
Fuzzy Inference on Quantum Annealers
Amir Pourabdollah and Colin Wilmott

School of Science and Technology
Nottingham Trent University

Nottingham, UK
amir.pourabdollah|colin.wilmott@ntu.ac.uk

Roberto Schiattarella and Giovanni Acampora
Dept. of Physics ”Ettore Pancini”

University of Naples Federico II
Naples, Italy

roberto.schiattarella|giovanni.acampora@unina.it

Abstract—Quantum computers can potentially perform certain
types of optimisation problems much more efficiently than classi-
cal computers, making them a promising tool for solving complex
fuzzy logic problems. In two recent developments, based on
solving Quadratic Unconstrained Binary Optimization (QUBO)
problems on a type of quantum computers known as quantum
annealers, we have introduced novel representations of a) fuzzy
sets; b) implementations of some basic fuzzy logic operators
(union, intersection, alpha-cut and maximum) and; c) the cen-
troid defuzzification. In this paper, the previous works are further
extended by presenting an implementation of Mamdani inference
on the quantum annealer machines. We first present how the
fuzzy rules can be formulated for such an implementation, then
we present how to cascade different quantum-fuzzy operators
in order to implement the quantum-fuzzy inference, and finally,
a sample implementation of the inference on a real quantum
computer is demonstrated. Having the main components of a
rule-based fuzzy logic system implemented on quantum comput-
ers, this paper provides an integrated solution for implementing
a whole fuzzy rule-based system on quantum computers.

Index Terms—quantum computing, fuzzy logic, inference.

I. INTRODUCTION

Quantum Fuzzy Logic (QFL) is a promising research field,
which aims to exploit quantum computing as backend for
fuzzy logic systems. The ultimate goal of this approach is the
development of quantum fuzzy inference systems which can be
used in environments intractable for the classical counterpart.
Indeed, although classical Fuzzy Rule-Based Systems (FRBSs)
have found a widespread set of applications in the field
of automatic control and decision-making [1]–[4] thanks to
their capability of being easily introduced in the inference
process of expert knowledge by means of fuzzy rules, they
suffer in data- and/or rule-intensive environments [5]. As these
environments are increasingly common in current applications
of fuzzy systems, there is a strong emergence of identifying
innovative computational paradigms that can help to design a
new generation of FRBSs capable of overcoming the above
limitations. In this regard, quantum computing can be consid-
ered as a very suitable candidate. Indeed, quantum computers
through quantum mechanical principles such as superposition
and entanglement promise to manipulate information more
efficiently than traditional electronic computers. Currently, two
quantum computing paradigms are available: the first is the
so-called quantum circuital model [6], and the second is the
quantum annealing (or adiabatic) model [7].

Quantum annealing has developed to be a formidable chal-
lenger to quantum circuit model with promising connections of
complexity theory and, especially, condensed matter physics
and chemistry. However, quantum annealing and adiabatic
quantum computing has a relatively short, though fruitful,
history and challenges. For instance, is it possible to achieve
adiabatic quantum computing with stochastic Hamiltonians,
can exponential speedups be achieved using adiabatic opti-
mization, and can we develop a theory of fault-tolerant adi-
abatic quantum computing? Solutions to these problems will
significantly advance our understanding of quantum annealing
and adiabatic quantum computing.

Both the paradigms have been exploited in the context
of QFL: very recently, a Quantum Fuzzy Inference Engine
(QFIE) has been developed [8] based on quantum circuits
which is able to achieve an exponential speed-up in computing
fuzzy rules over a classical Mamdani FRBS. On the other
hand, two studies [9], [10] paved the way to the development
of quantum fuzzy logic operations formulated as optimisation
problems that can be solved efficiently by means of quantum
annealers: in [9] we introduced a quantum representation of the
fuzzy sets and a QUBO representation of the operators acting
on them, such as fuzzy union, fuzzy intersection, alpha-cut and
maximum, then in [10] the previous work has been extended
by formulating the well-known centorid defuzzification as an
Ising optimisation problem. By adding the fuzzy inference, this
work proposes to combine the current and previous studies on
QFL to develop the very first FRBS which can be executed
on quantum annealers.

The remaining of the paper is structured as follows: sec-
tion II reviews the integration of fuzzy logic and quantum
computing in the literature; section III makes the paper self-
contained by summarising the background required; section IV
introduces the new quantum-annealers based fuzzy inference;
section V shows the experiments carried out on real quantum
hardware; finally, section VI concludes the paper.

II. RELATED WORKS

Quantum computing is increasingly becoming a useful
backend for improving existing computational intelligence
algorithms or for creating new ones [11], [12]. While evolu-
tionary or neural quantum-based approaches are widely used
in the literature [13], [14], it is only in recent years that
quantum computation has started to be used in the context



of fuzzy logic. As an example in [15]–[17], quantum-inspired
metaheuristics have been used to enhance the capability of
the fuzzy c-means clustering . These quantum-inspired meta-
heuristics have been exploited also to improve the robustness
of fuzzy controllers by modifying their inference performance
based on quantum peculiarities [18]. On the other hand, purely
quantum algorithms have recently been introduced to pave the
way for the development of an entirely new generation of
fuzzy systems. Two main paths have emerged: the first aims
to develop quantum algorithms to directly implement fuzzy
inference, while the second aims to gradually implement fuzzy
logic operations in a quantum-based approach which can then
be combined together to result in a quantum fuzzy system.

In the former area, [19] and [20] are two pioneering
works, which are limited by the fact that the first is a purely
theoretical analysis about speeding up fuzzy switching control
by replacing classical operations between large matrices with
quantum operations and the second requires a lookup table
which models the relationship between inputs and outputs that
is computed classically. Only in [8], a purely quantum fuzzy
inference engine able to achieve an exponential advantage in
computing fuzzy rules is proposed. This algorithm is however
limited by the current quantum devices that are still severely
limited by the high level of noise and small number of qubits
that constitute them [21].

In the latter area, a first formulation of fuzzy t-norm and t-
conorm as quantum operations is presented in [22]. Similarly,
in [9], [10], it is introduced a novel representation of fuzzy sets
and operators based on (QUBO) problems, which are solvable
efficiently by quantum annealers. This work aims to further
extend the research carried out in [9], [10] by combing for the
very first time the quantum fuzzy operators defined in them
and developing in this way the first quantum fuzzy systems
that can be run on a quantum annealer.

III. BACKGROUND

The quantum adiabatic model of a fuzzy inference proposed
in this paper is based on the operational units implemented in
our previous works [9], [10], including fuzzy operators (such
as union, intersection, maximum and minimum) as well as a
defuzzification unit. In order to make the paper self-contained,
this section aims to introduce BQM problems and quantum
annealers, then briefly summarise all the formalisation of the
fuzzy operators implemented on quantum annealer proposed
on the aforementioned works. For each operator, only the final
objective function formulation is provided without details.

A. Adiabatic Quantum Computers

Quantum annealing (implemented on adiabatic quantum
computers) is a universal model of computation and, in terms
of computation complexity, is polynomially equivalent to its
quantum circuit (i.e., standard) counterpart [23]. However,
despite this, quantum annealing has received somewhat less
consideration to its counterpart, with the exception of it use
as a subroutine in quantum chemistry algorithms. Commer-
cial systems offering quantum annealing have targeted high

numbers of qubits with the cost that those qubits have poor
coherence. There is increasing engagement with commercial
quantum annealing systems and one promising line of research
relates to machine learning. In particular, given that optimisa-
tion is a crucial aspect to almost all machine learning tasks,
the question of whether quantum annealing is well suited to
machine learning is potentially a highly significant application
of quantum annealing.

Quantum annealing is a type of quantum computing that is
distinct from its quantum circuit counterpart. This distinction
is pronounced and most clearly demonstrated by the means
in which each of these formalisms engages the computation.
The quantum circuit formalism treats the computation as a
discrete product of unitary gate operations. This is in contrast
to quantum annealing, whereby the computation seeks to map
the ground state of an initial Hamiltonian to the ground
solution state of a final Hamiltonian. Quantum annealing is
predicated on the quantum adiabatic theorem which explains
that if a quantum system begins in a ground state, it is likely to
remain in a ground state so long as the system evolves slowly.
Therefore, as a consequence of this theorem, the final state
is very likely the ground state of a final Hamiltonian whose
ground state encodes the solution to the problem of interest.

B. BQM Problem and Quantum Annealers

Binary Quadratic Model (BQM) problems are traditionally
used in computer science, with applications ranging from
machine learning [24] to biology [25]. They are defined as
optimisation problems formulating as follows: if Q is an n×n
upper-triangular matrix of real weights qij , and Y is a vector
of binary variables yi, a BQM problem consists in minimizing
the following objective function:

f(Y ) =

n∑
i=1

(qiyi) +

n−1∑
i=1

n∑
j=i+1

(qijyiyj) (1)

where qi and qij are configurable (linear and quadratic) coeffi-
cients. For simplicity, we denoted qii as qi. BQM encompasses
both Ising and QUBO problems, with the difference that in the
former case the solutions are spin solutions, i.e. yi ∈ {−1, 1}
with i ∈ [1, . . . n], whereas in the latter case the solutions
are binary solutions, i.e. yi ∈ {0, 1} with i ∈ [1, . . . n]. This
kind of problems can be addressed efficiently by quantum
annealers. In this model, the basic information units are the
so-called quantum bits (qubits). While a classical bit can take
0 or 1, a qubit in its superpositioned state can take both 0
and 1 with different probabilities. Moreover, qubits can exploit
the quantum mechanical phenomenon of entanglement, that
happens when one qubit state depends on another one. In the
quantum annealers, a setting of qubits is specialised to find the
optimum solution for minimising a binary objective function
[7].

The quantum annealing works out the optimum solution by
means of minimising the total energy of the quantum system
in an annealing process. Briefly, formulating a problem in
adiabatic model is finding qi and qij , respectively associated to



the superposition and entanglement biases, so that assignments
of binary values y1, . . . , yn minimises the objective function,
thus represents the solutions to the problem. Then during an
annealing phase, the qubits are collapsed to 0 or 1 states, so
that the system naturally selects its minimum possible energy.
This means that the binary states of the collapsed qubits
collectively provide a solution for f(Y ) minimisation. Similar
to any quantum system, the output is probabilistic, so that the
solutions made by averaging a number of runs (sampling).

C. Operational Units
As described in [9], let fuzzy sets A and B have discrete

membership functions µA(xi) and µB(xi) over the same
universe of discourse X = {x1, x2, . . . , xn}. Also let a
quantum system Y exist with n qubits y1...yn with a BQM
objective function defined as (1), in which after the quantum
annealing process, yi values can minimise f(Y ). Solving the
minimisation problem in quantum annealing is possible in
either QUBO (binary 0/1) or Ising (-1/+1) modes. Having
these assumptions, we can define the following operational
units over the fuzzy sets:

1) Q.Intersection: According to [9], we choose minimum-
intersection and define a new set C represented by a new
qfuzzy system as:

C = A ∩B :

n∑
i=1

(
µC(xi) · xi

)
(2)

A quantum system Y with n qubits (yi) is defined. It is
proved that by defining the following BQM objective function
(in QUBO mode) for system Y , its collapsed ith qubit (yi) act
as a binary switch to choose either µA(xi) or µB(xi) as the
minimum of the two.

f(Y ) =

n∑
i=1

(
(µB(xi)− µA(xi)) · yi

)
(3)

µC(xi) = (1− yi) · µA(xi) + yi · µB(xi) (4)

Thus, the following coefficients can be considered for f(Y ):
• qi = µB(xi)− µA(xi)
• qij = 0

2) Q.Union: This is defined similar to the Q.Intersection
mechanism, as in [9]. The maximum of µA(xi) and µB(xi) is
chosen by a binary switch yi via minimising f(Y ) (in QUBO
mode), in which:

• qi = µA(xi)− µB(xi)
• qij = 0

3) Q.Max: The index of the maximum membership grade
of a fuzzy set A is(are) to be marked by a binary switch yi.
According to [9], we define f(Y ) in a way that yi = 1 if
and only if µA(xi) is the maximum membership grade, and
0 otherwise. It is proved that this is possible by minimising
f(Y ) (in QUBO mode), in which:

• qi = −µA(xi)
• qij = 2

Once the index is flagged, both the index and the maximum
grade are returned.

4) Q.Min: Similar to Q.Max, finding the index of the
smallest membership grade of A is possible via minimising
f(Y ), in which:

• qi = 1− µA(xi)
• qij = 2

Similarly, once the index is flagged, both the index and the
minimum grade are returned.

5) Q.Defuzzifier: As explained in [10], centroid defuzzi-
fication is implemented by minimising a special objective
function in Ising mode. For fuzzy set A, f(Y ) is defined as
the difference between the sum of µA(x) on one side of the
centroid and the sum on the other side. The coefficients of
f(Y ) are defined as:

• qi = 0

• qij = µA(xi)µA(xj)−

{
1 + n

4 (n− 4) if j = i+ 1;

0 otherwise
In such a system, the index of a switchover between 1 and

-1 in the collapsed qubits of Y (which is proved to be unique)
corresponds to the index of the centroid among xi’s.

There are two other simpler operational units that are not
defined in the previous works, but needed to implement the
fuzzy inference. These operators do not actually need an
annealing process, and can be implemented classically due
to their simplicity. These are as follows:

6) Q.Singleton: This operator takes a crisp value x̂ and
makes a singleton fuzzy set A = {1/x̂} (i.e., having a single
member x̂ with µA(x̂) = 1).

7) Q.Replicate: This operator takes a crisp value x̂ and
makes a fuzzy set A, in which µA(xi) = x̂ for all i .

IV. IMPLEMENTING THE MAMDANI FUZZY INFERENCE ON
QUANTUM ANNEALERS

This section aims to explain how each building block of
the Mamdani fuzzy inference system (fuzzifier, rule strength
calculator, rule output calculator, and defuzzifier) are made out
of the implemented operational units discussed in sec III, and
how pipelining the building blocks leads to implementing a
whole Mamdani fuzzy inference.

A. Fuzzy Inference Building Blocks

In this subsection, it will be shown how each of the four
building blocks of a Mamdani inference system can be made
by pipelining the implemented operational units explained
earlier. The importance of this step is that in practice, these
blocks need computational power particularly for complex
fuzzy systems with numerous inputs, rules, antecedent and
consequent sets. Therefore, a quantum computing solution
algorithm will be beneficial for when the ideal quantum
computing platforms are available. However, the challenge is
to deliver the function of each block exclusively by using the
operational units stated previously.

We assume a Mamdani fuzzy inference system is to be
implemented with n crisp inputs (x1...xn), single crisp output
(y), m rules, minimum intersection, maximum union, and
centroid defuzzification operators.



Fig. 1. The implementation of a single fuzzifier block

Fig. 2. The implementation of a rule firing strength calculator

1) Fuzzifier: The fuzzifier block takes crisp values for
each input variable, then given the antecedent fuzzy sets, it
calculates the membership grade of each fuzzy set at the point
of the corresponding input values. In other words, given x̂ and
a fuzzy set A, it must produce a non-normal singleton fuzzy
set F with a single spike at x̂ where µF (x̂) = µA(x̂). Different
fuzzifier blocks are to be employed for each input and each
relevant antecedent. Let us focus on a single block that
converts x1 to F1 = {Σ µA1(x1)/x1}. The implementation of
this single block is shown in Fig. 1. First, a Q.Singleton unit
converts x1 to a singleton set {1/x1}, then a Q.Intersection
unit, makes the intersection of this set with the antecedent set
A1. Since the singleton set has a single non-zero grade at x1,
the result is a singleton at x1 with the grade µA1(x1).

2) Rule Strength Calculator: The job of this block is to
calculate the firing strength of each rule. Each rule has n
antecedents, thus the inputs of this block are n fuzzified values.
In Mamdani’s inference method, the firing strength of the rule
is the minimum of the fuzzified values. According to our
design, the inputs to the block are n fuzzy singletons coming
from the fuzzifier blocks. As shown in Fig. 2, calculating
the firing strength of a rule (e.g. the first rule) includes two
steps: First, a union set of all the incoming fuzzified values
is produced (i.e., {Σ µAi

(xi)/xi}) by Q.Union unit(s). This
will be a set with all the fuzzified values aggregated in a single
set, in which each non-zero grade is a fuzzified value located
at its corresponding crisp input. Secondly, a Q.Min unit takes
the produced union and calculates the maximum grade, which
is the rule’s firing strength by definition (i.e., w1 for rule 1).

3) Rule Output Calculator: Once the firing strength of all
the rules are calculated, the consequent set of each rule is
to be capped with the rule’s strength to produce the rule’s
output fuzzy sets (O1...Om). This is equivalent to intersecting
the consequent set with an intermediate ”flat” fuzzy set. The
strength of the rule is the membership grade of all members
of such a set. This can be implemented by a Q.Replicate unit
followed by a Q.Intersection unit, as shown in Fig. 3. For

Fig. 3. The implementation of a rule output calculator block

Fig. 4. Implementing the block for aggregating the individual output sets of
each rule, and defuzzifying it

example in rule 1, a consequent set C1 = {Σ µC1
(yj)/yj}

is defined over its universe of discourse Y (which can be
different from X). A Q.Replicate unit in this block takes the
calculated rule firing strength w1 and creates an intermediate
fuzzy set {Σ w1/yj} with all the grades equal to w1. Then,
this set is intersected with C1 in order to create a capped
version of C1. Formally, the output fuzzy set of this block can
be expressed as O1 = {Σ min[w1, µC1

(yj)]/yj}.
4) Aggregator and Defuzzifier: After each rule’s output set

is created, the union of all the output sets are to be created and
finally defuzzified in order to calculate the final crisp output of
the inference. This can be implemented by serialising Q.Union
unit(s) and a Q.Defuzzifier unit. As shown in Fig. 4, different
output sets (O1...Om) coming from m rules are taken to the
block, then their union set is produced as O = {Σ µO(yj)/yj}
where µO(yj) = max[µO1

(yj), ..., µOm
(yj)]. Finally, the

fuzzy output set O is to be defuzzified by a Q.Defuzzifier unit
in order to calculate the final crisp output y. It is noticeable
that the Q.Defuzzifier unit is an implementation of the centroid
defuzzification. If more simplicity is needed, this unit can be
replaced by a Q.Max that implements a MAX defuzzifier.

B. The Whole Fuzzy Inference Implementation

Once the building blocks of the inference are designed
based on the quantum annealer operational units, the blocks
are to be replicated and pipelined according to the number of
inputs and rules, in order to create the whole inference. The
proposed design of the inference system is shown in Fig. 5.
As illustrated, for a system with n inputs (A1...An), up to
n antecedent sets can exist (A1...An). Each of the m rules
(e.g., rule i) can have up to n stacked fuzzifier blocks. In
each rule, the multiple outputs of the fuzzifiers corresponding
to the different antecedents are given to a single rule strength
calculator block, in which the rule’s firing strength (wi) is
calculated. Each rule also has a single consequent set Ci

(which can be repeated in other rules). The calculated wi along
with the consequent set of the rule are given to a single rule



Fig. 5. Mamdani inference system made of the pipelined building blocks

output calculator block in order to produce an output set of
the rule. Repeating this process for m rules produces m output
sets which are to be given to a single aggregator/defuzzifier
block in order to produce the final crisp output.

V. A SAMPLE NUMERICAL EXAMPLE AND ITS
IMPLEMENTATION ON A REAL QUANTUM COMPUTER

A. A Numerical Example

Let us consider a simple fuzzy control system with two
inputs, two antecedent fuzzy sets, one consequent fuzzy set
and two rules. A quantum annealer with 10 qubits is assumed
to be available, therefore the x-values of the discretised fuzzy
sets are integers 1 to 10. Let the rules be:

• Rule 1: IF x1 IS A1 and x2 IS A2 THEN y IS C1

• Rule 2: IF x1 IS A2 and x2 IS A1 THEN y IS C2

and let the fuzzy sets be:
• A1 = {0.0/1, 0.5/2, 1.0/3, 1.0/4, 1.0/5, 0.5/6, 0.0/7,

0.0/8, 0.0/9, 0.0/10}
• A2 = {0.0/1, 0.0/2, 0.0/3, 0.0/4, 0.5/5, 1.0/6, 1.0/7,

1.0/8, 0.5/9, 0.0/10}
• C1 = {1.0/1, 1.0/2, 1.0/3, 0.8/4, 0.6/5, 0.4/6, 0.2/7,

0.0/8, 0.0/9, 0.0/10}
• C2 = {0.0/1, 0.0/2, 0.0/3, 0.2/4, 0.4/5, 0.6/6, 0.8/7,

1.0/8, 1.0/9, 1.0/10}
Finally, let us set the inputs as x1 = 2 and x2 = 6.

Each of the two rules has two fuzzifier blocks. In the first
block of the first rule, with reference to Fig. 1 and 5, the steps
are conducted as follows:

• The Q.Singleton unit produces a singleton set {1.0/2}
• The Q.Intersection takes the above set and A1 to produces

a fuzzy set F 1
1 = {0.5/2}

Similarly, the outputs of the other three fuzzifier blocks are:
F 2
1 = {1.0/6}, F 1

2 = {0.0/2} and F 2
2 = {0.5/6}.

The rule strength calculator block (Fig. 2) acts as follows:
• In rule 1: The Q.Union unit makes F 1

1 ∪ F 2
1 =

{0.5/2, 1.0/6} then the Q.Min units calculates the rule’s
firing strength as w1 = 0.5.

• In rule 2: The Q.Union unit makes F 1
2 ∪ F 2

2 =
{0.0/2, 0.5/6} then the Q.Min unit calculates the rule’s
firing strength as w2 = 0.0.

The rule output calculator block (Fig. 3) acts as follows:

• In rule 1: The Q.Replicate unit takes w1 = 0.5 and
creates a fuzzy set {0.5/1...10}, then the Q.Intersect unit
produces the intersection of this set and C1, which is
O1 = {0.5/1, 0.5/2, 0.5/3, 0.5/4, 0.5/5, 0.4/6, 0.2/7,
0.0/8, 0.0/9, 0.0/10}

• In rule 2: taking w2 = 0.0, the Q.Replicate creates
{0.5/1...10}, then the Q.Intersect unit produces the in-
tersection of this set and C2 which is O2 = {0.0/1...10}
(i.e., rule 2 is not fired).

Finally, in the aggregator/defuzzifier block (Fig. 4) the
Q.Union acts on O1 and O2 to create O = 0.5/1, 0.5/2, 0.5/3,
0.5/4, 0.5/5, 0.4/6, 0.2/7, 0.0/8, 0.0/9, 0.0/10}, and the
Q.Defuzzifier calculates the centroid of O as the final
inference output y. Calculating the centroid of O yields 3.7.
Given the system’s resolution, the rounded centroid is y = 4.

B. A Sample Quantum Computer Implementation

The numerical example presented in subsection A, can
be implemented on an adiabatic quantum computer with
10 qubits. The implementation is based on D-Wave Sys-
tem (https://docs.dwavesys.com), a cloud-based real quantum
computing platform. D-Wave also provides some Python
libraries for programming using web-based and desktop
IDE that connect to the same platform (more details is
out of the scope of this paper, and can be found in
https://docs.ocean.dwavesys.com).

Each operational units explained in section II are to be
implemented individually, then pipelined as shown in Fig. 5.
Sample implementations of these units on a real quantum com-
puter are already shown in [9], [10]. This paper’s size does not
allow to present the implementations of the whole pipelined
system shown in Fig. 5. Therefore, we consider the numerical
example in subsection A and show a sample implementation of
a single building block, namely the final Aggregator/Defuzzi-
fier block (Fig.4). From the example, the aggregated set is O =
{0.5/1, 0.5/2, 0.5/3, 0.5/4, 0.5/5, 0.4/6, 0.2/7, 0.0/8, 0.0/9,
0.0/10} and we implement a Q.Defuzzifier unit to calculate
its centroid y.

Implementing the centroid defuzzifier on quantum annealers
is detailed in [10]. Briefly, calculating the centroid is translated
to an Ising-based BQM optimisation problem, of which the
BQM coefficients are given in Section III-C5. According to the
algorithm, when the ground states are sorted by their energy
level, the centroid is found by identifying the location of the
first 1/-1 switchover in the output.

Accordingly, Listing 1 shows the Python program for the
Q.Defuzzifier unit. The program’s output is also shown in Fig.
6, in which each row contains the states of the collapsed qubits.
The rows are descendingly ranked by the system’s energy
levels. As explained, the defuzzified value is indicated by the
first switchover point of the qubit spins in a single state (row).
As highlighted in Fig. 6, the switchover is in the third row
between the 3rd and the 4th qubits, i.e., the defuzzified value
is a number between 3 and 4. We notice that the system’s
resolution is 1 and this result matches with y=3.7 that was
theoretically calculated in subsection A.



Fig. 6. Output of Listing 1 on the real adiabatic quantum computer

Listing 1. Python program for Q.Defuzzifier unit
import dimod
from dwave.system import DWaveSampler,
EmbeddingComposite
mu = [0.5,0.5,0.5,0.5,0.5,0.4,0.2,0.0,0.0,0.0]
n = len(mu)
k = n*(n-4)/4+1
linear = {}
quadratic = {}
for i in range(n):
linear.update({’y’+str(i) : 0})

for i in range(n):
for j in range(i+1, n):

qij=mu[i]*mu[j]
if (j==i+1):

qij=qij-k
quadratic.update({(’y’+str(i),’y’+str(j)):qij})

bqm = dimod.BinaryQuadraticModel(linear, quadratic,
0, ’SPIN’)
sampler=EmbeddingComposite(DWaveSampler())
print (sampler.sample(bqm, num_reads=300))

VI. CONCLUSION

Considering that today’s applications of fuzzy systems are
increasingly involve large amounts of data or large sets of
rules, there is a strong emergence of identifying innovative
computational paradigms capable of efficiently managing this
type of systems. This work takes another step towards mod-
elling a whole rule-based fuzzy logic systems on quantum
computers, i.e., how to orchestrate algorithms in quantum
adiabatic model to achieve Mamdani’s fuzzy inference.

It is important to highlight that the main goal of this paper is
not to demonstrate an advantage in using quantum computers
to implement a fuzzy logic system in the currently available
machines. Quantum computers have the theoretical potential
to solve large-scale problems, however in the current era
of Noisy Intermediate-Scale Quantum (NISQ) when the real
quantum computers with enough resources are not yet publicly
available, classical computing methods are practically more
efficient. Rather than that, the goal achieved by this research
is the proof of the quantum annealers feasibility in performing
a whole fuzzy inference process.

For the future, we plan to investigate the results of the
proposed approach on more complex fuzzy systems - with
more variables and rules. Also, some real-world application
of the developed system will be explored and showcased.
Moreover, this approach will be used to implement other
inference methods such as zero-order TSK.

REFERENCES

[1] A.-T. Nguyen, T. Taniguchi, L. Eciolaza, V. Campos, R. Palhares, and
M. Sugeno, “Fuzzy control systems: Past, present and future,” IEEE
Computational Intelligence Magazine, vol. 14, no. 1, pp. 56–68, 2019.

[2] S.-M. Chen, “A new approach to handling fuzzy decision-making prob-
lems,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 18,
no. 6, pp. 1012–1016, 1988.

[3] F. J. Cabrerizo, F. Chiclana, R. Al-Hmouz, A. Morfeq, A. S. Balamash,
and E. Herrera-Viedma, “Fuzzy decision making and consensus: chal-
lenges,” J. of Intell. & Fuzzy Sys., vol. 29, no. 3, pp. 1109–1118, 2015.

[4] Y. Liu, C. M. Eckert, and C. Earl, “A review of fuzzy ahp methods
for decision-making with subjective judgements,” Expert Systems with
Applications, vol. 161, p. 113738, 2020.

[5] Y. Cui, E. Hanyu, W. Pedrycz, and Z. Li, “Designing distributed fuzzy
rule-based models,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 7,
pp. 2047–2053, 2020.

[6] F. Tacchino, A. Chiesa, S. Carretta, and D. Gerace, “Quantum comput-
ers as universal quantum simulators: state-of-the-art and perspectives,”
Advanced Quantum Technologies, vol. 3, no. 3, p. 1900052, 2020.

[7] T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Reviews
of Modern Physics, vol. 90, no. 1, p. 015002, 2018.

[8] G. Acampora, R. Schiattarella, and A. Vitiello, “On the implementation
of fuzzy inference engines on quantum computers,” IEEE Transactions
on Fuzzy Systems, 2022.

[9] A. Pourabdollah, G. Acampora, and R. Schiattarella, “Fuzzy logic on
quantum annealers,” IEEE Transactions on Fuzzy Systems, 2021.

[10] ——, “Implementing defuzzification operators on quantum annealers,”
in 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
IEEE, 2022, pp. 1–6.

[11] A. Manju and M. J. Nigam, “Applications of quantum inspired compu-
tational intelligence: a survey,” Artificial Intelligence Review, vol. 42,
pp. 79–156, 2014.

[12] D. Ventura, “Quantum computational intelligence: answers and ques-
tions,” IEEE Intelligent Systems, vol. 14, no. 4, pp. 14–16, 1999.

[13] G. Acampora, R. Schiattarella, and A. Vitiello, “Using quantum ampli-
tude amplification in genetic algorithms,” Expert Systems with Applica-
tions, vol. 209, p. 118203, 2022.

[14] Y. Kwak, W. J. Yun, S. Jung, and J. Kim, “Quantum neural networks:
Concepts, applications, and challenges,” in International Conference on
Ubiquitous and Future Networks (ICUFN). IEEE, 2021, pp. 413–416.

[15] F. Di Martino and S. Sessa, “A novel quantum inspired genetic algorithm
to initialize cluster centers in fuzzy c-means,” Expert Systems with
Applications, vol. 191, p. 116340, 2022.

[16] A.-X. Ye and Y.-X. Jin, “A fuzzy c-means clustering algorithm based
on improved quantum genetic algorithm,” International Journal of
Database Theory and Application, vol. 9, no. 1, pp. 227–236, 2016.

[17] A. Baykasoğlu, İ. Gölcük, and F. B. Özsoydan, “Improving fuzzy
c-means clustering via quantum-enhanced weighted superposition at-
traction algorithm,” Hacettepe Journal of Mathematics and Statistics,
vol. 48, no. 3, pp. 859–882, 2018.

[18] L. Litvintseva, I. Ul’yanov, S. Ul’yanov, and S. Ul’yanov, “Quan-
tum fuzzy inference for knowledge base design in robust intelligent
controllers,” Journal of Computer and Systems Sciences International,
vol. 46, no. 6, pp. 908–961, 2007.

[19] G. G. Rigatos and S. G. Tzafestas, “Parallelization of a fuzzy control
algorithm using quantum computation,” IEEE Transactions on Fuzzy
Systems, vol. 10, no. 4, pp. 451–460, 2002.

[20] G. Acampora, F. Luongo, and A. Vitiello, “Quantum implementation of
fuzzy systems through grover’s algorithm,” in 2018 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2018, pp. 1–8.

[21] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[22] L. Visintin, A. Maron, R. Reiser, and V. Kreinovich, “Aggregation opera-
tions from quantum computing,” in 2013 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013, pp. 1–8.

[23] D. Aharonov, W. van Dam, J. Kempe, and Landau, “Adiabatic quantum
computation is equivalent to standard quantum computation,” in IEEE
Symp. on Found. of Comp. Sci. IEEE, 2004, pp. 42–51.

[24] P. Date, D. Arthur, and L. Pusey-Nazzaro, “Qubo formulations for
training machine learning models,” Scientific Reports, vol. 11, no. 1,
pp. 1–10, 2021.

[25] D. M. Fox, K. M. Branson, and R. C. Walker, “mrna codon optimization
with quantum computers,” PloS one, vol. 16, no. 10, p. e0259101, 2021.


