signal is considered [40], [41].
Therefore, the secrecy rate of the ith user vehicle can be given
by

Ri
s = max{0, Ri

b −max
Ve

Ri
e,n}. (7)

When the offloading task at the ith user vehicle is Bi bits,
the delay in the transmission to the base station securely can
be given by

ttri =
Bi

Ri
s

. (8)

The challenge is how to design an efficient scheme that
uses the NOMA technique to offload the computation task
to the MEC server. To overcome this challenge, we design
the following variables. The variable X = {ρj [i] | i =
1, 2, · · · , Nu, j = 1, 2, · · · , Nh} is used to represent the selec-
tion of the jammer vehicles by the user vehicle. We also select
the transmit power level for the user vehicles and jammer vehi-
cles. The variable Y = {yui [m], yhj [m] | i = 1, 2, · · · , Nu, j =
1, 2, · · · , Nh,m = 1, 2, · · · , Np} is used to represent the
transmit power selection. The transmit power is limited to
Np levels, which is given by {Pm | m = 1, 2, · · · , Np}.
yui [m] = 1 represents that the mth transmit power level Pm is
selected by the ith user vehicle, while yui [m] = 0 otherwise.
yhj [m] = 1 represents that the mth transmit power level Pm

is selected by the jth jammer vehicle, while yhj [m] = 0
otherwise. Then we can obtain the transmit power of the ith
user vehicle and the jth jammer vehicle, which are given
by Pu

i =
∑Np

m=1 y
u
i [m]Pm and Ph

j =
∑Np

m=1 y
h
j [m]Pm,

respectively.

Therefore, the transmission energy consumption of the ith
user vehicle can be given by

Etr
i = ttri Pu

i . (9)

Besides, the transmission energy consumption of the ith user
vehicle with NOMA pairing to the jammer vehicles can be
expressed as

EJ
i = ttri

Nh∑
j=1

ρj [i]P
h
j . (10)

B. Computation Task Execution Model

The user vehicles generate computation tasks and then
execute them locally or offload them to the MEC server to
get executed remotely. Thus, these two cases will be described
separately.

1) Local Execution Model: In this case, the delay-sensitive
tasks are executed locally. With the local computation capacity
fL,i (in cycles/s) of the ith user vehicle, the local execution
time can expressed as

tli =
µBi

fL,i
, (11)

where µ (in cycles/bit) represents the computation intensity
of communication processing on processors. Therefore, the
energy consumption for local computing can be described as

El
i = η1f

3
L,it

l
i, (12)

where η1 is the capacitance coefficient of the local computa-
tion central processing unit (CPU).

2) Remote Execution Model: In this case, the delay-sensitive
tasks are sent to the MEC server and executed by it. The total
delay in this process includes the time cost of offloading tasks
to the MEC server and the time cost of execution by the MEC
server. The former one is defined in (11).

The maximum computation capacity of the MEC server is
assumed to be Fmax

M (in cycles/s). To compute the delay-
sensitive tasks quickly, the computation resource is divided
into Nb parts with each resource block having a different size,
i.e., {fk | k = 1, 2, · · · , Nb, i = 1, 2, · · · , Nu}. Then, the
execution time can be calculated by

texei =
µBi∑Nb

k=1 zi[k] · fk
, (13)

where zi[k] is a binary indicator to represent the selection
of computation resource. zi[k] = 1 means that the ith
user vehicle chooses the kth computation resource block and
zi[k] = 0 otherwise. We denote the variable Z = {zi[k] | i =
1, 2, · · · , Nu, k = 1, 2, · · · , Nb}.

Hence, the total delay time when the delay-sensitive tasks
are offloaded to the MEC server can be expressed as

ttotali = ttri + texei . (14)

The energy consumption of the ith user vehicle for MEC
can be expressed as

EM
i = η2f

3
i,kt

exe
i , (15)



6

where η2 is the capacitance coefficient of the CPU at the MEC
server. Accordingly, the total energy consumption for the ith
user vehicle offloading the tasks to the MEC server can be
obtained by

Etotal
i = EM

i + Etr
i + EJ

i . (16)

In this paper, we further consider specific scenarios where
the eavesdropper vehicle has a higher SINR than the base
station. If the secrecy rate equals zero, the task cannot be
offloaded to the base station securely. Besides, if the secrecy
rate is low, resulting in the remote execution consuming more
energy than the local execution, the task will be executed
locally. Then, the task energy consumption of the ith user
vehicle can be expressed as

Ei = min{Etotal
i , El

i}. (17)

C. Performance Metrics

We focus on minimizing the energy consumed by the system
while guaranteeing the offloading tasks to the MEC server
securely. Several significant performance metrics are used to
evaluate the various performance of the NOMA-assisted VEC
network. They are discussed in the following.

1) System Energy consumption: In our VEC network, mul-
tiple user vehicles offload their tasks simultaneously. Thus the
sum energy consumption of all user vehicles is a significant
performance metric to measure the overall energy cost of the
vehicular system. We formulate the system energy consump-
tion of the VEC network as Es =

∑Nu

i=i Ei.
2) System Computation Delay: In the multi-user offloading

scenario, one of the key performance metrics is the system
computation delay, which is the maximum computation delay
among all user vehicles and can be represented by Ts =
max(i){texei }.

3) Secrecy Probability: As the secrecy rate depicts the
capacity difference between the legitimate and eavesdropping
channels, it represents the maximum rate at which confidential
messages can be transmitted in perfect secrecy. The channel
gain in secrecy rate Rs consists of a small-scale component
part and a large-scale fading effect part, where the small-scale
component is a random variable. Due to varying channel states,
there may be a secrecy outage if the secrecy rate is smaller than
the secrecy threshold. The probability that such events occur
is described as secrecy outage probability denoting as Pout,
and the secrecy probability can be expressed as Ps = 1−Pout.
Then, the secrecy probability can be described as

Ps = P{Rs > βs}, (18)

where βs is the secrecy rate threshold.

D. Joint Optimization Problem

In this paper, our objective is to minimize the energy
consumed by the system while ensuring the effectiveness of
the NOMA-assisted jamming scheme. We jointly optimize the
NOMA cluster selection X, the transmit power Y and the

computation resource allocation Z. Then, the decision-making
problem (DMP) is formulated as

DMP : min
{X,Y,Z}

Nu∑
i=1

Ei, (19)

Subject to : C1 :

Nu∑
i=1

Nb∑
k=1

zi[k]fk ≤ Fmax
M , (19a)

C2 :

Nu∑
i=1

ρj [i] ≤ 1,∀j = 1, 2, · · · , Nh, (19b)

C3 :

NP∑
m=1

yui [m] = 1,∀i = 1, 2, · · · , Nu, (19c)

C4 :

NP∑
m=1

yhj [m] = 1,∀j = 1, 2, · · · , Nh, (19d)

C5 :

Nb∑
k=1

zi[k] = 1,∀i = 1, 2, · · · , Nu, (19e)

C6 : max
i

texei ≤ T, (19f)

C7 : ρj [i], y
u
i [m], yhj [m], zi[k] ∈ {0, 1}. (19g)

The constraint (19a) indicates that all assigned computation
resources at the MEC server should not exceed the maxi-
mum CPU-cycle frequency Fmax

M . In the constraint (19b),∑Nu

i=1 ρj [i] = 1 limits that one jammer vehicle can only
choose one user vehicle to be a NOMA pairing. Besides,∑Nu

i=1 ρj [i] = 0 shows that the jammer vehicle does not choose
a user vehicle to be paired. The constraints (19c) and (19d)
indicate that only one transmit power level can be selected
by a user or jammer vehicle. The constraint (19e) limits that
only one computation resource block can be selected by a user
vehicle. The constraint (19f) limits the maximum computation
delay of user vehicles. This constraint is to prevent the user
vehicle from waiting too long due to excessive attention to the
energy that the system consumes, and thus the experience of
the user vehicle is degraded. The constraint (19g) shows that
the decision-making variables are all binary indicators.

There are several challenges in solving the joint optimiza-
tion problem in multi-user offloading scenarios:

1) The rapid movement of vehicles results in quick channel
changes, making it difficult to make effective real-time
decisions. An effective and fast decision should be made
to securely offload the information to the base station and
complete the task processing in the MEC server.

2) It is necessary to consider that the processing delay
of the system should be smaller than the maximum
tolerated delay of the user vehicles while reducing energy
consumption. For example, larger tasks prefer to choose
a lower computation speed resource block, which can
reduce energy consumption. Therefore, how to coordinate
the strategy to decrease the energy consumed by the
system while meeting the delay constraint is a challenging
issue.

Considering the above problems, we design a DRL-based
EESO scheme to realize an energy-efficient secure offloading
with proper resource allocation and NOMA scheme design in
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VEC networks. This scheme will be elaborated in the next
section.

IV. DRL-BASED EESO SCHEME

DRL combines DL with RL and makes further develop-
ment of both of them. However, there are certain differences
between the RL and the DL. The RL is mainly used to
make decisions. It can constantly update its decisions from the
input complex environmental state, make different actions, get
higher rewards and finally get an optimal strategy to solve the
objective function. The DL mainly uses a multi-layer neural
network to fit the objective function. It iteratively updates the
parameters of the neural network through a large number of
prepared data and finally gets a model that fits the objective
function. A Single RL can only solve some relatively simple
decision-making problems. The combination of both schemes
gives rise to a new and more efficient technique called the
“DRL”. It has the advantages of both decision-making and
deep neural network, so it can solve more complex decision-
making problems.

Since the objective to minimize the system energy consump-
tion, including the energy of vehicle transmission and the edge
computation, is non-convex and non-linear, it is an exponen-
tially difficult problem (NP-hard). This kind of problem can
be solved by an intelligent optimization algorithm, but the
solution generally takes a relatively long time. By the time
the algorithm is finished, the vehicle position and channel
information will have changed significantly. Therefore, the
dynamic decision of our problem cannot be realized by using
traditional intelligent optimization algorithms. On the contrary,
the DRL can make dynamic decisions in a short time. It only
needs to constantly interact with the environment, take actions
in the training stage and constantly change its own decisions
according to the designed rewards. Eventually, it can get a
general decision model. When the training is finished, it can
load the model to make a better decision in a short time.

The Deep Q-learning (DQN) algorithm is a classic deep re-
inforcement learning algorithm. However, in high-dimensional
systems with a large action space, the DQN algorithm suffers
from sample complexity, leading to a slow convergence and
local maxima [42]. Therefore, we use the A3C algorithm to
improve the convergence when facing a large action space. The
A3C algorithm combines two parts, including the value and
action part, which can solve the problem of minimizing energy
optimization in the previous section better. The A3C algorithm
belongs to the on-policy algorithms. The on-policy algorithms
use the Monte Carlo method to obtain an unbiased estimation
of the current value function V (s) to improve stability. The
A3C algorithm has a high stability and its stochastic strategy
is more robust to external disturbances. Therefore, the A3C
algorithm has a strong generalization ability [43]. Besides, the
A3C algorithm discards the previous samples after each update
of the network model. Therefore, its sample utilization rate is
low. Our proposed scheme considers both the system energy
consumption reward and the computational delay reward.
We balance the two rewards to minimize the system energy
consumption and limit the computation delay in a tolerable

range. Besides, we use Adam Optimizer to normalize the
parameter updates so that each parameter update has a similar
magnitude, thus improving training.
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Fig. 2. A3C-based EESO scheme for VEC networks.

In the EESO scheme, the NOMA offloading scenario in
Fig. 1 is modeled as an environment and the base station
is modeled as the agent. We can model the optimization
problem as a Markov Decision Process (MDP). The MDP
can be expressed as a tuple {S,A, Pa, R}. S is the set of
all possible state environments. A is the action space of all
possible actions that the agent can take, which is the guidance
of state transition. Pa = {p(st+1|st, at)} stands for the set
of transition probability. R is the reward for the agent which
depends on the state and action.

A. State Space

The state s of the agent includes the wireless channel
information, the NOMA jamming information and the task
information, which are described in detail as follows.

1) Channel Information: the channel information includes
the channel gain gi,B from the user vehicle to the base station,
the channel gain gj,B from the jammer vehicle to the base
station and the channel gain gj,n from the jammer vehicle
to the eavesdropper vehicle. Therefore, we have the channel
information

G = {gi,B , gj,B , gj,n | i = 1, 2, · · · , Nu, j = 1, 2, · · · , Nh,

n = 1, 2, · · · , Ne}.
(20)

2) NOMA Jamming Information: The eavesdropper vehicles
receive interference from the jammer vehicles. Therefore, the
jamming information is introduced into the current state of the
agent, which can be described as

I = {Iei,n | i = 1, 2, · · · , Nu, n = 1, 2, · · · , Ne}. (21)

3) Computation Task Information: The computation task
Bi is introduced into the state space, which helps more
reasonable decisions made by the agent to decrease the system
energy consumption. The state of the computation task can be
described as

B = {Bi | i = 1, 2, · · · , Nu}. (22)

Therefore, the state of the agent can be described as

s = {G, I,B}. (23)
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B. Action Space

The agent of each worker thread selects the transmit power,
the computation resource block and the NOMA cluster accord-
ing to the current state. Thus, the action space A has three
main categories, including the NOMA cluster selection X (the
jammer vehicle selects which NOMA cluster to send jamming
signals to), the power selection of the user vehicles and jammer
vehicles Y, and the MEC server resource selection Z. The
output of the neural network is an action selection probability,
and the current action can be obtained by random sampling
according to this probability distribution.

The selection of the MEC resource block is obtained by
preprocessing the resource block selection set Z′. The resource
block selection set Z′ is obtained by all possible selections of
MEC resources for user vehicle. The selection of a user vehicle
to use a duplicate resource block causes other computing
resource blocks to be idle and generates additional waiting
latency. Therefore, we remove the same resource selection
action from Z′ and get the present MEC resource block
selection set Z.

C. Reward Design

The reward design is related to the model convergence. A
proper reward design can greatly accelerate the convergence.
In our scheme, the reward design includes the following two
parts.

1) Energy Consumption-Related Reward: In order to achieve
the objective in (19) and minimize the system energy con-
sumption, we design an energy consumption-related reward,
which is expressed as

re =


ζ1, if Es ≤ e1,
ζ1(e2−Es)

e2−e1
, if e1 < Es ≤ e2,

0, otherwise,
(24)

where ζ1 is designed as a positive reward to encourage the
computation task to be completed below a given energy
consumption level. Es is the system energy consumption,
which can be given by Es =

∑Nu

i=1 Ei. Besides, e1 and e2
are energy thresholds.

2) Delay-Related Reward: In the VEC network, the tasks
are often delay-sensitive and the computation delay needs to
be kept at a low level. Therefore, a computation delay limit is
designed to prevent the agent from paying too much attention
to the energy consumption and ignoring the computation delay,
resulting in a large computation delay. Then, a delay-related
reward is designed as

rd =

{
ζ2, if Ts ≤ T,

0, otherwise,
(25)

where T is the maximum tolerance computation delay thresh-
old. Once the computation delay is no larger than the thresh-
old, the agent will get a positive reward ζ2.

Thus, with the objective described earlier, the return reward
rt of the agent can be obtained by

rt = ω1re + ω2rd, (26)

where ω1 and ω2 are the positive weights that balance different
constraints and objectives.

D. A3C-based Learning Algorithm

The DRL is learning through the continuous interaction
of the agent with the environment and adjusting its behavior
through its reward. The A3C learning algorithm is an improve-
ment of the Actor-Critic (AC) algorithm. Compared to the AC
algorithm, the A3C algorithm allows multiple worker threads
to interact with the environment and asynchronously trains the
worker threads. The interaction between each worker thread
and the environment is independent, which means that the
correlation is weak and there is no interference. When the
maximum operation index or terminal state is reached, each
worker thread computes its gradient and sends it to the global
network. To ensure that each worker thread can share the same
policy, the global network updates the global parameters and
distributes them to each worker thread.

In this way, training duration consumes less time for con-
vergence due to its updating method. Besides, because of its
policy characteristics, A3C can solve problems that have huge
states or action spaces. Then, we will discuss our A3C-based
EESO scheme in detail.

When the environment state of the VEC network is st, the
estimated state value is V (st, θc). The agent chooses an action
at according to the policy π(at|st; θ) and gets a reward rt. θc
and θ are the parameters of the global critic and actor network.
The state value function of A3C is expressed as

V (st, θc) = E(Gt|st, π), (27)

where Gt =
∑∞

k=0 γ
krt+k is the discounted accumulated

reward with γ ∈ [0, 1] describing the discount factor. When
considering n steps, the Q value function Q(st, at) is given
by

Q(st, at) =

n−1∑
k=0

γkrt+k + γnV (st+n, θc). (28)

To decrease the variance of the estimation, A3C uses the
advantage function A(st, at) under the environment st and
the action at, which is expressed as

A(st, at) = Q(st, at)− V (st, θc). (29)

The agent reduces the occurrence of overestimation or
underestimation and improves its learning ability by using the
advantage function.

The loss function of the actor network in each worker thread
is given by

lossactor = log π(at|st, θ′)(Q(st, at)− V (st, θ
′
c))

+ βHπ(st, θ
′),

(30)

where θ′c and θ′ are the parameters of the critic and actor
network in the worker thread. Besides, Hπ(st, θ

′) is an
entropy item that is used to explore more possible actions
instead of paying attention only to a few actions. β is a weight
parameter used for the action entropy item. The loss function
of critic network is given by

losscritic = (Q(st, at)− V (st, θ
′
c))

2
, (31)
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Algorithm 1 A3C-based EESO scheme
1: Initialize : The global actor network parameters θ and

critic network parameters θc .
2: Initialize : The actor network parameters θ′ and critic

network parameters θ′c in each worker thread.
3: Initialize : The global maximum number of iteration

Nmax
ep epochs and maximum length of single iteration

tworker in each worker thread.
4: Set global counter epoch= 0, worker thread step= 1.
5: Set number of worker threads Nw.
6: for epoch= 0 to Nmax

ep do
7: for n = 1 to Nw do
8: Reset the global network gradients: dθ ← 0, dθc ←

0.
9: Synchronous parameters of each worker thread with

global parameters: θ′ = θ, θ′c = θc.
10: Reset tstart = t and obtain the initial VEC net-

work state st, including the channel information, the
NOMA jamming information and the computation
task information.

11: Perform at according to policy π(at|st; θ).
12: Execute action at, obtain reward rt and next new

statest+1.
13: t←t+ 1.
14: if t− tstart = tworker then
15: Calculate the Q(st, at) of the last time series state

st.
16: else

Return Step 11.
17: end if
18: for i = t− 1 to tstart do
19: Calculate the Q value by (28).
20: Update actor network gradient by (32).
21: Update critic network gradient by (33).
22: end for
23: end for
24: end for

Therefore, the gradient of actor network and critic network
is updated to

dθ ← dθ +∇θ{log π(at|st, θ′)(Q(st, at)− V (st, θ
′
c))

+ βHπ(st, θ
′)},

(32)

dθc ← dθc +
∂{Q(st, at)− V (st, θ

′
c)}2

∂θ′c
. (33)

The agent interacts with the unknown environment and learn
from it. Then, after fully training the A3C model, it can solve
the problem in the environment state that has never appeared
before. Therefore, it can reduce the overhead after full training.

V. NUMERICAL RESULTS

In this section, the proposed A3C-based EESO scheme
for the VEC networks is evaluated through simulations. The
simulation environment and relevant parameters are set up
in the following, which are selected according to the 3GPP
technical specifications. Then, the benchmark algorithms and
performance metrics are given. Finally, numerical experiments
demonstrate that the proposed scheme is robust and effective.

A. Simulation Setup

TABLE II
SIMULATION PARAMETERS

Parameter Value
Number of user vehicle Nu 2
Number of Jammer vehicle Nh 2
Number of eavesdropper vehicle Ne 2
Base station antenna height (m) 25
Vehicle antenna height (m) 1.5
Noise power σ2 (dBm) −114
Carrier frequency (GHz) 2
Bandwidth of sub-band W (MHz) 1
Task data size B (Mbit) [0.5, 2]
Computation time limit T (s) 0.21
Speed of vehicles (km/h) 72
Arrival rate 0.5
Antenna gain of the base station (dBi) 10
Antenna gain of vehicles (dBi) 3
CPU cycles required to process a bit µ (cycles/bit) 1000
Maximum computation capacity of user vehicle Fmax

L (GHz) 2
Maximum computation capacity of MEC server Fmax

M (GHz) 30
Coefficient depending on local chip architecture η1 (watts/s3) 10−27

Coefficient depending on MEC chip architecture η2 (watts/s3) 10−29

Transmit power of user vehicle and jammer vehicle (dBm) [10,5,1,0]
Computation resource block (GHz) [8,10,12]

TABLE III
CHANNEL PARAMETERS [44]

Parameter V2I Link V2V Link

Path loss model 128.1 + 37.6 log10(d)
LOS in WINNER
+ B1 Manhattan

Shadowing distribution Log-normal Log-normal
Shadowing standard deviation 8 dB 3 dB
Transmit power [10, 5, 1, 0] dBm 10 dBm

In the simulations, the vehicles drive on the four-lane road in
two opposite directions and arrive at the road with the arrival
rate λ [45]. The MEC server is deployed near the base station.
We set the simulator parameters according to 3GPP [46], [47],
including the channel model, traffic model, vehicle model,
antenna model, etc. The More detailed simulation parameters
are shown in Table II and Table III. In the A3C algorithm,
we use three fully connected layers and the Adam adaptive
optimizer. In addition, the discount coefficient is 0.99, the
action entropy weight is 0.1, the number of threads is 2, and
the CPU used is i7-10700.

We use the deep neural network for modeling the A3C.
The A3C consists of actor network and critic network. The
structures of actor network and critic network are not the
same. Both two networks consist of one input layer, three
fully connected hidden layers, and one output layer. The actor
network’s dimensions of the input layer are related to the
dimensions of the state space in Sec. IV-A and the dimensions
of the output layer are related to the dimensions of the action
space in Sec. IV-B. The actor network has three hidden layers
containing 256, 512, and 2048 neurons, respectively. As for
the critic network, its dimension of the output layer is one and
has three hidden layers containing 128, 256, and 32 neurons,
respectively. Besides, we use Adam optimizer and the learning
rate is 0.001.

B. Benchmark schemes and Metrics
In order to conduct a comprehensive performance analysis,

the A3C-based EESO scheme will be compared with other
benchmark schemes. The comparison schemes are as follows.
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* Optimal scheme. The scheme traverses all possible com-
binations of the computation resource block selection,
transmit power selection and NOMA cluster selection.
Then, it selects the optimal decision to achieve the mini-
mum energy consumed by the system. The performance
of non-adaptive and greedy solutions is demonstrated
using this scheme.

* Without NOMA-Jamming (WNJ) scheme. In this
scheme, there is no jammer vehicles working in the
NOMA mode to deteriorate the reception of the eaves-
dropper vehicles. The WNJ scheme is used to prove that
the architecture using the NOMA cluster can decrease
the channel capacities of the eavesdropper vehicles and
enhance the security of VEC networks.

* DQN scheme. DQN is another kind of DRL method. This
scheme is used to show the advantage of our A3C-based
learning scheme.

To fully evaluate the performance of our proposed scheme,
three important performance indicators are exploited, namely
the system energy consumption, the system computation
delay and the secrecy probability. More details of the
numerical results are discussed below.

C. Numerical Evaluation
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Fig. 3. Cumulative reward for each training epoch.

Fig. 3 depicts the relation between the training iterations
and the cumulative reward, which directly demonstrates the
convergence of the EESO scheme. As the number of iterations
increases, the agent learns from different training sets, and
the cumulative reward gradually increases over the first 600
iterations. After that, although there are certain fluctuations,
the cumulative reward is basically greater than 95. Based on
this, we further verify the performance of our proposed EESO
scheme in the VEC network.

To prove the effectiveness of the EESO scheme, we compare
the energy consumption performance of the EESO scheme
with optimal, WNJ and DQN scheme in Fig. 4. We randomly
generate ten different traffic patterns. Then the energy con-
sumption of the system in each traffic pattern under different
schemes is calculated. Obviously, the DQN scheme and WNJ
scheme consume much more energy than the EESO scheme.
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Fig. 4. System energy consumption performance under different schemes.

Besides, Compared to the other two schemes, the gap between
the EESO scheme and the Optimal scheme is small. In our
simulation, we find that without the help of the jammer
vehicle, the WNJ scheme cannot always guarantee a positive
secrecy rate, so the information cannot be securely offloaded.
Thus the local computation mode is often selected in the WNJ
scheme, which causes longer computation time and higher
energy consumption.
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Fig. 5. System computation delay under different schemes.

Fig. 5 compares the system computation delay Ts, i.e.,
the maximum computation delay of all user vehicles, under
different schemes. The computation delay of the Optimal
scheme and the WNJ scheme is larger than that of the EESO
scheme. Besides, computation delays of the EESO scheme in
ten random traffic patterns are all less than the delay constraint
of 0.21 seconds. Only the third, sixth and seventh points
are the same as that of the DQN scheme. In other traffic
patterns, the computation delay of the EESO scheme performs
better than the other three schemes. It shows that the EESO
scheme does not unduly sacrifice the delay performance when
making decisions to minimize the energy consumption of the
system, while the Optimal scheme always sacrifices the delay
to achieve a smaller energy consumption. This is because we
introduce a delay-related reward in the design of the EESO
scheme. Under most traffic patterns, the computation delay
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of the WNJ scheme is kept at a particularly high level of 1
second. This reveals the superiority of our NOMA-assisted
scheme in increasing the secrecy rate. In the absence of well-
designed cooperative jamming, the WNJ scheme will fall into
the local execution mode with a very large computation delay.
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Fig. 6. Average secrecy probability under different secrecy rate thresholds.

Fig. 6 compares the average secrecy probability under four
different schemes with different secrecy rate thresholds. As
shown in the figure, as the secrecy rate threshold is continu-
ously increased, there is a decline in the EESO scheme, the
DQN scheme and the Optimal scheme are relatively slow
before it is less than 6, and only the WNJ scheme drops
rapidly. This is because more information can be intercepted
by the eavesdropper vehicles in the WNJ scheme due to
the lack of cooperative jamming. In the whole range of the
secrecy rate threshold, the average secrecy probability of the
EESO scheme is better than that of the DQN, optimal and
WNJ schemes. This is because they mainly focus on how to
make decisions to minimize the overall energy consumption
of the system, which leads to the smaller transmit power they
choose. As a result, the gap between the channel capacities of
the user vehicle and the eavesdropper vehicles will decrease,
which depresses the secrecy rate. In addition to the energy
consumption, our proposed EESO scheme also takes the
constraint of the computation delay into account, which leads
to a rise in the transmit power and thus increases the secrecy
rate.

Fig. 7 describes the system processing rate of ten different
traffic patterns. The system processing rate is defined as the
ratio of the total data volume of all user vehicles to the system
processing delay, i.e., Rp =

∑
i Bi/t

total
i . We find that the

system processing rate of the EESO scheme is better than
the other three schemes. This is mainly because the EESO
scheme adds a limit to the computation delay, which reduces
the computation delay. Moreover, due to the reasons explained
in Fig. 6 above, the EESO scheme exhibits the best secrecy
performance, which results in the transmission delay being
smaller than the other three schemes. Therefore, the system
processing rate of the EESO scheme performs better. On the
contrary, the secrecy rate of the WNJ scheme has the worst
performance among all schemes because it lacks the help of
the jammer, which results in the lowest system processing rate.
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Fig. 7. System processing rate of the VEC network under different schemes.
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(a) Energy consumption.

[8,10,12] [6,10,14] [4,10,16] [2,10,18]
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sy
ste

m
 C

om
pu

ta
tio

n 
D

el
ay

 (s
)

Computation Resource Division

 EESO
 DQN
 Optimal
 WNJ

(b) Computation delay.
Fig. 8. Energy consumption and computation delay performance versus
computation resource division.

Fig. 8 shows the energy consumption and computation delay
performance versus the computation resource division under
different schemes. As shown in Fig. 8(a), when the minimum
value of the computation resource block is reduced from 8
to 4, the energy consumption of all schemes decreases except
the WNJ scheme. The WNJ scheme costs the highest energy
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because it cannot provide secure offloading to the MEC server,
which can only process tasks locally. However, when the
minimum value of the resource block is reduced to 2, the
EESO scheme has an increase in the energy consumption.
This is because the computation delay is larger than the max-
imum limit. Therefore, the larger resource block with a faster
computation speed is chosen to satisfy the constraint of the
computation delay, resulting in a higher energy consumption.
As shown in Fig. 8(b), as the gap between the maximum and
minimum resource blocks continues to increase, the compu-
tation delay of the Optimal scheme becomes higher. This is
because the Optimal scheme only has an energy consumption
in its target and there is no constraint on the computation
delay. On the contrary, our proposed EESO scheme considers
the computation delay constraint. Therefore, the computation
delay is limited. The Optimal scheme has a computation delay
of 1 second in the worst situation, which is intolerable for user
vehicles.
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Fig. 9. Transmission delay of the secure offloading under different band-
widths.

Fig. 9 reflects the impact of the bandwidth on the security
offloading transmission delay. As the bandwidth increases,
the transmission delay of all schemes decreases. The trans-
mission delay of the DQN, EESO and Optimal schemes are
basically the same when the bandwidth is greater than 5.5.
The transmission delay of the WNJ scheme decreases more
sharply than the other three schemes. This shows that as the
bandwidth increases, the difference in the transmission delay
among different schemes will continue to shrink. In addition,
our proposed EESO scheme has the smallest transmission
delay in all bandwidths. Thus, the transmission delay of the
EESO scheme performs better than the other three schemes.

Fig. 10(a) shows the system energy consumption versus the
task size for different values of the computation delay limits.
As the amount of task data increases, the energy consumed
by the system also increases. In addition, we can see that the
scheme with lower computation delay constraints consumes
more energy as the task size increases. This is because the
stricter delay constraint requires a shorter computation time.
Thus, the computation resource with the faster computation
speed is selected to use, which results in more energy con-
sumption. The detailed energy consumption of the scheme
with the computation delay constraint of 0.21s is shown in
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Fig. 10. Energy consumption versus the task size under different computation
delay limitations.

Fig. 10(b). As the size of the computation task increases, the
offloading to the base station and the computation will con-
sume more energy. When the task size is increased to 1.7M and
2.1M, the growth rate of the computation energy consumption
exceeds the previous growth rate. This is because the original
resource block selection cannot meet the computation delay
requirements at this time. Therefore, it is necessary to update
the resource block selection.

VI. CONCLUSION

In this paper, an A3C-based EESO scheme was proposed
in the NOMA offloading scenario using PLS technology. Our
goal is to minimize the energy consumed by the system
and limit the computation delay to a suitable range. We
have jointly optimized the transmit power, the computation
resources and the NOMA pairing between user vehicles and
jammer vehicles. We have solved the optimization problem by
using the A3C algorithm. With the proper training, the agent
was successfully adapted to highly dynamic VEC networks,
which reduces the energy consumed by the system and protects
confidential information from eavesdropping. Comprehensive
analysis has demonstrated the robustness and effectiveness
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of the EESO scheme which have been proven. Besides, the
system energy consumption and average secrecy probability
of the A3C-based EESO scheme are improved compared to
the other three schemes. On the basis of the current work
done in this paper, there are several points that need to be
further considered. For example, only a single-cell base station
scenario has been considered and a multi-cell base station
scenario should be considered in the future.
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