| 1                    | Lelliottia amnigena recovered from the lung of a harbour porpoise, and comparative                            |
|----------------------|---------------------------------------------------------------------------------------------------------------|
| 2                    | analyses with <i>Lelliottia</i> spp.                                                                          |
| 3                    |                                                                                                               |
| 4                    | David Negus <sup>1</sup> , Geoffrey Foster <sup>2</sup> , Lesley Hoyles <sup>1</sup> #                        |
| 5                    |                                                                                                               |
| 6                    | <sup>1</sup> Department of Biosciences, Nottingham Trent University, UK                                       |
| 7                    | <sup>2</sup> SRUC Veterinary Services, Inverness, UK                                                          |
| 8                    |                                                                                                               |
| 9                    | David Negus: ORCiD 0000-0001-9047-4565                                                                        |
| 10                   | Geoffrey Foster: ORCiD 0000-0002-5527-758X                                                                    |
| 11                   | Lesley Hoyes: ORCiD 0000-0002-6418-342X                                                                       |
| 12                   |                                                                                                               |
| 13                   | # Correspondence: Lesley Hoyles, Department of Biosciences, Nottingham Trent                                  |
| 14                   | University, Nottingham NG11 8NS, UK; telephone +44 (0)115 848 3429; email                                     |
| 15                   | lesley.hoyles@ntu.ac.uk.                                                                                      |
| 16                   |                                                                                                               |
| 17                   | Running title: Lelliottia amnigena comparative analyses                                                       |
| 18                   |                                                                                                               |
| 19                   | <b>Keywords:</b> <i>bla</i> <sub>LAQ</sub> , AmpC, veterinary microbiology, marine, antimicrobial resistance, |
| 20                   | Huaxilbacter                                                                                                  |
| 21                   | Abbrevietienes AND entimienskiel register og ANU evenere gydestide identity EUCACT                            |
| 22                   | Abbreviations: AMR, antimicrobial resistance; ANI, average nucleotide identity, EUCAST,                       |
| 25<br>24             | assembled genome: rMLST_ribesomal multi-locus sequence typing: oANL orthologous                               |
| 2 <del>4</del><br>25 | average nucleotide identity                                                                                   |
| 25<br>26             |                                                                                                               |
| 27                   | Supplementary material associated with this article is available from figshare:                               |
| 28                   | https://figshare.com/projects/Lelliottia_amnigena_characterization/174210.                                    |
| 29                   |                                                                                                               |
| 30                   | The whole-genome sequence data generated for this study are available from BioProject                         |
| 31                   | PRJNA979992.                                                                                                  |
| 32                   |                                                                                                               |
| 33                   | CONFLICT OF INTEREST                                                                                          |
| 34                   | No conflict of interest declared.                                                                             |
| 35                   |                                                                                                               |

## 36 ABSTRACT

- 37 Strain M1325/93/1 (= GFKo1) of *Lelliottia amnigena* was isolated from the lung of a harbour
- 38 porpoise in 1993. The genome sequence and antimicrobial resistance profile (genomic,
- 39 phenotypic) of the strain were generated, with the genomic data compared with those from
- 40 closely related bacteria. We demonstrate the recently described chromosomally-encoded
- 41 AmpC β-lactamase *bla*<sub>LAQ</sub> is a core gene of *L. amnigena*, and suggest new variants of this
- 42 class of lactamase are encoded by other members of the genus *Lelliottia*. Although presence
- 43 of *bla*<sub>LAQ</sub> is ubiquitous across the currently sequenced members of *L. amnigena*, we highlight
- 44 that strain GFKo1 is sensitive to ampicillin and cephalosporins. These data suggest *bla*<sub>LAQ</sub>
- 45 may act as a useful genetic marker for identification of *L. amnigena* strains, but its presence
- 46 may not correlate with expected phenotypic resistances. Further studies are required to
- 47 determine the regulatory mechanisms of *bla*<sub>LAQ</sub> in *L. amnigena*.

48

#### 49 **INTRODUCTION**

50 Lelliottia spp. are Gram-negative, facultatively anaerobic bacteria of the family 51 Enterobacteriaceae. The genus Lelliottia was created to accommodate species distinct from 52 Enterobacter sensu lato based on gyrB, rpoB, infB and atpD gene sequence analyses, and 53 comprises four species with validly published names (Lelliottia amnigena, Lelliottia aquatilis, 54 Lelliottia jeotgali and Lelliottia nimipressuralis) and one with a non-valid name ("Lelliottia 55 steviae") (1-4). Lelliottia aquatilis represents a later heterotypic synonym of L. jeotgali, 56 based on average nucleotide identity (ANI) and in silico DNA-DNA hybridization analyses 57 (5). 58

Lelliottia spp. have been associated with the commensal microbiota of flies and the 59 Asian tiger mosquito (6,7), and isolated from fresh and waste water, soil, plants, air samples 60 and fish (2,3,8–15). Interest in *L. amnigena* is increasing as this bacterium has been 61 associated with soft rot of economically important plant crops such as onion and potato (16). 62 Only rarely have L. amnigena and L. nimipressuralis been associated with opportunistic 63 disease in humans (17–20). There are few reports in the literature of the carriage of 64 antimicrobial resistance (AMR) genes by Lelliottia spp., though a new chromosomally-65 encoded AmpC  $\beta$ -lactamase, *bla*<sub>LAQ-1</sub>, conferring resistance to ampicillin and several 66 cephalosporins was recently described for an L. amnigena strain isolated from animal farm 67 sewage in China (21,22). 68 As part of a study of veterinary isolates thought to belong to the Klebsiella oxytoca

69 complex (23), we identified several atypical strains that were shown by *rpoB* gene sequence 70 analysis to represent a range of different *Enterobacteriaceae* (24). Here, we report on one 71 such strain recovered from the lung of a harbour porpoise (*Phocoena phocoena*). Using 72 genome sequence data and comparative analyses, we demonstrate this is a strain of *L*. 73 *amnigena* and compare its AMR gene profile with those of publicly available sequence data 74 for the species.

75

#### 76 **METHODS**

77 Isolation and phenotypic characterization of strain. Strain M1325/93/1 (herein referred to 78 by our laboratory identifier, GFKo1) was isolated on Columbia sheep blood agar (Oxoid, 79 Basingstoke, UK) from the lung of a harbour porpoise that was found stranded at Buckie on 80 the southern coastline of the Moray Firth, north-east Scotland in June 1993. Tentative 81 identification and biochemical characterization of the strain were made using the API 20E 82 (bioMérieux) strip according to the manufacturer's instructions under aerobic conditions at 37 83 °C. The isolate was also identified by matrix-assisted laser desorption-ionisation time-of-84 flight mass spectroscopy (MALDI-TOF) using the Bruker Microflex™ LT/SH MALDI-TOF MS 85 Biotyper<sup>™</sup>. Antimicrobial sensitivity testing was performed by disc diffusion assays following

- guidelines from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) v
   13.1 for *Enterobacterales*. *Escherichia coli* ATCC 25922 was used as the reference strain for
- 88 quality control purposes. All antibiotics were purchased from Oxoid, UK.
- 89

DNA extraction and sequencing. DNA was extracted from an overnight culture (aerobic,
37 °C) of strain GFKo1 grown in nutrient broth (Oxoid) using the Qiagen DNeasy Blood and
Tissue Kit (Qiagen). Extracted DNA was adjusted to a concentration of 0.2 ng/µL and treated
using the Nextera XT DNA library preparation kit (Illumina) to produce fragments of
approximately 500 bp. Fragmented and indexed samples were run on the sequencer using

- 95 the MiSeq Reagent Kit v2 (Illumina; 250 bp paired-end reads) following Illumina's
- 96 recommended denaturation and loading procedures.
- 97

98Genome assembly and gene annotation. Raw sequence data were checked using fastqc99v0.11.4 (<a href="https://www.bioinformatics.babraham.ac.uk/projects/fastqc/">https://www.bioinformatics.babraham.ac.uk/projects/fastqc/</a>); no adapter trimming100was required, and reads had an average Phred score >25. Genome data for strain GFKo1101were assembled using Megahit v1.2.9 (options: --min-contig-len 500 -r), with only contigs102 $\geq$ 500 nt in length retained. CheckM2 v0.1.3 (25) was used to determine the completeness103and contamination of the genome sequence. Bakta v1.4.2 (database 3.1) (26) was used to104annotate predicted genes within the genome.

105

106 Identification of genomes. Ribosomal multi-locus sequence typing (rMLST; (27)) was used 107 to identify the closest relative of strain GFKo1. OAT:OrthoANI v0.5.0 (28) was used to 108 determine orthologous ANI (oANI) values for the genome with publicly available L. amnigena 109 genomes and type strains of closest relatives. Identities of publicly available genome 110 sequences of *L. amnigena* (downloaded from NCBI GenBank on 19 March 2023; **Table 1**) 111 were confirmed by comparison (OAT:OrthoANI) with the genome sequences of the type 112 strains of the genus. These genomes were checked, annotated and identified as described 113 above. Sourmash v4.6.1 was used to generate 31-kmer signatures for genomes, which were 114 compared to determine how similar genomes were to one another, and to identify genomes 115 belonging to L. amnigena sensu stricto (29). PhyloPhIAn3 (--diversity medium) was used to 116 confirm the affiliation of all genomes with the genus *Lelliottia*. 117

Identification of plasmid sequences within genome of GFKo1. PlasmidFinder (30) was
 used to search the genome assembly for potential plasmid sequences. The online version of
 COPLA (31) was used to determine the taxonomy of predicted plasmid sequences.

121

122 Identification of AMR genes predicted to be encoded in genomes. Initially, the 123 Resistance Gene Identifier [RGI 6.0.1, CARD 3.2.6; (32)] was used to derive information on 124 AMR genes predicted to be encoded in the genome of strain GFKo1. The genome sequence 125 of GFKo1 was also searched for the allele of the chromosomal class C β-lactamase bla<sub>LAQ-1</sub> 126 (nucleotide accession MZ497396; (21)) using Geneious Prime v2023.0.1. Based on the 127 result of the *bla*<sub>LAQ-1</sub> search, AMRFinderPlus v3.11.4 (database version 2023-02-23.1) (33) 128 and Bakta annotations were subsequently used for surveying AMR genes in genomes. 129 A BLASTP database was created using the amino acid sequence of MZ497396. 130 Bakta-annotated protein sequences for all genomes (Table 1) were searched against this 131 sequence, with hits >70 % coverage and >70 % identity retained. The 'hit' protein sequences 132 were extracted from the .faa Bakta-annotated files using Biostrings v2.64.0 (R v4.3.1, 133 RStudio v2023.06.1) and used to create a multiple-sequence alignment (Clustal Omega 134 v1.2.2; Geneious Prime v2023.0.1) with the protein sequences of the 12 AmpC  $\beta$ -135 lactamases (ACT-12, ACT-22, BIL-1, CMY-2, CMY-20, LAT-1, CFE-1, YRC-1, MIR-1, MIR-136 23, ACT-6, ACT-10) included in the study in which the functionality of the *bla*<sub>LAQ-1</sub> protein was 137 demonstrated (21). A phylogenetic tree was created from the sequence alignment using 138 PhyML v3.3.20180621 (Blosum62 matrix) (34), with bootstrap values determined based on 139 100 replications. The tree was visualized using iToL v6 (35) with additional annotations 140 made using Adobe Illustrator.

141

142 Identification of terminator sequences. Potential transcriptional terminator sequences
 143 were identified using the online tool iTErm-PseKNC (36).

144

#### 145 **RESULTS**

#### 146 Characteristics of genome of GFKo1

147 Strain GFKo1 was recovered from the lung of a harbour porpoise that stranded in 148 1993. Although originally thought to represent a strain of K. oxytoca, rpoB gene sequence 149 analysis done in the laboratory at Nottingham Trent University showed the strain was a 150 representative of L. amnigena (24). This identification was supported by API 20E data (read 151 after 24 and 48 h; code 1305173: Enterobacter amnigenus 1 90.4 %) and by MALDI-TOF 152 with scores that reached 2.48, significantly above the 2.0 cut-off for species identification. 153 As L. amnigena has not previously been associated with marine mammals and there 154 are few genome sequences available for the species, we generated the draft genome 155 sequence of strain GFKo1 (20x coverage). The genome comprised 4,294,992 bp across 200 156 contigs (N50 46,243), and was predicted to encode 3,954 coding sequences, 80 tRNA, 1 157 tmRNA and 6 ribosomal RNA genes (Table 1). This information, together with its high 158 completeness and low contamination (**Table 1**), demonstrated GFKo1's genome was of high

159 quality (37). PlasmidFinder predicted contigs 181 and 182 (GenBank numbering, PGAP

- 160 output file GFKo10000000) to encode plasmid sequences, both identified as Col440I-like
- 161 (fragments within both sequences were related to an unnamed plasmid identified in
- 162 Klebsiella pneumoniae FDAARGOS\_440, GenBank accession CP023920.1). COPLA
- 163 identified the plasmid sequences as belonging to PTU-E3. Among the nine genes contig 181
- 164 was predicted to encode were MobC, MbeB and MbeD plasmid mobilization proteins. Contig
- 165 182 was predicted to encode only two proteins: a Rop family plasmid primer RNA-binding
- 166 protein and a hypothetical protein. Given their identities based on PlasmidFinder and
- 167 COPLA, it is likely that contigs 181 and 182 are part of the same mobilizable plasmid, but a
- 168 complete sequence would be required to confirm this.
- rMLST (27,38) identified GFKo1 as *L. amnigena* (100 % identity). This is a rapid
   method that indexes variation of the 53 genes encoding bacterial ribosome protein subunits
   to integrate microbial taxonomy and typing. oANI analysis of GFKo1's genome against the
- 172 genomes of type strains of the genus *Lelliottia* confirmed GFKo1 as a strain of *L. amnigena*,
- 173 sharing 98.21 % oANI with the type strain (NCTC 12124<sup>T</sup>, assembly accession
- 174 GCA\_900635465) of the species (39) (**Fig. 1a**).
- 175

## 176 Curation of *Lelliottia* genome dataset

- We downloaded the GenBank genome assemblies of all *Lelliottia* type strains (*n*=5)
  and all *L. amnigena* (*n*=22, excluding *L. amnigena* type) strains from NCBI GenBank (**Table**2). All were checked for completeness and contamination using CheckM2 (**Table 1**). Except
  for metagenome-assembled genome (MAG) ERR1430553, all were of high quality (<5 %</li>
  contamination, >90 % complete) (37).
- 182 rMLST was used to provide tentative identifications for the Lelliottia genome 183 sequences. As can be seen in Table 2, of the 23 genomes identified by NCBI as L. 184 amnigena, only 19 were identified as L. amnigena with 100 % support by PubMLST, with two 185 of the MAGs (ERR1430553, ERR1430553) identified as L. amnigena with low support 186 scores. Strain 4928STDY7071390 (accession GCA\_902160115) was identified as L. 187 nimipressuralis (93 % support), while strain ZB04 was identified as Huaxiibacter chinensis 188 (96 % support). Notable was identification of the proposed type strain of "L. steviae" (4) as 189 Pseudoalteromonas arabiensis (100 % support). L. jeotgali is an earlier heterotypic synonym
- of *L. aquatilis* (5), so we would expect the genomes of these species to share high supportscores.
- 192 oANI analysis was undertaken to confirm identities of genomes (**Supplementary**
- **Figure 1**). Identities determined by rMLST were confirmed for all genomes, except for strain
- 194 A167 (accession GCA\_021498285). An ANI of <95 % (93.61 %) with the genome of the type
- 195 strain of *L. amnigena* suggests this strain represents a novel species of *Lelliottia* (39). The

196 genome of *L. jeotgali* shared 98.78 % oANI with that of *L. aquatilis*. Sourmash is a rapid

- 197 method for computing hash sketches from genomic DNA sequences, and comparing them to
- 198 each other. A comparison for sourmash signatures generated for all strains supported our
- 199 findings from rMLST and oANI analyses (**Fig. 1b**). The sourmash analysis also confirmed
- 200 the affiliation of GFKo1 with *L. amnigena*.

The genomes (*n*=19) of *L. amnigena* identified by rMLST to be *L. amnigena* (100 % support) and sharing oANI of >95 % with the genome of the type strain of *L. amnigena* were included in a phylogenetic analysis with the genomes of the type strains of *L. aquatilis* and *L. nimipressuralis* (**Fig. 1c**). All isolate-derived genomes clustered with the type strain of *L. amnigena*, while the MAG-derived sequence ERR5094855 clustered with *L. aquatilis* and *L. nimipressuralis*. The phylogenetic analysis confirmed the affiliation of GFKo1 with *L. amnigena*.

208

## 209 Carriage of *bla*<sub>LAQ-1</sub>-like genes by *L. amnigena*

210 RGI/CARD analysis (loose, strict and perfect matches with protein sequences) 211 showed strain GFKo1's genome encoded no AMR genes. A pairwise alignment of GFKo1's 212 genome with the reference allele sequence of blaLAQ-1 (21) showed GFKo1 encoded this 213 class C  $\beta$ -lactamase (Supplementary Figure 2), sharing 99.3 % nucleotide and 99.5 % 214 amino acid pairwise identity with the reference sequence (accession MZ497396). In 215 agreement with (21) we found that *bla*<sub>LAQ-1</sub> encoded by GFKo1 had the obligatory serine 216 active site of the  $\beta$ -lactamase catalytic motif S-V-S-K (serine-valine-serine-lysine) at 217 positions 83–86, the typical class C β-lactamase motif Y-A-N (tryptophan-alanine-218 asparagine) at positions 169–171, D/E (a peptide segment containing two dicarboxylic amino 219 acids) at positions 236-238 and the conserved triad K-T-G (lysine-threonine-glycine) at 220 positions 334–336 (Supplementary Figure 3). Comparison of the genomic region 221 surrounding *bla*<sub>IAO-1</sub> revealed a 275 bp intergenic deletion between the *envC* and *empA* 222 genes encoded by strain GFKo1. Analysis of this region revealed the presence of three 223 predicted bi-directional transcriptional terminators that are missing from the genome of 224 GFKo1 (**Supplementary Figure 4**). These are characterized by containing both a poly(A) 225 and poly(T) tract enabling the terminator to function in both directions. 226 It is important to note that Bakta had annotated the  $bla_{LAQ}$  gene on contig 81 of 227 GFKo1's genome (locus tag GFKo1\_06635). Among its databases, Bakta uses the NCBI 228 Antimicrobial Resistance Gene Finder (AMRFinderPlus) (33) to annotate AMR-associated 229 genes in microbial genomes. In addition to a *bla*<sub>LAQ-1</sub>-like gene, AMRFinderPlus predicted 230 GFKo1 to encode vat (Vat family streptogramin A O-acetyltransferase; GFKo1\_06890), catA 231 (type A chloramphenicol O-acetyltransferase; GFKo1\_12820) and oqxB (multidrug efflux 232 RND transporter permease subunit OqxB; GFKo1 19950). Bakta also predicted GFKo1 to

233 encode the following AMR-associated genes: multidrug efflux MATE transporter EmmdR 234 (GFKo1 03505); multidrug efflux MFS transporter EmrD (GFKo1 03800); Bcr/CflA family 235 efflux transporter (GFKo1 04835); MdtK family multidrug efflux MATE transporter 236 (GFKo1\_04850); MATE efflux family protein (GFKo1\_06250); multidrug efflux pump 237 accessory protein AcrZ (GFKo1 15865); macrolide-specific efflux protein MacA 238 (GFKo1 16470); putative aminoglycoside efflux pump (GFKo1 16810); multidrug efflux 239 pump subunit AcrB (GFKo1\_17175); multidrug efflux RND transporter periplasmic adaptor 240 subunit AcrA (GFKo1\_17180); multidrug efflux transporter transcriptional repressor AcrR 241 (GFKo1\_17185).

242 A BLASTP search of the predicted proteins in each of the genomes listed in **Table 1** 243 against the amino acid sequence (380 aa) of the BlaLAQ-1 reference sequence identified one 244 hit in each genome that shared >70 % identity and 100 % coverage with MZ497396 245 (Supplementary Table 1). The 'hit' sequences were extracted from the Bakta annotation 246 files (available as Supplementary Material) for the genomes and used to create a multiple 247 sequence alignment with the AmpC reference sequences included in the original 248 characterization of *bla*<sub>LAQ-1</sub> (21). A phylogenetic analysis (maximum likelihood) demonstrated 249 all the L. amnigena sequences clustered together (Fig. 2), sharing pairwise identity values of 250 98.16–99.47 % with BlaLAQ-1 of P13 and 97.63–100 % with each other (Supplementary 251 Table 2), and high bootstrap support (97%). The sequence of strain A167 (accession 252 GCA\_021498285) formed a branch on its own (100 % bootstrap support), providing 253 additional support that this strain represents a novel species of Lelliottia (93.42 % amino acid 254 identity with P13's BlaLAQ-1 sequence). The sequences derived from *H. chinensis* strains 255 clustered together but apart from the L. amnigena sequences, as did those of L. 256 nimipressuralis, and those of L. aquatilis and L. jeotgali (all with 100 % bootstrap support).

257

#### 258 Phenotypic resistance profile of *L. amnigena* GFKo1

259 Disc diffusion assays were performed against antibiotics from a range of classes to 260 determine the phenotypic resistance profile of L. amnigena GFKo1. Strain GFKo1 was found 261 to be clinically sensitive to all antibiotics tested: penicillins (ampicillin, ampicillin-sulbactam, 262 piperacillin, amoxicillin-clavulanate, piperacillin-tazobactam); cephalosporins (cefoxitin, 263 ceftazidime, cefepime, cefotaxime, ceftriaxone); carbapenems (imipenem, meropenem, 264 ertapenem); the monobactam aztreonam; the aminoglycosides amikacin and gentamicin; the 265 fluoroguinolones ciprofloxacin and norfloxacin; the tetracyclines tigecycline and tetracycline; 266 and trimethoprim and sulphamethoxazole- trimethoprim. A full table of results, including zone 267 diameters measured and breakpoints can be found in **Supplementary Table 3**.

268

#### 269 **DISCUSSION**

270 In this study, we have characterized the genome and AMR genotype/phenotype of a 271 strain of *L. amnigena* (GFKo1) isolated from the lung of a harbour porpoise stranded in 272 1993. We compared the genome of GFKo1 with genomes of closely related species (Figure 273 **1**, **Table 1** and **Table 2**), and demonstrated that *bla*<sub>LAQ</sub>, a chromosomally-encoded AmpC  $\beta$ -274 lactamase conferring resistance to penicillin G, ampicillin and several cephalosporins (21), is 275 a core gene of *L. amnigena* (Figure 2). Phenotypically, GFKo1 was sensitive to all 276 antibiotics it was tested against, including ampicillin, cefotaxime and ceftazidime 277 (Supplementary Table 3).

278 Our detailed genome-based identification of L. amnigena genomes (n=20 isolates; 279 n=3 MAGs) downloaded from GenBank highlighted misclassification problems with four of 280 the genomes, including that of a proposed type strain for "L. steviae" (4) (Figure 1, Table 2). 281 While NCBI classifies some genome assemblies as anomalous and excludes them from the 282 RefSeq database based on a range of different criteria, these assemblies are still available 283 for download from GenBank. Lelliottia spp. data within NCBI GenBank are derived from 284 isolates and MAGs, with no information provided as to, for example, the completeness and 285 contamination of the genomes compared with accepted standards (37). We have previously 286 encountered problems with taxonomic assignments provided by NCBI (though acknowledge 287 annotations are improving and being updated constantly; (40)). However, we still 288 recommend that, for informative and accurate comparative genomic analyses to be 289 undertaken, it is important that the genomes of all bacteria retrieved from public repositories 290 are carefully checked for quality and identity before undertaking in-depth analyses.

291 In addition to identifying *bla*<sub>LAQ</sub> as a core gene of *L. amnigena*, we demonstrated that 292 proteins sharing high identity with a range of other AmpC β-lactamases were identified 293 across all genomes included in this study (Figure 2). Whether these AmpC β-lactamases 294 detected in non-L. amnigena genomes are functional remains to be determined. With 295 respect to the *bla*<sub>LAO</sub> gene of GFK01, it possessed the canonical motifs and active sites 296 associated with  $\beta$ -lactamase enzymes. Additionally, it shared 99.5 % amino acid pairwise 297 identity with LAQ-1 from L. amnigena P13 (accession MZ497396). It has been suggested 298 that LAQ-1 from *L. amnigena* P13 confers resistance to a range of β-lactams, including first-299 to fourth-generation cephalosporins. A recombinant Escherichia coli clone of the β-300 lactamase from a plasmid-borne copy of *bla*<sub>LAQ-1</sub> exhibited increased minimum inhibitory 301 concentrations (MICs) to a range of antibiotics including ampicillin, cefoxitin, cefazolin, 302 ceftazidime, cefepime, aztreonam, ticaracillin, piperacllin and cloxacillin. However, these 303 increased MICs only resulted in clinical resistance to ampicillin, cefoxitin and cefazolin 304 according to EUCAST guidelines. Despite the high level of sequence similarity between the 305 bla<sub>LAQ</sub> gene of GFKo1 and that from P13, *L. amnigena* GFKo1 was sensitive to all antibiotics 306 tested in our study. Genomic alignment of the two strains showed a high level of sequence

307 similarity in the region immediately upstream of the *bla*LAQ-1 gene, suggesting that lack of 308 activity is not due to a mutation(s) in the promoter region. However, further analysis of the 309 genomic region surrounding *bla*<sub>LAQ-1</sub> revealed a 275 bp intergenic deletion between the *envC* 310 and empA genes upstream of bla<sub>LAQ-1</sub> in strain GFKo1. Analysis of this region revealed the 311 presence of three predicted bi-directional transcriptional terminators that are missing from 312 the genome of GFKo1. As these terminators appear to be bi-directional, characterized by the 313 presence of both a poly(A) and poly(T) tract, it is likely that their absence in GFKo1 will affect 314 transcription both upstream and downstream of these sites.

315 Despite  $bla_{LAQ}$  being a core gene of all sequenced *L. amnigena* isolates, it is evident 316 that broad-spectrum resistance to  $\beta$ -lactam antibiotics is not a uniform feature of the species. 317 Resistance to penicillins is reported frequently, however resistance to specific

318 cephalosporins is highly variable (21,41–43). Genome sequence data are rarely available for

the strains characterised in these studies, making it difficult to determine the genotypicfactors that contribute to the observed resistant phenotypes.

In summary, we show that the chromosomally-encoded AmpC β-lactamase *bla*<sub>LAQ</sub> is
 a core gene of *L. amnigena*. However, presence of the *bla*<sub>LAQ</sub> gene does not always
 correlate with phenotypic resistance to β-lactam antibiotics. Resistance to specific

324 cephalosporins appears to be highly variable across the species. The mechanisms

325 controlling *bla*<sub>LAQ</sub> expression, and the degree to which *bla*<sub>LAQ</sub> contributes to phenotypic

resistance, require further investigation. Studies involving the cloning and expression of

327 diverse *bla*<sub>LAQ</sub> genes in genetic backgrounds free from other resistance markers will help

328 elucidate the specificity of these novel  $\beta$ -lactamases and their role in *L. amnigena*.

329

## 330 DATA SUMMARY

331 Supplementary material associated with this article is available from figshare:

332 <u>https://figshare.com/projects/Lelliottia\_amnigena\_characterization/174210</u>. The whole-

333 genome sequence data generated for this study are available from BioProject

334 PRJNA979992.

335

# 336 **FUNDING INFORMATION**

337 This work used computing resources provided through the Research Contingency Fund of

338 Nottingham Trent University.

339

# 340 AUTHOR CONTRIBUTIONS

- 341 DN, GF, LH conceptualization, data curation, investigation, methodology, validation, writing
- 342 (original draft; review and editing). DN, LH formal analysis, visualization. LH project
- 343 administration, software, resources, funding acquisition.
- 344

#### 345 **REFERENCES**

- Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation of the genus *Enterobacter* based on multilocus sequence analysis (MLSA): proposal to reclassify *E. nimipressuralis* and *E. amnigenus* into *Lelliottia* gen. nov. as *Lelliottia nimipressuralis* comb. nov. and *Lelliottia amnigena* comb. nov.,
   respectively, *E. gergoviae* and *E. pyrinus* into *Pluralibacter* gen. nov. as *Pluralibacter gergoviae* comb. nov.
   and *Pluralibacter pyrinus* comb. nov., respectively, *E. cowanii, E. radicincitans, E. oryzae* and *E. arachidis*
- 351 into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia
- 352 oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E.
- 353 *pulveris* into *Cronobacter* as *Cronobacter zurichensis* nom. nov., *Cronobacter helveticus* comb. nov. and
- Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and
   Cronobacter. Syst Appl Microbiol. 2013 Jul;36(5):309–19.
- Kämpfer P, Glaeser SP, Packroff G, Behringer K, Exner M, Chakraborty T, et al. *Lelliottia aquatilis* sp. nov.,
   isolated from drinking water. Int J Syst Evol Microbiol. 2018 Aug;68(8):2454–61.
- 358 3. Yuk KJ, Kim YT, Huh CS, Lee JH. *Lelliottia jeotgali* sp. nov., isolated from a traditional Korean fermented 359 clam. Int J Syst Evol Microbiol. 2018 May;68(5):1725–31.
- Lin J, Huang K, Huang JY, Xiong YR, Wei MM, Xiao N, et al. *Lelliottia steviae* sp. nov. isolated from *Stevia rebaudiana* Bertoni. Arch Microbiol. 2022 Jul 12;204(8):475.
- Wu W, Zong Z. Genome analysis-based reclassification of *Lelliottia aquatilis* as a later heterotypic synonym
   of *Lelliottia jeotgali*. Int J Syst Evol Microbiol. 2019 Apr;69(4):998–1000.
- Guégan M, Tran Van V, Martin E, Minard G, Tran FH, Fel B, et al. Who is eating fructose within the *Aedes albopictus* gut microbiota? Environ Microbiol. 2020 Apr;22(4):1193–206.
- Wiktorczyk-Kapischke N, Skowron K, Kwiecińska-Piróg J, Białucha A, Wałecka-Zacharska E, Grudlewska Buda K, et al. Flies as a potential vector of selected alert pathogens in a hospital environment. Int J Environ
   Health Res. 2022 Aug;32(8):1868–87.
- Heinle CE, Junqueira ACM, Uchida A, Purbojati RW, Houghton JNI, Chénard C, et al. complete genome
   sequence of *Lelliottia nimipressuralis* type strain SGAir0187, isolated from tropical air collected in Singapore.
   Genome Announc. 2018 May 3;6(18):e00231-18.
- Salgueiro V, Manageiro V, Bandarra NM, Reis L, Ferreira E, Caniça M. Bacterial diversity and antibiotic
   susceptibility of *Sparus aurata* from aquaculture. Microorganisms. 2020 Sep 2;8(9):1343.
- Reitter C, Neuhaus K, Hügler M. Draft genome sequences of *Enterobacter* spp., *Lelliottia* spp., and *Serratia* spp., coliform bacteria from drinking water reservoirs and lakes. Microbiol Resour Announc. 2021 Aug
   12;10(32):e0062221.
- 11. Leister C, Hügler M. Genome analysis of *Enterobacter asburiae* and *Lelliottia* spp. proliferating in
   oligotrophic drinking water reservoirs and lakes. Appl Environ Microbiol. 2022 Jul 26;88(14):e0047122.
- Thakur P, Gauba P. Genomic characterization of *Lelliottia amnigena* PTJIIT1005, a nitrate tolerant strain
   isolated from water sample of Yamuna River, Delhi, India. Microbiol Resour Announc. 2022 Jun
   16;11(6):e0022922.

- Tran PN, Md Zoqratt MZH, Michalczyk A, Ackland ML. Genome sequence of *Lelliottia* sp. strain WAP21,
   isolated from soil in canola fields in Victoria, Australia. Microbiol Resour Announc. 2022 May
   19;11(5):e0101821.
- Bilous S, Likhanov A, Boroday V, Marchuk Y, Zelena L, Subin O, et al. Antifungal activity and effect of plant associated bacteria on phenolic synthesis of *Quercus robur* L. Plants (Basel). 2023 Mar 17;12(6):1352.
- Suescun-Sepulveda JA, Rondón González F, Fuentes Lorenzo JL. Diversity of culturable bacteria of
   freshwater environments from an altitudinal gradient in the eastern Cordillera of Colombia. FEMS Microbiol
   Lett. 2023 Jan 17;370:fnad037.
- 390 16. Osei R, Yang C, Cui L, Ma T, Li Z, Boamah S. Isolation, identification, and pathogenicity of *Lelliottia* 391 *amnigena* causing soft rot of potato tuber in China. Microb Pathog. 2022 Mar;164:105441.
- 392 17. Leal-Negredo A, Castelló-Abieta C, Leiva PS, Fernández J. Urinary tract infection by *Lelliottia amnigena* 393 (*Enterobacter amnigenus*): an uncommon pathogen. Rev Esp Quimioter. 2017 Dec;30(6):483–4.
- Martín Guerra JM, Martín Asenjo M, Dueñas Gutiérrez CJ. Pyonephrosis by *Lelliottia amnigena*. Med Clin
   (Barc). 2018 Nov 21;151(10):419–20.
- Section 19. Choi H, Hwang M, Chatterjee P, Jinadatha C, Navarathna DH. Rare *Lelliottia nimipressuralis* from a wound
   infection case report using whole genome sequencing-based bacterial identification. Diagn Microbiol Infect
   Dis. 2021 Dec;101(4):115538.
- 20. Legese MH, Asrat D, Swedberg G, Hasan B, Mekasha A, Getahun T, et al. Sepsis: emerging pathogens and
   antimicrobial resistance in Ethiopian referral hospitals. Antimicrob Resist Infect Control. 2022 Jun
   13;11(1):83.
- 402 21. Li A, Yan C, Zhang L, Liu S, Feng C, Zhang L, et al. Characterization and identification of a novel
  403 chromosomal class C β-lactamase, LAQ-1, and comparative genomic analysis of a multidrug resistance
  404 plasmid in *Lelliottia amnigena* P13. Front Microbiol. 2022;13:990736.
- EI Zowalaty ME, Falgenhauer L, Forsythe S, Helmy YA. Draft genome sequences of rare *Lelliottia nimipressuralis* strain MEZLN61 and two *Enterobacter kobei* strains MEZEK193 and MEZEK194 carrying
  mobile colistin resistance *mcr*-9 gene isolated from wastewater in South Africa. J Glob Antimicrob Resist.
  2023 Mar 20;S2213-7165(23)00050-4.
- Smith-Zaitlik T, Shibu P, McCartney AL, Foster G, Hoyles L, Negus D. Extended genomic analyses of the
  broad-host-range phages vB\_KmiM-2Di and vB\_KmiM-4Dii reveal slopekviruses have highly conserved
  genomes. Microbiology. 2022 Sep;168(9).
- 412 24. Smith-Zaitlik T. Bioinformatic and phenotypic characterization of bacteriophages encoded within and
   413 infecting Klebsiella michiganensis [MRes]. Nottingham Trent University; 2021.
- 25. Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. CheckM2: a rapid, scalable and accurate tool for
  assessing microbial genome quality using machine learning [Internet]. bioRxiv; 2022 [cited 2022 Aug 29]. p.
  2022.07.11.499243. Available from: https://www.biorxiv.org/content/10.1101/2022.07.11.499243v1
- 417 26. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A. Bakta: rapid and standardized
  418 annotation of bacterial genomes via alignment-free sequence identification. Microb Genom. 2021 Nov;7(11).
- 419 27. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, et al. Ribosomal multilocus sequence
  420 typing: universal characterization of bacteria from domain to strain. Microbiology. 2012 Apr;158(Pt 4):1005–
  421 15.
- 422 28. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average
  423 nucleotide identity. Int J Syst Evol Microbiol. 2016 Feb;66(2):1100–3.
- 424 29. Brown CT, Irber L. sourmash: a library for MinHash sketching of DNA. Journal of Open Source Software.
  425 2016 Sep 14;1(5):27.

- 30. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, et al. *In silico* detection and
  typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents
  Chemother. 2014 Jul;58(7):3895–903.
- 429 31. Redondo-Salvo S, Bartomeus-Peñalver R, Vielva L, Tagg KA, Webb HE, Fernández-López R, et al. COPLA,
  430 a taxonomic classifier of plasmids. BMC Bioinformatics. 2021 Jul 31;22:390.
- 431 32. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic
  432 resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020 Jan
  433 8;48(D1):D517–25.
- 434 33. Feldgarden M, Brover V, Fedorov B, Haft DH, Prasad AB, Klimke W. Curation of the AMRFinderPlus
  435 databases: applications, functionality and impact. Microbial Genomics. 2022;8(6):000832.
- 436 34. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to
  437 estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010
  438 May;59(3):307–21.
- 439 35. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids
   440 Res. 2019 Jul 2;47(W1):W256–9.
- 441 36. Feng CQ, Zhang ZY, Zhu XJ, Lin Y, Chen W, Tang H, et al. iTerm-PseKNC: a sequence-based tool for
   442 predicting bacterial transcriptional terminators. Bioinformatics. 2019 May 1;35(9):1469–77.
- 37. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum
  information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of
  bacteria and archaea. Nat Biotechnol. 2017 Aug 8;35(8):725–31.
- 38. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the
   PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124.
- 448 39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards for
  449 the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018 Jan;68(1):461–6.
- 450 40. Chen Y, Brook TC, Soe CZ, O'Neill I, Alcon-Giner C, Leelastwattanagul O, et al. Preterm infants harbour
  451 diverse *Klebsiella* populations, including atypical species that encode and produce an array of antimicrobial
  452 resistance- and virulence-associated factors. Microb Genom. 2020 Jun;6(6).
- 41. Bollet C, Elkouby A, Pietri P, de Micco P. Isolation of *Enterobacter amnigenus* from a heart transplant
  recipient. Eur J Clin Microbiol Infect Dis. 1991 Dec;10(12):1071–3.
- 455 42. Stock I, Wiedemann B. Natural antibiotic susceptibility of *Enterobacter amnigenus*, *Enterobacter cancerogenus*, *Enterobacter gergoviae* and *Enterobacter sakazakii* strains. Clin Microbiol Infect. 2002
  457 Sep;8(9):564–78.
- 43. Murugaiyan J, Krueger K, Roesler U, Weinreich J, Schierack P. Assessment of species and antimicrobial
  resistance among *Enterobacteriaceae* isolated from mallard duck faeces. Environ Monit Assess. 2015
  Mar;187(3):127.
- 461

| Image         Image <th< th=""><th>Strain</th><th>Accession</th><th>Source</th><th>Size (bp)</th><th>Contigs</th><th>GC content (%)</th><th>N50</th><th>CDS</th><th colspan="2">CheckM2</th></th<>     | Strain                  | Accession       | Source                    | Size (bp) | Contigs | GC content (%) | N50     | CDS  | CheckM2          |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|---------------------------|-----------|---------|----------------|---------|------|------------------|-------------------|
| M125293/1 (-GFK01)         JAUBK.00000000         Poppete lung, UK         429492         200         53.1         42623         3954         100         0.06           155047 <sup>7</sup> GCA_022171985         Human sputum, China         4990088         98         53.7         358667         4707         100         0.20           6331-17 <sup>7</sup> GCA_002923025         Water, Germany         4774442         1         52.9         447142         100         0.00           CCUG 25894 <sup>7</sup> GCA_002923025         Water, Germany         4774414         37         54.2         202682         4474         100         0.00           CCUG 25894 <sup>7</sup> GCA_00217125         Jogesjectgal, South Korea         460334         1         54.2         202682         4474         100         0.01           LST-1         CP053653         Stewix, China         3576481         1         41.1         3576481         3187         100         0.01           JCM 17292 <sup>7</sup> GCA_00153015         Sediment, Arabian Sea         445911         26         40.9         658688         4004         100         0.01           42277         134684         433         100         0.01         12         142         59                                                                                                                                                                                   |                         |                 |                           |           |         |                |         |      | Completeness (%) | Contamination (%) |
| 15547*       GCA_02217198       Human sputum, China       4990088       98       63.7       358667       4707       100       0.20         NCTC 12124*       GCA_900635465       Solit       4471442       1       52.9       4471442       4572       100       0.23         S33:17*       GCA_00223025       Water, Germany       4774414       37       54.2       22682       4474       100       0.00         0CUG 25894*       GCA_00227125       Jogaejeotgal, South Korea       4603334       1       54.2       22682       4474       100       0.01         LST-1       CP06363       Stevia, China       3576481       1       41.1       3576481       3187       100       0.01         20171166       GCA_001650155       Sediment, Arabian Sea       4459111       26       40.9       65888       4004       100       0.01         20171166       GCA_00431755       Soll, Netherlands       4662149       2       52.8       476430       119       100       0.00         A167       GCA_021498285       Soll, Netherlands       4662149       2       52.8       4520659       4344       100       0.05         ENT14       GCA_02602095       Human facese, C                                                                                                                                                                                                                                                                      | M1325/93/1 (=GFKo1)     | JAUBKL000000000 | Porpoise lung, UK         | 4294992   | 200     | 53.1           | 46243   | 3954 | 100              | 0.06              |
| NCTC 12124 <sup>1</sup> GCA_900635465         Soil         4471442         1         52.9         4471442         4572         100         0.23           6331-17 <sup>7</sup> GCA_002923025         Water, Germany         4774414         37         54.2         202682         4471         100         0.00           GCA_0015925         Elm tree, USA         4616251         67         54.8         226780         4293         100         0.01           LST-1         CP063663         Stevia, China         3576481         1         41.1         3576481         3187         100         0.03           JCM 17292 <sup>17</sup> GCA_001550155         Sediment, Arabian Sea         4459111         26         40.9         658688         4004         100         0.01           4282STDY7071380         GCA_004331765         Sediment, Arabian Sea         4467891         28         55.3         476430         4119         100         0.00           14928STDY7071380         GCA_021492185         Soil, Netherlands         4661343         909         53.0         5972         4272         90.45         4.58           ERN14050553         GCA_02620295         Human facees, China         3854042         799         53.4         5991                                                                                                                                                                                  | 155047 <sup>⊤</sup>     | GCA_022171985   | Human sputum, China       | 4990088   | 98      | 53.7           | 358667  | 4707 | 100              | 0.20              |
| 6331-17 <sup>7</sup> GCA_00222025         Water, Germany         4774414         37         54.2         202862         4474         100         0.00           CCUG 25894 <sup>1</sup> GCA_004115925         Elm tree, USA         4616251         67         54.8         236780         4293         100         0.05           PEL01 <sup>+</sup> GCA_002271215         Jogaejeotgal, South Korea         4603334         1         54.2         4603334         4237         100         0.03           JCM 172921         GCA_001550155         Sediment, Arabian Sea         4459111         26         40.9         658688         4004         100         0.01           4928STDY7071390         GCA_02140225         Soil, Netherlands         44667891         28         55.3         476430         4119         100         0.00           A167         GCA_025641975         Soil, USA         4716124         59         52.9         212085         4402         100         1.32           ERR1430553*         GCA_38033995         Human faeces, China         386402         799         53.4         5991         3704         88.88         5.15           ERR1430553*         GCA_019047865         Unknown         4065321         1         52.8                                                                                                                                                                                 | NCTC 12124 <sup>T</sup> | GCA_900635465   | Soil                      | 4471442   | 1       | 52.9           | 4471442 | 4572 | 100              | 0.23              |
| CCUG 2584 <sup>1</sup> GCA_00411925         Elm tree, USA         4616251         67         54.8         28780         4233         100         0.05           PFL01 <sup>1</sup> GCA_002271215         Jogaejeotgal, South Korea         4603334         1         54.2         4603334         4237         100         0.01           LST-1         CP063663         Stevia, China         376411         1         41.1         5376481         3187         100         0.03           JCM 17292 <sup>1</sup> GCA_001550155         Sediment, Arabian Sea         4459111         26         40.9         658688         4004         100         0.01           2017H106         GCA_00431765         Soli, Denmark         4606148         90         52.7         134684         4343         100         0.00           4067         GCA_0262641975         Soli, USA         4476124         59         52.9         212085         4402         100         1.32           ERR1430553*         GCA_096202905         Human faeces, China         3854042         799         53.4         5991         3704         88.98         515           ERR1430553*         GCA_905202905         Human faeces, China         3854042         799         53.4 <td< td=""><td>6331-17<sup>T</sup></td><td>GCA_002923025</td><td>Water, Germany</td><td>4774414</td><td>37</td><td>54.2</td><td>202682</td><td>4474</td><td>100</td><td>0.00</td></td<> | 6331-17 <sup>T</sup>    | GCA_002923025   | Water, Germany            | 4774414   | 37      | 54.2           | 202682  | 4474 | 100              | 0.00              |
| PFL01 <sup>+</sup> GCA_002271215         Jogaejedgal, South Korea         460334         1         54.2         460334         4237         100         0.01           LST-1         CP063663         Skevia, China         3576481         1         41.1         3576481         3187         100         0.03           JCM 17292 <sup>+</sup> GCA_001550155         Sediment, Arabian Sea         4459111         26         40.9         658688         4004         100         0.19           2017H166         GCA_004331765         Soil, Denmark         4606148         90         52.7         134864         4343         100         0.00           4928STDY7071390         GCA_021498285         Soil, Natherlands         4662149         2         52.8         4520659         4344         100         0.05           ENT01         GCA_025484975         Soil, USA         4716124         59         52.9         212085         4402         100         1.32           ERR1430553*         GCA_94070225         Rainbow trout gut, France         43533         99         53.0         5972         4272         90.45         458           ERR1430553*         GCA_019047465         Unknown         4591593         11         52.8         45                                                                                                                                                                                   | CCUG 25894 <sup>T</sup> | GCA_004115925   | Elm tree, USA             | 4616251   | 67      | 54.8           | 236780  | 4293 | 100              | 0.05              |
| LST-1         CP083663         Stevia, China         3576481         1         41.1         3576481         3187         100         0.03           JCM 17292 <sup>T</sup> GCA_001550155         Sediment, Arabian Sea         4459111         26         40.9         658688         4004         100         0.01           49285TD/7071390         GCA_004331765         Soil, Denmark         4467891         28         55.3         476430         4119         100         0.00           A187         GCA_02149125         Soil, Netherlands         4662149         2         52.8         4520659         4344         100         0.05           ENT01         GCA_025641975         Soil, USA         4716124         59         52.9         212085         4402         100         1.32           ERR1430553'         GCA_905202905         Human faces, China         3854042         799         53.4         5991         3704         88.98         5.15           ERR1430553'         GCA_019047465         Unknown         455932         1         52.8         4504532         4169         100         0.15           FDAAROS 1446         GCA_0190491185         Unknown         4599109         2         52.8         4504790                                                                                                                                                                                                   | PFL01 <sup>⊤</sup>      | GCA_002271215   | Jogaejeotgal, South Korea | 4603334   | 1       | 54.2           | 4603334 | 4237 | 100              | 0.01              |
| JCM 17292 <sup>T</sup> GCA_001550155         Sediment, Arabian Sea         4459111         26         40.9         658688         4004         100         0.19           2017H166         GCA_004331765         Soli, Denmark         4606148         90         52.7         134684         4433         100         0.01           4928STDY7071390         GCA_021498285         Soli, Nutherlands         4662149         2         52.8         4520659         4344         100         0.05           ENT01         GCA_025641975         Soli, USA         4716124         59         52.9         212085         4402         100         1.32           ERR1430553*         GCA_930520905         Human faeces, China         385133         909         53.0         5972         4272         90.45         4.58           ERR1430553*         GCA_947072025         Rainbow trout gut, France         4359307         65         52.9         139247         4050         99.37         0.65           FDAARGOS 1444         GCA_019047465         Unknown         4505532         1         52.8         4505532         4169         100         0.15           FDAARGOS 1446         GCA_019047445         Unknown         452.9         44505532         4169<                                                                                                                                                                            | LST-1                   | CP063663        | Stevia, China             | 3576481   | 1       | 41.1           | 3576481 | 3187 | 100              | 0.03              |
| 2017H1G6         GCA_004331765         Soil, Denmark         4606148         90         52.7         134684         4343         100         0.01           49283TDY7071390         GCA_021492185         Soil, Netherlands         4662149         2         52.8         476430         4119         100         0.00           A167         GCA_021498285         Soil, Netherlands         4662149         2         52.8         452059         4344         100         0.05           ENT01         GCA_025641975         Soil, USA         4716124         59         52.9         212085         4402         100         1.32           ERR1430553*         GCA_95202905         Human faeces, China         3854042         799         53.4         5991         3704         88.98         5.15           ERR1430553*         GCA_019047465         Unknown         490552         1         52.8         450532         4169         100         0.15           FDAARGOS 1446         GCA_019047465         Unknown         491411         5         52.6         4591698         4772         100         1.27           FDAARGOS 395         GCA_019349555         Unknown         459179         2         52.8         4504790         42                                                                                                                                                                                                | JCM 17292 <sup>⊤</sup>  | GCA_001550155   | Sediment, Arabian Sea     | 4459111   | 26      | 40.9           | 658688  | 4004 | 100              | 0.19              |
| 4928STDY7071390       GCA_902160115       Human faeces, UK       4467891       28       55.3       476430       4119       100       0.00         A167       GCA_021498285       Soil, Netherlands       4662149       2       52.8       4520659       4344       100       0.05         ENT01       GCA_025641975       Soil, USA       4716124       59       52.9       212085       4402       100       1.32         ERR1430553*       GCA_905202905       Human faeces, China       4361333       909       53.0       5972       4272       90.45       4.58         ERR1430553*       GCA_947072025       Rainbow trout gut, France       4359307       65       52.9       139247       4050       99.37       0.65         FDAARGOS 1444       GCA_019047465       Unknown       450532       1       52.8       450532       4169       100       0.15         FDAARGOS 1446       GCA_019355955       Unknown       4599109       2       52.8       4504790       4287       100       0.06         FDAARGOS_1445       GCA_023970615       Pig (sewage), China       452787       1       52.9       4456608       4130       100       0.01       0.02       0.02       0.02                                                                                                                                                                                                                                                               | 2017H1G6                | GCA_004331765   | Soil, Denmark             | 4606148   | 90      | 52.7           | 134684  | 4343 | 100              | 0.01              |
| A167         GCA_021498285         Soil, Netherlands         4662149         2         52.8         4520659         4344         100         0.05           ENT01         GCA_025641975         Soil, USA         4716124         59         52.9         212085         4402         100         1.32           ERR1430553*         GCA_938039995         Human facees, China         3864042         799         53.4         5991         3704         88.98         5.15           ERR1430553*         GCA_947072025         Rainbow trout gut, France         45059307         65         52.9         139247         4050         99.37         0.65           FDAARGOS 1444         GCA_019047465         Unknown         4505532         1         52.6         4591698         4772         100         1.27           FDAARGOS_1445         GCA_019048185         Unknown         4599109         2         52.8         4504790         4287         100         0.06           FDAARGOS_395         GCA_002393405         Soil, USA         4469608         1         52.9         4469608         4130         100         0.01           INSAq176         GCA_003752255         Unknown         4572787         1         52.9         455627                                                                                                                                                                                                | 4928STDY7071390         | GCA_902160115   | Human faeces, UK          | 4467891   | 28      | 55.3           | 476430  | 4119 | 100              | 0.00              |
| ENT01         GCA_025641975         Soil, USA         4716124         59         52.9         212085         4402         100         1.32           ERR1430553*         GCA_938039995         Human faeces, China         4361353         909         53.0         5972         4272         90.45         4.58           ERR1430553*         GCA_905020905         Human faeces, China         3854042         799         53.4         5991         3704         88.98         5.15           ERR5094855*         GCA_947072025         Rainbow trout gut, France         4359307         65         52.9         139247         4050         99.37         0.65           FDAARGOS 1444         GCA_019047465         Unknown         4505532         1         52.6         4591693         4772         100         1.27           FDAARGOS_1446         GCA_019047465         Unknown         459109         2         52.8         4504790         4287         100         0.06           FDAARGOS_1445         GCA_00233405         Soil, USA         4469608         1         52.9         44569608         4130         100         0.01           INSAq176         GCA_002375223         Unknown         4572787         1         52.9         457278                                                                                                                                                                                       | A167                    | GCA_021498285   | Soil, Netherlands         | 4662149   | 2       | 52.8           | 4520659 | 4344 | 100              | 0.05              |
| ERR1430553*         GCA_938039995         Human faeces, China         4361353         909         53.0         5972         4272         90.45         4.58           ERR1430553*         GCA_905202905         Human faeces, China         3854042         799         53.4         5991         3704         88.98         5.15           ERR5094855*         GCA_947072025         Rainbow trout gut, France         4359307         65         52.9         139247         4050         99.37         0.65           FDAARGOS 1444         GCA_019047465         Unknown         450532         1         52.8         4505532         4169         100         0.15           FDAARGOS 1446         GCA_019048185         Unknown         4914411         5         52.6         4591698         4772         100         1.27           FDAARGOS_1445         GCA_019355955         Unknown         459109         2         52.8         4504790         4287         100         0.06           INSAq176         GCA_021441185         Fish, Portugal         4422149         193         53.2         58074         4147         95.84         0.07           JUb66         GCA_023970615         Pig (sewage), China         4622385         2         52.9                                                                                                                                                                                      | ENT01                   | GCA_025641975   | Soil, USA                 | 4716124   | 59      | 52.9           | 212085  | 4402 | 100              | 1.32              |
| ERR1430553*         GCA_905202905         Human faeces, China         3864042         799         53.4         5991         3704         88.98         5.15           ERR5094855*         GCA_947072025         Rainbow trout gut, France         4359307         65         52.9         139247         4050         99.37         0.65           FDAARGOS 1444         GCA_019047465         Unknown         4505532         1         52.8         4505532         4169         100         0.15           FDAARGOS 1446         GCA_019048185         Unknown         4914411         5         52.6         4591698         4772         100         1.27           FDAARGOS_1445         GCA_019355955         Unknown         4599109         2         52.8         4504790         4287         100         0.06           FDAARGOS_395         GCA_002393405         Soil, USA         4469608         1         52.9         4469608         4130         100         0.01           INSAq176         GCA_021441185         Fish, Portugal         4422149         193         53.2         58074         41147         95.84         0.07           JUb66         GCA_003752235         Unknown         4572787         1         52.9         4555627 </td <td>ERR1430553*</td> <td>GCA_938039995</td> <td>Human faeces, China</td> <td>4361353</td> <td>909</td> <td>53.0</td> <td>5972</td> <td>4272</td> <td>90.45</td> <td>4.58</td>      | ERR1430553*             | GCA_938039995   | Human faeces, China       | 4361353   | 909     | 53.0           | 5972    | 4272 | 90.45            | 4.58              |
| ERR5094855*GCA_947072025Rainbow trout gut, France43593076552.9139247405099.370.65FDAARGOS 1444GCA_019047465Unknown4505532152.8450553241691000.15FDAARGOS 1446GCA_019048185Unknown4914411552.6459169847721001.27FDAARGOS_1445GCA_019355955Unknown4599109252.8450479042871000.06FDAARGOS_395GCA_002393405Soil, USA4469608152.9446960841301000.01INSAq176GCA_021441185Fish, Portugal442214919353.258074414795.840.07JUb66GCA_003752235Unknown4572787152.9455562742051000.02P13GCA_023970615Pig (sewage), China4622385252.9455562743161000.90TZW12GCA_016771075Water, Germany46941832652.534733346221000.05TZW13GCA_016770955Water, Germany4563111752.873123242061000.03TZW14GCA_016770955Water, Germany4756313552.634639644851000.03TZW15GCA_016770955Water, Germany4756313552.634639644811000.03TZW15GCA_016770955Water, Germany47563135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ERR1430553*             | GCA_905202905   | Human faeces, China       | 3854042   | 799     | 53.4           | 5991    | 3704 | 88.98            | 5.15              |
| FDAARGOS 1444GCA_019047465Unknown4505532152.8450553241691000.15FDAARGOS 1446GCA_019048185Unknown4914411552.6459169847721001.27FDAARGOS_1445GCA_019355955Unknown4599109252.8450479042871000.06FDAARGOS_395GCA_002393405Soil, USA4469608152.9446960841301000.01INSAq176GCA_021441185Fish, Portugal442214919353.258074414795.840.07JUb66GCA_003752235Unknown4572787152.9455262743161000.02P13GCA_023970615Pig (sewage), China4622385252.9455562743161000.08TZW12GCA_016771075Water, Germany46941832652.541595744201000.00TZW13GCA_016777095Water, Germany48302852652.533733346221000.01TZW14GCA_016770975Water, Germany45163811752.873123242061000.03TZW16GCA_016770975Water, Germany47563113552.634639644851000.03UMA3121GCA_016333605Forest soil, Portugal44206121952.955914940911000.00ZB04GCA_010652505Midgut of silkworm, China4616122 <t< td=""><td>ERR5094855*</td><td>GCA_947072025</td><td>Rainbow trout gut, France</td><td>4359307</td><td>65</td><td>52.9</td><td>139247</td><td>4050</td><td>99.37</td><td>0.65</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                        | ERR5094855*             | GCA_947072025   | Rainbow trout gut, France | 4359307   | 65      | 52.9           | 139247  | 4050 | 99.37            | 0.65              |
| FDAARGOS 1446GCA_019048185Unknown4914411552.6459169847721001.27FDAARGOS_1445GCA_019355955Unknown4599109252.8450479042871000.06FDAARGOS_395GCA_002393405Soil, USA4469608152.9446960841301000.01INSAq176GCA_021441185Fish, Portugal442214919353.258074414795.840.07JUb66GCA_003752235Unknown4572787152.9455562743161000.90P13GCA_023970615Pig (sewage), China4622385252.9455562743161000.90PTJIIT1005GCA_016771075Water, Germany46941832652.541595744201000.00TZW12GCA_016770955Water, Germany48302852652.533733346221000.05TZW14GCA_016770955Water, Germany47563113552.634639644851000.03TZW16GCA_016770955Water, Germany47563313552.634639644811000.03UMA3121GCA_013337605Forest soil, Portugal44206121952.955914940911000.03ZB04GCA_01652505Midgut of silkworm, China4616122154.3461612242051000.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FDAARGOS 1444           | GCA_019047465   | Unknown                   | 4505532   | 1       | 52.8           | 4505532 | 4169 | 100              | 0.15              |
| FDAARGOS_1445GCA_019355955Unknown4599109252.8450479042871000.06FDAARGOS_395GCA_002393405Soil, USA4469608152.9446960841301000.01INSAq176GCA_021441185Fish, Portugal442214919353.258074414795.840.07JUb66GCA_003752235Unknown4572787152.94557278742051000.02P13GCA_023970615Pig (sewage), China4622385252.9455562743161000.90PTJIIT1005GCA_022352085Water, India45507137152.929894042501000.08TZW12GCA_016771075Water, Germany46941832652.541595744201000.05TZW13GCA_016770995Water, Germany45163811752.873123242061000.01TZW14GCA_016770975Water, Germany47567113652.634639644851000.03TZW16GCA_016770955Water, Germany47563313552.634639644811000.03UMA3121GCA_01055205Midgut of silkworm, China4616122154.3461612242051000.03ZB04GCA_001652505Midgut of silkworm, China4616122154.3461612242051000.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FDAARGOS 1446           | GCA_019048185   | Unknown                   | 4914411   | 5       | 52.6           | 4591698 | 4772 | 100              | 1.27              |
| FDAARGOS_395GCA_002393405Soil, USA4469608152.9446960841301000.01INSAq176GCA_021441185Fish, Portugal442214919353.258074414795.840.07JUb66GCA_003752235Unknown4572787152.9457278742051000.02P13GCA_023970615Pig (sewage), China4622385252.9455562743161000.90PTJIIT1005GCA_016771075Water, India45507137152.929894042501000.08TZW12GCA_016771075Water, Germany46941832652.541595744201000.00TZW13GCA_016770995Water, Germany45163811752.873123242061000.01TZW14GCA_016770975Water, Germany45163811752.634639644851000.03TZW16GCA_016770955Water, Germany47563113552.634639644811000.03UMA3121GCA_016770955Forest soil, Portugal44206121952.955914940911000.00ZB04GCA_001652505Midgut of silkworm, China4616122154.3461612242051000.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FDAARGOS_1445           | GCA_019355955   | Unknown                   | 4599109   | 2       | 52.8           | 4504790 | 4287 | 100              | 0.06              |
| INSAq176GCA_021441185Fish, Portugal442214919353.258074414795.840.07JUb66GCA_003752235Unknown4572787152.9457278742051000.02P13GCA_023970615Pig (sewage), China4622385252.9455562743161000.90PTJIIT1005GCA_022352085Water, India45507137152.929894042501000.08TZW12GCA_016771075Water, Germany46941832652.541595744201000.00TZW13GCA_016770995Water, Germany48302852652.533733346221000.05TZW14GCA_016770975Water, Germany45163811752.873123242061000.03TZW15GCA_016770975Water, Germany47567113652.634639644851000.03TZW16GCA_016770955Water, Germany47563313552.634639644811000.03UMA3121GCA_011652505Midgut of silkworm, China4616122154.3461612242051000.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FDAARGOS_395            | GCA_002393405   | Soil, USA                 | 4469608   | 1       | 52.9           | 4469608 | 4130 | 100              | 0.01              |
| JUb66GCA_003752235Unknown4572787152.9457278742051000.02P13GCA_023970615Pig (sewage), China4622385252.9455562743161000.90PTJIIT1005GCA_022352085Water, India45507137152.929894042501000.08TZW12GCA_016771075Water, Germany46941832652.541595744201000.00TZW13GCA_016770995Water, Germany48302852652.533733346221000.05TZW14GCA_016770935Water, Germany45163811752.873123242061000.01TZW15GCA_016770975Water, Germany47567113652.634639644851000.03TZW16GCA_016770955Water, Germany47563313552.634639644811000.03UMA3121GCA_01652505Forest soil, Portugal44206121952.955914940911000.03ZB04GCA_001652505Midgut of silkworm, China4616122154.3461612242051000.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INSAq176                | GCA_021441185   | Fish, Portugal            | 4422149   | 193     | 53.2           | 58074   | 4147 | 95.84            | 0.07              |
| P13GCA_023970615Pig (sewage), China4622385252.9455562743161000.90PTJIIT1005GCA_022352085Water, India45507137152.929894042501000.08TZW12GCA_016771075Water, Germany46941832652.541595744201000.00TZW13GCA_016770995Water, Germany48302852652.533733346221000.05TZW14GCA_016770935Water, Germany45163811752.873123242061000.01TZW15GCA_016770975Water, Germany47567113652.634639644851000.03TZW16GCA_016770955Water, Germany47563313552.634639644811000.03UMA3121GCA_013337605Forest soil, Portugal44206121952.955914940911000.00ZB04GCA_001652505Midgut of silkworm, China4616122154.3461612242051000.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JUb66                   | GCA_003752235   | Unknown                   | 4572787   | 1       | 52.9           | 4572787 | 4205 | 100              | 0.02              |
| PTJIIT1005GCA_022352085Water, India45507137152.929894042501000.08TZW12GCA_016771075Water, Germany46941832652.541595744201000.00TZW13GCA_016770995Water, Germany48302852652.533733346221000.05TZW14GCA_016770935Water, Germany45163811752.873123242061000.01TZW15GCA_016770975Water, Germany47567113652.634639644851000.03TZW16GCA_016770955Water, Germany47563313552.634639644811000.03UMA3121GCA_013337605Forest soil, Portugal44206121952.955914940911000.03ZB04GCA_001652505Midgut of silkworm, China4616122154.3461612242051000.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P13                     | GCA_023970615   | Pig (sewage), China       | 4622385   | 2       | 52.9           | 4555627 | 4316 | 100              | 0.90              |
| TZW12GCA_016771075Water, Germany46941832652.541595744201000.00TZW13GCA_016770995Water, Germany48302852652.533733346221000.05TZW14GCA_016770935Water, Germany45163811752.873123242061000.01TZW15GCA_016770975Water, Germany47567113652.634639644851000.03TZW16GCA_016770955Water, Germany47563313552.634639644811000.03UMA3121GCA_013337605Forest soil, Portugal44206121952.955914940911000.00ZB04GCA_001652505Midgut of silkworm, China4616122154.3461612242051000.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PTJIIT1005              | GCA_022352085   | Water, India              | 4550713   | 71      | 52.9           | 298940  | 4250 | 100              | 0.08              |
| TZW13GCA_016770995Water, Germany48302852652.533733346221000.05TZW14GCA_016770935Water, Germany45163811752.873123242061000.01TZW15GCA_016770975Water, Germany47567113652.634639644851000.03TZW16GCA_016770955Water, Germany47563313552.634639644811000.03UMA3121GCA_013337605Forest soil, Portugal44206121952.955914940911000.03ZB04GCA_001652505Midgut of silkworm, China4616122154.3461612242051000.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TZW12                   | GCA_016771075   | Water, Germany            | 4694183   | 26      | 52.5           | 415957  | 4420 | 100              | 0.00              |
| TZW14GCA_016770935Water, Germany45163811752.873123242061000.01TZW15GCA_016770975Water, Germany47567113652.634639644851000.03TZW16GCA_016770955Water, Germany47563313552.634639644811000.03UMA3121GCA_013337605Forest soil, Portugal44206121952.955914940911000.00ZB04GCA_001652505Midgut of silkworm, China4616122154.3461612242051000.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TZW13                   | GCA_016770995   | Water, Germany            | 4830285   | 26      | 52.5           | 337333  | 4622 | 100              | 0.05              |
| TZW15         GCA_016770975         Water, Germany         4756711         36         52.6         346396         4485         100         0.03           TZW16         GCA_016770955         Water, Germany         4756331         35         52.6         346396         4481         100         0.03           UMA3121         GCA_013337605         Forest soil, Portugal         4420612         19         52.9         559149         4091         100         0.00           ZB04         GCA_001652505         Midgut of silkworm, China         4616122         1         54.3         4616122         4205         100         0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TZW14                   | GCA_016770935   | Water, Germany            | 4516381   | 17      | 52.8           | 731232  | 4206 | 100              | 0.01              |
| TZW16         GCA_016770955         Water, Germany         4756331         35         52.6         346396         4481         100         0.03           UMA3121         GCA_013337605         Forest soil, Portugal         4420612         19         52.9         559149         4091         100         0.03           ZB04         GCA_001652505         Midgut of silkworm, China         4616122         1         54.3         4616122         4205         100         0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TZW15                   | GCA_016770975   | Water, Germany            | 4756711   | 36      | 52.6           | 346396  | 4485 | 100              | 0.03              |
| UMA3121         GCA_013337605         Forest soil, Portugal         4420612         19         52.9         559149         4091         100         0.00           ZB04         GCA_001652505         Midgut of silkworm, China         4616122         1         54.3         4616122         4205         100         0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TZW16                   | GCA_016770955   | Water, Germany            | 4756331   | 35      | 52.6           | 346396  | 4481 | 100              | 0.03              |
| ZB04         GCA_001652505         Midgut of silkworm, China         4616122         1         54.3         4616122         4205         100         0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UMA3121                 | GCA_013337605   | Forest soil, Portugal     | 4420612   | 19      | 52.9           | 559149  | 4091 | 100              | 0.00              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZB04                    | GCA_001652505   | Midgut of silkworm, China | 4616122   | 1       | 54.3           | 4616122 | 4205 | 100              | 0.03              |

# 462 **Table 1.** Sequence summary statistics for Bakta-annotated genomes included in this study

463 \*MAGs; full names ERR1430553\_bin.131\_CONCOCT\_v1.1\_MAG, ERR1430553-bin.48 and ERR5094855\_bin.4\_metaWRAP\_v1.3\_MAG.

# 464 **Table 2.** Species identities of genomes included in this study as determined using different

# 465 methods

| Strain                  | Accession NCBI ID |                        | rMLST ID, % support      | oANI with type strain      |
|-------------------------|-------------------|------------------------|--------------------------|----------------------------|
|                         |                   |                        |                          | genome                     |
| M1325/93/1 (=GFKo1)     | JAUBKL000000000   | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.31 %        |
| 155047 <sup>T</sup>     | GCA_022171985     | Huaxiibacter chinensis | H. chinensis 100 %       | H. chinensis 100 %         |
| NCTC 12124 <sup>T</sup> | GCA_900635465     | L. amnigena            | L. amnigena 100 %        | L. amnigena 100 %          |
| 6331-17 <sup>T</sup>    | GCA_002923025     | L. aquatilis           | L. aquatilis 100 %       | L. aquatilis 100 %         |
| CCUG 25894 <sup>T</sup> | GCA_004115925     | L. nimipressuralis     | L. nimipressuralis 100 % | L. nimipressuralis 100 %   |
| PFL01 <sup>⊤</sup>      | GCA_002271215     | L. jeotgali            | L. aquatilis 90 %        | L. jeotgali 100 %          |
| LST-1                   | CP063663          | "L. steviae"           | P. arabiensis 100 %      | P. arabiensis 99.13 %      |
| JCM 17292 <sup>™</sup>  | GCA_001550155     | P. arabiensis          | P. arabiensis 100 %      | P. arabiensis 100 %        |
| 2017H1G6                | GCA_004331765     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.41 %        |
| 4928STDY7071390         | GCA_902160115     | L. amnigena            | L. nimipressuralis 93 %  | L. nimipressuralis 98.15 % |
| A167                    | GCA_021498285     | L. amnigena            | L. amnigena 100 %        | L. amnigena 93.65 %        |
| ENT01                   | GCA_025641975     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.29 %        |
| ERR1430553*             | GCA_938039995     | L. amnigena            | L. amnigena 54 %         | L. amnigena 99.15 %        |
| ERR1430553*             | GCA_905202905     | L. amnigena            | L. amnigena 57 %         | L. amnigena 99.20 %        |
| ERR5094855*             | GCA_947072025     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.32 %        |
| FDAARGOS 1444           | GCA_019047465     | L. amnigena            | L. amnigena 100 %        | L. amnigena 99.97 %        |
| FDAARGOS 1446           | GCA_019048185     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.32 %        |
| FDAARGOS_1445           | GCA_019355955     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.45 %        |
| FDAARGOS_395            | GCA_002393405     | L. amnigena            | L. amnigena 100 %        | L. amnigena 99.97 %        |
| INSAq176                | GCA_021441185     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.42 %        |
| JUb66                   | GCA_003752235     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.40 %        |
| P13                     | GCA_023970615     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.87 %        |
| PTJIIT1005              | GCA_022352085     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.85 %        |
| TZW12                   | GCA_016771075     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.45 %        |
| TZW13                   | GCA_016770995     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.30 %        |
| TZW14                   | GCA_016770935     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.24 %        |
| TZW15                   | GCA_016770975     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.42 %        |
| TZW16                   | GCA_016770955     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.42 %        |
| UMA3121                 | GCA_013337605     | L. amnigena            | L. amnigena 100 %        | L. amnigena 98.44 %        |
| ZB04                    | GCA_001652505     | L. amnigena            | H. chinensis 96 %        | H. chinensis 99.76 %       |

466 \*MAGs; full names ERR1430553\_bin.131\_CONCOCT\_v1.1\_MAG, ERR1430553-bin.48 and

467 ERR5094855\_bin.4\_metaWRAP\_v1.3\_MAG.

468



469 470

471 Fig. 1. Strain GFKo1 is a representative of *L. amnigena*. (a) Heatmap generated by 472 OAT: OrthoANI showing the ANI between GFKo1 and strains listed as type strains of 473 Lelliottia species with valid and non-valid names. GFKo1 shares highest oANI (%) with the 474 type strain of L. amnigena (accession assembly GCA 900635465). (b) Heatmap with 475 unidirectional clustering showing the similarity of sourmash signatures across all genomes 476 included in this study. The lighter the colour of the block on the heatmap, the more similar the two corresponding genome signatures. (c) RAXmL (best tree) generated by 477 478 PhyloPhIAn3 from the proteomes of high-quality (>90 % completeness, <5 % contamination; 479 Table 1) genome sequence data for the genus *Lelliottia*. The tree was rooted on the clade 480 containing L. nimipressuralis and L. aquatilis. Scale bar, average number of amino acid 481 substitutions per position. (b, c) The clade highlighted in light yellow represents L. amnigena 482 sensu stricto. 483



# 485

486 Fig. 2. bla<sub>LAQ</sub> is a core gene of *L. amnigena*. The bla<sub>LAQ-1</sub> sequence of *L. amnigena* P13 487 represents the reference for this chromosomally-encoded AmpC β-lactamase (21). Twelve other AmpC β-lactamases (ACT-12, ACT-22, BIL-1, CMY-2, CMY-20, LAT-1, CFE-1, YRC-488 489 1, MIR-1, MIR-23, ACT-6, ACT-10; (21)) were included in the analysis for comparative 490 purposes; the accessions for the amino acid sequences of these proteins are given in 491 parentheses. The tree was rooted at the midpoint. Scale bar, average number of amino acid 492 substitutions per position. The clade in yellow highlights L. amnigena sensu stricto 493 sequences. Bootstrap values >80 % (based on 100 replications) are shown on the tree. The 494 multiple sequence alignment used to create this phylogenetic tree is available as 495 Supplementary Material.