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Ring structures are crucial in network neuroscience,
enabling the integration of neural information
through closed loop circuits within feedback systems.
Here, we use numerical bifurcation analysis to
explore time delay effects on a ring of delay-
coupled Wilson-Cowan masses. Investigating
a low-dimensional ‘self-coupled’ version of the
aforementioned system, we uncover the bifurcation
structure of the synchronisation manifold, and
unveil a diverse array of dynamic synchronisation
patterns that emerge as a consequence of Hopf
branch crossings and subsequent higher-order
bifurcations. Analysis of the full system reveals
transverse instabilities in the synchronised state
for large regions of parameter space, with the ring
network architecture promoting various dynamics
depending on the balance between coupling strength
and delay time. Under weak coupling, emergent
oscillations are generally synchronous or anti-
phase synchronous, with transitions between them
triggered by a torus bifurcation of a periodic orbit.
Regions of synchronous and anti-phase synchronous
solutions are delineated by weakly chaotic borders
due to the breakdown of the torus. As coupling
strength increases, the bifurcation diagram displays
more overlapped branching structure, resulting in
increasingly complicated, multistable dynamics.

1. Introduction
Networks of coupled oscillators play a significant role
in the modelling of a wide range of processes in
neuroscience, such as neural activity synchronisation and
desynchronisation [1], and the formation of complex
patterns of activity in the brain such as those observed
via contemporary noninvasive technologies [2]. Finite
transmission speeds of information flow within the brain
motivate
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motivate considerable interest in understanding network models with space-dependent time
delays [3,4]. Recent work in this area has shown that incorporating time delays in the coupling
terms can result in the formation of novel dynamic behaviours such as travelling waves [5],
chimera states [6,7], and frequency-locking [8,9], the understanding of which can provide
insights into the mechanisms underlying different neural phenomena in health and disease. We
recommend the paper by Campbell [10] for a recent review of time delays specific to neural
systems.

This paper is devoted to the study of a bidirectionally coupled ring of neural oscillators,
with each node representing a functional unit that can be described by a neural mass model
(NMM) [11]. More specifically, neural activity is described using the Wilson-Cowan model, which
is a simple model for describing the activity of large populations of neurons [12]. The model
incorporates two equations for each mass: one for excitatory neurons and one for inhibitory
neurons, as well as two time delays: one within (or intra) population and one between (or
inter) populations. It is worth noting that, although the classic single node Wilson-Cowan
model has been widely investigated [13], including expansions to networked models [14–18],
the delayed system is substantially less well studied. Coombes and Lang [19] investigated a
delayed version of the single node Wilson-Cowan model in which they deployed a combined
analytic/computational approach to investigate the contribution of intra-population delays to
the generation of rhythmic neural activity patterns. More recently, Conti and Van Gorder [20]
extended this model to networks and performed a numerical exploration of the impact of network
heterogeneity on the resilience of observed neural dynamics using a range of toy networks
including a ring, path, lattice and complete network.

The present study deploys a combined computational and mathematical approach, which
significantly extends the related work by the authors in [20] to reveal the impact of inter-nodal
time delays (between ‘brain regions’) on the onset of oscillations and synchrony in a ring network
of neural masses. To investigate the synchrony properties of our model, we introduce a low-
dimensional system known as the self-coupled model [21–23] that describes the dynamics of our
NMM restricted to the synchronisation manifold. Unlike classical synchronisation studies that
usually focus on diffusive coupling or its variations [24], the synchronous solutions of our NMM
do not align with the uncoupled system; instead, they remain dependent on both the coupling
strength and inter-nodal delay in a nontrivial manner. Thus, studying the reduced model enables
us to reveal how important system parameters influence the onset of synchronised oscillatory
states. Next we consider the extent to which the ring network architecture impacts the stability
properties of the aforementioned synchronous solutions by studying a ring of 6 neural masses.
Numerical simulations reveal a wide range of dynamics, such as mixed-mode oscillations and
chaos, as long as the coupling strength is not excessively high, in which case the dynamics
are quiescent and independent of the delay parameter. Crucially, there exist large regions of
parameter space in which the network dynamics become increasingly sensitive to transverse
instabilities in the synchronisation manifold, which can switch abruptly between on and off states,
giving rise to complex multistable spatiotemporal dynamics.

The structure of the paper is as follows. In §2 we describe the network model deployed for
simulating and analysing admissible network activity patterns on a ring architecture. In §3 our
analysis focuses on the synchronisation manifold, where we examine the bifurcation structure
of synchronised solutions in our delay-coupled network model. We start with a linear stability
analysis of the equilibrium solution and show that this solution destabilises either through a
sub- or super-critical Andronov-Hopf bifurcation, depending on the value of the inter-nodal
delay. Under further parameter variations, we observe a variety of synchronised dynamics
including quasiperiodicity and chaos, which arise from higher-order bifurcations that manifest
due to branch crossings. Section 4 is devoted to similar questions in a ring of coupled masses.
Our analysis indicates that in the networked system, low-level coupling generally leads to the
separation of solutions by weakly chaotic regions into two distinct types: synchronised and anti-
phase synchronised solutions. Crucially, the stability properties of the synchronisation manifold,
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which are determined by the underlying network structure, dictate which of the different types
of solutions the system converges to. For larger values of coupling the network dynamics become
increasingly sensitive due to transverse instabilities in the synchronisation manifold leading to
complicated multistable dynamics. We conclude in §5 by giving a brief overview of our results
and discussing avenues of future research.

2. The model
In this work we deploy the population model due to Wilson and Cowan [12]. The model considers
two populations of excitatory and inhibitory neurons and neural activity is described by the
following system

dui
dt

=−ui(t) + f(c1ui(t− τ) + c2vi(t− τ) + P + ε
∑
j

wijui(t− ρ)),

dvi
dt

=−vi(t) + f(c3ui(t− τ) + c4vi(t− τ) +Q),

(2.1)

for i= 1, 2, . . . , n. Here, ui and vi represent the synaptic activity of the two populations, f denotes
a firing rate function given by

f(x) =
1

1 + e−βx
, (2.2)

and ε is the coupling strength. The parameters c1, c2, c3 and c4 denote the strength of interaction
between sub-populations within a node, whilstP andQ are control parameters representing basal
inputs to each node. In our experiments we chose β = 60, P = 0.65, Q= 0.5, c1 = c3 =−1, c2 =
−0.4 and c4 = 0 in agreement with [19]. We note that some other authors [8,20] incorporate a
time scaling parameter in front of each derivative in (2.1), which allows the model to be tuned to
recover biological rhythms with realistic frequencies. Here, following [19], we set both of these
time scalings to unity, and present our analysis in terms of nondimensionalised time units that
absorb these natural frequencies.

The matrix W ∈Rn×n is the scaled adjacency matrix given by

W =D−1A, (2.3)

where Aij = 1 if nodes i and j are connected and zero otherwise. D is the diagonal matrix of
degrees, i.e.

D=


k1

. . .
kn

 . (2.4)

Here, ki denotes the node degree which counts the neighbours of node i. It follows that the row-
sum of the weight matrix W is constant:

n∑
j=1

wij = 1, (2.5)

a condition that ensures the existence of a fully synchronised solution to (2.1). For a detailed
description of the conditions under which synchronous solutions exist in populations of locally
interacting elements, see the review by Arenas et al. [24]. For more specific information related to
our studies, see the more recent papers by Campbell et al. [21,22].

The model incorporates two delays: an intra-node delay, τ , which describes transmission of
information within each neural population; and an inter-node delay, ρ, which represents the time
taken for a signal to propagate between distant brain regions. In our experiments, the intra-
node delay was held constant at τ = 0.5 whilst the inter-node delay, ρ, acts as a bifurcation
parameter with which to explore the role of delays on the dynamics of the coupled system in
(2.1). For ε= 0, each of the decoupled units behaves as in [19], displaying a range of behaviours
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including quiescent, periodic and chaotic motion. For our chosen parameter values, decoupling
(2.1) reduces the network dynamics to a set of identical self-sustained oscillators [19,25] and so
by continuity, we expect that for small ε and ρ the full system in (2.1) behaves accordingly. In
what follows, we consider the extent to which the dynamics of (2.1) are impacted as the coupling
strength, ε, and inter-nodal delay, ρ, are systematically varied.

3. Dynamics on the synchronisation manifold
The model (2.1) alongside the constraints in (2.5) admits synchronous solutions (ui(t), vi(t)) =

(us(t), vs(t)), for i= 1, . . . , n, such that the functions (us, vs) satisfy the equation

du

dt
=−u(t) + f(c1u(t− τ) + c2v(t− τ) + εu(t− ρ) + P ),

dv

dt
=−v(t) + f(c3u(t− τ) + c4v(t− τ) +Q).

(3.1)

In the above, we have omitted the subscript s for brevity. Importantly, this equation is
independent of the network structure owing to the constraint given in Equation (2.5), and as
a consequence, synchronous solutions of the networked system in (2.1) can be described by
analysing the simpler self-coupled DDE model in (3.1).

Importantly, by studying the self-coupled DDE model above, we are restricting ourselves to
the synchronisation manifold defined by M= {(u1, v1) = (u2, v2) = · · ·= (un, vn)}. Thus, the
manifestation of the dynamics discussed in this section will depend on the stability of the
synchronisation manifoldM, which is contingent on the specific network under consideration.
In §4, we will examine the impact of network properties on the stability of the synchronization
manifold, specifically when exploring admissible network states for a ring network.

(a) Linear stability analysis of fixed point
From the above, it follows that the unique equilibrium solution of (2.1), which we denote by
(u∗, v∗), can be determined by solving the equations

P = f−1(u∗)− (c1 + ε)u∗ − c2v∗ and Q= f−1(v∗)− c3u∗ − c4v∗, (3.2)

which are derived by setting the right-hand sides of (3.1) to zero. Here, f−1(z) =

β−1 ln (z/(1− z)) .
To study the bifurcation structure and stability of synchronous solutions of (2.1) we compute

eigenvalues as solutions of the characteristic equation

∆(λ) = det
[
λI −A−Be−λτ − Ce−λρ

]
= 0, (3.3)

where I is the 2× 2 identity matrix and the matrices A,B and C are given by

A= (∂F/∂x(t))(x∗), B = (∂F/∂x(t− τ))(x∗) and C = (∂F/∂x(t− ρ))(x∗),

with x∗ =
(
u∗, v∗

)
and the function F(x(t),x(t− τ),x(t− ρ)) representing the right-hand side

of the differential equations in (3.1). More specifically, we have that

A=

(
−1 0

0 −1

)
, B =

(
c1βu

∗(1− u∗) c2βu
∗(1− u∗)

c3βv
∗(1− v∗) c4βv

∗(1− v∗)

)
, C =

(
εβu∗(1− u∗) 0

0 0

)
, (3.4)

and so the characteristic equation reads

∆(λ) = det

(
λ+ 1− βu∗(1− u∗)(c1e−λτ + εe−λρ) −c2βu∗(1− u∗)e−λτ

−c3βv∗(1− v∗)e−λτ λ+ 1− c4βv∗(1− v∗)e−λτ

)
. (3.5)

Substituting λ= iω in the above and separating real and imaginary parts give the following
conditions for a Hopf bifurcation:
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0 = (1− k1 cos(ωτ)− k2 cos(ωρ))(1− k3 cos(ωτ))

− (ω + k1 sin(ωτ) + k2 sin(ωρ))(ω + k3 sin(ωτ))

− k4 cos(2ωτ)

(3.6)

and

0 = (1− k1 cos(ωτ)− k2 cos(ωρ))(ω + k3 sin(ωτ))

+ (ω + k1 sin(ωτ) + k2 sin(ωρ))(1− k3 cos(ωτ))

+ k4 sin(2ωτ).

(3.7)

Here,
k1 = c1βu

∗(1− u∗), k2 = εβu∗(1− u∗), k3 = c4βv
∗(1− v∗)

and
k4 = c2c3β

2u∗(1− u∗)v∗(1− v∗).

Simultaneous solution of equations (3.6) and (3.7) define a Hopf bifurcation and the birth of
synchronous periodic solutions of (2.1).

(b) Numerical bifurcation analysis
In this section we investigate the synchronised solutions of (2.1) by studying (3.1) using numerical
simulation and numerical bifurcation analysis. We deploy the software package DDE-BIFTOOL
[26] to detect and follow bifurcations of the fixed points discussed in the previous section and
to follow branches of stable and unstable periodic orbits under variation of the parameters
controlling inter-nodal delay, ρ, and coupling strength, ε. In the current context, it should
be emphasized that the term ‘stability’ (or ‘instability’) pertains to the stability within the
synchronization manifold, rather than the global stability of a synchronized solution in the full
system defined by (2.1), which relies on the specific network being investigated.

Figure 1(a) shows a curve of Andronov-Hopf (AH) bifurcations of fixed points in the (ρ, ε)

parameter plane corresponding to solutions of (3.6, 3.7). Solid lines correspond to supercritical AH
bifurcations and dashed lines subcritical AH bifurcations, with changes in criticality separated by
Bautin bifurcations, which are labelled with red circles. The AH branch is confined to the strip
of parameter space for which ε∈ [0.3125, 0.3705] and possesses a ‘periodic-like’ looping structure
that causes the curve to self-intersect resulting in double Hopf bifurcations, which we label with
black diamonds. The repetitive nature of the AH branch is well documented for delay differential
equations (see, for example, [27,28]) and is due to the existence of higher-order harmonics in the
delay variable. For large values of coupling (i.e. values below the AH bifurcation curve in Figure
1(a)) the steady state is stable, with all eigenvalues having negative real parts, independent of the
inter-nodal delay, ρ; however, once destabilised by the AH bifurcation, the steady state remains
unstable and periodic solutions persist.

Figures 1(b) and 1(c) show bifurcation sets emanating from the Bautin bifurcations and
double Hopf bifurcation observed on the first two looping structures in Figure 1(a), respectively.
These additional bifurcation curves describe stability loss for periodic orbits born from the AH
bifurcations in 1(a) and can be classified according to their Floquet multipliers: TB stands for torus
bifurcation, which results when a periodic orbit loses stability via a pair of complex conjugate
Floquet multipliers, µ1,2 = e±iθ , crossing the unit circle, thus resulting in the birth of an invariant
torus; SNPO stands for saddle node of periodic orbits, which results in the birth or death of a
pair of periodic orbits as a single Floquet multiplier leaves the unit circle through µ= 1; and PD
stands for period doubling bifurcation which describes the situation in which a periodic orbit
splits into two orbits, one of which has twice the period of the original one, which loses stability
as the multiplier leaves the unit circle through µ=−1. (See Seydel’s text [29] for an excellent and
detailed discussion of this topic, along with further references.)
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Figure 1. (a) Bifurcation diagram of the synchronised model in (3.1) depicting the onset of oscillatory solutions via

Andronov-Hopf bifurcations (AH, black line). Solid lines denote supercritical Hopfs and dashed lines subcritical Hopfs,

whilst red circles and black diamonds denote Bautin and double Hopf bifurcations, respectively. (b) A zoom in on (a)

showing curves emanating from the first loop for the following bifurcations: saddle node of periodic orbits (SNPO, red

line); torus bifurcations (TB, green line) and period doubling (PD, magenta line). (c) The periodic-like structure observed

in (a) results in qualitatively similar bifurcation structures emanating from each loop, as can be seen by comparing curves

emanating from the second loop (shown in (c)) against those in (b).

The first point of note is that the two pictures are qualitatively very similar, with a pair of torus
bifurcations emerging from the double Hopf bifurcations and SNPO bifurcations emerging from
each of the Bautin bifurcation points. In both instances, the SNPO emanating from the first Bautin
bifurcation (as measured along the AH curve from left to right) results in a region, bounded above
by the AH curve and below by the lower SNPO curve, in which the stable steady state coexists
with a stable periodic orbit. In the region bounded below by the AH curve and to the right of the
second Bautin bifurcation we observe the coexistence of multiple periodic solutions, both stable
and unstable. For simplicity, consider the central region in Figure 1(b). Within this region, the
stable periodic orbit born through the supercritical AH bifurcation loses stability either through
a torus bifurcation (TB, green line in Figure1(b)) or through a period-doubling bifurcation (PD,
magenta line in Figure 1(b)).

An additional interesting feature of the structures (TB, SNPO and PD branches) observed
emanating from the second loop (Figure 1(c)) is an apparent stretching of the branches, relative to
those emanating from the first (Figure 1(b)). Note that this branch stretching phenomenon appears
to be a natural consequence of the reported widening of the AH bifurcation loop structure for
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(a) ρ= 1.5

0.15 0.275 0.4

0.45
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(b) ρ= 2.0

0.15 0.275 0.4

0.45

0.7

0.95

(c) ρ= 2.2

0.15 0.275 0.4

0.45

0.7

0.95

(d) ρ= 2.35

0.15 0.275 0.4

0.45

0.7

0.95

(e) ρ= 2.407

0.15 0.275 0.4

0.45

0.7

0.95

(f) ρ= 2.7

Figure 2. Vertical slices through Figure 1(b). Solid blue line, stable fixed points; dashed blue line, unstable fixed points;

solid red lines, stable periodic orbits; dashed red line, unstable periodic orbits. The point labelled with a black square is an

AH bifurcation, the points labelled with green triangles are torus bifurcations, and the points labelled with red circles are

SNPO bifurcations. The parameter values are the same as in Figure 1. Note that only bifurcations showing the creation

or destruction of stable objects are shown.

increasing delay time (see the discussion in [27,28] for further details), which leads to increasingly
overlapped branches and a growing coexistence of both stable and unstable periodic orbits as the
inter-nodal delay, ρ, increases. The intricate overlapping of branches, as depicted in Figure 1,
results in a heightened sensitivity of the system, which in turn likely promotes metastability of
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the network’s dynamics as it transitions between different synchronous states under the influence
of noisy inputs.

To better understand the solution structure of a typical looping branch, Figure 2 shows vertical
slices through Figure 1 for several values of the inter-nodal delay parameter ρ∈ [1.5, 2.7]. For
ρ= 1.5 the system is monostable for all values of ε in that we either have a stable steady state or
a stable periodic orbit (Figure 2(a)). Increasing the delay to ρ= 2.0, leads to a pair of saddle-node
bifurcations of periodic orbits, which are created when the branch of periodic solutions reverses
direction and creates a loop that winds about the AH point – see the zoomed-in inset in Figure
2(b). Increasing the delay to the value ρ= 2.2, so that it lies just beyond the first Bautin point,
we detect a change of criticality for the AH point (see the zoomed-in inset in Figure 2(c)) and
the destruction of the previously leftmost SNPO point, as well as the birth of a pair of new SNPO
points towards the far left of the picture. For even larger delays we begin to observe more complex
behaviours. Setting ρ= 2.35, so as to lie between the first double Hopf bifurcation and the upper
SNPO branch cusp, gives the plot in Figure 2(d). Here, the AH bifurcation has reverted to being
supercritical, since we have crossed the second Bautin point in Figure 1(b), but the resulting stable
periodic orbit branch also loses stability in a narrow window of ε-values bounded by the two
torus bifurcations. Additionally, we observe further folding of the periodic branch (via SNPO
bifurcations), providing increased multistability. Approaching the cusp point from the left (ρ=
2.407, Figure 2(e)) we observe the birth of two additional SNPO points, which persist until the
parameter ρ is further increased past the SNPO cusp (ρ= 2.7, Figure 2(f)), at which point two
of the SNPO points collide, annihilating each other, whilst the third breaks off from the existing
main branch of periodic orbits to form a new separate branch. In Figure 1(b), the inset provides a
more detailed view of the SNPO cusp point structure. Specifically, it reveals the presence of four
SNPO bifurcations within a small interval in ρ-parameter space, as previously described.

It is clear from the above analysis that the coexistence of multiple synchronous periodic
solutions arises naturally in (2.1) as the inter-nodal delay parameter, ρ, is increased, and moreover,
that the mechanisms underlying this multistability are manifold and include SNPO, torus and PD
(not considered in the above analysis, which focussed on dynamics in the proximity of the first
looping structure in Figure 1(a)) bifurcations.

Next we deploy parameter sweeps and Poincaré return maps to examine the aforementioned
torus bifurcation scenario in more detail. It is well known that destabilisation of a periodic orbit
through a TB can give rise to intricate system behaviour, including quasiperiodic and chaotic
dynamics. Figures 3 and 4 illustrate characteristic stages of torus formation and breakdown for
two different choices of the inter-nodal delay ρ. From the bifurcation diagram in Figure 3(a), for
which ρ= 2.9, one can see that the stable periodic orbit, earlier emerging from the supercritical
AH bifurcation, loses stability when ε is decreased through 0.351. This destabilisation gives rise
to the emergence of a two-dimensional stable torus, the dynamics of which are initially ergodic or
at least very weakly resonant. Note that the bifurcation diagram in Figure 3(a) was built using the
Poincaré return map of consecutive minima (and maxima) of the excitable variable u, and shows
a collation of ten randomly initialised parameter sweeps. This behaviour is further illustrated
in Figures 3(b-d), which show the Poincaré return map of consecutive minima of the excitable
variable T : u

(n)
min −→ u

(n+1)
min . Figure 3(b) shows a smooth invariant curve corresponding to an

ergodic torus at ε= 0.337. Decreasing ε we see that the torus becomes resonant with a stable
periodic orbit on it (see Figures 3(c,d)). The degree of the resonance is determined by counting
the number of periodic points of the stable periodic orbit, which is five in this instance, meaning
that we have a 1 : 5 resonance at ε= 0.333. As the parameter ε is further reduced, we observe
additional higher-order resonant zones which appear and disappear abruptly throughout the
region of quasiperiodicity.

Figure 4 shows the results of a parameter sweep for ρ= 2.7. As evidenced in Figure 4(a), for
this choice of the delay we appear to observe chaotic dynamics, the onset of which is preceded
by the breakdown of the torus born from the TB at ε≈ 0.341. To validate this observation we
employed numerical integration to calculate the maximal Lyapunov exponent of Equation (3.1),
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Figure 3. (a) Bifurcation diagram for ρ= 2.9 representing the ε-parameter sweep of the maximum and minimum values

of u revealing the stability loss of the synchronised periodic solution through a torus bifurcation and the resulting

quasiperiodic dynamics. (b)–(d) Poincaré return maps: u(n)
min → un+1

min depicting the breakdown of the torus at ρ= 2.9.

(b) Stable smooth invariant curve corresponding to an ergodic torus at ε= 0.337. (c) For ε= 0.335 we see that the torus

approaches a resonant zone, in this case it is a 1:5 resonance. (d) A stable period-5 orbit at ε= 0.333 after the torus

breakdown.

while varying the inter-node delay, ρ and coupling strength, ε. This computation was carried out
by simultaneously integrating the variational equation in parallel with the underlying system (as
for ordinary differential equations [30]) for 100 randomly selected initial conditions. In particular,
Figure 4(b) shows results indicating the emergence of delay-induced chaotic synchronisation in
certain regions of parameter space. To further probe the highlighted region in Figure 4(b), in
Figure 4(c) we plot the the Poincaré return map of consecutive minima of the excitable variable
u for (ρ, ε) = (2.7, 0.27) (denoted by the white triangle in Figure 4(b)), which adds further weight
to the suspected existence of a chaotic attractor for these parameter values. In particular, we find
that the smooth invariant curve (see Figure 3(b), for such an example) born at the torus bifurcation
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Figure 4. (a) Bifurcation diagram for ρ= 2.7 representing the ε-parameter sweep of the maximum and minimum values

of u revealing the stability loss of the synchronised periodic solution through a torus bifurcation and the resulting chaotic

dynamics. (b) Plot of the maximal Lyapunov exponent as a function of the delay parameter ρ and coupling strength ε for

Equation (3.1). A positive exponent indicates chaotic behaviour. Values are obtained by averaging over 100 runs. We have

also superimposed the bifurcation branches from Figure 1(b). (c) Poincaré return map u(n)
min → un+1

min for consecutive

umin values provides evidence of a strange attractor at (ρ, ε) = (2.7, 0.27), which results from the breakdown of the

torus.

becomes non-smooth (experiments not shown) for values of ε≈ 0.325 and that this leads to a
torus breakdown, followed by the emergence of more complex, chaotic dynamics as ε is further
decreased – see, for example, the paper by Ju et al. [31] and references therein for a detailed
description of the torus breakdown route to chaos. Note that this plot is typical for parameter
values chosen from the ‘chaotic regime’ highlighted in Figure 4(b).
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4. Ring of n bidirectionally coupled Wilson-Cowan masses
Thus far, our analysis has been restricted to the dynamics of the system (2.1) for initial conditions
located on the synchronization manifold. In this section, we aim to broaden our understanding of
the system by examining how these solutions generalise to arbitrary initial conditions, specifically
in the context of a ring network architecture.

(a) Stability of the homogeneous steady state
Here, we consider a ring of n bidirectionally coupled, identical Wilson-Cowan masses. For this
choice of architecture, the stability of the network steady state is governed by the equation

det
[
In ⊗

(
λI2 −A−Be−λτ

)
−
(
K +Kn−1

)
⊗
(
Cεe

−λρ
)]

= 0,

where A,B are as in (3.4),

Cε =

(
1
2 εβu

∗(1− u∗) 0

0 0

)
,

and

K =



0 1 0 · · · 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 1

1 0 · · · 0 0


is the basic circulant permutation matrix [32].

Due to the block circulant structure of the above matrix, we can employ a discrete Fourier
transform to diagonalise it [33], leading to the following factorized form of the characteristic
equation:

n∏
k=1

det
[
λI2 −A−Be−λτ −

(
eiφk + ei(n−1)φk

)
Cεe

−λρ
]
= 0,

where φk = 2πk/n, k= 1, . . . , n. Crucially, this equation can be solved numerically to determine
the stability properties of the steady state solution of (2.1) as a function of the parameters ρ and ε,
and hence reveal key bifurcation structures driving the observed dynamics of the full system.

The remainder of this section is devoted to a numerical exploration of the solution structure of
a ring network architecture in the case of n= 6 masses.

(b) Bifurcation structure for a ring of 6 neural masses
Figure 5 shows curves of AH bifurcations of fixed points in the (ρ, ε) parameter plane for the full
system in (2.1) with an undirected ring architecture on six nodes. In addition to the synchronous
AH branch observed in Figure 1(a), which we denote here by a dash-dotted line, we find
three further AH branches (black lines). As with our previous analysis, the stable steady state,
which exists independent of ρ for sufficiently large coupling, destabilises via a supercritical AH
bifurcation as the coupling parameter ε is decreased; however, in the networked case this typically
leads to one of two distinct behaviours: either anti-phase synchronous solutions or completely
synchronised solutions – see Figure 6 for an illustration of these different solution types. Note
that the anti-phase synchrony we observe is a type of remote synchrony, previously detected in
both toy network structures [34,35] and empirical brain networks [36], since nearest neighbours
are out of phase. Crucially, the solution type depends upon how the fixed point destabilises (as ε
is decreased); if stability is lost as we pass through the synchronous AH branch (indicated by the
dash-dotted line in Figure 5) then the resulting solutions are synchronous, i.e. the synchronisation
manifold M is stable, at least in the proximity of the first AH crossing. Otherwise, we observe
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Figure 5. Bifurcation diagram of the full model in (2.1) for a ring network architecture with n= 6 nodes depicting the onset

of oscillatory solutions via Andronov-Hopf bifurcations (black lines). The dash-dotted line marks the branch corresponding

to synchronous solutions as shown in Figure 1(a).

anti-phase synchrony, again, local to the first AH branch. Due to the periodic-like crossings of the
synchronous AH branch and the ‘asynchronous’ AH branch, this results in alternating regions of
synchronous and anti-phase synchronous behaviour for increasing values of the delay ρ, at least
away from any branch crossings, where we expect more complicated behaviour.

As noted above, at branch crossings, which are indicative of higher-dimensional bifurcations,
we expect to observe more exotic dynamics such as the quasiperiodic and chaotic dynamics
previously reported for the self-coupled system (3.1). To reveal regions of parameter space where
complex dynamics exist, we computed the maximal Lyapunov exponent as a function of the
control parameters (ρ, ε) for 100 randomly assigned initial conditions, following the methodology
outlined in §3. Our results are shown in Figure 7, which additionally shows the superimposed
AH curves of Figure 5 (white dashed and dash-dotted lines) and torus bifurcations of both anti-
phase (dotted white line) and synchronous (solid white line) periodic solutions. It should be noted
that a full bifurcation analysis of the networked system is not computationally feasible, given
the additional complexities involved. As such, our focus in this section is to identify criticality
boundaries that appear to influence the stability of the synchronization manifold.

For relatively weak coupling (ε < 0.2) we observe intermittent bands of anti-phase and
synchronous dynamics, which are delineated by weakly chaotic regions. In Figure 7, we highlight
by a white circle and a white triangle respectively, the parameter values used to simulate the
anti-phase and synchronous solutions displayed in Figure 6. Importantly, this banded structure
repeats for larger values of the inter-nodal delay ρ (experiments not shown). As evidenced by the
torus bifurcation branches (solid and dotted lines), for weak coupling transverse instabilities of
the synchronisation manifold arise via the destabilisation of a periodic (or quasiperiodic) orbit
leading us to conclude that the route to chaos here is via a torus breakdown, as previously
described. For values of ε≈ 0.2, we observe regions of parameter space for which intricate
TB branch crossings occur, which results in increasingly complex dynamics, as indicated by
an elevated maximal Lyapunov exponent. In particular, we observe the onset of multistable
irregular dynamics, as evidenced in Figure 8, which displays four different solutions obtained
by simulating (2.1) for the same fixed parameter values (ρ, ε) = (1.025, 0.205) (highlighted by a
white square in Figure 7) and four randomly chosen initial conditions. These oscillatory solutions
include examples of synchrony, phase locking and chaos across a range of frequencies.

As ε is further increased so as to approach the AH branches, the dynamics become increasingly
sensitive; in particular, the stability of the synchronisation manifold can switch on and off rather
abruptly as we traverse through this region of parameter space, due to the increase in the
occurrence of branch crossings and the number of codimension two bifurcations. For example,
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Figure 6. Profile comparisons of (a) anti-phase synchronous and (b) totally synchronised solutions of (2.1) with a

bidirectional ring architecture on 6 nodes and ε= 0.1. Black lines denote excitable variables ui and red lines inhibitory

variables vi.
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Figure 7. Plot of the maximal Lyapunov exponent of (2.1) as a function of of the delay parameter ρ and coupling strength

ε. Results are averaged over 100 random initial conditions. Solid and dotted white lines denote a loss of stability via torus

bifurcations for completely synchronised and anti-phase synchronised solutions, respectively. We have also superimposed

the AH branches from Figure 5.



14

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

240 245 250
0

0.5

1

(a)

240 245 250
0

0.5

1

(b)

240 245 250
0

0.5

1

(c)

240 245 250
0

0.5

1

(d)

Figure 8. Figures (a)-(d) display exemplar solutions of (2.1) for four different initial conditions with the same parameter

values (ρ, ε) = (1.025, 0.205), which we highlight with a white square in Figure 7. This type of multistability is typical for

parameter values chosen close to branch intersections/higher-order bifurcations.

in Figure 7, we used numerical continuation to draw the TB branch connecting the double
Hopfs that arise from the first two intersections of the synchronous and ‘asynchronous’ AH
branches. Crucially, as we vary ε to cross this line, the synchronous solution born from the
supercritical AH bifurcation destabilises due to the emergence of transverse instabilities in the
synchronisation manifold. It is important to note that Figure 7 provides only a partial view of
the intricate dynamics in this area, since several branches (including TB, SNPO and PD) that are
known to generically emerge from the present codimension two bifurcations are excluded due
to computational limitations. However, our numerical experiments indicate that the heightened
parameter sensitivity within this multi-critical region of parameter space leads to complicated
basin boundary structures that result in multistable dynamics, including anti-phase and complete
synchrony over a range of frequencies and wave forms, as well as chaos.

We have focussed on the case n= 6 due to computational limitations; however, simulations
on larger ring network structures (experiments not shown) suggest a qualitatively similar picture
independent of n. For weak coupling we observe periodic switching between anti-phase and
complete synchrony as observed in Figure 7 for n= 6, with solutions again separated by weakly
chaotic regions. For larger networks, a key difference is the addition of a new AH branch for
each pair of nodes added to the network, which leads to further branch crossings and increased
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parameter sensitivity close to the AH branches as n is increased. Importantly, these additional
AH branches are confined to the same region of parameter space as those displayed in Figure
5. It is also noteworthy that for n odd the anti-phase solution consists of n− 1 nodes exhibiting
anti-phase dynamics, while the remaining node oscillates independently, which is a kind of trivial
chimera state [37].

5. Conclusion
In this paper, we have used numerical simulations (in Matlab) and computational bifurcation
analysis (in DDE-BIFTOOL [26]) to investigate a bidirectional ring of Wilson-Cowan (WC) masses
containing both intra- and inter-nodal delays. Unlike classical synchronisation studies, which
typically consider diffusive coupling (see, for example, [24] and references therein), synchronous
solutions of the system of WC nodes in (2.1) do not coincide with the uncoupled system,
but rather with the self-coupled system in (3.1), as described by Campbell et al. [21,23] for a
modified WC network model. Crucially, this means that the coupling strength ε can potentially
modulate the synchronous dynamics of (2.1) in a nontrivial manner. By studying the self-coupled
system, we find that the homogeneous steady state, which is present regardless of the inter-nodal
delay for sufficiently large coupling, becomes destabilised through either a sub- or super-critical
Andronov-Hopf (AH) bifurcation, depending on the magnitude of the inter-nodal delay. As is
typical in systems with time delays [27], the AH branch for the self-coupled system exhibits a
looping structure that introduces branch crossings and higher-dimensional bifurcations, which
results in the emergence of multistable regions of parameter space in the proximity of the
AH branch, including the coexistence of periodic orbits as well as more irregular, chaotic-like
dynamics. By utilising Poincaré return maps, we identified the phenomenological scenario of
torus breakdown, as previously proposed by Shilnikov [38], as the plausible pathway towards
chaos in the self-coupled system.

Our investigations additionally emphasise the joint influence of network topology and time
delay on the stability characteristics of synchronized solutions in a delayed neural mass system,
such as the WC system examined in this study. For relatively weak of coupling, we observe a
partitioning of the (ρ, ε) parameter space into a repetitive pattern of vertical stripes that exhibit
synchronous or anti-phase synchronous behavior in an alternating manner. The boundaries of
these regions are defined by areas of weak chaos, which emerge from transverse instabilities in the
synchronisation manifold due to torus breakdown. Similar to the self-coupled node, augmenting
the coupling strength leads to a progressively intricate dynamical landscape with more branch
crossings, ultimately triggering the emergence of complex and multistable dynamics. Moreover,
the numerical simulations conducted in this study suggest that the dynamics of the ring network
retain their fundamental characteristics as the network size increases, although the parameter
sensitivity near the AH branch and its associated structures tends to increase due to the presence
of additional symmetries.

Future investigations shall focus on applications of the techniques deployed in this work
to empirical brain networks derived from advanced MRI methodologies. Importantly, careful
calibration of model parameters is necessary to accurately reproduce brain rhythms in this
more realistic setting. In the current work, we chose parameters that were comparable to those
used in [19], which allowed us to directly compare our results. However, further modifications
are likely required to better represent the biology. For example, the constant time scaling
between excitatory and inhibitory neurons used here may not be optimal from a physiological
perspective. Nonetheless, the improved understanding of how dynamic network instabilities
arise in simplified systems acquired from this study provides a solid foundation for the future
analysis of the dynamic behaviour of these more complicated networked systems. Note that a
recent study by Clusella et al. [39] discovered outcomes comparable to those demonstrated in this
work for large-scale brain models without delay. In particular, the authors in [39] proposed that
transverse instabilities in the synchronization manifold provide a possible mechanism underlying
experimentally observed spatiotemporal neural activity. Given the results presented here, it
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would be fascinating to investigate how the presence of delays affects dynamic brain network
models. As seen in this work, the presence of high-codimension points (such as the observed
double Hopf and Bautin bifurcations), where the system can explore parameter space whilst
maintaining criticality [40,41], naturally leads to heightened parameter sensitivity resulting in
metastable behaviour (in the presence of noisy system inputs) as the system transitions between
synchronous and desynchronous states. Given the important role that such state-switching
is believed to play in the brain’s ability to dynamically adjust to changing environmental
demands [42], further studies are necessary to determine the precise impact of high codimension
bifurcations on shaping the dynamic landscape of brain network models [43]. Finally, owing to the
fact that brain networks are intrinsically directed [44], it would be of great interest to extend the
results of this study to directed networks. A handful of recent studies [45–47] have emphasised
the role of network directionality on brain network dynamics. Thus, investigations into whether
novel directed topology-driven instabilities of the synchronisation manifold exist is a crucial next
step in understanding the spatiotemporal dynamics of these systems.
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