
1

DRL-Based Computation Rate Maximization for
Wireless Powered Multi-AP Edge Computing

Shubin Zhang, Senlei Bao, Kaikai Chi, Senior Member, IEEE, Keping Yu, Member, IEEE, and
Shahid Mumtaz, Senior Member, IEEE

Abstract—In the ongoing 5G and upcoming 6G eras, the
intelligent Internet of Things (IoT) network will take increasingly
important responsibility for industrial production, daily life and
so on. The IoT devices with limited battery size and computing
ability cannot meet many applications brought out by the
data-driven artificial intelligence technique. The combination of
wireless power transfer (WPT) and edge computing is regarded
as an effective solution to this dilemma. IoT devices can collect
radio frequency energy provided by hybrid access points (HAPs)
to process data locally or offload data to the edge servers of
HAPs. However, how to efficiently make offloading decisions and
allocate resource is challenging, especially for the networks with
multiple HAPs. In this paper, we consider the sum computation
rate maximization problem for a WPT empowered IoT network
with multiple HAPs and IoT devices. The problem is formulated
as a mixed-integer nonlinear programming problem. To solve
this problem efficiently, we decompose it into a top-problem of
optimizing offloading decisions and a sub-problem of optimizing
time allocation under the given offloading decisions. We propose a
deep reinforcement learning (DRL) based algorithm to output the
near-optimal offloading decision and design an efficient algorithm
based on Lagrangian duality method to obtain the consequent
optimal time allocation. Simulations verified that the proposed
DRL-based algorithm can achieve more than 95 percent of
the maximal computation rate with low complexity. Compared
with the common actor-critic algorithm, the proposed algorithm
has the substantial advantage in convergence speed, achieved
computation rate and running time.

Index Terms—Edge computing, wireless power transfer, re-
source allocation, computation rate maximization.

I. INTRODUCTION

A increasing number of IoT devices are taking important
responsibilities in industrial production and providing daily
convenience, including intelligent plant, automatic drive, smart
city and so on [1]. However, the demand for high intelligence
brings new challenges to traditional IoT devices with limited
battery capacity and poor computing capacity [2], [3]. Specif-
ically, in the 5G and upcoming 6G eras, an increasing number
of applications require the real-time data and corresponding
processing results to guarantee high reliability [4]. These
application scenarios put forward requirements for higher
computing power, more energy storage and more efficient
decision making.

S. Zhang, S. Bao and K. Chi are with the School of Computer Sci-
ence and Technology, Zhejiang University of Technology, China (e-mail:
{zhangshubin,2112112043,kkchi}@zjut.edu.cn).

Keping Yu is with the Graduate School of Science and Engineering, Hosei
University, Tokyo 184-8584, Japan. (email: keping.yu@ieee.org).

Shahid Mumtaz is with Nottingham Trent University, UK (e-mail:
dr.shahid.mumtaz@ieee.org).

In order to solve these series of challenges for intelligent
IoT in the new era, a paradigm integrated with mobile edge
computing (MEC) and wireless power transfer (WPT) is
regarded as an efficient solution for IoT networks [5]–[8].
Using the WPT, the radio frequency (RF) energy is broadcast
through the hybrid access points (HAP) to charge IoT devices
in the energy transmission stage [9]–[11]. Using MEC is to
deploy the server at the edge of the network lie base station
[12]. Since the MEC server usually has higher computing
ability, IoT devices can transmit the data to the edge server
for edge computation [13], [14].

The artificial intelligence (AI) algorithms, including deep
learning and deep reinforcement learning (DRL), are promis-
ing to be equipped on MECs to effectively and intelligently
control all the IoT devices [15], [16]. The integration of WPT,
MEC and AI gains much attention in recent years [18]. The
available works mainly focus on designing DRL method to
make offloading decisions and optimize resources allocation
[19], [20], so as to improve the performance and efficiency of
the algorithm.

To the best of our knowledge, there are very few literatures
focusing on the WPT empowered MEC with multiple HAPs,
which is practical for large-scale IoT networks. The available
algorithms designed for single HAP scenario can hardly be
directly applied to solve the offloading problem with multiple
HAPs. The exponential growth of the action space with the
number of WDs and HAPs makes it difficult for the available
algorithms like deep Q-network (DQN) [21] and supervised
learning [22] to come to converge. In addition, the resource
allocation problem of multiple HAPs scenario is more complex
than that of single HAP scenario.

This paper considers a WPT empowered MEC with multiple
HAPs and IoT devices. Aiming to maximize the sum com-
putation rate (SCR), we propose a DRL-based algorithm to
intelligently determine the offloading decision and an efficient
algorithm based on Lagrangian duality method to optimize the
resource allocation.

The main contributions of this paper are summarized as
follows:
• The sum computation data maximization is formulated as

a mixed-integer nonlinear programming (MINLP) prob-
lem. To efficiently solve it, we decompose it into a top-
problem of optimizing offloading decision and a sub-
problem of optimizing time allocation under the given
offloading decision.

• We propose an online deep neural network (DNN) based
DRL framework to output the near-optimal offloading

2

decision, that is, determine whether one WD conducts
the computation locally or offloads the data to one of
HAPs. The proposed DRL method can greatly reduce the
offloading decisions’ space and converge fast during the
online training process.

• For the concave sub-problem, based on Lagrangian dual-
ity method, a low-complexity algorithm is designed for
obtaining the optimal time allocation.

• We demonstrate through simulations that, compared with
the exhaustive search method, the proposed algorithm can
achieve more than 95 percent of the maximal computation
rate with low complexity.

The structure of this paper is as follows: Section II intro-
duces related works. Section III provides the system model.
Section IV formulates the problem and introduces the DRL-
based algorithm. Simulation results are given in Section V.
Finally, we make a conclusion in Section VI.

II. RELATED WORKS

According to different task models, the task offloading
modes of wireless devices (WDs) in WPT-MEC networks are
mainly partial offloading and binary offloading, depending on
whether the tasks of WDs are inseparable. Additionally, the
considered performance metrics are mainly computation rate,
energy efficiency, energy consumption, etc. Table I summa-
rizes some related works focusing on partial offloading and
binary offloading.

A. Partial Offloading

In [23], one WD relays part of the other WD’s data to
the server and process the remaining part. The total amount
of data processed within a given time frame was maximized
by jointly optimizing the time allocation, the transmit power,
etc. Zhou et al. [24] considered TDMA-based WPT-MEC
network where unmanned aerial vehicle (UAV) was used for
wireless energy supply and maximized the weighted SCR for
both partial offloading and binary offloading. In [25], Zhou et
al. also considered TDMA-based WPT-MEC and proposed a
soft actor-critic based UAV trajectory planning and resource
allocation algorithm to maximize the computation bits of WDs
in a fixed time period. In [17], we studied FDMA-based MEC
networks, and proposed an online offloading algorithm based
on DRL to maximize the SCR.

Shi et al. [26] considered the NOMA-based WPT-MEC
network, and maximized the energy efficiency of the network
by jointly optimizing the frequency and time resources of
the MEC server and IoT devices, as well as the transmission
powers of IoT devices and energy source.

[27] considered the TDMA-based WPT-MEC where AP
always charges WDs through beamforming technology. By
jointly optimizing beamforming, CPU frequency, offloaded
data volume and user time allocation, the total energy con-
sumption of AP was minimized while ensuring that all WDs’
tasks are completed within a fixed duration. [28] considered
the scenario where the dynamically arrived tasks in a fixed
period must be processed in this period. The total energy

consumption of the system was minimized by jointly opti-
mizing AP’s energy beamforming, local computation and task
offloading.

In [29], each WD has its own power source and only
harvests RF energy to supplement its power consumption.
Considering the WDs’ tasks with a latency constraint, the
authors optimized data partitioning, transmit power and time
allocation for computation offloading to minimize the trans-
mission energy consumption, and optimized the energy beam-
forming of AP for wireless charging to maximize the received
charging energy.

B. Binary Offloading

For TDMA-based binary offloading, [30] maximized the
SCR. For NOMA-based binary offloading, Zeng et al. [31]
proposed a channel-gain based greedy algorithm, aiming
to maximize the SCR. Nguyen et al. [32] investigated
backscatter-assisted data offloading in OFDMA-based WPT-
MEC system and maximized the SCR by jointly optimizing the
AP’s transmit power, backscatter coefficient, time allocation,
and offloading decision.

[33] considered both the TDMA and NOMA modes
and both the partial offloading and binary offloading. While
meeting the minimum computation amount of each WD, the
minimal computing efficiency of all WDs was maximized.

Wang et al. [34] optimized the weighted difference between
the overall computation rate and energy consumption, aiming
to achieve as much computation rate and as little energy
consumption as possible. In [35], the energy source forms
K directional RF energy beams for K nodes. Under the
given WPT duration and offloading duration, the total utility
of OFDMA-based offloaded data amount and AP’s energy
consumption was maximized while ensuring the constraint of
node task completion delay.

Liu et al. [36] studied the wireless-powered fog-cloud
computing network, where WDs choose to offload computing
tasks to fog servers, cloud servers, or full local computing. The
minimum energy surplus among all WDs was maximized by
jointly optimizing time allocation, CPU computing frequencies
and computing mode of each WD.

[37] minimized the computation delay when each WD has
a computation task to execute.

III. SYSTEM MODEL

A. Network Model

Fig. 1 shows the considered network with N WDs de-
noted as {WD1,WD2, . . . ,WDN} and M HAPs denoted
as {HAP1, HAP2, . . . ,HAPM}. Let N = {1, 2, ..., N} and
M = {1, 2, ...,M}. Each HAP carries one server. HAPs are
connected with the power source and integrated with energy
transfer circuit for broadcasting RF energy to the WDs. Every
WD can harvest the RF energy transmitted by HAPs, store
the harvested energy to its battery through energy transfer
circuit and provide power for the subsequent operations (local
computation or data transmission). When WDs are about to
process the data, they can execute the computation locally
by their own computing units or choose one certain HAP to

3

TABLE I
SUMMARY OF SOME RELATED WORKS FOCUSING ON PARTIAL OFFLOADING AND BINARY OFFLOADING.

References Access scheme Offloading mode Scenario Technique Objectives

He et al. [23] TDMA Partial offloading A MEC server with two users Convex optimization SCR

Zhou et al. [25] TDMA Partial offloading A UAV with multi-users DRL + Convex optimization SCR

Shi et al. [26] NOMA Partial offloading A MEC server with multi-users Convex optimization Energy efficiency

Wang et al. [28] TDMA Partial offloading A MEC server with multi-users Convex optimization Energy consumption

Zeng et al. [31] NOMA Binary offloading A MEC server with multi-users Greedy algorithm SCR

Nguyen et al. [32] OFDMA Binary offloading A MEC server with multi-users Optimization algorithm SCR

Zhou et al. [33] TDMA+NOMA Binary offloading + partial offloading A MEC server with multi-users Optimization algorithm Energy efficiency

Wang et al. [34] TDMA Binary offloading A MEC server with multi-users DRL Energy efficiency

Our paper TDMA Binary offloading Multiple MEC servers with multi-users DRL + Convex optimization SCR

WD1

WD2

WD3

WD4

WDN

Task Offloading

Local Computing

Task Offloading

Task Offloading

Task Offloading

Energy flow

Data flow

HAP1

HAP2

HAPM

Energy broadcasting

Energy Transfer

Circuit

Communication

Circuit

Computing Unit

. . .

. . .

Fig. 1. The considered multi-HAP WPT empowered edge computing.

offload data by communication circuit. When HAPs receive
data from WDs, HAPs will execute the computation by their
servers and transmit the result to WDs by communication
circuit.

In the considered scenario, for the WDs associated to the
same HAP, they communicate with HAP by using TDMA
protocol. The WDs associated to different HAPs use orthogo-
nal channels. WDs adopt harvest-then-transmit (HTT) protocol
which means they need to harvest energy before offloading
data to HAP. This network system can represent the IoT
network empowered by WPT and MEC, which is with the
requirements of long lifetime and complex computing task,
such as air quality monitoring [38], smart home appliance [39]
and so on.

B. Channel Model

In our scenario, system time is divided into time slots with
duration T , and the channel gain remains the same in one
time slot but varies in different time slots. hij represents the
channel gain between WDi and HAPj , which is expressed
as:

hij = |gij |2αij , (1)

Wireless Power

Transfer
Local Computing/Edge Computing

Edge Computing

Feedback

T

aT (1-a)T 0

Fig. 2. Time allocation for the WPT empowered edge computing.

where αij represents large-scale fading component and gij
represents the small-scale fading between WDi and HAPj .

C. Energy Harvesting Model

One time slot mainly consists of two parts (refer to Fig.
2): WPT phase and data offloading phase. In the WPT phase,
a WD can harvest RF energy from every HAP and store the
energy in its battery. The amount of energy captured by WDi

is:

Ei =

M∑
j=1

µPhijaT, (2)

where µ represents the energy capture efficiency, P represents
the energy transmit power of each HAP and a presents energy
harvest time ratio. In data offloading phase, each WD can
choose to offload data to one HAP or conduct the computation
locally. The detail of both computing modes is introduced
below.

D. Local Computing Model

If one WD processes its data locally by its own CPU, it
can harvest the RF energy while processing the data during
the whole time slot. φ represents the number of CPU cycles
consumed to process 1-bit data for WDs. fi represents WDi’s
CPU calculation speed in the unit of cycles/second, whose
value can be adjusted. So the amount of processed data can be
expressed as fiti/φ, where ti is the computation time of WDi.
The CPU energy consumption is modeled as cf3i ti, where c is
the computation energy efficiency coefficient. Furthermore, the
consumed energy should be smaller than the harvested energy,
i.e., cf3i ti ≤ Ei. It is not hard to know that to maximize the

4

processed data within a time slot, the optimal value of ti is
T and the optimal value of fi is (EicT)

1/3. Thus, the local
computing rate of WDi is:

rl,i =
fiti
φT

=
(
∑M
j=1 µPhija/c)

1/3

φ

= η1

 M∑
j=1

hija

1/3

, i ∈ N , (3)

where η1 , (µP/c)
1
3

φ .

E. Edge Computing Model
In the edge computing mode, a WD needs to choose a HAP

to offload data. All the WDs connected to the same HAP share
the (1 − a)T time duration to offload data. Denote the time
allocated for WDi connected with HAPj as τijT . Notice
that for WDk which is not associated to HAPj , τkj > 0
just wastes the time resource of HAPj and is clearly not the
optimal solution.

The amount of feedback after HAP processed the data
offloaded from WDi is denoted by ρibi, where 0 < ρ � 1
indicates the ratio of output/input in downlink transmission
[30]. We denote f0 and P0 as CPU frequency and transmission
power of HAPs respectively. Then the time spent by HAPj
on data processing and feedback to WDi can be expressed as:
t0 = φbi

f0
+ ρbi

Blog2
(
1+

P0hij
N0

) . Considering the CPU frequency

and the transmit power of HAPs is more than three orders of
magnitude stronger than WDss [27], it’s reasonable to neglect
the time spent on data processing and result feedback. Hence
a time slot is mainly divided as two parts as shown in Fig. 2
and the following condition must hold:

N∑
i=1

τij + a ≤ 1,∀j ∈M. (4)

The amount of offloaded data bi of WDi is:

bi =
BτijT

vu
log2

(
1 +

Pihij
N0

)
, (5)

where B represents the bandwidth, vu≥ 1 represents the factor
that represents communication overhead in data offloading,
including the encryption cost and data header, Pi is transmit
power of WDi, and N0 is additive white Gaussian noise
(AWGN) power.

In order to ensure that WDi can offload as much data as
possible, the energy it harvested in WPT phase should be
exhausted, i.e., Pi = Ei

τijT
, thus the maximal computation rate

of edge computing for WDi can be expressed as:

ro,ij =
bi
T

=
Bτij
vu

log2

(
1 +

µPahij
∑M
k=1 hik

τijN0

)

= ετij ln

(
1 +

η2hij
∑M
k=1 hik

τij
a

)
, (6)

where ε , B
vu ln 2 and η2 , µP

N0
.

IV. PROBLEM FORMULATION AND EFFICIENT ALGORITHM

In this section, we formulate the SCR maximization prob-
lem, propose an offloading algorithm based on DRL and de-
sign a Lagrangian duality based algorithm for time allocation.

A. Problem Formulation

Let h = [h1,h2, . . . ,hN] where hi = [hi1, hi2, . . . , hiM]
is the channel gain of WDi. Let x = [x1,x2, . . . ,xN]
where xi = [xi,0, xi,1, . . . , xi,M] is the offloading decision
indicator of WDi. xi,0 = 1 represents WDi process task
by local computing, xi,j = 1(j 6= 0), represents that WDi

offloads data to HAPj . Let τ = [τ1, τ2, . . . , τN] where
τi = [τi,1, τi,2, ..., τi,M].

Then combining (3) and (6), the SCR of one time slot is
given by:

Q(h,x, τ , a) ,
N∑
i=1

xi · [rl,i, ro,i1, ro,i2, . . . , ro,iM]
T
, (7)

In the scenario we considered, our goal is to maximize the
SCR achieved in one time slot. So the problem is formulated
as (P1):

(P1) : Q∗(h) = maximize
x,τ ,a

Q(h,x, τ , a) (8a)

s.t. 0 ≤ τij ≤ 1,∀i ∈ N ,∀j ∈M, (8b)
0 ≤ a ≤ 1, (8c)
N∑
i=1

τij + a ≤ 1,∀j ∈M, (8d)

M∑
j=0

xi,j = 1,∀i ∈ N , (8e)

xi,j ∈ {0, 1} ,∀i ∈ N ,∀j ∈M. (8f)

Constraints (8b), (8c) and (8d) mean that each WD’s offloading
duration allocated from each HAP, the WPT duration, and the
total allocated time from each HAP cannot exceed the slot
duration, respectively. Constraint (8e) means that each WD
can be associated to at most one HAP.

It’s obvious that problem (P1) is an MINLP problem which
is hard to solve. However, once the value of x is given, (P1)
can be transformed to the following concave sub-problem (P2).

(P2) : Q∗(h,x) = maximize
τ ,a

Q(h,x, τ , a) (9a)

s.t. 0 ≤ τij ≤ 1,∀i ∈ N ,∀j ∈M, (9b)
N∑
i=1

τij + a ≤ 1,∀j ∈M, (9c)

0 ≤ a ≤ 1. (9d)

The algorithm for solving sub-problem (P2) will be intro-
duced later. Below we first introduce the DNN based DRL
algorithm, which is able to output the near-optimal offloading
decisions according to h of WDs in the current time slot.

5

Input for current

time slot

Compute Q*(h, x)

by solving convex

problem (P3)

Channel Gain

DNN

...

Sampling

Offloading Decision
x

...

o10

o1Mo1M

...

oN0

oNM

Normalized

Normalized

Policy
p

...

p10

p1M

...

Sampling

.

.

.

...

pN0

pNM

Training

Output

O

 x, , a

Fig. 3. The framework of the proposed algorithm.

TABLE II
NOTATIONS USED THROUGHOUT THE PAPER

Notation Description

N The number of WDs

M The number of HAPs

T The length of time slot

N The set of WDs

M The set of HAPs

hij The channel gain between WDi and HAPj
αij The large-scale fading component between WDi and HAPj
gij The small-scale fading between WDi and HAPj
Ei The amount of energy captured by WDi

µ The energy capture efficiency

P The energy transmit power of HAPs

a The energy harvest time ratio

rl,i The local computation rate of WDi

φ The number of CPU cycles consumed to process 1-bit data

ρ The ratio of output/input in downlink transmission

f0 The CPU calculation speed of HAPs

P0 The transmit power of HAPs

t0 The computation and result feedback time used by HAP in edge
computing

fi The CPU calculation speed of WDi

ti The computation time used by WDi in local computing

c The computation energy efficiency coefficient

τij The offloading time allocated ratio for WDi connected with
HAPj

bi The amount of offloaded data offloaded by WDi

B The communication bandwidth

vu The communication overhead in data offloading

Pi The transmit power of WDi

N0 The additive white Gaussian noise power

ro,ij The computation rate of edge computing for WDi offloads data to
HAPj

Q(·) The sum computation rate function

xij The offloading indicator for WDi

τi The vector of offloading time allocated ratio for WDi

π The policy function

θ The parameters of DNN

o The origin output of DNN

pij The probability of WDi executes offloading decision

p∗i The probability of WDi actually executing offloading decision

β The learning rate of DNN

B. The DRL Algorithm for Offloading Decision

The whole framework of our algorithm is shown in Fig. 3.
Denote the DNN by πθ, where θ represents the weights and
bias in the DNN. The input of the DNN is the channel gain
h and the output is a vector o consisting of N × (M + 1)
elements, i.e.,

o = πθ(h). (10)

In the beginning of a time slot, h, which consists of all
the N ×M WD-HAP channel gains, is input into DNN πθ.
Then the DNN outputs o = [o10, ..., o1M , ..., oN0, ...oNM].
For the sake of easy understanding, we can see o as a matrix
with dimension (M + 1)×N :

o =


o10 o20 ... oN0

o11 o21 ... oN1

...

o1M o2M ... oNM

 . (11)

Then, every column vector of o is normalized and a new
matrix p is obtained:

p =


p10 p20 ... pN0

p11 p21 ... pN1

...

p1M p2M ... pNM

 , (12)

where pij =
oij∑M
k=0 oik

.
It is obvious that, the sum of the elements in one column

is 1, i.e.,
∑M
j=0 pij = 1,∀i ∈ N . p is the policy to make

offloading decision for every WD. Every column vector pi
of matrix p represents the offloading policy for WDi, i.e.,
the probabilities of offloading data to different HAPs. Its

6

element pi0 represents the probability that WDi conducts the
computation locally, and pij(j 6= 0) represents the probability
that WDi offloads data to HAPj . Then we randomly sample
offloading decision according to the obtained probability dis-
tribution pi and use the sampling result xi as the offloading
decision of WDi. Note that the sampling only leads to one
of following cases for WDi: local computing (xi,0 = 1),
offloading data to HAP1 (xi,1 = 1), ..., offloading data to
HAPM (xi,M = 1).

Let p∗i = pij satisfying xi,j = 1. p∗i will be used to calculate
the loss of obtained offloading decision for training the DNN.

We use one example to illustrate how to obtain p and x
from o. In a network containing 3 WDs and 2 HAPs, suppose
that the original output of the DNN is:

o =


0.04 0.02 0.04

0.28 0.12 0.02

0.02 0.2 0.10

 . (13)

Then after normalization, we have the following p:

p =


0.12 0.059 0.25

0.82 0.353 0.125

0.06 0.588 0.625

 . (14)

Suppose that after random sampling, WD1, WD2 and WD3

choose the computation mode as local computing, offloading
data to HAP2 and offloading data to HAP1, respectively.
Then we can get the offloading decision x1 = [1, 0, 0],
x2 = [0, 0, 1], and x3 = [0, 1, 0]. So p∗1 = p10 = 0.12,
p∗2 = p22 = 0.625, and p∗3 = p31 = 0.125.

The training of this proposed DRL algorithm for offloading
decision has two important parts: setting a baseline of offload-
ing decision’s utility and updating DNN.
• Setting baseline: For every time slot, we need a baseline

utility to evaluate the goodness of obtained offloading
decision, such that we can give reward (positive value)
for a good decision and give punishment (negative value)
for a bad decision. We set the average SCR of the most
recent K time slots as the baseline utility. The appropriate
value of K will be investigated later.

• Updating DNN: We adopt a policy gradient-like updating
method. Considering that the occurrence probabilities
of WDs’ offloading decisions are independent of one
another, the probability of obtained offloading decision
x is

∏N
i=1 p

∗
i . Hence, the loss function can be expressed

as:

Loss = − log

(
N∏
i=1

p∗i

)
× (Q∗ (h,x)− baseline) .

(15)
The policy provided by DNN will be improved with time

slots going by and converges after a number of time slots. Note
that the proposed DRL algorithm is different from supervised
learning. For the supervised learning, a number of samples
with labels must be prepared in advance for training the DNN.
For our algorithm, there is no need to prepare the samples with

Algorithm 1 DRL based offloading algorithm
Require: h, number of time slots num;
Ensure: x;

1: Initialize parameters θ of DNN;
2: while t < num do
3: Generate output o by DNN with input of h;
4: Normalize every M+1 elements in o and obtain policy

p;
5: Do sampling according to p: x = sampling(p);
6: With the obtained x, solve Problem (P3) and get

Q∗(h,x);
7: Calculate the loss of DNN network: Loss =

− log
(∏N

i=1 p
∗
i

)
∗ (Q∗(h,x− baseline);

8: Update the parameters of the DNN θ: θt+1 = θt −
β
(
∂Loss
∂θ

)
;

9: end while

labels, which will generate the samples during its running in
the environment. The proposed algorithm is a kind of policy-
based DRL. Compared with the common policy-based DRL
such as the actor-critic (AC) algorithm, we abandon critic
network in the original stochastic policy gradient algorithm
and use the reward function to judge the actions’ goodness.
The reason is that our scenario only considers a single time
slot, and the objective function (or can be seen as a reward
function) can accurately measure the value of the current
action without bias by the real value directly obtained in the
environment.

C. Optimization Algorithm for Time Resource Allocation

After obtaining the offloading decision x, we optimize time
allocation to maximize the SCR of the network under a certain
offloading decision.

Below, let N0 be the set of WDs’ indices which conduct
the computation locally and Nk be the set of WDs’ indices
which offload data to HAPk. Nk = φ if no WD is associated
to HAPk. So, N0 +N1 + ...+NM = N . Let M′ be the set
of HAPs’ indices which have at least one associated WD.

If M′ = φ (i.e., all WDs conduct the computation locally),
then it is clear that the sub-problem is simple and the optimal
value of a is 1. Below, we consider the caseM′ 6= φ. Without
loss of generality, suppose that HAP1 has at least one WD to
offload data.

7

When we get x, (9) can be expressed as:

(P3) : Q∗(h,x) =

maximize
τ ,a

∑
i∈N0

η1

(
M∑
q=1

hiq

) 1
3

a
1
3+

∑
k∈M′

∑
j∈Nk

ετjkln

(
1 +

η2hjk
∑M
q=1 hjq

τjk
a

)
(16a)

s.t. 0 ≤ τjk ≤ 1,∀j ∈ Nk, k ∈M′, (16b)∑
j∈Nk

τjk + a ≤ 1,∀k ∈M′, (16c)

0 ≤ a ≤ 1. (16d)

Lemma 1. The optimization problem (16) is concave with
respect to (a, τ).

Proof. For the first term of (16a), i.e., the computing rate
of local computing. It is obvious that exponential function
f(a) = a1/3 is concave function with respect to (a, τ).
According to the fact η1

(∑M
q=1hiq

)
> 0 and the addition

property of concavity, the first term is concave with respect to
(a, τ). For the second term of (16a), i.e., the offloading rate
of WDs. Since the logarithmic function g(a) = ln(1 + a) is
concave, according to chapter 3.2.6 in [40], its perspective
function τjkg(a/τjk) = τjk ln(1 + a/τjk) is concave with
respect to (a, τjk). Since the value of η2hjk

∑M
q=1 hjq and

ε is greater than 0, they will not influence the concavity
of the second term. According to the addition property of
concavity, the second term of (16a) is concave respect to
(a, τ). Considering that the constraints (16b), (16c), (16d) are
affine, the optimization problem (16) is concave with respect
to (a, τ).

Since (P3) is concave, it can be solved using the available
algorithms. However, they usually take much time to obtain
the optimal solution. Hence, using the available algorithms
are not efficient enough in the fast-fading environment. To
efficiently solve problem (P3), we design an algorithm based
on the Lagrangian duality method.

By introducing Lagrangian multipliers, Lagrangian of (16)
can be expressed as:

L (a, τ ,λ) =
∑
i∈N0

η1

(
M∑
q=1

hiq

) 1
3

a
1
3+

∑
k∈M′

∑
j∈Nk

ετjkln

(
1 +

η2hjk
∑M
q=1 hjq

τjk
a

)
+

∑
k∈M′

λk

(
1− a−

∑
j∈Nk

τjk

)
(17a)

s.t. 0 ≤ τjk ≤ 1,∀j ∈ Nk, k ∈M′, (17b)
0 ≤ a ≤ 1, (17c)

where λ = {λ1, λ2, . . . , λM} � 0 are Lagrange Multipliers
associated with the constraints (16c).

Then, the dual problem is

min
λ�0

max
a,τ

L (a, τ ,λ) . (18)

Next we investigate the relationship between a∗,τ ∗ and λ∗

which are the optimal values of a,τ and λ, respectively.
Utilizing the Karush-Kuhn-Tucker (KKT) optimality condi-

tion, we can get following equations:

∂L

∂τjk

∣∣∣∣
τjk=τ∗jk,a=a

∗
=ε ln

(
1 +

η2hjk
∑M
q=1 hjq

τ∗jk
a∗

)

−
εη2hjk

∑M
q=1 hjqa

∗τ∗jk
−1

1 + η2hjk
∑M
q=1 hjqa

∗τ∗jk
−1 − λ

∗
k = 0,

∀j ∈ Nk, k ∈M′,
(19)

∂L

∂a

∣∣∣∣
τjk=τ∗jk,a=a

∗
=
∑
i∈N0

η1

(
M∑
q=1

hiq

) 1
3

1

3
(a∗)−

2
3

+
∑
k∈M′

∑
j∈Nk

ε η2hjk
∑M
q=1 hjq

1 +
η2hjk

∑M
q=1 hjq

τ∗jk
a∗

−λ∗k
= 0,

(20)

1− a∗ −
∑

j∈Nk
τ∗jk = 0, ∀k ∈M′. (21)

In the following lemma, we show that a∗ can be expressed
as a function of λ∗k(∀k ∈M′) and τ∗jk can be expressed as a
function of a∗ and λ∗k.

Lemma 2. The optimal {a∗, τ ∗,λ∗} satisfy:

τ∗jk = η2hjk

M∑
q=1

hjqa
∗ψ (λ∗k) , ∀j ∈ Nk, k ∈M′, (22)

a∗ =
1

1 + η2
∑
j∈Nk hjk

∑M
q=1 hjqψ (λ∗k)

,∀k ∈M′, (23)

where

ψ (λ∗k) =

−
W

− 1

exp
(
1 +

λ∗k
ε

)
−1 − 1


−1

, (24)

and W (·) is Lambert W function.

Proof. From (19) we have the following equation:

ln

(
1 + η2hjk

M∑
q=1

hjqτ
∗
jk
−1a∗

)
=(

1 +
λ∗k
ε

)
− 1

1 + η2hjk
∑M
q=1 hjqτ

∗
jk
−1a∗

.

(25)

Taking natural exponential operation at both sides:

xexp

(
1

x

)
= exp

(
1 +

λ∗k
ε

)
, (26)

where x = 1 + η2hjk
∑M
q=1 hjqa

∗τ∗jk
−1.

8

We further have

(− 1

x
)(e−

1
x) = − 1

exp
(
1 +

λ∗k
ε

) . (27)

So we can solve the equation for τ∗jk by:

1

x
=−W

 −1

exp
(
1 +

λ∗k
ε

)
=(1 + η2hjk

M∑
q=1

hjqa
∗τ∗jk

−1

)−1
(28)

and τ∗jk can be expressed as:

τ∗jk = η2hjk

M∑
q=1

hjqa
∗ψ(λ∗k), (29)

where ψ (λ∗k) is given above.
According to (21), ∀k ∈M′, we have

a∗ =
1

1 + η2
∑
j∈Nk hjk

∑M
q=1 hjqψ(λ

∗
k)
. (30)

The proof is completed.

Lemma 3. The relationship between λ∗1 and λ∗k,∀k ∈ M′ −
{1} is:

λ∗k =
(
ln
(
1 +Hkψ

−1(λ∗1)
)
+
(
1 +Hkψ

−1(λ∗1)
)−1 − 1

)
ε,

(31)

where Hk ,
∑
i∈Nk

hik
∑M
q=1 hiq∑

j∈N1
hj1

∑M
q=1 hjq

.

Proof. According to (23), we can get:

a∗ =
1

1 + η2
∑
i∈Nk hik

∑M
q=1 hiqψ (λ∗k)

=
1

1 + η2
∑
j∈N1

hj1
∑M
q=1 hiqψ (λ∗1)

,∀k ∈M′ − {1}.

(32)

Thus, we get the relationship between λ∗1 and λ∗k,∀k ∈M′−
{1} as follows:

ψ (λ∗k) =

∑
j∈N1

hj1
∑M
q=1 hjq∑

i∈Nk hik
∑M
q=1 hiq

ψ (λ∗1) = H−1k ψ (λ∗1) . (33)

Substitute ψ (λ∗k) =

−
W

− 1

exp

(
1+

λ∗
k
ε

)
−1 − 1


−1

into the above equation, we can get:

λ∗k =
(
ln
(
1 +Hkψ

−1(λ∗1)
)
+
(
1 +Hkψ

−1(λ∗1)
)−1 − 1

)
ε.

(34)
The proof is completed.

Lemma 4. Lagrange multiplier λ∗1 satisfies:

∑
i∈N0

η1

(
M∑
q=1

hij

) 1
3

1

3
a∗−

2
3

+
∑

k∈M′−{1}

∑
j∈Nk

ε η2hjk
∑M
q=1 hjq

1 +
η2hjk

∑M
q=1 hjq

τ∗jk
a∗


−
(
ln
(
Hkψ

−1(λ∗1) + 1
)
+
(
Hkψ

−1(λ∗1) + 1
)−1 − 1

)
ε
]

+
∑
j∈N1

ε η2hj1
∑M
q=1 hjq

1 +
η2hj1

∑M
q=1 hjq

τ∗j1
a∗

− λ∗1 = 0,

(35)

where Hk ,
∑
i∈Nk

hik
∑M
q=1 hiq∑

j∈N1
hj1

∑M
q=1 hjq

, ∀k ∈ M′ − {1}, and a∗ is

a function of λ∗1 (see (32)).

Proof. Substitute (31) into (20), we get:

∂L

∂a
= La(λ

∗
1) =

∑
i∈N0

η1

(
M∑
q=1

hiq

) 1
3

1

3
a∗−

2
3

+
∑

k∈M′−{1}

[∑
j∈Nk

ε η2hjk
∑M
q=1 hjq

1 +
η2hjk

∑M
q=1 hjq

τ∗jk
a∗


−
(
ln
(
1 +Hkψ

−1(λ∗1)
)
+
(
1 +Hkψ

−1(λ∗1)
)−1 − 1

)
ε

]

+
∑
j∈N1

ε η2hj1
∑M
q=1 hjq

1 +
η2hj1

∑M
q=1 hjq

τ∗j1
a∗

− λ∗1 = 0.

(36)

The proof is completed.

Lemma 3 gives an equation (35) consisting only one vari-
able λ∗1 as a can be expressed the function of λ∗1 (refer to
(32)). In order to further obtain the value of λ∗1, we analyze
the monotonicity of (35).

Lemma 5. La(λ∗1) is a monotonically decreasing function
with respect to λ∗1.

Proof. Following (31), we first define:

F (x) ,
(
ln (1 +Hkx) + (1 +Hkx)

−1 − 1
)
ε. (37)

Then the first derivative of F (x) with respect to x is derived:

F ′(x) =
Hk

2x

(Hkx+ 1)
2 ε. (38)

From (38), we can know that F ′(x) is positive when x is
positive and is negative when x is negative.

9

In addition, we have

L′a (λ
∗
1)=

∑
i∈N0

η1

(
M∑
q=1

hiq

) 1
3

(−2

9
)a∗−

5
3
∂a∗

∂λ∗1

−
∑

k∈M′−{1}

∑
j∈Nk

[(
η2hjk

∑M
q=1 hjq

)2
τ∗jkε

]
(
τ∗jk + η2hjk

∑M
q=1 hjqa

∗
)2 ∂a∗∂λ∗1


−

∑
k∈M′−{1}

[F ′(λ∗1)
[
ψ−1(λ∗1)

]′
]ε

+
∑
j∈N1

−
[(
η2hj1

∑M
q=1 hjq

)2
τ∗j1ε

]
(
τ∗j1 + η2hj1

∑M
q=1 hjqa

∗
)2 ∂a∗∂λ∗1

− 1.

(39)

When λ∗1 is greater than 0, the value of − 1

exp

(
1+

λ∗1
ε

)
belongs to the interval (−1/e, 0), so the value of

W

− 1

exp

(
1+

λ∗1
ε

)
 belongs to the interval (−1, 0). Then

according to (24), we can get that the value of ψ−1(λ∗1) is
greater than 0, i.e., ∂F (ψ−1(λ∗1))

∂ψ−1(λ∗1)
is greater than 0. On the other

hand, ψ−1(λ∗1) is a monotonically increasing function of λ∗1
when λ∗1 is greater than 0, and thus

[
ψ−1(λ∗1)

]′
> 0.

From (23) we get that a∗ is a monotonically decreasing
function of ψ(λ∗1). Since ψ(λ∗1) is a monotonically decreasing
function of λ∗1, a∗ is a monotonically increasing function of
λ∗1 which means the value of ∂a∗

∂λ∗1
is greater than 0. Above

all, since we can get that each term in the (39) is less than 0,
La (λ

∗
1) is a monotonically decreasing function of λ∗1.

The proof is completed.

It should be further explained that the obtained τ∗ and
a∗ must satisfy the boundary constraint (17b) and (17c),
respectively, which are not taken into account in the above
analysis. Below we show that they are satisfied. When λ∗1 = 0,

W

− 1

exp

(
1+

λ∗1
ε

)
 = −1. According to (24), ψ−1(λ∗1) = 0.

So when λ∗1 = 0, substituting ψ−1(λ∗1) = 0 into La(λ
∗
1),

we can know that La(λ∗1) > 0. Considering the decreasing
monotonicity of La(λ

∗
1), the solution found by bisection

method must locates on (0,+∞), i.e., λ∗1 > 0. According to
(24), when λ∗1 > 0, ψ(λ∗1) > 0. By using (23) in Lemma 1, we
can find that a∗ obtained by the proposed algorithm belongs to
(0, 1). By using (31) in Lemma 2, we can find that λ∗k obtained
by the proposed algorithm belongs to (0,+∞). By using (22)
in Lemma 1, the τ∗jk derived by the proposed method must
satisfy τ∗jk > 0. Additionally, τ∗jk < 1 holds. Otherwise, a∗

obtained in (30) by using (21) definitely does not belong to
(0, 1), which contradicts with the previous conclusion that
a∗ obtained by the proposed algorithm belongs to (0, 1).
Hence, all the solutions derived by the proposed optimization
algorithm, including a∗, λλλ∗ and τττ∗, can satisfy the constraints,

Algorithm 2 The Lagrangian duality based optimization al-
gorithm for solving problem (P3)
Require: channel state h, offloading decision x;
Ensure: The offloading duration for every ED τ , WPT dura-

tion a;
1: Initialize error tolerance γ = 0.0001
2: Initialize λmax1 = 100000000, λmin1 = 0, λ1 =(

λmax1 + λmin1

)
/2

3: Calculate La(λ1) by substituting λ1 into (35);
4: while λmax1 − λmin1 > γ do
5: if La(λ1) < 0 then
6: λmax1 = λ1 and λ1 =

(
λmax1 + λmin1

)
/2

7: end if
8: if La(λ1) > 0 then
9: λmin1 = λ1 and λ1 =

(
λmax1 + λmin1

)
/2

10: end if
11: end while
12: By substituting λ1 into (31), obtain the value of λ∗k,∀k ∈
M;

13: By substituting λ∗1 into (23), obtain the value of optimal
WPT duration a∗;

14: By substituting λ∗k and a∗ into (22), obtain the optimal
value of τ∗;

which means that the proposed optimization method can obtain
the optimal solutions for problem (P3).

Finally, our algorithm for sub-problem (P3) is as follows
(refer to Algorithm 2). According to Lemma 3 and Lemma 4,
we can use the bisection search method to find the value of
λ∗1 according (35). By using (31), the value of λ∗k,∀k ∈ M,
can be derived. According to (22) and (23) in Lemma 1, the
optimal τ∗ and a∗ can be obtained.

D. Computation Complexity Analysis

In algorithm 1, offloading decision is output by DNN and
its followed normalization and sampling, which totally have
the complexity of O(NM). In algorithm 2, the complexity of
bisection method is O(log2(

λmax1 −λmin1

γ)) which is a constant
smaller than 100. In lines 12-14, the complexity for computing
λk(k ∈ M′ − {1}), a and τjk(j ∈ Nk, k ∈ M′) is
O(M), O(NM) and O(NM), respectively. Thus, the overall
complexity is O(NM).

V. NUMERICAL RESULTS

This section evaluates the performance of our proposed
algorithm. The parameters are set as follows: P = 3 Watts,
µ = 0.8, B = 2 MHz, N0 = 10−10 Watts, vu = 1.1, k = 10−26

and φ = 100. The locations of all WDs and HAPs are randomly
within an area of 12m*12m. For WDi and HAPj with
the distance dij , the large-scale fading component constant

αij = Ad

(
3·108

4πfcdij

)de
, where the antenna gain Ad = 4.11, the

carrier frequency fc = 915 MHz, and the path loss exponent de
= 2.3. The small-scale Rayleigh fading follows an exponential
distribution with unit mean. The used neural network has 5
fully connected layers with the number of neurons 350, 450,

10

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0
- 5 . 0 0 E + 0 7

0 . 0 0 E + 0 0

5 . 0 0 E + 0 7

1 . 0 0 E + 0 8

1 . 5 0 E + 0 8

2 . 0 0 E + 0 8

Tra
ini

ng
Lo

ss

T i m e F r a m e

Fig. 4. The training loss for algorithm when N = 5, M = 3 and β=0.00095.

600, 700 and 800, respectively. The activation function is Tanh.
The simulations were conducted on a laptop with a 3.2 GHz
AMD Processor and 16 GB RAM.

In order to effectively evaluate the proposed DRL-based
offloading algorithm, we take the exhaustive search (ES)
algorithm to obtain the optimal offloading decision. Define
the normalized computation rate Q(h,x) as:

Q(h,x) =
Q∗(h,x)

Q∗exhaustive(h,x
′)
. (40)

Here, Q∗(h,x) is the computation rate obtained by the pro-
posed algorithm and Q∗exhaustive(h,x

′) is the computation
rate obtained by the ES algorithm. The ES algorithm refers to
traversing all the possible offloading decisions and outputting
the maximum computation rate that the network can achieve.
By comparing with this maximum computation rate, we can
evaluate the performance of the proposed algorithm intuitively.
We consider the scenario with 3 HAPs and 5 WDs for the sake
of the rather long running time of the ES algorithm.

First, we investigate the proposed algorithm’s convergence
speed. Fig. 4 shows that in the early stage of neural network
training, the value of loss is large. With the training of the
neural network, the loss value gradually becomes smaller,
which means that the network gradually converges. When the
training of the neural network reaches the later stage, that is,
after the time slot reaches 8000, we find that the loss value is
close to 0.

In Fig. 5, we compare the performance of four different
learning rates of the algorithm. As we can see, when the
learning rate is large, say 9.5 ∗ 10−4, the algorithm can only
converge to the normalized computation rate of about 0.75 and
fluctuate around this value. This is because a higher learning
rate will make the update of the neural network parameters
too aggressive, and then fall into a sub-optimal solution. In
contrast to this, low Learning rate, say 9.5 ∗ 10−8, may cause
the algorithm’s performance not been improved significantly
with observable time slots. This is because when the learning
rate is too small, the update of the neural network parameters

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0
0 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5
0 . 5 0
0 . 5 5
0 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

No
rm

aliz
ed

Co
mp

uta
tio

n R
ate

T i m e F r a m e

 L e a r n i n g R a t e = 9 . 5 E - 8
 L e a r n i n g R a t e = 9 . 5 E - 7
 L e a r n i n g R a t e = 9 . 5 E - 6
 L e a r n i n g R a t e = 9 . 5 E - 5
 L e a r n i n g R a t e = 9 . 5 E - 4

Fig. 5. Performance of proposed algorithm under different learning rates.

0 2 0 0 0 4 0 0 0
0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

No
rm

aliz
ed

Co
mp

uta
tio

n R
ate

T i m e F r a m e

 K = 6 0
 K = 1 2 0
 K = 1 8 0
 K = 2 4 0
 K = 3 0 0
 K = 0 (w i t h o u t b a s e l i n e)

Fig. 6. Comparison of algorithm performance with different baselines

may be too conservative to jump out of the local optimum.
When setting the learning rate as 9.5 ∗ 10−7, although the
neural network can converge to near optimum, the convergence
speed is slow because of the small step for every training.
Therefore, we take 9.5 ∗ 10−5 as the learning rate for our
algorithm. We can see that under this learning rate, the
algorithm can not only converge faster, but also perform well,
which can reach about 96% of the maximal computation rate.

In Fig. 6, we investigate the influence of baseline value
K. Note that we set the average computation rate of K time
slots as the baseline. When K = 0, i.e., there is no baseline,
the normalized computation rate is about 0.8, which is much
lower than the other curves. This is because in the absence
of a baseline to adjust the reward value, the environment will
give a positive reward value for all offloading decisions, so
that the parameters of the policy network cannot be updated
in the direction of the optimal policy, i.e., the direction
with the largest reward. From Fig. 6, We can conclude that
the baseline applied in our algorithm is effective from the

11

0 5 0 0 0 1 0 0 0 0
0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
No

rm
aliz

ed
Co

mp
uta

tio
n R

ate

T i m e F r a m e

 A C D R L M e t h o d w i t h L e a r n i n g R a t e = 3 E - 7
 A C D R L M e t h o d w i t h L e a r n i n g R a t e = 3 E - 6
 A C D R L M e t h o d w i t h L e a r n i n g R a t e = 3 E - 5
 A C D R L M e t h o d w i t h L e a r n i n g R a t e = 3 E - 4
 P r o p o s e d A l g o r i t h m

Fig. 7. Comparison of the proposed algorithm and AC algorithm with different
learning rates

perspective of normalized computation rate and convergence
speed. According to the simulation results, we set K = 120.

To measure the performance of our algorithm, we mainly
compare it with the following three algorithms:
• Supervised Learning [22]: The neural network is trained

offline by 10000 training samples with the optimal samples.
These samples are consisted of channel states and correspond-
ing optimal actions which are obtained by the ES method.
• DQN [21]: The DQN algorithm outputs the state-action

value corresponding to each offloading decision combination
based on the neural network, and selects the offloading de-
cision combination with the highest state-action value for
execution.
• AC algorithm: The AC algorithm evaluates the action

output by the actor network through the critic network, so
that the action output by the actor network can maximize the
output value of the criticism network in the current state.

Fig. 7 shows the normalized computation rate of the pro-
posed algorithm and the most common policy-based DRL
algorithm, AC algorithm with the same learning rate and
structure of policy network as ours. As shown in the figure,
although we set different learning rates of critic network,
the performance of AC is always lower that the proposed
algorithm. This is because the evaluation of the action-state
value by the critic network is not accurate enough compared
with the reward value given by the environment. Therefore,
there is a certain gap between AC and our proposed algorithm.
Additionally, from the perspective of algorithm convergence
speed, our algorithm can converge faster than AC because the
latter needs to maintain two networks while our algorithm
maintains single policy network, and the AC algorithm can
only converge when both networks converge. Fig. 7 indicates
that the proposed algorithm is efficient for solving the multi-
HAPs offloading decision problem in WPT empowered MEC.

In Fig. 8, we compare the proposed algorithm with different
available algorithms. It can be seen in the figure that the
neural network trained by the supervised learning method can

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0
0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

No
rm

aliz
ed

Co
mp

uta
tio

n R
ate

T i m e F r a m e

 P r o p o s e d A l g o r i t h m
 S u p e r v i s e d L e a r n i n g
 D Q N
 A C

Fig. 8. Comparison of the proposed algorithm with different algorithms.

5 1 0 1 5 2 0 2 5 3 0 3 5
0 . 0 0 E + 0 0

5 . 0 0 E + 0 7

1 . 0 0 E + 0 8

1 . 5 0 E + 0 8

2 . 0 0 E + 0 8
Av

era
ge

Co
mp

uta
tio

n R
ate

N u m b e r o f W D s

 P r o p o s e d A l g o r i t h m
 A c t o r - C r i t i c
 S u p e r v i s e d L e a r n i n g
 D Q N

No
t A

ppl
ica

ble
No

t A
ppl

ica
ble

No
t A

ppl
ica

ble
No

t A
ppl

ica
ble

No
t A

ppl
ica

ble
No

t A
ppl

ica
ble

No
t A

ppl
ica

ble
No

t A
ppl

ica
ble

No
t A

ppl
ica

ble
No

t A
ppl

ica
ble

No
t A

ppl
ica

ble
No

t A
ppl

ica
ble

Fig. 9. Comparison of different offloading algorithms with 3 HAPs and
increasing number of WDs.

achieve the highest normalized computation rate. However,
since its training process requires the samples obtained by the
ES method, and the time consumption of label acquisition will
increase exponentially with the number of WDs and HAPs,
it is not applicable to large scale network scenarios. The
average performance of DQN algorithm is close to that of
AC algorithm, but the curve fluctuates wildly. For the DQN,
the action space is (M + 1)N , which increases exponentially
with the number of WDs. Hence, DQN is not applicable for
the large scale network scenarios. For the AC algorithm here,
the actor network adopts the same independent sampling with
the proposed algorithm in this paper, so it is able to avoid ex-
ponentially increasing action space. The proposed method can
achieve almost the same performance as supervised learning
without need of providing the optimal samples.

In Fig. 9 and Fig. 10, we evaluate the performance of
different algorithms in terms of the average SCR over 500 time
slots. Considering that the action space increases exponentially

12

3 4 5 6
0 . 0 0 E + 0 0

5 . 0 0 E + 1 0

1 . 0 0 E + 1 1

1 . 5 0 E + 1 1

3 4 5 6
0 . 0 0 E + 0 0

2 . 0 0 E + 0 7

4 . 0 0 E + 0 7

6 . 0 0 E + 0 7

8 . 0 0 E + 0 7

1 . 0 0 E + 0 8

1 . 2 0 E + 0 8

1 . 4 0 E + 0 8

1 . 6 0 E + 0 8

Av
era

ge
Co

mp
uta

tio
n R

ate

N u m b e r o f H A P s

 P r o p o s e d A l g o r i t h m
 A c t o r - C r i t i c
 L o c a l C o m p u t i n g
 S i n g l e H A P

Fig. 10. Comparison of different offloading algorithms with 20 WDs and
increasing number of HAPs.

with the number of WDs, supervised learning and DQN are
not applicable for the scenario with 10 or more WDs, and thus
we only apply them to the scenario of 3 HAPs and 5 WDs.

In Fig. 9, it can be seen that when all WDs choose to
conduct the computation by themselves, the sum of their com-
putation rates is the lowest. This is because in our scenario, the
computation ability of HAP is much greater than that of WDs.
When all WDs are allowed to offload data to only one of the
three HAPs, the achieved average SCR is much smaller than
that of our algorithm. This is because when all WDs choose to
offload data to the same HAP, due to the limited time resource,
all the WDs need to share the time slot of selected HAP. As
a result, each WD cannot be allocated enough time to offload
data to achieve a large enough data offloading rate. This can
also be verified from the phenomenon that the average SCR
almost does not increase when the number of WDs increases
if all WDs are allowed to offload data to only one of three
HAPs. Obviously, providing multiple HAPs is an efficient way
to improve the computation rate for WPT empowered MEC.
We further compare the performance of our algorithm with
AC. It’s obvious that although the computation rate of the
two algorithms is significantly improved as WDs’ number
increases, there is still a certain gap between our proposed
algorithms and AC. This verifies that our algorithm still has
advantages over traditional DRL algorithms such as AC when
the number of WDs increases. In addition, we found that if the
number of WDs increases to a certain number, the computation
rate of the network will no longer have a clear growth with
the increase of WDs. The reason is that the total system time
resource of HAPs is fixed and when the number of WDs
increases, less time is allocated to each WD for transmission.

In Fig. 10, we evaluate the average computation rates under
different numbers of HAPs with 20 WDs. It can be seen that
when the number of HAPs increases, the average computing
rate of the network increases significantly. This is because the
total system time resource of HAPs increases linearly with
the number of HAPs. In addition, we can see that compared

to the AC algorithm, the performance enhancement obtained
by our proposed algorithm increases as the number of HAPs
increases.

TABLE III
COMPARISON OF CPU RUNNING TIME BETWEEN THE ES ALGORITHM

AND OURS UNDER THE 3-HAPS CASES.

Number of WDs ES algorithm Proposed algorithm

5 3.1359s 0.0143s

6 14.2609s 0.0167s

7 64.6999s 0.0189s

8 289.7720s 0.0204s

TABLE IV
COMPARISON OF CPU RUNNING TIME BETWEEN THE AC ALGORITHM

AND OURS UNDER THE 3-HAPS CASES.

Number of WDs AC algorithm Proposed algorithm

5 0.0199s 0.0143s

10 0.0373s 0.0248s

15 0.0507s 0.0352s

20 0.0665s 0.0455s

25 0.0870s 0.0527s

30 0.1056s 0.0681s

35 0.1176s 0.0826s

TABLE V
COMPARISON OF CPU RUNNING TIME BETWEEN THE AC ALGORITHM

AND OURS WITH INCREASE OF HAPS UNDER THE 20-WDS CASES.

Number of HAPs AC algorithm Proposed algorithm

3 0.0665s 0.0455s

4 0.0889s 0.0580s

5 0.1065s 0.0759s

6 0.1209s 0.0833s

Table III shows the average CPU running time of the
proposed algorithm and the ES algorithm under different
numbers of WDs. We can see that as the number of WDs
increases, the time consumed by the ES algorithm will greatly
increase. This is because the time complexity of ES algorithm
is exponential, and increasing the number of WDs causes the
time of executing the algorithm to grow exponentially. For our
algorithm, the operations inside neural network and Algorithm
2 have the computation complexity roughly linear with the
number of WDs.

13

In Table IV and Table V, we investigate the average CPU
running time of our algorithm and the widely used AC algo-
rithm under the increasing number of WDs and the increasing
number of HAPs. The average CPU running time required by
the AC algorithm is about 1.4 times longer than our algorithm.
The reason is that there are two networks in the AC algorithm.
Compared with our algorithm, the AC network needs to spend
more time to compute the value of the state-value function by
using its critic network.

VI. CONCLUSION

This paper considered the computation rate maximization
problem in a WPT empowered MEC with multiple WDs
and multiple HAPs. The binary offloading mode was consid-
ered. We proposed an online DRL-based algorithm to obtain
the near-optimal offloading decision based on the channel
gains and designed a Lagrangian duality based algorithm to
optimally allocate time resource under the given offloading
decision. The proposed DRL-based algorithm converges fast
and can achieve about 96 percent of the maximal computation
rate with low computational complexity. Compared with the
common actor-critic algorithm, it has advantages in computa-
tion rate, convergence speed and running time. This work can
be further explored from two aspects: on one hand, the DRL
algorithm can be improved to achieve better performance. On
the other hand, more complex scenarios with consideration of
feedback, edge processing delay and long-term optimization
will bring new challenges which are worth being studied.

REFERENCES

[1] A. S. Kumar, L. Zhao, and X. Fernando, “Multi-agent deep reinforce-
ment learning-empowered channel allocation in vehicular networks,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 2, pp. 1726-
1736, 2022.

[2] H. Guo, X. Zhou, J. Liu, and Y. Zhang, “Vehicular intelligence in 6g:
Networking, communications, and computing,” Vehicular Communica-
tions, vol. 33, pp. 100399, 2022.

[3] S. Zhang, S. Kong, K. Chi, and L. Huang, “Energy management for
secure transmission in wireless powered communication networks,”
IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1171-1181, 2022.

[4] H. Guo, J. Li, J. Liu, N. Tian, and N. Kato, “A survey on space-air-
ground-sea integrated network security in 6G,” IEEE Communications
Surveys & Tutorials, vol. 24, no. 1, pp. 53-87, 2022.

[5] Z. Chen, K. Chi, K. Zheng, Y. Li, X. Liu, “Common throughput
maximization in wireless powered communication networks with non-
orthogonal multiple access,” IEEE Transactions on Vehicular Technol-
ogy, vol. 69, no. 7, pp. 7692-7706, 2020.

[6] K. Zheng, X. Liu, B. Wang, H. Zheng, K. Chi, Y. Yao, “Throughput
maximization of wireless-powered communication networks: An energy
threshold approach,” IEEE Transactions on Vehicular Technology, vol.
70, no. 2, pp. 1292-1306, 2021.

[7] S. Gong, C. Xing, S. Wang, L. Zhao, and J. An, “Throughput maximiza-
tion for intelligent reflecting surface aided MIMO WPCNs with different
DL/UL reflection patterns,” IEEE Transactions on Signal Processing,
vol. 69, pp. 2706-2724, 2021.

[8] Y. Zeng, B. Clerckx, and R. Zhang, “Communications and signals design
for wireless power transmission,” IEEE Transactions on Communica-
tions, vol. 65, no. 5, pp. 2264-2290, 2017.

[9] A. Biason and M. Zorzi, “Battery-powered devices in WPCNs,” IEEE
Transactions on Communications, vol. 65, no. 1, pp. 216-229, 2017.

[10] J. Moon, H. Lee, C. Song, and I. Lee, “Secrecy performance opti-
mization for wireless powered communication networks with an energy
harvesting jammer,” IEEE Transactions on Communications, vol. 65, no.
2, pp. 764-774, 2017.

[11] B. Lyu, P. Ramezani, D. T. Hoang, S. Gong, Z. Yang, and A. Jamalipour,
“Optimized energy and information relaying in self-sustainable IRS-
empowered WPCN,” IEEE Transactions on Communications, vol. 69,
no. 1, pp. 619-633, 2021.

[12] S. Bi, L. Huang, H. Wang, and Y.-J. A. Zhang, “Lyapunov-guided
deep reinforcement learning for stable online computation offloading
in mobile-edge computing networks,” IEEE Transactions on Wireless
Communications, vol. 20, no. 11, pp. 7519-7537, 2021.

[13] J. Liu, H. Guo, J. Xiong, N. Kato, J. Zhang, and Y. Zhang, “Smart
and resilient EV charging in SDN enhanced vehicular edge computing
networks,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 1, pp. 217-228, 2020.

[14] B. Zhu, K. Chi, J. Liu, K. Yu, and S. Mumtaz, “Efficient offloading for
minimizing task computation delay of NOMA-based multiaccess edge
computing,” IEEE Transactions on Communications, vol. 70, no. 5, pp.
3186-3203, 2022.

[15] A. S. Kumar, L. Zhao, and X. Fernando, “Mobility aware channel
allocation for 5G vehicular networks using multi-agent reinforcement
learning,” in Proc. IEEE ICC, 2021, pp. 1-6.

[16] H. A. Shah, L. Zhao, and I.-M. Kim, “Joint network control and resource
allocation for space-terrestrial integrated network through hierarchal
deep actor-critic reinforcement learning,” IEEE Transactions on Vehic-
ular Technology, vol. 70, no. 5, pp. 4943-4954, 2021.

[17] W. Chen, G. Shen, K. Chi, S. Zhang, and X. Chen, “DRL based
partial offloading for maximizing sum computation rate of FDMA-based
wireless powered mobile edge computing,” Computer Networks, vol.
214, pp. 109158, 2022.

[18] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, vol.
19, no. 11, pp. 2581-2593, 2020.

[19] Y. Yu, Y. Yan, S. Li, Z. Li, and D. Wu. “Task delay minimization in
wireless powered mobile edge computing networks: A deep reinforce-
ment learning approach,” in Proc. WCSP, 2021, pp. 1-6.

[20] S. Zhang, H. Gu, K. Chi, L. Huang, K. Yu, and S. Mumtaz, “DRL-based
partial offloading for maximizing sum computation rate of wireless pow-
ered mobile edge computing network,” IEEE Transactions on Wireless
Communications, vol. 21, no. 12, pp. 10934-10948, 2022.

[21] Q. Chen, Z. Kuang, and L. Zhao,“Multiuser computation offloading
and resource allocation for cloud–edge heterogeneous network,”IEEE
Internet of Things Journal, vol. 9, no. 5, pp. 3799-3811, 2022.

[22] B. Yang, X. Cao, J. Bassey, X. Li, and L. Qian, “Computation offloading
in multi-access edge computing: a multi-task learning approach,”IEEE
Transactions on Mobile Computing, vol. 20, no. 9, pp. 2745-2762, 2021.

[23] B. He, S. Bi, H. Xing, and X. Lin, “Collaborative computation offloading
in wireless powered mobile-edge computing systems,” in Proc. IEEE
GLOBECOM Workshops, 2019, pp. 1-7.

[24] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization
in UAV-enabled wireless-powered mobile-edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 9,
pp. 1927-1941, 2018.

[25] X. Zhou, L. Huang, T. Ye, and W. Sun, “Computation bits maximization
in UAV-assisted MEC networks with fairness constraint,” IEEE Internet
of Things Journal, vol. 9, no. 21, pp. 20997-21009, 2022.

[26] L. Shi, Y. Ye, X. Chu, and G. Lu, “Computation energy efficiency
maximization for a NOMA-based WPT-MEC network,” IEEE Internet
of Things Journal, vol. 8, no. 13, pp. 10731-10744, 2021.

[27] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp.
1784-1797, 2018.

[28] F. Wang, H. Xing, and J. Xu, “Real-time resource allocation for
wireless powered multiuser mobile edge computing with energy and
task causality,” IEEE Transactions on Communications, vol. 68, no. 11,
pp. 7140-7155, 2020.

[29] R. Malik and M. Vu, “On-request wireless charging and partial com-
putation offloading in multi-access edge computing systems,” IEEE
Transactions on Wireless Communications, vol. 20, no. 10, pp. 6665-
6679, 2021.

[30] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp.
4177-4190, 2018.

[31] M. Zeng, R. Du, V. Fodor, and C. Fischione, “Computation rate max-
imization for wireless powered mobile edge computing with NOMA,”
in Proc. IEEE WoWMoM, 2019, pp. 1-9.

14

[32] P. X. Nguyen, D.-H. Tran, O. Onireti, P. T. Tin, S. Q. Nguyen, S.
Chatzinotas, and H. Vincent Poor, “Backscatter-assisted data offloading
in OFDMA-based wireless-powered mobile edge computing for IoT
networks,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9233-
9243, 2021.

[33] F. Zhou and R. Q. Hu, “Computation efficiency maximization in
wireless-powered mobile edge computing networks,” IEEE Transactions
on Wireless Communications, vol. 19, no. 5, pp. 3170-3184, 2020.

[34] C. Wang, W. Lu, S. Peng, Y. Qu, G. Wang, and S. Yu, “Modeling
on energy-efficiency computation offloading using probabilistic action
generating,” IEEE Internet of Things Journal, vol. 9, no. 20, pp. 20681-
20692, 2022.

[35] J. Feng, Q. Pei, F. R. Yu, X. Chu, and B. Shang, “Computation offloading
and resource allocation for wireless powered mobile edge computing
with latency constraint,” IEEE Wireless Communications Letters, vol. 8,
no. 5, pp. 1320-1323, 2019.

[36] J. Liu, K. Xiong, D. W. K. Ng, P. Fan, Z. Zhong, and K. B. Letaief,
“Max-min energy balance in wireless-powered hierarchical fog-cloud
computing networks,” IEEE Transactions on Wireless Communications,
vol. 19, no. 11, pp. 7064-7080, 2020.

[37] K. Zheng, G. Jiang, X. Liu, K. Chi, X. Yao, J. Liu, “DRL-based
offloading for computation delay minimization in wireless-powered
multi-access edge computing,” IEEE Transactions on Communications,
vol. 71, no. 3, pp. 1755-1770, 2023.

[38] N. H. Motlagh, E.Lagerspetz, P. Nurmi, X. Li, S. Varjonen, J. Mineraud,
M. Siekkinen, A. Rebeiro-Hargrave, T. Hussein, T. Petaja, M. Kulmala,
and S. Tarkoma, “Toward massive scale air quality monitoring,”IEEE
Communications Magazine, vol. 58, no. 2, pp. 54-59, 2020.

[39] S. Lee and D. Choi,“Federated reinforcement learning for energy
management of multiple smart homes with distributed energy re-
sources,”IEEE Transactions on Industrial Informatics, vol. 18, no. 1,
pp. 488-497, 2022.

[40] S. Boyd and L. Vandenberghe,“Convex Optimization,” Cambridge, U.K.:
Cambridge Univ. Press, 2004.

