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Abstract

The integrated operation of the electricity and district heating systems (EDHS)

attracted lots of attention in recent years due to considerable impacts on the

power system’s flexibility. The time intervals and mathematical methods used

in the optimization procedure are essential, especially when flexible operation

in the presence of intermittent renewable resources is an objective because of

the sub-hourly dynamics. Due to the intrinsic deficiencies of the traditional

discrete-time hourly models in handling the sub-hourly variation of the load

and renewable generation, in this paper, a new continuous-time optimization

model is proposed to model the look-ahead operation of EDHS. The proposed

continuous-time model is approximated by the linear spline-based trajectories

and represented by the cubic splines of Bernstein function space to capture

EDHS’s sub-hourly load and wind generation fluctuations. The EDHS of Barry

Island is employed to investigate the proposed model and obtain results com-

pared with the discrete-time procedure. Also, to measure the impact of uncer-

tainties on both the continuous-time and discrete-time models, the information
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gap decision theory (IGDT) is utilized. The examination results illustrate that

the proposed continuous-time model brings a saving of 0.91% in the costs when

compared with the discrete-time model on a small test system. In addition,

the results of the IGDT technique show more opportunities by wind increas-

ing and fewer threats by wind reduction using the proposed continuous-time

optimization problem compared to the discrete-time model.

Keywords: Continuous-time optimization, Bernstein polynomials, integrated

electricity and district heating system, uncertainty, information gap decision

theory.

Nomenclature

A. Indices

ℎ Index of energy hub

A Index of energy storage

C Time index [hour]

3 Index of sub-hourly time interval

@ Index for degree of Bernstein function

8, 9 , : Index of electricity network bus

=, ? Node and pipeline’s index of district heating network

B. Superscripts

'�( Renewable energy system index

��% Combined heat and power unit index

�� Day-ahead index

�� Energy hub index

�% Heat pump index

�=,*? Reserve up and down
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C. Parameters and constants

�#� , �+ Gas price and heat value of natural gas r$/m3], ["20;{<3]

[�ℎ , [32ℎ Charging and discharging efficiency [%]

[��%{��%,! CHP unit’s electrical/loss efficiency [%]

�$%�% Performance coefficient of heat pump

%'�( Generated power of renewable sources rMWs

%! , &! , �! Active load, reactive load, and heat load rMWs

A8 9{G8 9 Resistance and reactance between buses 8, 9 rΩs

) �<1 , +0 Ambient temperature and slack bus voltage r˝�s, r?.Ds

<!{<( , < Rate of load/source, and pipeline mass flow r:6{Bs

! Pipeline’s length r<s

_ Coefficient of heat transfer in pipeline

D. Variables

� Representing the Bernstein coefficient of all variables

%��,��% Traded power of units in day-ahead marketrMWs

%8 9{&8 9 Active and reactive power bus 8 to 9rMWs

%�{�� Active and reactive generated power rMWs

%�� {��� Electric and heat power of energy hub rMWs

%�% Electric power of heat pump rMWs

�( , �' Heat load and heat source rMWs

'* ? , '�= Reserve power of CHP units rMWs

� Energy of the storagerMWhs

XAD , X3= charge and discharge power storage in reserve rMWs

3, 6 Charging and discharging power of storage B rMWs

+ Magnitude of Voltage rp.us

)({)' Supply/return temperature r˝�s
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) 8={)>DC Input/output temperature of pipelines r˝�s

)<8G Temperature of mixture node r˝�s

1. Introduction

Wind power generators (WPGs) with a relatively large share among the

renewable energy resources plays an important role in the operation of the power

systems [1, 2]. The sub-hourly variation of the wind power generation and the

uncertainnature of WPGs is a critical challenge for the power system operators

[3, 4]. Besides, the fast-variation nature of WPGs has led to the need for

flexibility services to mitigate the sub-hourly and rapid alternations of them

[5, 6]. It should be mentioned that the variation magnitude and generated

power of the wind producers in an area depends on various parameters like

dimensions and geographical location of turbines[7, 8].

1.1. Literature review

System operators choose various approaches in different countries to deal

with the challenges of the WPGs. The simple solution of system operator to

deal with these challenges is the wind power curtailment [9]; however, this solu-

tion is not the system operator’s priority. An alternate solution that enables the

maximum usage of renewable generation, is to take a holistic approach to energy

by integrating electricity with other vectors of energy [10]. For instance, inte-

gration of the electricity network with the district heating facilities, including

combined heat and power (CHP), electric boilers, and heat pumps is one of the

potential integrated approaches that increase the flexibility of operation by tak-

ing the advantage of both the networks [11]. Due to the restrictions of the heat

generation by CHP units, the wind power variation may not be compensated

entirely by the CHP units [12]. Thus, the insufficient flexibility options would

result to more renewable energy curtailment that is unnecessary [13, 14]. In

[15], an aggregated model is considered for buildings to optimize the day-ahead

operation of integrated electricity and district heating network to accommodate

4



the wind power and reduce the wind curtailment by using the building’s thermal

inertia. The wind power curtailments are also investigated in [16] by utilization

of energy storage devices in the district heating and power systems. Besides,

the joint hourly commitment of the heat exchange station and the generation

units of the combined heat and power systems is proposed in [17] to reduce the

wind power curtailment and the system’s operation cost. The energy storage

system are deemed as a secure and appointed proposal for providing the flexibil-

ity requirements especially in the sub-hourly markets [18]. The power-to-heat

facilities in district heating system is proposed as the a resource to increase the

flexible resource for increasing the penetration of the renewable resources in [19].

In [20], the electricity used for heating is investigated as a low-carbon option

to increase the power system flexibility for integration of variable renewable re-

sources.

Since the mentioned challenges and solutions are investigated by the ancil-

lary service markets, the energy and co-optimization of the reserve market are

required to investigate the wind variability due to the sub-hourly variations [21].

Generally, the potentials of the district heating systems on the flexibility in the

electricty markets is reviewed in [22]. In [23], energy and reserve markets are

co-optimized for the unit commitment problem to overcome the variable wind

energy generations in a real electricity and district heating system. The reserve

markets are entirely investigated in [24], to improve the economic efficiency of

the energy system through the energy co-optimization, in which the variation

of WPG is investigated by the district heating system in the reserve market.

In [25], using the bi-level optimization, co-optimization of the district heating

system integrated with a electric system is investigated to obtain the strategic

operation in energy and reserve markets.

Modeling the uncertainties in the heating and renewable-based power systems

could affect the economic efficiency of the system. Different methods are pro-

posed in the literature to investigate the uncertainties. The robust optimization

approach is one of the well-known uncertainty modeling methods used when the

5



bounds of uncertain parameters are known. In [26]–[27] robust optimization is

proposed to schedule the power and district heating systems to hedge against

the uncertainties in short-term operations. Stochastic programming is another

uncertainty modeling method s proposed in [28], [29] to model the uncertainties

of power market price, wind generation, and solar irradiation with the coor-

dinated operation of CHP generators in a microgrid. Since the probabilistic

distribution of the uncertain parameters is unknown in some cases, the distri-

butionally robust optimization approach is also another new method that has

applied in the literature to model the uncertainties. In [30], [31], distributionally

robust optimization is applied to the conventional unit commitment problem to

model the wind generation uncertainty in the energy and reserve markets. In

order to model the probabilistic energy flow, in [32] the Monte Carlo simula-

tion and point estimate method are used to consider the uncertainties of the

heating and power systems. Also, the interval optimization is proposed in [33]

to get the optimal scheduling of the integrated EDHS, in which the dynamic

characteristics of the heating network are considered for more integration of the

wind power. Other methods like the artificial neural network and evolutionary

algorithms are some of the famous methods used in this field [34, 35].

In the above studies, the integration of electricity and district heating networks

without mainly considering the fast variations of WPGs has only been repre-

sented via an the hourly discrete-time mathematical formulation.However, the

hourly discrete-time method considers only the hourly commitments of the re-

sources and the hourly ramping of the flexible resources such as boilers, storage

systems, and CHPs. Because of the sub-hourly deviation of the WPGs and

weakness in the sub-hourly modeling of wind deviations in hourly modeling, the

conventional hourly discrete-time model would not be proper for the renewable-

based (mainly wind-based) energy systems. In order to address the weakness

of the discrete-time hourly modeling method, the continuous-time modeling

based on Bernstein polynomial functions is proposed in the literature. By us-

ing the mentioned continuous-time method, the sudden sub-hourly deviations

of the WPGs can be handled by sub-hourly modeling the ramping capabilities
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of the resources in the combined power and district heating resources. Also, the

continuous-time modeling helps to enhance the coordinated operation of elec-

tricity and heating networks to handle sudden variation of the WPGs and loads.

Recently, only a few studies have focused on continuous-time optimization

of power system problems. Originally, continuous-time optimization was used

to precisely quantify the cost of ramping shortages in thermal systems with a

high proportion of renewable energy output, such as the California power sys-

tem [36]. In lieu of the conventional piece-wise constant formulation, ramping

limits may be added directly to the derivatives of the decision variables once

they have been permitted to be continuous and smooth functions of time. The

continuous-time model restricts the decision variables to polynomials of degree

r, allowing them to be represented as Bernstein polynomials of the equal degree.

In the case of the unit commitment problems, the optimization model may be

described as a function of the coefficients of the Bernstein polynomials, which is

a mixed-integer linear program (MILP). The foundation for continuous time has

recently been improved in several aspects. First advantages of continuous time

optimization is investigated in marginal pricing in power market industry which

leads to following the sub-hourly price deviation leading from exact day-ahead

load modeling [37, 38]. The flexible ramp capacity of the generation units is

modeled in [39]. In [40] the look-ahead balancing and regulation capacity of the

energy storage is modeled by the continuous-time optimization model. Also, the

multi-fidelity energy and flexibility reserve co-optimization of the power systems

in the day-ahead operation is modeled by the continuous-time optimization us-

ing the Bernstein polynomials in [41]. Besides, in order to analyze the flexibility

of the power system operation, the continuous-time optimization of the power

and the natural gas network is modeled in [42] that helps to model the sub-

hourly deviation of the wind generation by modeling the ramp capacity of the

flexible resources.

Generally, flexible ramp dispatching models suggested in the technical litera-

ture do not specify ramping as an obvious variable; rather, ramping is defined as
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the finite difference between discrete power dispatches of resources. In addition,

the flexible ramp output is planned using basic discrete-time optimization mod-

els with decision intervals that are bigger than the ramping products’ binding

interval. Consequently, the present discrete-time projections for programming

flexible ramp products do not adequately simulate the ramping of resources,

which might result in non-deliverable schedules that clash with the energy and

reserve plans of producing units.

1.2. Novelties and contributions

According to the reviewed papers, the discreet-time operation of the EDHS

has been investigated widely in published works. In the modeled optimization

problems, various discrete time intervals have been considered in the proposed

mathematical models. For example, 15, 20, 30, and 60 min are the famous time

steps modeled in EDHS’s optimization models to increase the positive impacts

of integrating EDHS. Despite the effectiveness of reducing the time intervals, by

increasing the penetration of fluctuating renewable resources, especially wind

power producers, the applicability of discrete-time modeling has been ques-

tioned. The lack of an appropriate method to use in modeling of electricity

and district heating networks to effectively manage the flexibility is required

that has not been investigated in literature. Scheduling of electricity and dis-

trict heating networks has been an important area of study for recent years,

which has led to the development of the sophisticated mathematical methods

used for this EDHS systems. For example, this is shown by the models used

in Danish [43] and Finland [44]. The previous EDHS scheduling models in

[23, 45], were based on the usual discrete-time formulation, which implies that

time-dependent variables and input parameter have piece-wise constant values.

This article focuses on the innovative combination of EDHS scheduling with the

continuous-time framework. Specifically, the integrated modeling of continuous-

time functioning of complex EDHS cascades presents a number of new issues for

EDHS scheduling and continuity constraints. Hence, continuous-time optimiza-

tion is proposed to effectively model energy systems scheduling in day-ahead
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and real-time gates. Nevertheless, continuous-time optimization has not been

investigated in modeling the EDHS optimal operation. Also, the impacts of un-

certainty on the operation of the EDHS should be considered under the proper

uncertainty modeling approach without increasing the computation burden of

the optimization problem.

According to the reviewed papers, the main novelties and contributions of

this work are as follows:

• A continuous-time model is developed for the operation of the integrated

networks of electricity and district heating that improves the flexible op-

eration of the heat and power resources in the sub-hourly markets which

has not been investigated in the previous works in the area.

• Continuous-time modeling of the electricity and the district heating net-

work’s ramping constraints is modeled in this paper to model the ramping

sacristy events in the Barry Island electricity and district heating system.

• Modeling the continuous-time method in the EDHS in the day-ahead and

real-time reserve markets for a better performance against the wind gen-

eration’s uncertainty and system demands.

• Applying the IGDT on modeling the uncertainties in both discrete-time

and continuous-time methods of the integrated networks of electricity

and district heating and investigating the effectiveness of modeling in the

continuous-time and discrete-time optimization according to the opportu-

nities and threats.

The rest of this paper is organized as below. Section 2 represents the dis-

creet time formulation of proposed electricity and district heating network. The

continuous-time representation of introduced discreet-time optimization is for-

mulated in section 3. Formulation of IGDT for handling the uncertainty is

introduced in section 4. The solutions for mapping the input data into the

continuous-time function space and solving methodology of continuous-time
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day-ahead and real-time optimization is introduced in section 5. Finally, the

paper is concluded in section 6.

2. Continuous-time formulation of the problem

The co-optimization formulation of the energy and day-ahead markets has

been previously presented in literature that is a linear hourly optimization prob-

lem [31]. Based on the represented model, the day-ahead energy and reserve

markets’ discrete-time co-optimization is formulated as the following optimiza-

tion problem. A graphical illustration of the proposed electricity and district

heating network is represented in Fig. 1.

Energy hub
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eat pum
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Battery
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U
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 grid

Figure 1: Illustration of proposed electricty and district heating system

2.0.1. Continuous-time electricity and district heating co-dispatch

The following formulation is related to the co-dispatch model of the electric-

ity and district heating network in the day-ahead energy and reserve markets in

10



the presence of renewable energy sources. The installed capacity of wind power

is the biggest in the world, resulting in the greatest variation in power systems.

Connecting the electrical and district heating networks is primarily motivated

by the variability of wind generation. Thus, in order to avoid complicating the

renewable energy system, only the wind power plant is considered in this paper.

#�D1
ÿ

�“ℎ

ż

CPT

:�#�pCq

�+#�

˜

%
��,��%

ℎ
pCq

[��%
ℎ

` `AD'ADℎ pCq ` `A3'A3ℎ pCq

¸

3C (1)

%
��,��%

ℎ
pCq ` 'ADℎ pCq ď %ℎpCq (2)

%
��,��%

ℎ
pCq ´ 'A3ℎ pCq ě %ℎpCq (3)

9%��,��%pCq ` 9'* ?pCq ´ 9'�=pCq ď 9%pCq (4)

9%��,��%pCq ` 9'* ?pCq ´ 9'�=pCq ě ´ 9%pCq (5)

%��,��%pCq ` %,#�pCq “ %�� pCq ` %�%pCq (6)

%�9 pCq ` %8, 9pCq “
ÿ

:P(
�,3
9

% 9 ,:pCq ` %!9 pCq (7)

%
��,��%

ℎ
pCqp1´ [��%ℎ ´ [

��%,!

ℎ
q{[��%ℎ ` %�%ℎ pCq�$%�%ℎ “ ���ℎ pCq (8)

&�9 pCq `&8, 9pCq “
ÿ

:P(
�,3
9

& 9 ,:pCq `&
!
9 pCq (9)

+8, 9pCq “ +8pCq ´ p%8, 9pCqA8, 9 `&8, 9pCqG8, 9q{+0 (10)

�(= pCq “ �%<(=pCqp)
(
= pCq ´ )

'
= pCqq (11)
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�!= pCq “ �%<!<pCqp)
(
= pCq ´ )

'
= pCqq (12)

)>DC? pCq “ p) 8=? pCq ´ )
�<1
? pCqq4

´
_?!?

�%<?pCq ` ) �<1pCq (13)

ÿ

?P(
%,ℎ
=

p<?pCq)
>DC
? pCqq “

ÿ

?8P(%,ℎ

p<?pCqq)
<8G
= pCq (14)

) 8=? pCq “ )
<8G
= pCq @? P (%,B (15)

In the above formulation:

9%
��,��%

ℎ
pCq “

3�
��,��%

ℎ
pCq

3C
(16)

9'ADℎ pCq “
3'

AD,��%

ℎ
pCq

3C
(17)

9'A3ℎ pCq “
3'

A3,��%

ℎ
pCq

3C
(18)

The aforementioned formulation represents the continuous-time operation of

the electricity and district heating networks in the day-ahead energy and re-

serve markets. The energy storage units along with the heat pumps are utilized

to cover the variations of wind generation, electricity, and heat demand on a

real-time scale due to their flexible nature. The first term of the objective func-

tion represents the operation cost in the day-ahead market, while the reserve

market cost is included in the second to the fourth terms for the generation

units and storage devices. The minimum and maximum generation power of

CHP units in the day-ahead and real-time markets is limited by the constraints

(2) and (3). Besides, the ramp-up and ramp-down limits of the generation units

are restricted through constraints (4) and (5). The power balance equation of

the energy hubs is represented in (6). Also, the active power balance of the net-

work is also determined in (7). The heat balance equation of the energy hubs is
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represented in (8). Besides, the reactive power balance of the network is illus-

trated in (9). In this paper, the electricity network has a radial topology [46].

The formulation of the linear power flow is coordinated with the district heating

network heat flow. The linear approximation of the AC power flow methods is

represented in (10) [47, 48]. Noted that the mentioned linear power flow equa-

tion is derivable by the specific assumptions on the voltage and power angles

introduced in [49]. The incorporation of the voltage and reactive power are the

advantages of the considered power flow more than the well-known DC flow. The

district heating networks, based on their control strategies, are divided into four

categories, including variable flow and variable temperature, variable flow and

constant temperature, constant flow and variable temperature, constant flow,

and constant temperature. In this paper, the constant flow and variable tem-

perature are considered as the control strategy of the district heating network

that the equations are represented in (11)-(15) [49]. Equations (11) and (12)

represent the supplied and consumed heat power in the hub and load nodes,

respectively. Equation (13) represents the drop of temperature along the net-

work pipelines which is similar to the supply and return pipelines. The district

heating network nodes’ temperature is known as the mixture temperatures that

could be evaluated for the confluence nodes by (14). Equation (15) ensures the

mas flows that are leaving from the same temperature confluence node.

2.0.2. Continuous-time modeling of energy storage

The energy storage can be operated in both energy arbitrage and regulation

reserve modes to gain more income. Purchasing energy at low price times and

selling it at high price times is a well-known strategy for energy arbitrage of

energy storage systems. In this paper, this property is neglected due to the

non-market environment. Also, the energy storage is scheduled in the day-ahead

market to reduce the scarcity events of the generation units. This study aims

to use the stored energy as the regulation reserve to deal with the uncertainties.

By neglecting the energy arbitrage of energy storage systems, the formulation of

the energy storage device in the continuous-time method could be represented
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as below to participate in the regulation market:

"8=

ż

CPT

p@
A46
A XADpCq ` @

A46
A XA3pCqq 3C (19)

ż C3

C3´1

3�A pCq

3C
“

ż C3

C3´1

ˆ

[2ℎ3A pCq ´
6A pCq

[32ℎ

˙

(20)

3A “ @A46 XADpCq ` 3��A pCq (21)

6A “ @A46 XA3pCq ` 6��A pCq (22)

0 ď 3A pCq ď 3̄A (23)

0 ď 6A pCq ď 6̄A (24)

�A
´

ď �A pCq ď �̄A (25)

93A
´

ď
3p3A pCqq

3C
“ 93A pCq ď 9̄3A (26)

96A
´

ď
3p6A pCqq

3C
“ 96A pCq ď 9̄6A (27)

The payment of the system to the storage units in the regulation markets

can be evaluated by using the continuous-time equation (19). Besides, the

continuous-time differential equation (20) is used to control the state of energy

in the storage units during the whole scheduling period. In addition to the reg-

ulation market, Equations (21) and (22) indicate the energy storage that can be

scheduled in the day-ahead market in the energy arbitrage model. Moreover, the

minimum and maximum limits of the charging/discharging power and energy

state of the energy storage are limited by the constraints (23)-(25), respectively.

Also, the charging and discharging ramp limits of the energy storage are limited

by differential constraints (26) and (27).

3. Modeling continuous-time equations in Bernstein function space

Various approaches and function spaces are proposed in different studies

to model the continuous-time problems in the optimization programming [42].

In this paper, the Bernstein polynomial is selected to model a set of discreet
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data as the continuous-time programming problem in the finite-order function

space. The proposed finite-order function space is the Bernstein function space

that is spanned by the Bernstein polynomial approach. The main reason for

selecting the Bernstein polynomial is the smooth movement, not only in the

breakpoints but also between two breakpoints. More details for selecting the

Bernstein polynomials are represented as follows:

3.1. Bernstein polynomials approach

Assuming that the Bernstein polynomials degree & is used to model the

discreet spaces between the time intervals, the &` 1 number of Bernstein basis

polynomials should be defined by using the following equation:

4C@,& “

¨

˚

˝

&

@

˛

‹

‚
C@p1´ Cq&´@ (28)

In (28) the phrase

¨

˚

˝

&

@

˛

‹

‚
shows a binomial coefficient. For example, for

continuous-time modeling the function GpCq in the time interval T , first the

mentioned time interval T should be divided into D intervals as T “ rC3 , C3`1q

in which T “ Y�
3“1

T3; thus the length of separate interval is T “ C3`1 ´ C3. As

illustrated in Fig. 2, the intervals are formed by a set of basis functions, that

are functions of Bernstein polynomials of degree Q, multiplied by the Bernstein

coefficients. Finally the Bernstein polynomial operator ΦGpCq
&3

is used to map the

continues function GpCq in the Bernstein function space in (29).

Φ
GpCq

&3
“

&3
ÿ

@3

�
GpCq
@3 4

C´C3
@3 ,&3

, C P rC3 , C3`1q (29)

where the parameter �GpCq@3 is the control point of the Bernstein polynomial

in the function space that known as the Bernstein coefficient. In addition to

the mentioned properties of the Bernstein polynomials, some other advantages

makes this function space more attractive to model the problem. Firstly, it is
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Figure 2: Coefficients of Bernstein polynomials

necessary to reduce the approximation error by increasing the degree of & in

the Φ
GpCq

&3
. In other words:

lim
&3Ñ8

Φ
GpCq

&3
“ GpCq (30)

Secondly, the derivation property of the Bernstein polynomials, i.e., the

derivative of ΦGpCq
&3

is equivalent with the deviation of the two lower degree poly-

nomials as indicated in (31).

3Φ
GpCq

&3

3C
“ &

p&´1q3
ÿ

@3“0

p�
GpCq
@3 ´ �

GpCq

p@´1q3
q4C
@3 ,p&´1q3

(31)

The third state is obtained from the convex hull property of basis functions that

leads to that the Bernstein coefficients of the ΦGpCq
&3

and 9Φ
GpCq

p&3´1q
are bounded in

their minimum and maximum limits that is indicated in (32).

mint�
GpCq
@3 u ď

®�GpCq@3 ď maxt�
GpCq
@3 (32)

Finally, the fourth state is the continuity of the function between the last point

of the previous interval with the first point of the present interval that enforces

by definition of the following two constraints that are known as the continuity

conditions.

�
GpCq

03
“ �

GpCq

&3´1
(33)
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�
GpCq

13
´ �

GpCq

03
“ �

GpCq

&p3´1q
´ �

GpCq

p&´1q3´1
(34)

The mentioned two constraints (33) and (34) are important to maintain the

continuity of the generation and ramping trajectories at the time of transmis-

sion between time intervals. The last property is the integral operator on the

Bernstein polynomials that would be useful in the computation of the objective

function. This property can be stated as below:

ż C3`1

C3

Φ
GpCq

&3
“

ż C3`1

C3

p ®�GpCq
&3

®4C&3 q3C “ ®�GpCq
&3

ż C3`1

C3

®4C&3 3C “
®�GpCq
&3

.1&3

&3 ` 1
“

&3
ř

@3“0

®�GpCq
@3,&3

&3 ` 1
(35)

3.2. Modeling the problem in the Bernstein function space

The proposed continuous-time optimization problem (1) and (27), is com-

putationally intractable because it has a infinite-dimensional decision space.

Therefore, in this section a solution method based on the function space is pro-

posed to solve the proposed infinite-dimensional continuous-time optimization

problem (1) and (27). The proposed function space-based method reduces the

dimensionality of the continuous-time trajectories. In other words, the proposed

function space-based method seeks to model the the continuous-time trajectories

in the finite-order function space that in this paper the Bernstein polynomials

is chosen for this propose.

3.2.1. Objective function

Based on the stated context of this section, by substituting the variables of

the continuous-time modeling, the objective functions (1) and (19) can be rep-

resented in the infinite-dimensional Bernstein function space that is represented

in (36). Moreover, based on the introduced Bernstein polynomials’ integral

property in this section, by integrating the infinite dimensional equation (36)

over T, the linear and finite-dimensional cost function of the CHP units and

storage units in the day-ahead and real-time market is represented in (37). The

first term of the objective function (37),is related to the day-ahead operation

17



cost of the CHP units. The regulation up and down cost of the CHP units are

represented in the second and third term of objective function (37). Also, the

fourth and fifth terms of (37) model the regulation up and down cost of the

energy storage devices.

"8=8<8I4
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

¨

˚

˚

˚

˚

˚

˚

˚

˝

�
ÿ

ℎ“1

¨

˝

ż

CPT

: �#�pCq

�+#�
ˆ

„

®�
�
��,��%

ℎ,C

&3
®4C&3 ` `AD,��% ®�

'
AD,��%

ℎ,C

&3
®4C&3 ` `A3,��% ®�

'
AD,��%

ℎ,C

&3
®4C&3



3C

˛

‚`

'
ÿ

A“1

¨

˝

ż

CPT

„

`AD,(@A4BA
®�'

AD,(
A,C

&3
®4C&3 ` `A3,(@A4BA

®�X
A3,(
A,C

&3
®4C&3



3C

˛

‚

˛

‹

‹

‹

‹

‹

‹

‹

‚

(36)
"8=8<8I4

hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

�
ÿ

ℎ“1

)
ÿ

C“1

: �#�pCq

�+#�
ˆ

�
ÿ

3

&
ř

@<

„

�
�
��,��%

ℎ,C

@3 ,&3
` `AD,��%�

'
AD,��%

ℎ,C

@3 ,&3
` `A3,��%�

'
AD,��%

ℎ,C

@3 ,&3



&3 ` 1
`

'
ÿ

A“1

)
ÿ

C“1

�
ÿ

3

&
ř

@<

„

`AD,(@A4BA �
'
AD,(
A,C

@3 ,&3
` `A3,(@A4BA �

X
A3,(
A,C

@3 ,&3



&3 ` 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(37)

3.2.2. Electric and heat loads and wind generation profiles

In this section, the Bernstein representation of the electric and heat loads

and wind power is formed to use in the model. By modeling the electric and

non-electric loads, and wind generation in the Bernstein function space, the

following vectors in the form of the Q-degree Bernstein basis functions with the

length of 3 for each time interval can be defined.
$

’

&

’

%

ΦΘ
&3
“ ®�Θ

&3
4
C´C3
&3

@C P rC3 , C3`1q,Θ P t%
!
9
pCq, �!= pCq, %

'�(
ℎ

pCqu

(38)

In the mentioned equation (38), ®�&3 represents the Bernstein coefficient of the

parameter that comes from the values of parameters.
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3.2.3. power and district heating network constraints

In this sub-section, the Bernstein representation of the infinite order continuous-

time constraints introduced in the previous section is represented in the form of

the linear formulation.
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The above formulation represent the continuous-time form of the formulation

(1)-(18). In the continuous-time formulation, the decision variables are the

Bernstein coefficient that is modeled in the formulation (1)-(18). For example,
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the Bernstein coefficients of variable ���,��%
ℎ

pCq is the vector �
�
��,��%

ℎ
pCq

&3
that

is used in constraint (39). The constraint (39) and (40) represent the minimum

and maximum amounts of generation trajectories that are the continuous-time

model of (2) and (3). Also, the continuous-time ramping trajectories of the

continuous-time modeling is limited by the (41) and (42). Other continuous-

time constraints (43)-(52) are the continuous-time representation of the discreet

time formulation stated in (2)-(15). The other main difference between the

discreet time and continuous-time modeling is the continuity constraints on the

variables over the first and endpoints of the time intervals that should be defined

as below.
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The mentioned continuity conditions (53) are considered for the following vari-

ables set.
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3.2.4. Energy storage model

The Bernstein function space representation of the energy storage devices

model (19)-(27) is represented in this section. The operation cost of storage in

the reserve market is included in the objective function (37) that has been re-

frained the re-expressing the Bernstein function space representation of storage

cost function (19). The constraints (20)-(27) respectively can be represented in

the function space as below.
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4. Information gap decision theory

The IGDT is a classical risk assessment method that is used to evaluate the

effects of the uncertain parameters. The IGDT uses the two functions to obtain

the robustness and opportunity strategies in the optimization problem. The

opportunity function considers the good realizations of the uncertain parameters

on improving the objective function. In contrast, the robustness function tries

to model the threats imposing from the uncertain parameters on the objective

function. More details of the IGDT is available in [50]. The mathematical

formulation of the IGDT is represented below.

max ˘i (62)

%'�(pCq “ p1¯ iq.%̄'�(pCq (63)

o ď

Ω
hkkkkikkkkj

o1p1˘ Uq,Ω P t'$,$%u (64)

In the formulation (62)-(64), ´ and` determine the robustness (RO) and oppor-

tunity (OP) strategies. Also, o1 refers to the base cost of the base optimization

problem, and U deviates the cost from the base value upward or downward based

on the considered risk strategy. For example, in the robustness strategy, ´ is

considered, and the i is maximized while the total cost is less than o1p1 ´ Uq

that is downward of the base cost o1.
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5. solution methodology

The used load and renewable data in day-ahead scheduling are mostly dis-

crete hourly data. Because of the definition of continuity constraints on most

variables in the continuous-time modeling, projecting the input load and wind

data into the continuous-time function space is critical in obtaining a continuous-

time generation and scheduling. We now want to expand cubic splines on two

well-known bases: the cubic Hermite basis and Bernstein polynomials of de-

gree 3. The cubic Hermite basis enables us to specify the expansion coefficients

as generation samples and their changing rate, i.e., the ramp. The Bernstein

polynomials may be used as a proxy expansion to impose limits on maximum

capacity and ramping of the modeled continuous-time generation with an equal

number of coefficients. Let us begin by modeling the hourly day-ahead load

and wind profile using cubic Hermite splines. Instead of sampling uniformly, we

expand the model and use arbitrary endpoints to divide the day-ahead program-

ming horizon into equal intervals 0, C1, C2, C3, .... In [51], the four cubic Hermite

polynomial bases are used for C P r0, 1q as follows:

-00pCq “ p2C
3 ´ 3C2 ` 1q�00pCq (65)

-01pCq “ pC
3 ´ 2C2 ` 1q�01pCq (66)

-10pCq “ p´2C2 ` 3C2q�10pCq (67)

-11pCq “ pC
3 ´ C2q�11pCq (68)

The H represents the Hermit coefficients. Thus, the cubic Hermite approxi-

mation of the day-ahead wind and load profile can be expressed as:

-pCq “

"´1
ÿ

<“0

�pg<q 4
�
< pCq (69)
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The introduced optimization problem of electricity and district heating net-

work is in the Bernstein function space. Thus, defining the mapped load and

wind Hermit basis in the Bernstein function space is required for solving the

optimization problem in the Bernstein function space. For converting the Her-

mit coefficients to the Bernstein coefficient, the similarity of the two coefficients

should be investigated. The coefficients of the cubic Hermit function are repre-

sented in Fig. 3.
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Figure 3: Coefficients of Hermit polynomials

As shown in Fig. 3, the cubic Hermite load approximation coefficients are

specified only by the load value and its derivative at the interval’s beginning and

ending points. According to , there is a linear mapping between the Bernstein

and Hermit basis of degree 3, which could be defined as below:

Hptq “WB3ptq (70)

Where the basis’s change matrix Wcan be defined as below:

W “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 0 0

0 1{3 0 0

0 0 1 1

0 0 ´1{3 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(71)

Therefore, the defined Hermit polynomial can be modeled in the Benstein func-
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tion space as below.

-pCq “

"´1
ÿ

<“0

�)3 pg<q,
) 4�< “

"´1
ÿ

<“0

�)3 pg<q4
�
< (72)

Using the above mentioned method, the Benstein equivalent of Hermit basis

will be obtained to use in the optimization procedure.

5.1. Continuous-time optimization procedure

This paper proposes a continuous-time optimization procedure for the co-

ordinated operation of electricity and district heating networks to solve the

day-ahead and real-time operation problem. As mentioned, the continuous-time

optimization problem needs to project all decision variables and parameters to a

continuous-time function space, which the Bernstein function space is proposed

in this paper. Due to direct connectivity with real data, the Hermit function is

used as a tool to transform the real data into Bernstein coefficients. The pro-

cedure of the proposed continuous-time optimization is represented in Fig.4. In

addition to the deterministic optimization represented above, the IGDT-based

optimization procedure of the proposed continuous-time problem could be cal-

culated using the algorithm represented in Fig. 5.

6. CASE STUDIES

In order to show the effectiveness of the proposed continuous-time frame-

work, the Barry Island system is proposed in this paper, and the schematic

diagram is illustrated in Fig. 2. The mentioned test system is composed of a

9-bus power distribution network and a 32-node district heating network [49]

that three energy hubs connected to buses 1, 6, 9 to supply all electricity and

heat loads existing in the system. Energy hubs 1 and 3 consists of one CHP

unit to provide the heat and electricity loads and one heat pump to supply

the heat loads. In addition to the mentioned units, the wind farm and energy

storage system are installed in the energy hub 2. The economical and technical

characteristics of the used units in the model and are available in [49].
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  cobstraints
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 continuous time day-ahead forecasts

Solving optimization problem of real-time 

market considering day-ahead dispatches

Comparing total day-ahead and real-time 

costs of discreate and continuous time 

Day-ahead Real-time

Figure 4: Continuous-time Optimization procedure

The main input parameters are the wind power generation of the wind farm

that is installed in the energy hub 2 and the system’s heat and power loads.

The proposed system’s load data is derived from the California ISO (CAISO)

for August 12, 2019, that the day-ahead and real-time information is scaled

down to 1.6 MW to form the load trajectories of the proposed model. Moreover,

the wind generation trajectories are also derived from the CAISO and scaled

down to 500 kw to use in the proposed system. The continuous-time day-ahead,

discrete-time day-ahead, and real-time values of the power and heat load and

wind generation power are used in the proposed model, and it is determined in

Fig. 3. The discrete-time results are obtained by solving the 24-hour discrete-

time optimization problem in the day-ahead market. Besides, The 20 min (72

intervals) discrete-time optimization problem is used in the discrete-time reserve

operation. Similarly, the Bernstein function space degree 3 is used to model the

continuous-time day-ahead and reserve operation.
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Figure 5: IGDT-based solving algorithm of the model
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Figure 6: Schematic diagram of the Barry Island system

6.1. Numerical results

6.1.1. Day-ahead and real-time reserve operation cost

The EDHS operation costs in the two continuous-time and discrete-time

modeling methods are represented in Table 1. The Continuous-time operation

could lead to higher cost in day-ahead scheduling which must be compensated

in the next gates (like reserve market) to be justified. Therefore, to show the

advantage of the proposed method, day-ahead and reserve costs are selected

for calculation as shown in Table 1. The day-ahead cost of both discrete-time

and continuous-time models are related to the day-ahead operation of CHP, and
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Figure 7: Input parameters of the discrete-time and continuous-time models

storage units that are reflected in (37). Besides, the reserve cost is related to

the both up and down reserves provided by the storage and CHP units. The

main advantage of the continuous-time modeling approach manifested in the

total operation cost that is less than the discrete-time model by 0.91%. Based

on Table 1 the EDHS operation cost in the day-ahead market are $961 and $942

for the continuous-time and discrete-time models, respectively. The higher op-

eration cost of continuous-time model in the day-ahead market is compensated

in the real-time reserve market so that operation costs become $23 and $51 for

the continuous-time and discrete-time models, respectively. The reason for this

cost reduction is due to fewer requirements for high ramping in the real-time

market. The generated power by power and heat generation units has lower

cost compared to the the energy storage devices. At the real-time market, the

available power of power and heat generating units has priority to provide the

required ramp. If the provided ramping through the power and district heating
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network is not enough for supplying the required ramp, the ramping provided

by energy storage devices will be used to eliminate the ramping scarcity events.

Thus, having a large district heating network will be help in reducing the overall

cost of the integrated electricity and district heating networks

Table 1: Comparison of operation costs in the continuous-time and discrete-time modelings

Day-ahead cost

($)

Real-time reserve cost

($)

Total cost

($)

Discrete-time 942 51 993

Continuous-time 961 23 984

6.1.2. Day-ahead operation of EDHS components

The continuous-time and discrete-time operation of the HP and CHP units

is represented in Fig. 8. Furthermore, the level of energy in the ES that is

determined by the day-ahead and real-time reserve operation is illustrated in

Fig. 9. The main reason for the lower operation cost in the day-ahead operation

of the discrete-time method compared to continuous-time model and the conse-

quences are illustrated in Figs. 8 and 9. Based on Fig. 8 it can be shown that in

the day-ahead operation of the discrete-time model, the generated power of the

HP and CHP units is constant, while in the continuous-time model, the opera-

tion of the units smoothly changes over time. Moreover, the HP system’s ramp

capacity is considerable, which is a positive aspect of the heat loads supplying

process. The fixed hourly day-ahead operation of the discrete-time model leads

to more flexible resources in the reserve market that will be demonstrated in

the following results.

The continuous-time energy trajectories and discrete-time hourly operation

of the energy storage are determined in Fig. 9. As Fig. 9 illustrates, the discrete-

time operation of the energy storage device is more than the continuous-time

model due to the more required flexibility of the discrete-time method in the

reserve market that will be represented. Frequent usage of the energy storage

in the reserve market of the discrete-time model is one of the higher costs of
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the method in the reserve market. The reason for more usage of energy storage

in reserve market is related to the ramping scarcity of power generation units

which causes the energy storage to provide more flexible ramp in reserve market.

Also, Fig. 9 show that the slope of the charging and discharging energy in the

discrete-time model is higher than the continuous-time model. Supplying these

high rate charging and discharging ramps in the regulation markets is high-costly

for system operators.
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Figure 8: Generated power by HPs and CHPs

6.1.3. Requirement of power in the real-time reserve market

As mentioned earlier, the reserve cost of the discrete-time optimization model

is more than the continuous-time model. The reason for this higher cost is

depicted in Fig. Significant load variation and several rapid ramping occurrences

contribute to the comparatively high real-time operating cost. 10. The short-

term operation in the real-time reserve market along with the effects of the

hourly spikes in the hourly day-ahead operation leads to severe jumps in the
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Figure 9: Energy level in energy storage

reserve market of the discrete-time model. In contrast, the day-ahead operation

of the continuous-time model is smooth which leads to smoother operation in

the real-time reserve market that is illustrated in Fig. 10. Due to the smooth

operation schedule of day-ahead continuous-time model, the lower jumps in the

reserve gate of continuous-time modeling reduces the ramping events and lower

required flexibility in reserve market. Besides, regarding Fig. 10, it can be

concluded that the classic discrete-time model’s piece-wise constant load profile

in day-ahead excludes a large portion of net-load for reserve operation, which

requires more flexibility during the reserve market.

6.1.4. IGDT-based risk assessment

The IGDT method is used as a classical approach to determine the impact of

robustness and opportunistic uncertainties. The uncertainty of wind energy is

the most important uncertainty in this paper. The results of the applied IGDT

method on both discrete-time and continuous-time models are represented in
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Figure 10: Load deviation in real-time reserve market

Table 2. According to Table II, it can be shown that for a $10 increment of

the cost compared to base costs $993 and $984, the maximum amount of '$

is 0.39 and 1.58 for discrete-time and continuous-time models and that indi-

cates the more robustness of continuous-time model against the uncertainty of

wind energy. The results of the $50 and $100 cost increment confirm the robust-

ness feature of the continuous-time model in the comparison of the discrete-time

model. The results of the opportunity problem on the IGDT technique represent

the more opportunistic nature of the continuous-time model compared to the

discrete-time procedure. For example, for $50 cost reduction, the discrete-time

model needs to minimum 293% increment in the wind power. In contrast, the

continuous-time model can reduce the cost with a minimum 21% wind power

increment. From the obtained results if IGDT technique some points can be

concluded for effective impacts of continuous-time modeling on uncertainty mod-

eling of proposed test system. First, the flexible operation of using in EDHS

can help in flexible performance of variables under the uncertain parameters of
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Table 2: The results of applied IGDT technique

Robustness

Discrete-time
RO 0.39 1.02 1.02

cost 1003 1124.83 1103

Continuous-time
RO 1.58 1.95 1.95

cost 994 935.95 1094

Opportunistic

Discrete-time
OP 0.45 2.93 5.49

cost 983 884.83 883

Continuous-time
OP 0.10 0.21 1.51

cost 974 815.95 874

the optimization problem. Second, the chosen time intervals with the continuity

conditions help the system in having the higher variables and opportunity to

have flexible performance under the uncertain operation modeled by IGDT.

6.2. Model validation

In order to validate the proposed system, the system performance under

other load data is investigated. The new continuous and discrete-time load

profiles used in validation are represented in Fig. 11. From the system com-

ponents, the operation of energy storage devices and heat pumps are chosen

to be investigated. The continuous-time and discrete-time operation of energy

storage device is represented in Fig. 12. According to this figure, both the

continuous-time and discrete-time operation are equivalent that means the cor-

rect operating of the model. From Fig. 12 it can be shown that the storage

device has a huge jumps under the new load profiles represented in Fig. 11.

Besides, the operation of heat pump under the new load profile is represented

in Fig. 13. Fewer operation of heat pumps under the discrete-time model of

new load profiles is illustrated in Fig. 13. The reason for this fewer operating

power of heat pump could be related to difference in operating power of energy

storage in both continuous-time and discrete-time new load profiles.
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Figure 11: New continuous and discrete-time load profile
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Figure 12: Operation of energy storage under new load profile

7. Conclusion

Linking electricity and district heating networks with energy storage de-

vices provides essential flexibility services, including regulatory reserve, in power

system operation, which might enhance the reliability and cost-effectiveness of

systems with a high penetration of renewable energy resources. Using an appro-

priate optimization approach could model and measure the flexibility resulting

from the integrated system in the presence of different electricity markets. In
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Figure 13: Operation of heat pump under new load profile

this paper, continuous-time optimization is proposed to model the EDHS. The

results indicated that the system cost in the discrete-time and continuous-time

models are $993 and $984, respectively, which show a cost reduction of 0.91%

in the use of continuous-time modeling strategy. According to the obtained, an-

other advantage of the proposed continuous-time modeling is that it reduces the

ramping events of EDHS in the regulation reserve stage. Besides, in the IGDT

technique, using the opportunity and robustness functions can be appropriate

to investigate the effects of uncertainty. The results of IGDT represent that

in the continuous-time method, there are more opportunities and fewer losses

compared to the discrete-time modeling strategy. Thus, using the proposed

continuous-time optimization gives effective management of uncertainties.
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