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Abstract 
 

This thesis introduces a new experimental paradigm for exploring the cognitive mechanism of 

statistical learning (SL). SL refers to the ability of extracting statistical regularities and patterns 

implicitly from the sensory input and forming them into units of knowledge. Most of the 

methodologies used in the literature to investigate or assess the mechanism of SL, use tasks 

and measurements that assess the outcome of the learning process, rather than the process itself. 

Therefore, the new experimental paradigm introduced in this thesis, provides a new way of 

observing the SL mechanism while it operates, with the usage of a gaze contingent/time-

displayed eye-tracking sequential SL task (on the visual domain). Once the new methodology 

is introduced and assessed across two different eye-trackers (Gazepoint GP3; EyeLink 1000 

(SR Research Ltd., Mississauga, Canada)), it is applied to specific research contexts about the 

encoding process of sequences in SL and the effects of sequence length and mixtures of 

sequences lengths in sequential SL. The findings of this thesis support evidence for a 

hierarchical structure in the SL encoding process, where the last item of a sequence is better 

learned than the previous and so on. Additionally, it is suggested that sequences with shorter 

lengths (2 items) are learned faster than longer length sequences (4 items) in same length tasks. 

However, when the sequential SL occurs within mixed length sequences, longer sequences are 

facilitated from their coexistence with shorter sequences in the task, resulting in faster learning, 

while learning of shorter sequences is impeded by their coexistence with longer sequences in 

the task. A contextual evaluation of the two eye-tracking systems used in this thesis is described 

to justify the usage of low-cost equipment in experimental research. Finally, a critical 

discussion of the findings and its applications on educational and clinical areas is given.  

Key Terms: implicit learning mechanism, sequential statistical learning, eye-tracking, new 

experimental paradigm, information processing, transitional probabilities
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Thesis Summary 

 
This mini chapter aims to introduce to the reader a summary of the thesis content and highlight 

the main key terms used in it. This thesis investigates the mechanism of statistical learning via 

a new experimental paradigm.  

Chapter 2, contains a detailed literature review about SL. It aims to help the reader understand 

better the mechanism of SL as part of cognition and highlight the gaps in the literature this 

thesis aims to answer. SL is part of implicit cognition, and as such, it develops associatively, 

fast and automatically. Throughout the years many experimental tasks have been used to 

understand the SL mechanism, such as 2AFC tasks, tasks with familiarization and testing 

phases, tasks that use a reward system, etc. However, a common element across all those 

experimental methodologies was that they were inferring the SL mechanism by assessing the 

outcome of the learning process rather than the process itself. Therefore, the need for a new 

experimental paradigm was born, that would record meaningful data that describes the SL 

process rather the outcome/result of it. An extension of this rationale was to reflect on the 

current understanding of how information encoding occurs during SL, if it is an all or none 

process, if the learning occurring during SL relies merely on the extraction of transitional 

probabilities, or if there is a unit chunking mechanism and if so, how it works. Sequential SL 

was chosen as the mechanism investigated by the new experimental paradigm, since in 

sequential SL, each item of the sequence has a unique point in space and time within the 

sequence presentation and therefore could provide meaningful details about the learning of 

associations formed across each item of the sequence and the broader learning of the sequence 

as a unit. Furthermore, sequential SL allowed us to investigate sequence length effects and 
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mixture of length effects that are still unanswered and play an important role in understanding 

SL in processes such as language learning.  

In Chapter 3, the research questions of this thesis are detailed. The research questions derive 

directly from the gaps in knowledge identified within the literature review.  This thesis aims to 

(a) introduce a new experimental paradigm that records the process of SL rather than the 

outcome of it, (b) understand how sequential SL occurs and develops in time and what 

information processing theories fit better the data obtained and finally (c) understand how 

specific components of sequences such as sequence length or mixture of lengths can affect the 

sequential SL process. 

Since the research aims/ questions of this thesis have been justified by the literature review, the 

next step was to introduce the new experimental paradigm and the development of it by the 

presentation of two designs that were used to investigate the sequential SL of 3 dot sequences 

on the visual domain with the use of eye-tracking in Chapter 4. Design A, is the design that 

was first created to capture the sequential SL process. During design A, participants were 

presented with an array of 16 locations on the screen (presented as 16 grey dots) and a moving 

single green dot on those locations. The movement of the dot wasn’t random. Each dot 

represented an item in a sequence, and in total 4 sequences of 3 items each were used. The 

visual stream of the moving dot was continuous. Each trial consisted of a time gaze contingent 

period until the participant looked at the green dot, followed by a time displayed period of 

275ms where the dot remained still (to secure that the participant has seen it), followed by a 

time displayed period of 750ms that the green dot disappeared and the participant had to guess 

where the next location would appear by looking at it and ending by the presentation of the 

next green dot that was the next item in the sequence. Participants had no information about 

the stream of sequences, or the length of the sequences. Eye-samples on the correct next 

location on the array during the blank period of 750ms were considered as learning and were 
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expected to increase as exposure to the sequence and its items increased. In order to record 

those data, we used a Gazepoint GP3 (60 Hz) eye-tracker that recorded approximately 45 eye-

samples for each 750 ms time window. The big success of Design A was the fact that it was 

recording the learning process from time-point 0, when the 1st item of the sequence was 

presented on the screen until the presentation of the last item of the sequence at the end of the 

task. However, the visualisation of the data obtained from Design A, demonstrated large 

variability in individual difference learning scores, with some participants learning a little, most 

of them learning nothing and a few of them demonstrating high learning scores. That fact, lead 

to the creation of Design B that is presented in the first section of Chapter 5. Design B, we  

used a more powerful eye-tracker, EyeLink 1000 (SR Research Ltd., Mississauga, Canada, 

1000Hz), in order to be able to record 750 eye-samples during the blank window of 750ms 

where learning occurs, while a feedback beep sound was introduced at the beginning of the 

presentation of each green dot, if the participant failed to attend to the location of the dot during 

the blank 750 ms period, as a form of negative feedback. That way it was secured that a 

powerful tool was used, that allowed the recording of the mechanism within the specific time 

limitations of the task, while negative feedback was introduced in task, as a form of attention 

grasping/motivation strategy for participants. The visualisation of the data obtained from 

Design B, again contained a lot of individual differences in learning scores across participants, 

however this time more participants demonstrated learning and the learning scores were greater 

numeric values. Since the first research aim of this thesis was successfully completed by 

creating a new experimental paradigm that captured the time course of the SL mechanism and 

was acknowledged that individual differences are part of the SL mechanism therefore can’t be 

prevented, it was decided to continue with design B, as the main experimental design used to 

provide answers to the rest of the research questions of this thesis. The second section of 

Chapter 5 is devoted to the application of the experimental methodology explained in the first 
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section, in 6 different tasks. The tasks were split in two categories: (a) the same length tasks (2 

dots, 3dots, 4 dots) that contained same length sequences within each task and (b) the mixed 

length tasks (2&3 dots, 2&4 dots, 3&4 dots) that contained mixed length sequences within each 

task. At first, we examined if learning was successful across all tasks.  Next, an analysis was 

performed to examine how the different type of transitions within the new methodology reflect 

SL. The learning of the 1st position of a sequence differed from the learning observed within 

the 2nd, 3rd and 4th items of a sequence. This can be explained by the fact that the learning 

observed on the 1st item of a sequence was random at the beginning of the task (1/16 chances) 

and transformed during the task, as the learning of the within sequence positions affected the 

chances of guessing (1/3).  

In Chapter 6, we used the 6 tasks described in Chapter 5 to answer if sequential SL is an all or 

none process, and provide information about how unit chunking occurs, by exploring the 

learning patterns within the items of a sequence. The results suggested a consistent learning 

pattern across all tasks, suggesting that as the position of the item in the sequence was 

increased, the learning of that item was better. That learning pattern within the items of a 

sequence, rejected the all or none learning approach in SL, while it suggested a hierarchical 

structure of learning, that derives directly from the SL mechanism and is unaffected by 

sequence properties such as sequence length or mixture of sequences. 

Furthermore, Chapter 7 focused on answering the final research aim of this thesis, which relates 

to sequence length effects and mixture of lengths effects on SL performance, by using the 6 

tasks as explained in Chapter 5. The results suggested that shorter length sequences are learned 

faster than longer length sequences, while longer sequences are better learned in mixed length 

tasks, because they are blended with shorter length sequences. These findings can be directly 

applied in educational psychology, while they can be used for further research investigation of 
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mechanisms such as language learning that rely on mixed length sequences (syllables forming 

words/ words forming sentences analogy). 

After answering all the research questions of this thesis, Chapter 8 was created to highlight 

methodological issues for people who may want to use this or similar paradigms, showing how 

different tools such as eye-trackers can affect the quality of measurements of the tasks. Firstly, 

it gives a summary of the contribution of eye-tracking as a tool, in the field of cognitive and 

clinical psychology and then it moves onto detailing the main technical differences of the two 

eye-tracking systems that were used in the new experimental methodology suggested in this 

thesis (Gazepoint GP3 vs EyeLink 1000,SR Research) and explains how different types of 

analysis can lead to underestimation or overestimation of findings based on the powerfulness 

of the tools used. The final section of this chapter is devoted to evaluation of the two eye-

tracking systems within specific research contexts. 

The final chapter of this thesis (Chapter 9) is a discussion about the application of the new 

suggested experimental paradigm in different concepts, a reflection of previous findings and 

literature on the findings of the current thesis about sequence length effects, mixed length 

effects and information processing in SL. Additionally, future implications and limitations of 

the current findings and design are elaborated, and additional evidence about how the current 

design can be used to examine individual learning differences in SL patterns.  
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“Statistical Learning (SL) – a powerful but still 
unknown mechanism- Evidence from theory, 
research methods and practices in the field of 

cognitive psychology” 
 

 

 

Chapter Summary 

In the interest of understanding the gaps in knowledge around the cognitive mechanism of SL, 

we devoted this chapter in a literature review about SL theory. This literature review will help 

the reader understand better the mechanism of SL and its applications on different cognitive 

learning concepts. Statistical learning (SL) is one of the main cognitive mechanisms that infants 

use to learn the world and start forming their first words. Even though this ability to extract 

patterns and regularities from the sensory input and form them into a meaningful unit is crucial, 

there aren’t plenty of studies trying to unzip the basic operation system of that mechanism, 

neither in infants nor in adults. Some of the main themes that will be covered in this chapter 

refer (a) to the theory behind statistical learning, (b) the current knowledge about SL from 

research and the used methodologies, (c) the temporal component of sequential SL mechanism 

of how people from various psychological fields (cognitive, psycholinguistics, cognitive 

neuroscience) tried to define them through their psychological tasks and models, (d) the gap in 

knowledge around the field of SL. Understanding what SL is and the different approaches 

towards it, are key components for identifying the current gaps in the literature and determinant 

for the nature of the research aims of this thesis. 
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A. Statistical Learning Theory  

A.1. General SL Theory 

SL theory is a theoretical approach in which mathematical models are used to describe 

processes of learning. A cognitive conceptualisation of SL would define SL as the ability of 

extracting transitional probabilities and statistical patterns from the sensory input and forming 

them into a coherent unit of knowledge, which can be later used to retrieve the memory of the 

input or predict the next input (Aslin & Newport, 2012). For example, people may initially see 

A, B, and C as individual elements but if they appear often together in the same sequence, they 

will eventually learn them as a unit ABC. SL ability has been crucial for the survival of primates 

(Newport, Hauser, Spaepen & Aslin, 2004), since the ability to identify regularities and patterns 

helps them understand their environment, make reliable predictions about it and respond to 

familiar stimuli in it.  

One of the first statistical approaches to learning, was introduced by Estes (1950) with Stimulus 

Sampling Theory (SST). SST aimed to provide a statistical explanation about how learning 

occurs. The theory suggested that the learning of a specific stimulus-response (S-R) association 

occurs on a single trial; but the overall process of learning contains accumulations of discrete 

S-R pairings and is continuous. This suggests that during any trial that learning takes place 

between an S-R, there are numerous Rs that can match the S, but only the portion of Rs that 

are effective can form associations with the S. Therefore, the Rs are a sample out of all the 

possible stimuli that the participant has been exposed to. Many types of psychological learning 

tasks and paradigms were built around this theory, such as free-recall, concept identification, 

operant conditioning, paired-associates, stimulus generalization, preferential choice, paired-

associates etc. 
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SST has been used mostly in memory, language learning, and developmental experiments and 

it’s based on two basic principles: (a)while the learning of a particular instance can be either 

all or none, the overall learning process is gradual, continuous and cumulative; and (b) 

fluctuations in the environment and procedural factors will cause variability in learning 

progress (Estes,1970). Some of these environmental and internal components were identified 

later in the literature as perceptual components, cognitive structures and verbal load (Saffran, 

1996; Aslin & Newport, 2012).  

A.2. Is SL a mechanism: Mechanist philosophy vs Cognitive science 

In philosophy of science, there are many approaches of the concept of mechanism. A 

commonly used approach on understanding mechanist philosophy is the Levy’s taxonomy 

(Levy, 2013). According to Levy’s taxonomy (Levy, 2013), there are 3 central mechanistic 

theses that coexist in every so-called mechanism but they are not always well-marked as 

separate theses. These mechanisms are (a) the causal mechanism which is referring to the 

relationship between the causal relations of the external physical phenomena and their 

existence in virtue of underlying mechanisms, (b) the explanatory mechanism which highlights 

the need of citing mechanistic information in order to explain a phenomenon and (c) the 

strategic mechanism that suggests that certain phenomena are best handled mechanistically 

The strategic mechanism, according to Levy (2013), is an exploratory “strategy” about the 

scientific method. It’s a way of understanding the nature of complex systems, by treating those 

systems mechanistically, and breaking them down to smaller simpler systems that have specific 

epistemic and cognitive features. This approach is largely used in cognitive sciences in methods 

such as AI and Computational Modelling. 

Most philosophers tried to create distinct criteria in order to decompose the complex systems 

of mechanisms. They mostly emphasized on (a) the importance of parts, operations and their 
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organization (Bechtel & Abrahamsen 2005 ; Glennan, 1996), (b) the hierarchical structure of 

mechanisms and the distinct discrimination between levels and bottoming out in a mechanism. 

This means that the parts and operations of a mechanism are placed in a series of levels with 

different importance or status. The levels of each mechanism are distinctive and there is no 

overlap between them. The hierarchy in a mechanism can rely on either the importance of each 

part (most important less important) or to the procedural order of each part in a mechanism 

(what part occurred, 1st , 2nd etc).  (Glennan, 1996; Machamer, Darden & Craver, 2000), (c) the 

causality and the notion of causal laws (Glennan, 1996; Craver, 2007) and how causality 

allows the interaction between the different parts of a mechanism and finally (d) the ability to 

create mechanistic explanations in order to explain the mechanisms observed in the physical 

world (nature)(Craver, 2007; Bechtel & Abrahamsen, 2012).  

However, in psychological mechanisms and especially in cognitive scientific mechanisms, we 

have an information processing approach rather a material approach (Bechtel, 2008). This 

information processing approach comes from observations of behavioural tasks, and most of 

the times we use scientific tools from neuroscience, biology and computer science to develop 

our explanatory, causal and strategic mechanism. 

Statistical learning has been considered as a solid psychological mechanism in the literature of 

cognitive and experimental psychology. Many studies tried to understand the parts of this 

mechanism, the levels and the operational causality of this mechanism or even provide a 

mechanistic explanation that would break down SL to smaller cognitive specific operational 

parts (Creel, Newport & Aslin, 2004; Saffran, Johnson, Aslin & Newport, 1999; Fiser & Aslin, 

2001; Turk-Browne, Scholl, Chun & Johnson, 2009; Saffran & Thiessen, 2007), however most 

of the times their findings have failed to compose a solid mechanistic approach with 4 theses 

and therefore created the issue “black box” of statistical learning mechanism (Figure 3.1).   
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Figure 3.1 Mock diagram of the statistical learning mechanism (Betzler, 2016). 

A.3. SL as part of implicit cognition. 

According to Reingold and Ray (2006), implicit cognition consists of a set of unconscious 

influences, such as memory, knowledge and perception and those unconscious influences have 

the ability to change a person’s behaviour. The idea that there are 2 fundamentally different 

sets of cognitive processes (implicit vs. explicit), has been widely used in the field of cognitive 

psychology and many researchers tried to create theories/models to understand how this “dual-

processing” system works (M. Posner, Snyder & Solso, 1975; Schneider & Shiffrin, 1977). 

The implicit system is believed to be associative, fast and automatic and the explicit system is 

believed to be slow and reflective. 

In 1967, Reber defined implicit learning as a mechanism that involved “automatic learning 

mechanisms that are used to extract regularities and patterns distributed across a set of 

exemplars, typically without conscious awareness of the regularities being learned” (p.114). 

This definition highlighted the main difference between conscious and unconscious processes, 

which relies on the fact that during implicit processes the individuals are unaware of 

manifesting the process (A. S. Reber, 1989, 1993). 

According to De Houwer, Teige-Mocigemba, Spruyt and Moors (2009),  “Implicit measures 

can be defined as outcomes of measurement procedures that are caused in an automatic manner 

by psychological attributes. To establish that a measurement outcome is an implicit measure, 
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one should examine (a) whether the outcome is causally produced by the psychological 

attribute it was designed to measure, (b) the nature of the processes by which the attribute 

causes the outcome, and (c) whether these processes operate automatically.” (De Houwer, 

Teige-Mocigemba, Spruyt & Moors, 2009, p. 347). A great example of implicit learning task 

is the artificial grammar learning (AGL) test suggested by Reber (1969). During an AGL test, 

participants are exposed to novel stimuli that are structured according to a set of grammatical 

properties and rules. After the exposure to this test, participants are able to recognise the 

difference between stimuli that follow the grammatical structure and those that don’t, without 

realising how they achieve to discriminate between those two, or even being aware that they 

are exposed to structured/non-structured stimuli. 

Implicit learning is extremely crucial in processes such as real-life problem solving (Funke & 

Frensch, 2007), language learning (Shaffran et al., 1996; Gomez & Gerken, 1999), and may 

also be a predictor of educational attainment (Mackintosh, 2011). The SL paradigm is the most 

recently developed, and investigated, out of the implicit learning paradigms. It resembles a lot 

the AGL paradigm, however it was applied on different modality. The AGL paradigm used 

letter strings- presented on the visual domain, to represent the underlying formal grammatical 

structure generated by a Markov chain sequence and the grammatical structure as 

measurements, while Saffran et al. (1996), used simpler auditory speech stimuli (syllables 

stream) with the purpose of investigating if pre-verbal infants could extract statistical structure 

for auditory speech-like input (Reber et al., 2019; Safran et al., 1996). 

A.4. Rule-based natural language processing vs. Statistical Learning (SL) in language 
processing (usage-based approach). 

In order to understand the debate behind rule-based learning and statistical learning in language 

it is important to define Natural Language Processing (NLP).  The term NLP is used to describe 

the interaction between computers and human language. It involves a set of processes such as 
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developing algorithms and models that enable computers to understand, interpret, and generate 

human language in a meaningful manner.  

Rule-based NLP refers to an approach that uses predefined rules or patterns to analyse and 

understand language. In this approach linguistic rules are explicitly defined to perform various 

NLP tasks such as text parsing, information extraction, sentiment analysis, and question 

answering. Rule-based NLP has been inspired by Chomsky (1957) and his introduction to the 

concept of transformational generative grammar. 

Transformational Generative Grammar (TGG) is a linguistic theory developed by Chomsky 

(1957).  TGG describes the structure and the rules of human language that produce 

grammatically correct sentences.  TGG consists of six main components: (a) generative 

grammar - TGG is a type of generative grammar that seeks to generate and analyse the 

grammatical structure of sentences. It focuses on describing the rules and principles that 

generate an infinite number of grammatically acceptable sentences in a language; (b) 

transformational rules - TGG introduces the concept of transformational rules, which are 

operations that transform one structure into another while preserving the meaning. These rules 

account for various transformations observed in language, such as passive voice, question 

formation, relative clauses, and negation; (c) deep structure and surface structure- TGG 

proposes the existence of deep structure and surface structure. Deep structure represents the 

underlying meaning and syntactic structure of a sentence, while surface structure represents the 

actual arrangement of words in a sentence; (d) phrase structure rules - TGG utilizes phrase 

structure rules to describe the hierarchical structure of sentences. These rules specify how 

constituents (e.g., nouns, verbs) can be combined to form larger units; (e) generative capacity 

- TGG aims to define the generative capacity of a language, which refers to the set of all 

grammatically possible sentences in that language. The theory seeks to capture the rules and 

constraints that generate grammatical sentences and exclude the ones with wrong grammar; (f) 
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universal grammar - Universal Grammar suggests that all human languages share a common 

underlying structure and a set of universal principles. The transformational rules and 

underlying structures proposed in TGG are considered part of this innate linguistic knowledge. 

The main strength of rule-based NLP approaches is that they offer an explicit and transparent 

overview over the language processing tasks. It offers a clear and robust structure and set of 

rules on how NLP occurs.  Models that have used this approach have allowed the researcher to 

manipulate the language rules based on their knowledge and understanding around language 

processing. The explicit and transparent nature of rule-based NLP has allowed to create models 

that can handle complex linguistic concepts and produce interpretable and robust findings. 

However, rule-based NLP’s explicit nature suggests that these models might struggle to cover 

concepts such as linguistic ambiguity, linguistic exceptions and variations across large scale 

datasets. It is extremely difficult to develop a set of rules for all the possible language variations 

and nuances that can be observed in NLP. Therefore, it lacks ecological validity as there will 

always be an unaccounted variance that can’t been interpreted based on the explicit rules. 

Statistical learning was introduced in the context of language learning, syntax and grammar by 

Pinker (1979). While Pinker (1979) recognises the role of innate factors in language like 

Chomsky (1957), he believes that cognitive abilities and exposure to linguistic input are 

determinant to language acquisition (Pinker & Prince, 1988).  

Statistical learning in language processing was introduced as an approach in the late 1980s and 

early 1990s. In their book Manning and Schutze (1999), discuss various statistical approaches 

to NLP including n-gram models, Hidden Markov Models and Max Entropy models. This 

period was crucial for the field of AI and computational linguistics, as it marked a shift from 

Chomsky’s perspective on NLP towards using statistical models and machine learning 

techniques to understand NLP tasks.  
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For example, Brown et al., (1992) introduced the concept of n-gram models, which use 

statistics to estimate the probability of a word or sequence of words based on their context. The 

key idea behind n-gram models, is that language is represented as a sequence of n-grams, which 

are contiguous sequences of n items (e.g., words). The n-gram models are capturing statistical 

regularities in the dataset by calculating the probabilities of n-grams based on their frequencies 

in the training data. One main issue with n-gram models, is the “data sparsity”, where n-grams 

that haven’t been included in the training data, lead to zero probabilities and therefore poor 

generalisation. 

Rabiner and Juang (1986) introduced Hidden Markov Models (HMMs) as an SL approach to 

investigate NLP in speech recognition. HMMs are statistical models that represent sequences 

of data that are generated by an underlying process with hidden states. In the context of speech 

recognition, HMMs are employed to model the relationship between spoken words or 

phonemes and the acoustic features extracted from the speech signal. There are in general 6 

key principles in HMMs: (a) states and transitions - represents the assumption speech can be 

modelled as a sequence of hidden states. Each state represents a unique linguistic unit (e.g., 

phoneme, word). An HMM is representing the set of states and the in between state transitions; 

(b) observation symbols – In every state, the HMM creates an observation symbol representing 

the acoustic features (e.g., frequency) by extracting it from the speech signal; (c) probability 

distributions - Every state in the HMM has associated probability distributions over the 

observation symbols; (d) model training - The transitional probabilities and the observation 

distributions, are calculated based on a training dataset; (e) Viterbi decoding - The Viterbi 

algorithm, computes the most probable state sequence in speech by considering both the 

transition probabilities and the likelihood of the observation symbols; and (f) language model 

integration- HMMs incorporate a language model to further refine the recognition results and 
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improve the accuracy. HMMs, are in general powerful tools for speech recognition, as their 

probabilistic nature, allows to capture the temporal dynamics of speech.  

 Another statistical approach in NLP that was developed around that period were the Maximum 

Entropy (MaxEnt) models (Berger, Della Pietra & Della Pietra,1996; Ratnaparkhi, 1997). 

MaxEnt NLP models operate in nine simple steps: (a) define the task - define the specific NLP 

you are interested in exploring; (b) define the features – defining the syntactic, semantic and 

lexical properties of the input; (c) collect labelled training data - collect datasets where every 

input text has its corresponding output label; (d) extract features – extract the features from the 

training data; (e) calculate the empirical feature expectations – calculate the observed 

frequencies for each output label in the training data; (f) define the MaxEnt model - Construct 

the MaxEnt model, specifying the feature expectations derived from the training data as 

constraints; (g) model training - Use an optimization algorithm to estimate the model 

parameters that maximize the likelihood of the observed feature expectations while satisfying 

the constraints; (h) create predictions -  make predictions on new instances; (i) evaluate the 

model -  use NLP task appropriate metrics such as accuracy or precision to evaluate the model. 

MaxEnt NLP models seem to be very efficient at computing complex patterns and 

dependencies in the data, due to the fact that the models are being trained with labelled data 

and therefore the entropy of the probability distribution increases. 

SL approaches in NLP seem to significantly benefit from the implicit and automatic nature of 

the mechanism. The main strength of SL approaches is that they can automatically learn 

patterns and rules from vast datasets and even generalise efficiently on examples that the 

models hasn’t been exposed to. However, SL models have significant weaknesses. They are 

significantly less transparent in comparison to rule-base models (probability based) and the 

interpretation of the outcomes can vary based on the understanding of the researcher around 

language mechanisms. Additionally, the training data have a critical role in the operation of the 
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model and can affect the ecological validity of those models. The SL models usually require 

vast amounts of training data (costing both time and money), and they can still fail to capture 

linguistic rules or complex structures of language if those elements are not present in the 

training data. Even the most carefully selected and rich training data cannot capture the sheer 

extent of language that someone can encounter in NLP. Similarly, because the SL models rely 

entirely on the training data, they can be prone to the bias of the training data or overfitting, SL 

approaches are difficult to be tested in full extent. 

Some researchers such as (Gomez-Perez, Denaux & Garcia-Silva, 2020; Dash, 2021) have tried 

to combine the two different versions of models by creating hybrid models that would benefit 

from the strengths of each approach. Hybrid models tend to incorporate explicit rules into SL 

models in order to improve accuracy, interpretability and generalisation. In recent years, SL 

approaches and models have gained more prominence in NLP as they can handle vast datasets 

and complex patterns. However, before choosing an approach it is crucial to consider the 

domain and the context. Rule-based approaches can be extremely valuable when exploring 

domains that explicit rules have already been predefined/generated in a robust manner, or when 

interpretability and control over the data is crucial.   

In this thesis, we align with the SL approach, as our new suggested methodology mimics the 

language paradigm of SL by Saffran et al. (1996) on the visual domain, but without the 

linguistic load, as it doesn’t include any language related stimuli. That allows us to observe 

how the SL approach would work for a language-like paradigm, where the complexity of the 

patterns can be analogous to language. Additionally, the SL approach allow us to make further 

investigation on how information processing occurs during SL, without explicit a priori rules 

and limitations in a simplistic, easy to interpret manner. 
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B. Methodologies used in the literature to examine SL. 

One of the first methods that used to understand SL in the field of cognition, was transitional 

probabilities (TPs) (Saffran, Newport, & Aslin, 1996; Aslin, Saffran & Newport, 1998; 

Perruchet & Desaulty, 2008). Saffran et al., (1996) investigated SL and language acquisition 

mechanisms on 8 months old infants. In their first study they familiarized 24 8-month-old 

infants with 2 min of a continuous speech stream that consisted of four three-syllable nonsense 

words repeated in random order. In order to create the speech stream, they used a speech 

synthesizer with a monotone female voice that was producing 270 syllables per minute. In their 

first study, participants were firstly exposed to a continuous stream of visual or auditory 

stimuli, called as the familiarization phase. During that familiarization phase, the stimulus 

sequences were divided into triplets of co-occurring elements (e.g., in the continuous word 

stream string kupadilagotubidako, were included the three-syllable chunks/triplets kupadi, 

lagotu, and bidako). The order in which these triplets occurred was free and therefore, 

transitional probabilities (TPs) were structured such that TPs from one syllable to the next were 

higher for stimuli within a triplet (e.g., padi) than for those that span a triplet boundary (e.g., 

dila). Then the infants had to undergo through a preferential look process between a word that 

was presented in the familiarisation phase (e.g., kupadi) and a new one (e.g., gadilo). Two of 

the three-syllable strings were "words" of the artificial language that had been displayed  from 

during the familiarization phase, and two were novel  three-syllable "nonwords" that consisted 

of the same syllables heard during familiarization in different order. Infants demonstrated 

longer durations of listening the novel non-words. But serial order information isn’t enough 

cue to word boundaries. That led them to design their second study to assess the ability of 

infants on extraction of relative frequencies of co-occurrence of sound pairs. In these pairs the 

transitional probabilities that signal the word boundaries were relatively low, and therefore the 

statistical computations were harder. In this second study they recruited again 24 8-month-old 
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infants and familiarized them with 2 min of a continuous speech stream consisting of three-

syllable nonsense words similar in structure to the artificial language used in their first 

experiment. During the test phase the infants listened to two words and two "part-words." The 

part-words consisted of the last syllable of a word and first two syllables of another word. These 

part words were designed in such way that infants have heard them during the familiarization 

phase, however statistically they do not correspond to words. That detail in the design was 

crucial, as the only way that infants could judge those part words as novel was only if they had 

learned the words with great accuracy and they were able to acknowledge the word boundaries 

of a word. Similarly, infants demonstrated longer hearing time for the part-words rather than 

the actual words, indicating that they were able to identify them as novel stimuli. The 

interesting conclusion from this study was that word segmentation, one of the most basic 

processes in language acquisition is successfully accomplished by 8 months old infants, by 

using statistical relationships between the neighbour sounds. Infants’ exposure to a constant 

sequential stream of sounds was enough to determine word boundaries only based on the 

extraction of TPs that differed within and without a word.  

Fiser and Aslin (2002), used TPs in order to understand how SL operates in infants in the visual 

domain on objects recognition. More specifically, their aim was to examine if statistically 

optimal representations of scenes can be formed during early development (9-months old 

infants), by using a habituation paradigm. In total they used 12 shapes grouped into four base 

pairs and four “noise” elements. Each scene consisted of a “noise” element and a base pair that 

was located within a 2x2 grid. Each “noise” element was assigned to one base pair but could 

be located in 1 out of 4 possible locations and the screen, resulting in a total of 16 scenes. 

Again, this task was a preferential looking task with an observer initiating the presentation 

sequences and the infant’s behaviour. The habituation phase consisted of an attention getter 

(pulsing checkboard pattern accompanied with sound effects, located in the centre of the 
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screen). Once the infant looked at the attention target, the habituation process started with the 

scenes appearing in random order in the centre of the screen. At each trial when the scene 

appeared at the centre of the screen, the size of the scene loomed over the course of 1.5s and 

then paused at its maximum size for 0.5s. Then the scene disappeared, and a new trial started 

with another scene going through the same looming loop. During the testing trial, infants were 

presented with a single display repeated over and over. In Experiment 1, all four scenes were 

displayed during the habituation phase while in Experiment 2 and Experiment 3, all four low-

frequency base pairs were used, but only two high-frequency base pairs scenes were presented. 

The scenes with low-frequency pairs were presented twice more often that the scenes with 

high-frequency base pairs in the tasks. Their results showed higher looking times (RTs) on base 

pairs compared to frequency balanced non base pairs, suggesting that 9-month-old infants are 

sensitive to the statistical structure of multielement scenes. 

Monaghan, Schoetensack and Rebuschat (2019) suggested a unified framework that integrates 

implicit and statistical learning, two processes that are often considered separate in cognitive 

science. Implicit learning refers to the acquisition of knowledge without conscious awareness, 

while statistical learning involves the extraction of regularities from the environment. Both of 

those mechanisms share common underlying mechanisms and therefore can be studied by 

using a single paradigm. In order to examine both implicit and statistical learning under the 

same setting, they created a between group design, cross-situational learning task of artificial 

grammar and a post-test questionnaire about   participant’s awareness of patterns in the task.  

This study was conducted on adult participants and each participant was randomly allocated to 

one of the two conditions (incidental exposure or instructed exposure). The cross-situational 

task consisted of 8 visual objects, whose shape was taken from Fiser and Aslin (2012), 8 types 

of object motions, 16 two-syllable non-words that were used as content words that could 

describe the process occurring to the visual object (either shape or motion) and 2 monosyllabic 
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pseudowords (“tha” and “noo”) that could mean either the shape or the motion. In experiment 

one, at the beginning of the task, participants were instructed that they would be presented with 

two scenes and would listen to a sentence. Their task was to match the sentence to a scene. 

After the instructions, both groups were presented with an example. During the example, a 

rectangular shape moved in a circle while the participants listened to the sentence “Tha trepier 

noo vinnoy”.  The incidental group was instructed that the word “trepier” referred to the shape 

of the scene and that the word “vinnoy” referred to the circular movement. They were reminded 

again about this instruction midway through the task. The instructed group received explicit 

instructions about the words and the sentences that they would listen on top of the instructions 

that the incidental group received: “Each sentence contains the name of an object and the name 

of its motion. The object name is always preceded by the word tha, and the motion name is 

always preceded by the word noo.” (Monaghan et al., 2019, p. 540). In each trial, the 

participants observed two scenes foe 3 seconds; each scene containing an object that was 

performing a movement and then they listened to the sentence. Participants had to match the 

sentence to the right scene (left or right) as fast and as accurately as they could by pressing a 

keyboard button. There was a 500ms pause in between trials, and a total of 12 training blocks 

that contained 24 trials each. After the training phase participants moved to the testing phase 

without a break. Because participants could complete the task by selectively learning only the 

noun–object or verb–object pairing, two different testing blocks were introduced at the end of 

the training: (a) the testing block that was testing verb learning, where participants were 

exposed to two scenes with a novel object doing different movements and a word that referred 

to a specific movement (from training phase); participants were required to select the scene 

described by the word) and (b) the testing block for noun learning, where participants saw two 

objects and heard one word that referred to a specific object (from training phase); participants 

again had to select the object that was described by the word. There was a total of sixteen trials 



Chapter 2  

25 
 

per testing task. After completing the task, they completed a questionnaire to examine they 

were aware of any sentence structures, rules or patterns in the experimental task. In experiment 

2, they used the same procedure as they did in experiment one that differed only in two aspects. 

The first difference was that they didn’t provide the description of a trial before the training 

and the second difference was that they introduced a second decision making per trial during 

the training phase. Participants had to make an additional decision per trial, based on whether 

their choice for that trial was based on guess, intuition, recollection or rule knowledge, by 

pressing a keyboard button. The instructions about those judgements on their choices were 

clear.  Participants had to choose: (a) guess - if their decision was random (as flipping a coin); 

(b) intuition - if they thought their answer was correct but couldn’t justify/explain it; (c) 

recollection - if they had consciously recollected this  part of the sequence or all the sequence 

information from their memory and (d) rule knowledge - if they followed a conscious rule that 

they could verbalize when making the decision. The results suggested that with increased 

exposure to the task, participants correct responses were increased. They suggested that their 

paradigm uses an artificial language that is used to pair visual scenes and sentences and that 

explicit language structures affect both the grammatical and the statistical learning of 

vocabulary. 

The results suggested that with increased exposure to the task, participants correct responses 

were increased. They suggested that their paradigm uses an artificial language that is used to 

pairs visual scenes and sentences and that explicit language structures affect both the 

grammatical and the statistical learning of vocabulary. 

Kirkham, Slemmer and Johnson (2002) also compared the statistical learning between infants 

who were one-, five-, and eight-months old with the use of TPs. Interestingly, they found that 

there were no significant differences between the 3 different age groups and their ability to 
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discriminate between speech stimuli that adhered or violated the statistical regularities. That 

paradigm, even though it doesn’t simulate the complexity of formal linguistic structures, it 

provides evidence that even preverbal infants possess a sophisticated learning ability that could 

support key aspects of language learning (Reber et al., 2019) and it’s independent of other 

learning mechanisms in infancy such as reinforcement (Kirkham et al., 2002). 

The two-alternative forced-choice task (2AFC), is a commonly used task to measure SL. 

During a 2AFC the learners are presented with pairs of stimuli and are asked to select which 

of the two items can recall. A possible issue with the usage of 2AFC tasks is the fact that you 

rely an implicit process such as SL on an explicit response that relies on a “gut feeling” about 

implicitly acquired statistical regularities. Therefore, Franco, Eberlen, Destrebecqz, 

Cleeremans and Bertels (2015), suggested that 2AFC may be a better measurement tool for 

explicit decision-making processes rather than the actual implicit SL mechanisms. 

Additionally, 2AFC performance is likely to introduce error variance due to cognitive 

complexity, in a way that the scores are not reflective of the individual differences during the 

learning process.  

The usage of 2AFC tasks in a SL learning paradigm has been questioned by Siegelman and 

Frost (2015), it fails to capture and explain individual differences in performance. Frost, 

Armstrong, Siegelman and Christiansen (2015) came up with a new theoretical approach to SL 

in order to explain individual differences. According to their approach, SL is a set of 

computational principles that operates on the general domain for different modalities, and 

therefore is affected by the characteristics and constraints of the modality. They argue that SL 

has both modality-specific constraints and domain-general principles and suggest that SL 

depends on modality specific neural networks and some partially shared neural networks. 

Those networks represent the domain general and domain specific components of SL that have 
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been observed in previous research. They are also suggesting that further exploration into these 

networks can be done by targeting individual differences in these networks. More recently the 

concept of TPs has been replaced by the concept of chunking and more specifically the 

Statistically Induced Chunking Recall (SICR) method. In a SICR task participants are exposed 

to an artificial language, using a standard statistical learning familiarisation process. Then, they 

are asked to perform a recall task on strings of syllables that either follow the statistical patterns 

of the familiarization phase or  include the same syllables presented in different order (Isbilen, 

McCauley, Kidd & Christiansen, 2020). 

Van Witteloostuijn, Lammertink, Boersma, Wijnen and Rispens (2019), that used a 2AFC and 

3 AFC paradigm to examine SL performance on the visual domain, on early-school- aged 

children. Their aim was to introduce the concept of RT to explain part of the variability in 

individual differences in SL. The visual statistical learning (VSL) task contained triplets instead 

of pairs this time. During the familiarization phase participants were presented with an alien 

character on the screen and had to give a button response to proceed to the next alien. During 

the testing phase, participants, had either to choose the triplet that they have seen before, or 

complete a missing stimulus of the triplet. Half of the participants performed a cover task, while 

the other half did not. The researchers successfully measured the online sensitivity to the 

statistical structure by comparing the RTs for the predictable vs the unpredictable aliens, and 

the results suggested that RTs were significantly longer for the unpredictable (novel) than the 

predictable elements. That suggests that early school aged children are sensitive to TPs during 

exposure and that RTs are a good measure to assess that observation. 

However, a crucial critique to all the above studies as stated, is the fact that they assess to 

learning solely at the end of the learning process (Saffran, Aslin & Newport, 1996; Fiser & 

Aslin, 2002), and not while it occurs and develops. Especially, in cases that we deal with 
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sequential SL, that has a temporal element, a continuity in the examination of the mechanism 

is necessary. By creating a new methodology that captures precisely the SL process of each 

element of the sequence from timepoint 0 up to the end of the learning process (full learning 

curve), could bring new insights to the current SL models and provide more information about 

the encoding and chunking processes that occur during sequential SL. 

Additionally, it is important to highlight some ecological validity bias over the implicit nature 

of SL that these methodologies consist of due to the implicit nature of their task. For example, 

many researchers in order to secure that the learning process was implicit during their 

familiarisation tasks, instructed participant to either listen passively to the stream or perform a 

cover task that is unrelated to the statistical regularities presented to them (e.g., Arciuli and 

Simpson, 2011). Even though it sounds like an ideal experimental manipulation, it isn’t as it 

shifts the attention from the actual implicit task and can lead to increased cognitive load. In 

real life situations, there isn’t a what we call a “familiarisation phase” but learning starts and is 

assessed by the first exposure to the TPs of the sensory input. Therefore, choosing methods 

such as 2AFC tasks, imitation tasks etc, are limiting the ecological validity of the findings of 

SL. The SL ability should be assessed in real life conditions, from time-point one, and 

constantly have an interactive feedback from the learning process. Experimental methods 

should have internal validity (Andrade, 2018) in terms of the design and conduct, but also 

external validity (Andrade, 2018), so that the findings and set ups can be generalised to other 

concepts, and more specifically, in the case of ecological validity, in real life SL processes and 

settings.  

Serial Reaction Time Task (SRTT) is a popular experimental paradigm that has been used over 

time to explore unconscious learning processes (Hunt & Aslin, 2001; Robertson, 2007; Lee, 

Beesley & Livesey, 2016; Zhao et al., 2020; Kaur & Balasubramaniam, 2022).  Nissen and 
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Bullemer (1987) created the first SRTT as a way to overcome issues previously raised within 

AGL tasks around the implicit nature of the tasks and its suitability to measure implicit learning 

(Reber, Batterink & Reuveni, 2019). Typically, during a SRTT participants are asked to respond 

to a specific cue in a stream of repeated fixed stimuli (e.g., press a particular button (response) 

every time they see the target stimulus appear on the screen (cue)).  Cues’ occurrence in the 

stimuli distribution are defined by probabilities, therefore can be learned and predicted by the 

participants, leading to faster reaction times. That means that as time progresses in the task, the 

participants unconsciously and unintentionally learn those probabilities and respond faster to 

the cue stimulus. When it comes to testing sequential learning with SRTTs, a commonly used 

structure of the task is (a) to associate each stimulus item with a button (S-R association) and 

(b) to present particular sequences of items (fixed sequences) within random sequences of 

items, so that RTs gradually improve (faster) for the fixed sequences than random. For instance, 

a common visuospatial SRTT task would involve participants following a sequence pattern on 

the screen which they are instructed to follow and repeat. The sequence of patterns occurs 

multiple times and is determined by probabilities, however participants are not aware of it. 

Participants are expected to show better reaction times during time on sequences that are 

determined by probabilities rather than random sequences.  

SRTT has been used by researchers to explore unconscious learning processes such as implicit 

motor skill learning (Robertson, 2007), visual long-term memory and attentional selection 

(Zhao & Vogel, 2022), sequence learning (Dennis, Howard & Howard, 2006; Lee, Beesley & 
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Livesey, 2016; Kaur & Balasubramaniam, 2022), and statistical learning (Hunt & Aslin, 2001).  

The literature claims that SRTT is ideal to measure implicit learning (Hunt & Aslin, 2001; 

Deroost & Soetens, 2006), because it can be set up in a way so that it reveals no explicit cues 

about the probabilistic structure of the stimuli to the participants. Hunt and Aslin (2001) used 

an SRTT paradigm on the visual domain to investigate the ability of accessing and processing 

two separable statistical cues during sequential learning. In the first experiment they tried to 

replicate the findings of Saffran, Newport and Aslin (1996) but on a visual non-language 

domain. In order to be able to replicate the complexity of the word task used in Saffran et 

al.,1996 (6 trisyllabic words each with unique syllables = 18 syllables in total), but avoid adding 

visuospatial complexity to the task (having an array of 18 unique dots that would each need to 

be associated to a unique button so that RTs could be established for each item), they came up 

with an alternative structure. They designed an array of 7 illuminated buttons on a screen 

positioned in a semicircle. Each sequence consisted of 3 elements, and each element consisted 

of a unique pair of lights in the stimulus stream. In total, they created 21 unique button pairings 

(elements) that they placed into a sequence and created 7 sequences that contained triplets of 

pairs. Note that: (1) 21 pairs using only 7 lights means elements duplicated lights (e.g., 1-7 and 

4-1); and (2) each pair of lights was illuminated at the same time. Across their three experiments 

they controlled for the predictability of the within sequence transitions, and the ratio of between 

sequence transitions, and the conditional probability and joint probability combinations. Their 



Chapter 2  

31 
 

results showed that participants can access more than one source of statistical information in 

anticipation of learning. 

According to Hunt and Aslin (2001), SRTT is a better suited experimental task than 2AFC to 

investigate sequential probabilistic learning, as it allows to assess the learning of statistical 

probabilities across time. The SRTT allowed the researchers to control the statistical 

information that was available to the learners and at the same time record the progress of the 

learning of those statistics over time. Due to the structure of the task, they were able to observe 

two different types of statistics: (a) the bigram joint probability and (b) conditional probability. 

To understand the nature of those probabilities we need to examine the structure of the task. If 

in the SRTT, the pair (1-2) occurs 100 times and the pairs (2-3) and (2-4) occur 50 times, 

participants will learn that element 2 follows element 1 more frequently than element 3 and 

element 4 follow element 2. In this example, the joint probability of a bigram would be .5 for 

the pair (1-2) pair (it occurs 100 times while there are 200 pairs in total) and .25 for the pairs 

(2-3) and (3-4) (because each occur 50 times and there are 200 pairs in total). On the other 

hand, the conditional probability represents the probability of an element based on the first 

element in the pair. For example, the conditional probability that element 2 will follow element 

1 is 1.0 because 1 is always followed by 2. The conditional probability that element 3 or 

element 4 will follow element 2 is .50, because 2 is followed half the time by 3 and half the 

time by 4. Therefore, it is possible to observe and measure more than one statistical structure 

in one task.  
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However, while the tracking of learning on SRTT is “live” and we can observe differences in 

the reaction time from timepoint 0, it is also true that we cannot refer to the direct learning of 

associations between each item of the sequence. For example, in Hunt and Aslin’s paradigm 

we don’t realistically observe the learning of a 3-item sequence, but the associative learning of 

a pair of lights (element) with the next element. But we do not have any information about how 

the actual element was learned. For example, in accordance to the SRTT paradigm used by 

Hunt and Aslin (2001), if we have a sequence consisting of 3 items (A, B, C) and A consists of 

(1,2), B consists of (6,1) and C consists of (8,5), then the actual exposure stream that the 

participant has in terms of minimal structural element is H-1-2-H-6-1-H-8-5 (H being the home 

button that was used so that prior to a response, participants began from the same start point). 

However, learning is potentially confounded by the need to use the home button in between 

every element of a sequence and the presence of paired (and duplicated) elements such as in 1-

2 and 6-1.  This information is very useful; however, it doesn’t decode how information 

processing occurs as a S-R occurrence in a sequence as the elements end up being combined 

into one higher order element (e.g., the pairs 1-2, 6-1 and 8-5). Therefore, a new methodology 

is needed that will allow the exploration of the above implicit learning concept that will allow 

the observation of the implicit learning mechanism over time but will also allow the retrieval 

of information about how the smallest component of each sequence is learned. Ideally, this new 

method would allow to observe learning not only between the 3 items of the sequence A-B-C, 

but also between the transition of its subunits 1-2, 2-6, 6-1,1-8, 8-5. 
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Furthermore, given the importance that reaction time has in a SRTT and how it is determining 

the learning in a task, when it comes to reaction time responses, eye-movements are more 

accurate than motor responses like pressing a button. An SRTT-like paradigm that would use 

eye-tracking, could source more precise reaction times but also provide us with details about 

the visual processing of stimuli, where the participant was looking during the task, if he was 

attending the task, if he was engaging with the task by looking at visual latencies and visual 

speed (Lange et al., 2018). 

Another issue with serial reaction time is that each item needs to be associated with a specific 

button to press (so that reaction time to a specific item can be recorded). This means, for 

example, 4 sets of tri-syllabic nonsense words, each containing unique syllables, would require 

18 buttons – 1 per syllable. Learning the correspondence between each syllable and each button 

would therefore be quite onerous even before any sequence learning can be assessed (and hence 

why studies such as Hunt & Aslin (2001) used the same lights within different elements, such 

as 2-1 and 1-6). Therefore, what is needed is a paradigm that takes the advantages of both 

methods and is able to record RTs while participants complete the learning phase, while 

ensuring that the number of unique items can be potentially unlimited. 

C. SL models and the temporal element of sequential leaning 

This subsection is devoted on understanding the various models that have been developed 

during the times to explain how SL works. Some of the most popular cognitive models of SL 

in cognitive psychology suggest that all processes involved in SL such as encoding/retrieving 
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are based on transitional probabilities (TP). If that is true, and there is no temporal difference 

between the elements of a sequence, then the performance of SL on each element of the 

sequence should be independent from the performance of SL of the element before and after 

within the sequence. However, chunking theory suggests that while TPs are being used to 

retrieve the information from the environment, the actual information is being grouped in units 

of information. If that is true, then it is expected a correlation between the performance of the 

first item learned in a sequence and the preceding/following ones. During chunking, the 

information is being grouped/ organised into meaningful units called "chunks”. Those chunks 

are supposed to facilitate information processing (encoding, storage, retrieval). In the context 

of statistical learning, chunking theory refers to the idea that individuals can learn and 

recognize patterns in information by identifying and extracting meaningful chunks. Therefore, 

the TPs are used to identify and define the boundaries of chunks within the data. If for example, 

I am learning the sequence A-B-C-D, I will eventually extract the chunk ABCD. The chunk’s 

representation will be reinforced every time I validate this chunk through exposure.  This 

suggests that every time I am exposed to A, I have an advantage of retrieving B (based on the 

chunk ABCD, and the fact that the element A from the chunk was just validated), so 

performance on B will be better than performance A. Similarly, when I am exposed to B, I 

have an advantage of retrieving C based on chunk ABCD, and the fact that part of the chunk 

(AB) has been validated), so performance on C will be better than performance on B. Finally, 

when I am exposed to C, I have an advantage of retrieving D (based on the chunk ABCD, and 

the fact that part of the chunk (ABC) has been validated), so performance on D will be better 

than performance on C. This would end up giving us something like A<B<C<D in terms of 

performance. This outcome would also align with the fact that chunking in sequential SL occurs 

in hierarchical manner, meaning that the elements of the sequence maintain their order in the 

chunk during information processing (encoding, storage, retrieval). 
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C.1. SL models: the “all or none” learning processing. 

The Estes Models: Learning occurs in a non-continuous manner (all or none), accounting for 

continuous learning by introducing the factor of stimulus – response connection (S-R). The 

idea is that you can form or not an S-R connection during an experimental trial, however you 

need plenty of these connections in order to be able to produce a correct response (exposure 

factor). In these models a probability of a correct response on an experimental trial is estimated 

as a proportion of stimulus elements conditioned to that response on the specific trial. 

The Pattern Model (Estes, 1959): This model focuses on the learning of paired associations 

between S-Rs. It assumes that learning occurs through the extraction/formation of patterns, 

which are specific combinations of S-Rs, which are later on stored in memory. When individual 

see a new stimulus, they activate a specific pattern in memory (that they have previously 

learned) that matches the new stimulus. This activation spreads throughout the network of 

connected patterns, influencing the likelihood of particular responses associated with the 

activated pattern. The model incorporates mathematical equations to describe the learning 

process. These equations specify how the strength of associations between stimuli and 

responses changes over time based on factors such as reinforcement, repetition, and the 

temporal order of stimuli and responses.This model had the power to produce explicit formulas 

for many statistics. In 1961, Bower validated the pattern model by presenting explicit formulas 

for more than 22 statistics that derived from the model. However, in a pattern model, a former 

identification of proportion of conditioned stimulus elements with probability of a response is 

not allowed. Only one pattern (stimulus element) is presented on each trial. This suggests that 

either this model was wrong, or learning has a non-continuous nature. 

Generalization of Pattern Model (Suppes & Atkinson, 1960): This model suggested that 

individuals learn by forming representations of patterns based on the environment and the 
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conditions that they are exposed to. These patterns are later on used to build the general 

characteristics of a category. Therefore, on when individuals get exposed to new stimuli, they 

compare these new stimuli with the characteristics of that category (similarities & differences) 

to decide whether they are similar or belong in the same category. Therefore, the generalisation 

of the pattern occurs via comparing the characteristics of a category with the new stimuli. If 

the new stimulus matches the characteristics of the category it will be generalised as a member 

of that category and if not, it will be generalised differently or not at all. This model was 

introduced by Suppes and Atkinson (1960) to allow a greater number of parameters in the 

model. While in the basic pattern model one parameter represents the probability of the 

response on a trial to be correct, in this model a different parameter is possible for each 

response. 

The Incremental Model (Atkinson, 1961): This model was introduced by Atkinson (1961) and 

had a completely different approach to the previous models. The fundamental idea behind the 

model was that a stimulus element can be in one of finite number of conditioning states on any 

experimental trial. That suggests that on a single-stimulus version of this model with different 

number of possible responses, the maximum number of states varies with the number of 

possible response and therefore is not a simple function of reinforcement or motivation. 

C.2. Key Models of Implicit Statistical Learning (ISL): From Chunking to Transitional 

Probabilities (TPs). 

The literature considers SL and implicit learning as two separate areas of research (Perruchet, 

2019). In their paper Perruchet and Pacton (2006) highlighted the fact that both SL and implicit 

learning have a lot of similarities in terms of learning situations; however, there is a big gap 

between the favoured interpretations about the selection of chunks, the formation of chunk 
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boundaries and the statistical computations associated with TPs.  Perruchet (2019), explains 

this debate mainly by examining on the one hand the efficiency of statistical computations of 

pairwise associations (e.g. A-B, A predicts B) in explaining and predicting ISL and on the other 

hand the efficiency of chunk-based models in predicting ISL. It needs to be noted that these 

models do not operate in the same way and the main differences rely on their conceptual 

frameworks.  

An example that has been used a lot in language learning literature and word segmentation 

research, are the Bayesian models. Bayesian models work by calculating statistical 

probabilities that will predict the likelihood of a predicted outcome. A Bayesian approach 

means that probabilities can be assigned to events that are neither repeatable nor random. 

Goldwater, Griffiths and Johnson (2009) explored how infants learn to segment words by 

extracting statistical regularities from the speech stream, from a corpus of child-directed 

speech. To do so, they used computational modelling to explore how different assumptions that 

the infants make about the nature of the word affects and predicts the words’ segmentation. 

These computational models were Bayesian models that assumed that either words are 

independent units or that words are units that enable the prediction of other units. Their results 

suggest that the assumption of independence between the words predictability, led to under-

segmentation of 2-word and 3-word sequences. However, when words were predictive the 

accuracy in segmentation was significantly higher.  
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Another popular model of chunking is the PARSER model (Perruchet & Vinter, 1998).  

PARSER suggests that learners are not extracting statistical relations about the stimuli from 

stream input, but instead they extract and represent statistically coherent chunks of information. 

Miller (1956) examined the chunking hypothesis within an AGL task. He suggested that when 

the learner gets exposure to the stimuli set for the first time, each letter in the sequence is 

represented and coded individually (A-A-C-D). However, as exposure increases, the letters can 

be coded to fewer chunks (AA-CD) and potentially form one final chunk (AACD). Servan-

Schreiber and Anderson (1990) used an AGL paradigm but instead of letters they were trained 

on sentences. The sentences were divided in three conditions depending on their grammatical 

structure (well-structured, unstructured and badly structured). Their results suggested that 

participants were significantly better at both rejecting incorrect grammars and accepting correct 

grammars when the sentences belonged to the well-structured condition, rather than the 

unstructured and badly structured condition. This process was labelled as “competitive 

chunking”.  

Simple recurrent network (SRN) models or connectionist models (Christiansen, Allen & 

Seidenberg, 1998; French, Addyman & Mareschal, 2011) suggest that segmentation relies on 

the learning of statistical relationships between the items of a sequence. However, in contrast 

to previous chunking models, these models suggest that the statistical relationships do not 

represent the segmented units (Slone & Johnson, 2015). SRNs are a category of recurrent 

neural networks (RNNs) and have been used to explain learning in domains such as natural 
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language processing (Christiansen & Chater, 1999) and speech recognition (Amberkar et al., 

2018). An SRN works on a feedback loop. It has an operational hidden level, that is the memory 

of the network, where it stores previous inputs. This hidden level is updated every time by 

combining the current input with previous inputs. Then the updated hidden level, is used to 

predict new outputs. This way, the network allows to capture statistical dependencies and 

patterns in sequential data. SRNs, due to their gradual build-up of representations over time, 

fall more into the category of chunking than TPs and have shown that chunking can account 

for language phenomena. 

French et al. (2011) invented a new mechanism called “implicit chunk recognition” (ICR) to 

understand how sequence segmentation and chunk extraction work in ISL.  ICR is novel as it 

removes the element of prediction of upcoming items in the sequence as a predictor of learning 

and instead it suggests that learning can be predicted by the recognition of previous 

encountered chunks in the input (familiarity & exposure element). To operationalise ICR, they 

came up with a connectionist autoassociator model called “Truncated Recursive 

Autoassociative Chunk Extractor” (TRACX). TRACX operates by extracting chunks based on 

truncated recursion. The key idea behind TRACX, is the assumption that people encode and 

retrieve information in chunks rather than as individual elements. A chunk is a unit of 

information that represents a meaningful or familiar pattern of items. For example, in a 

sequence of numbers, the chunks could be digits that are part of a larger pattern or concept. 

TRACX uses RNNs to simulate the processes of chunk formation and activation. The model 
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consists of a network of interconnected units, where each unit represents a chunk. During 

learning, the model is exposed to a stream of information, and it automatically detects and 

encodes chunks by identifying regularities and repetitions in the input. TRACX has proven to 

outperform the robustness and accuracy in performance of other chunking-based models such 

as PARSER (Perruchet & Vintner, 1998) or SRN models (Cleeremans & McClelland, 1991) 

in matching human sequence segmentation data.  

Another popular model that has been used to explore ISL, in language learning is the 

‘Comprehension And Production Performed Using Chunks Computed Incrementally, Non-

categorically, and On-line’ (CAPPUCCINO) model (McCauley & Christiansen, 2011).  The 

CAPPUCCINO model was inspired by differences in perceptions of linguistic productivity by 

the generativists (Pinker, 1999) and the usage-based approaches to language (Tomasello, 

2003). Linguistic productivity is the capacity that a language has to generate new expressions 

through its rules and structures. More specifically, it refers to the ability of the speakers of a 

language to generate and understand an unlimited number of novel utterances, that they haven’t 

interacted with before (encountered or memorised) and have meaning (Pinker,1999; Diessel, 

2017). But in order to understand better the argumentation behind linguistic productivity and 

CAPPUCCINO models, one must review the two most prominent approaches around language 

learning and linguistic productivity: (a) the generativist approach and (b) the usage-based 

approach. 
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On the one hand, the generativist approach (Chomsky, 1957; Pinker, 1999) focuses on the 

innate and rule-based nature of language and the creativity of speakers to generate and 

understand an infinite number of novel sentences (Chomsky, 1957). Generative linguists 

(Pinker, 1999; Pinker & Jackendoff, 2005) argue that speakers have the ability to combine and 

recombine a finite set of linguistic elements, such as words and grammatical structures, 

according to the rules of their language (transformational generative grammar). By applying 

these rules, speakers can generate an unlimited number of grammatically correct sentences, 

including those they have never encountered before. On the other hand, usage-based linguists 

like Tomasello (2003) and Goldberg (2019), suggest that productivity emerges from the usage 

patterns and frequency of linguistic constructions in everyday communication. According to 

them, linguistic productivity is not solely the result of innate knowledge or rule-based 

mechanisms but is heavily influenced by the cognitive processes that are involved in language 

use and the exposure that the speakers have to those specific constructions. The CAPPUCCINO 

model (McCauley & Christiansen, 2011) was designed to test the usage-based approach to 

children’s language learning by focusing on stored chunks of information. According to 

McCauley and Christiansen (2011):  

“To this end, the model gradually builds up an inventory of chunks consisting of one 

or more words—a ‘chunkatory’—used for both language comprehension and 

production.  The  model  was further   designed   with   several   key   psychological   

and computational  properties  in  mind:  a) incremental learning: at  any  given  point  
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in  time, the  model  can  only  rely  on  the input seen so far (no batch learning); b) on-

line processing: input  is  processed  word-by-word  as  it  is  encountered;  c) simple  

statistics: learning  is  based  on  computing  backward transitional  probabilities  (which  

8-month-olds  can  track; Pelucchi,  Hay,&  Saffran, 2009);  d) comprehension: the 

model segments the input into chunks comparable to  the output   of   a   shallow   parser;   

e) production: the   model reproduces   the   child’s   actual   utterances;   f) naturalistic 

input: the model learns from child-directed speech; g) cross-linguistic coverage: the 

model is exposed to a typologically diverse    set    of    languages    (including    Sesotho,    

Tamil, Estonian, and Indonesian).” (McCauley & Christiansen, 2011, p. 1619-1620) 

One of the strengths of CAPPUCCINO model (McCauley & Christiansen, 2011) is the fact 

that is more realistic to natural language processing. It allows to observe language processes 

such as comprehension and production, as meaningful units of information (chunks) that are 

being processed gradually and are being integrated incrementally. This processing is done in a 

flexible, context-dependent manner, without rigid categorization. It occurs in real-time, 

allowing for continuous adjustment and updating as new information becomes available. 

McCauley and Christiansen (2011), managed to replicate the findings of Safrran (2002) of real 

child data on SL.  Moreover, their findings supported a usage-based approach of language 

where distributional statistics are crucial for predicting linguistic outcomes in children. They 

found that word-based distributional information were better outcome predictors than word 

class statistics. This finding is in agreement with the previous findings in the field that support 
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a usage-based approach. For example, Monaghan and Christiansen (2008), found that both 

distributional and phonological information can significantly predict the learning outcomes of 

lexical categories and phrase structures. These findings are in agreement with the behavioural 

concepts that Tomasello (2003) proposes against the nativist approach to language, suggesting 

that language acquisition is a social-cognitive process that highly relies on the children's 

interactions with their caregivers and other language users. Language learning in children 

occurs via constructing and understanding utterances based on their communicative intentions 

and the linguistic input they receive. 

C.3. Sequential SL and temporal information processing. 

As the nature of statistical learning is by definition mathematical and based on the probabilistic 

nature of events, statistical learning has been used in numerous models trying to encode human 

behaviour. Some of the most popular models that used statistical learning in applied cognitive 

concepts, were the popular mathematical models of memory (Norman, 1970) and the multistore 

model of memory from Atkinson and Shiffrin (1968). In both models, stimulus sampling theory 

(SST) (Estes, 1950) and the probability of certain stimulus occurring in a certain time period 

and therefore the pairing of that stimuli with a given response, was the key element component. 

More recently, there is a constructive debate around the area of SL focusing on the hierarchical 

component of it. It seems as there is a shift from understanding SL processes as sets of memory 

processes, to perceiving SL as a single mechanism. Many studies in the field suggested that 

statistical learning and rule-based learning are two different mechanisms since SL refers to the 

ability to learn stimuli that you have been exposed to, while rule learning can be generalised 

therefore be applied to novel stimuli and new combinations (Marcus, 2000; Endress & Bonatti, 

2007). However, Aslin et al (2012), argued that this hierarchical perspective of learning is 
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wrong and that there is a single statistical learning mechanism that can account for both 

learning of input stimuli and generalisation of learned patterns to novel instances. The key 

element that differentiates the learning outcome during the learning process is the perceptual 

properties of the stimuli (for example verbal) and not the actual learning mechanism. They also 

underlined that there are two factors between instance-learning and generalization phase. These 

factors are the strength of perceptual and cognitive components of the structural regularities, 

and the consistency of elements' contexts (unique vs. overlapping).  

In the field of applied cognitive linguistics, Arciuli (2018), examined whether reading can be 

thought as a process of learning statistical regularities and how that component of reading can 

be used and applied in improving teaching methods of reading in schools for both typical 

learners and those ones with developmental disabilities. This approach used a combination of 

theoretical, behavioural and computational concepts in order to demonstrate that implicit 

methods that are based on the SL principles can be used as a supplementary method to the 

explicit (rule-based) method with positive results on children’s reading ability. It additionally 

highlights the idea of conceptualising learning as continuous process that has components in 

different perceptual and cognitive structure levels.  

Du & Clark (2017), were aware of that gap in the literature, and the lack of clarity about the 

initial acquisition of sequences and if it’s a result of chunking learning or TPs learning. 

Therefore, they decided to examine each sequence holistically, by focusing on the temporal 

dependencies of the entire sequence that could disclose the representations of chunks but also 

TPs. In their task, participants performed a serial reaction time (SRT) task under different 

stimulus interval conditions. During the SRT task a visual cue appeared on the screen, and the 

participant had to respond by moving his feet (stepping) on the appropriate location, then the 

visual cue disappears, ending the trial, and after a fixed delay, another visual cue appears 

marking the beginning of a new trial. The SRT task was performed under one of three stimulus 
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interval conditions (see Figure 3.2). In condition I, the trial consisted of each stimulus being 

presented for 700 ms and then the next stimulus appeared after an interval of 600 ms (700 + 

600 ms), creating a period of 1300-ms-long interstimulus-interval (ISI). The time intervals 

were reduced at 900 ms for condition II (700 + 200 ms) and condition III (300 + 600 ms) for 

condition II and 300 + 600 ms for condition III. During the task participants did a 3-minute 

break after completing each block while no information or instruction was provided about the 

sequence presentation. 

Their results suggested that sequence learning can be reflected by reaction time (RT) rather 

than the improvements represented by movement time. The temporal dependency of RT and 

movement time revealed that both RT and movement time displayed repetitive patterns caused 

by biomechanical effects of response locations and foot movements. Chunking was only 

noticed in the presence of the recurring RT or movement time and disappeared right after the 

foot was relocated, suggesting that the chunking observed was related to the biomechanical 

constraints rather than learning itself. The most important finding of that study was the fact that 

trial-to-trial associations were strengthened as learning progressed regardless of stimulus 

intervals. That finding could reflect internal cognitive representation of the first-order stimulus 

contingencies. 
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Figure 3.2 Figure from the Du & Clark (2017) method’s section. a Experiment procedure. b Mean RT across 
learning blocks. c Mean MT across learning blocks. Error bars represent standard errors. 

D. The importance of sequential SL as a cognitive component of learning 

ability. 

Essential characteristics of skill learning include the need for encoding, representing, and 

producing structured sequences (Conway & Pisoni, 2008). In real- life situations the 

environment includes regular sensory stimulation, of sounds, objects and events. These sounds, 

objects and events have a specific place and duration in time, and in order for any organism to 

successfully adapt to its environment should first successfully learn these environmental 

structures (Conway & Pisoni, 2008). They suggest that the regular coherent sensory stimulation 

can be viewed as probabilistic structure patterns. These patterns are part of almost all aspects 

https://link.springer.com/article/10.3758/s13423-016-1193-4/figures/1
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of our sensory interactions with the environment and the real-world, and can be part of 

processes such as speaking, hearing, learning a new skill, or perceiving complex scenes (across 

modalities). 

Lieberman, Chang, Chiao, Bookheimer and Knowlton (2004), suggested that this automatic 

knowledge of sequential patterns and regularities is beneficial for the learning process and 

facilitates the spontaneous activation of associated representations to be triggered by the mere 

presence of the sequential cues (Lieberman et al., 2004). As P. J. Reber (2013) states, “We 

should expect to find implicit learning and memory phenomena whenever perception and/or 

actions are repeated so that processing comes to reflect the statistical structure of experience” 

(p. 2029). However, understanding the process of how the information encoding occurs and 

uses these probabilistic structures constantly occurring in our environmental surroundings 

through both space and implicit Cognition remains an open challenge (Conway & Pisoni, 

2008). 

Before going deeper in understanding the components that can influence the SL process, it is 

important to acquire a better understanding of the nature of SL as a cognitive mechanism. That 

will allow to understand why certain factors affect SL and why others not. Statistical learning 

(SL) a domain-general mechanism which detects the underlying distributional properties of the 

input. In one hand the domain general approach, suggests that SL is unitary learning system 

(Bulf, Jonhson & Valenza, 2011) that operates the same way over similar types of perceptual 

input across different domains (Saffran and Thiessen, 2007) and species in the same way 

(Hauser & Aslin, 2001). On the other hand, plenty of studies demonstrate that SL has a domain 

specific component, as there are qualitative differences in SL learning outcome in the auditory, 

visual, and tactile modalities (Conway and Christiansen, 2005; Frost, Armstrong, Siegelman & 

Christiansen, 2015). However, Frost et al., (2018) , suggest that these observed differences rely 

on the fact that different modalities bring different knowledge and as a result they are bound to 
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give different learning outcome even if the mechanism is domain-general. As Frost, Armstrong, 

Siegelman & Christiansen (2015) suggest, future SL researchers should target into perceptual 

properties of the sensory information, in order to understand better the differences across the 

domains, since SL is not an unitary mechanism and therefore uses different domain general 

mechanisms and specific brain networks during SL and information processing in different 

domains.  

A described above, most of the conflicts around the nature of statistical learning come from an 

approach that either ignores completely the perceptual properties of the sensory information or 

is looking for a minimalistic mechanistic explanation. In order to understand SL we need to 

understand each part and level of the mechanism and how each level of the mechanism interacts 

with each other and with the final statistical learning outcome. It is more than possible that SL 

is a mechanism that involves or interacts with other perceptual mechanisms on an early 

processing stage before moving into the regularity extractions, and therefore can have a dual 

nature. It can be domain general on the regularity extraction and creation of perceptual units, 

however it is also domain specific to modalities and stimuli affected from perceptual properties 

of the stimuli (exposure, cognitive load, length of the pattern regularities, linguistic 

information, etc) that might cause facilitation or delay on the “pre-statistical level” or 

“probabilistic level” of the mechanism that is purely perceptual and therefore can cause actual 

delay or slower performance on the statistical learning outcome unit. 

E. Properties that affect SL: evidence from research 

One recently popular computational theory in the field of SL, states that SL doesn’t rely on 

TPs, but instead is using a mechanism of elements’ extraction from the sensory input into the 

memory traces, that leads into an integration across these memory traces that highlight 

consistent information (Thiessen & Pavlik, 2013). This approach created a huge research 
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interest in the field of developmental psycholinguistics, cognitive linguistics, and cognitive 

psychology. A great number of studies have shown that SL is one of the basic mechanisms that 

are responsible for the language acquisition and vocabulary growth (Lew-williams & Saffran, 

2013; Jones et al., 2018). Most of the research being done around the SL and language 

development, focused on infancy as it is the crucial age period that humans start acquiring their 

first words. 

Similar to the Thiessen’s and Pavlik’s (2013) research, was conducted on SL and word 

segmentation on adults by Frank, Goldwater, Griffiths and Tenenbaum (2010). They tried to 

explore the SL ability on word segmentation while controlling for sentence length, exposure 

and number of word types. Even though the behavioural data showed a clear effect of those 

components on SL performance, suggesting that longer sequence length, less exposure (less 

frequent stimuli) and more language (greater diversity) make language learning harder, their 

computational proposals failed to replicate those findings. These findings could lead future 

research into two different research directions: either (a) focusing on creating more 

complicated SL models that will capture various perceptual components of stimuli (such as 

verbal information) or (b) creating simpler tasks to explain basic mechanism of SL, which will 

directly infer to implicit processes and include perceptually simpler stimuli.  

A main corpus of the literature tried to provide a clearer view about which are the actual 

stimulus properties that are making SL harder. Most of them (Saffran et al, 1996; Saffran, 

1996), concluded that SL operates the same way on visual and auditory input (Aslin et al, 

2012), and that any differences observed in the learning outcome, are effects of exposure, 

familiarity, novelty of the stimulus. More specifically, Aslin (2017), suggested that the main 

implicit mechanism that infants develop their learning is SL and it is operating by mere 

exposure. In addition, this exposure can generalize to completely novel information, and enable 

the transfer of knowledge. Those findings suggest that since there are no differences observed 
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between visual and auditory SL tasks, any manipulation of exposure, familiarity and novelty 

will be equally affecting the SL on both domains. In other words, since SL is part of the 

language learning (Perruchet, 2018), any knowledge around the mechanism and restrictions of 

SL on the visual domain can equally reflect on language learning process. SL is a mechanism 

that has been associated with language learning and word segmentation across humans (Saffran 

et al., 1996) and non-human primates, such as tamarins (Hauser et al., 2001; Santolin & Saffran, 

2018). However, SL is not a language specific mechanism. It’s a domain general mechanism 

that operates across all modalities (auditory, visual, tactile) and can be observed in cognitive 

processes that involve the segmentation of continuous sensory input (Conway & Christiansen, 

2005; Polyanskaya, 2021), and as it appears language learning relies strongly on this 

mechanism. 

Frost and Monaghan (2016) suggested that the same SL principles that underlie speech 

segmentation, also underlie processes such as grammatical generalisation. In their study they 

used an artificial language paradigm, with language structures that relied on non-adjacent 

dependencies. Participants could successfully segment the words in the speech stream, but they 

were also able to generalise their knowledge about the structure of novel speech that they 

haven’t been exposed to previously. 

Robinson and Pascalis (2004), suggested that the development of visual recognition flexibility 

in infant’s memory, relies on hippocampal development of infants and no differences in 

performance are observed after the age of 24 months old. To test so, they compared 4 different 

age groups: 6-monthsold, 12-months old, 18-months old and 24-months old infants. The task 

consisted of a familiarization where infants were presented with toys images with a specific 

background colour and a testing phase that the toys were presented on a different background 

colour. They found that recognition memory is impaired by a change in context at the early age 

of 6 and 12 months but remains unaffected after the age of 18 months, suggesting again that 
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there is a developmental constraint in a mechanism highly related to SL, supporting the 

theoretical approach of SL as a non- unitary mechanism (Frost, Armstrong, Siegelman & 

Christiansen, 2015), but also challenging all the developmental SL studies, about the 

complexity of the stimuli used. It could have been the case that Frost et al. (2018) highlights, 

that the previous knowledge to the stimuli used (e.g picture of toys) varied across the 

developmental spectrum of infants used for this study and that’s where the differences in 

performance rely on.  

Another important element that has been shown to affect SL outcome is the sequence length. 

Sequence length can be considered as a main property of perceptual and cognitive structure of 

the element. The most elementary example of sequence length effects on language learning is 

the fact that infants learn short words (one and two syllables words) faster and sooner than 

longer ones (three or more syllables) (Lew-Williams et al., 2011; Saffran, 1996). 

Additional research in the field of SL and artificial languages, found that regular (most 

common) units length of verbal and nonverbal artificial languages were learned better than 

irregular (less common) units of length, suggesting an effect of prior knowledge/exposure of 

sequence length on the SL outcome (Hoch, Tyler & Tillman, 2013). However, there is some 

literature suggesting that the mechanisms supporting implicit sequence learning are not 

capacity-constrained by sequence length nor adversely affected by high rates of irrelevant 

sequences during training (Sanchez & Reber, 2012), but there is an obvious debate about if the 

learning processes involved in the tasks used were implicit and could be considered as good 

example of SL or it was a rule-based learning process. 

Sanchez and Reber (2012), were interested in investigating information processing constraints 

such as sequence length, as they recognised that implicit learning system has distinct operating 

systems from the explicit learning system, and therefore relies on different brain areas. They 
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used a serial interception sequence learning (SISL) task with covertly embedded repeating 

sequences that were much longer than most previous studies (30-60 exp1, 60-90 items exp 2, 

12-item repeating sequences were embedded among increasing amounts of irrelevant 

nonrepeating sequences). During the SISL task, participants were presented with circular cues 

that scrolled vertically across the screen towards one of the target zones that were marked as 

rings. In total there were 4 target zones. Participants had to give a key-response by  pressing 

the D, F, J, or K on the keyboard and be as fast as possible in order to press the button while 

the cue moves through the target zone. Dual-button responses, were only used in Experiments 

1 and 2, while in experiment 3, the targets were presented at the bottom of the screen and the 

circles scrolled downward. Their results suggested robust learning for sequences up to 80 items 

in length. However, due to the SISL task, their results could be interpreted as intermediate 

associations of 4 corresponding keys (D, F, J, or K) and not direct association learning of the 

items within the sequences. 

 In addition, Lew – William et al (2011), found that prior knowledge on sequences length (for 

the language domain- words length) can enhance learning of the input, only if the input is 

sharing same length properties. This is an extremely interesting approach if we consider its 

implications on real world conditions. In real world, verbal, auditory and visual information in 

the learning and sensory environment consist of sequences of stimuli with mixed lengths but 

humans still manage to learn those properties efficiently. Currently there isn’t enough research 

that looks learning of mixed length sequences within a task. Johnson and Tyler (2010) 

investigated the concept of language learning and word segmentation with the use of a SICR 

task, that involved mixed and non-mixed length sequence tasks. More specifically, they 

investigated the sequence length factor on infant’s language ability by using artificial language 

and demonstrated that 5,5 and 8 months old infants can successfully segment uniform length 

words (sequences of words with 2 syllables (CVCV)) but failed to segment the language that 
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contained words of varying length (2 syllables (CVCV) and 3 syllables (CVCVCV) mixed). 

However, because the task wasn’t looking into the timecourse of the SL process and focused 

only on the SL outcome, it is unclear why this difference in performance was observed and if 

it relates to a specific chunking theory. Therefore, this paper creates a great opportunity for 

future research to look into mixed length effects on learning and how sequence length 

knowledge can affect the predicting ability and so on learning ability of mixed length 

sequences, while recording the actual learning time course of the SL process and not only the 

SL outcome. 

F. Gaps in the literature 

All the evidence above suggests that: (a) implicit learning is still an unknown mechanism, (b) 

most of the tasks that investigate SL are assessing the learning outcome rather than the process 

itself, (c) there is a temporal component in SL that is still unexplored, (d)there are factors that 

affect SL outcome that need further investigation such sequence length and sequential mixture 

types of SL tasks. 

SL is part of the implicit learning mechanism of cognition and plays an important role in main 

aspects of everyday life of human and non-human species. Understanding how it operates could 

be beneficial for educational, developmental and AI reasons, as it could bring improvements 

with its applications in smart AI systems, to populations with learning difficulties or 

disabilities, and support the cognitive development of populations that have received unequal 

opportunities (e.g social factors - Low Socioeconomic Status, or disability- hearing 

impairment). 

Focusing on understanding SL while it occurs, can give a clearer image about how information 

processing occurs, why some elements or the task are being learned better over others, and also 

provide us with growth learning curve that actually represent the learning process itself and not 
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other perceptual/ cognitive load factors. Additionally, by recognising the temporal element of 

SL and showing how each element in a series of events (sequence) affect the learning of the 

whole sequence, can help us understand better how language learning occurs during infancy, 

and help us develop specific tools to facilitate different SL processes in language such as word 

segmentation, reading and spelling.  

Furthermore, environmental effects such as sequence length and sequential mixture type need 

to be further investigated and accounted for, in order to understand how SL works in natural 

and artificial languages. Language consists of different linguistic structures such as syllables, 

words, and sentences. If the aim is to understand how language is being learned, it is important 

to be able to understand how word learning is affected from longer and shorter words, and how 

sentences that are formed with mixed length words can be learned faster depending on their 

consistency.  

In the chapter that follows (Chapter 3), the research aims of this thesis are being identified. The 

current gaps in knowledge around the area of SL, led to the need for the development of a new 

methodological paradigm for SL, that will be able to observe and assess, both the learning 

outcome and the learning process of SL mechanism. This new methodology will be fully 

detailed in Chapters 4 and 5, and will be used to answer specific questions in regard to how 

learning occurs across same length and mixed length sequences, and what are the current 

chunking mechanisms observed during SL.  
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Thesis Research Aims 

The present thesis is devoted on developing a new methodological paradigm that investigates 

in depth the impact of factors such as sequence length and item positioning on sequential 

statistical learning (SL). SL is a strong but still unknown mechanism, that is widely used as a 

conceptual construct of research areas such as cognitive linguistics and language acquisition, 

learning and memory, visual and auditory perception, artificial intelligence, bioinformatics and 

machine learning. However, for the purposes of this thesis, SL will be investigated and 

perceived as a psychological cognitive learning mechanism. 

In the following chapters the interest will be focused on providing a different experimental 

research approach on SL that will control for exposure and stimuli complexity, while we 

manipulate properties such as the length of the regularities and the mixture of regularities, to 

observe differences in the SL outcome performance. From now on and for the rest of this thesis 

the statistical regularity patterns will be called sequences. 

 More explicitly, the research aims of this thesis are: 

1. Can an efficient design be created that tap into the process, and the development 

of learning with exposure during SL? 

We will see in the literature review in the next chapter that there are problems with 

current methods of examining SL, such as assessing the learning process only at the 

end point of learning or using tasks that can’t fully capture the implicit nature of SL 

due to the experimental design (e.g. complexity of stimuli) or procedure (e.g. forced-

choice task that goes against the implicit nature of the mechanism). The method 

proposed in this thesis will overcome these problems by creating a new, more 

ecologically valid paradigm of SL that uses minimal sensory input. That new method 

should be able to answer (a) if sequence learning is achievable through a completely 
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implicit task and (b) what is the minimum exposure needed for a sequence to be learned 

via a sequential SL task. More specifically, this task should be able to pick up about 

how different independent variables such as sequence length, and mixture of sequences 

effect human SL performance. It will record the development of learning as it occurs, 

from timepoint 0 - until the end of the task and will be able to tap into the actual 

procedural mechanism of learning during SL, rather than assessing solely learning 

outcomes on a trial-by-trial basis. The design should try and keep a minimalistic 

approach in terms of the sensory input across the tasks to avoid increased perceptual 

load and minimise any influence of prior knowledge on the task. Additionally, it should 

resemble a real- world learning paradigm.  

 

2. What is the time course of learning during a sequential SL task? 

SL has by its definition a temporal nature. In the literature review we will see that many 

studies do not consider the time course of learning but the end product of it. Since 

sequential SL has a temporal component, the holistic perception of learning (all or 

none) of the parts of the sequence may not be valid, because each element of the 

sequence occurs in a unique timepoint and that timepoint is related with the presentation 

of the next item suggesting a serial process of learning. Therefore, differences in the 

learning outcome are expected to be observed between the items of each sequence 

depending on their temporal order in the sequence.  

 

3. SL has been examined in depth in the language domain, yet there are no clear 

answers to basic questions such as: 

 a) Does sequence length affect the performance in SL? 
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Again, as we will see in Chapter 2 while we will be reviewing the literature, sequence 

length is a basic experimental characteristic of the SL process, yet there is contradictory 

evidence about how it affects the actual learning process, depending on the nature of 

the sensory input and experimental design. A design as suggested above should be able 

to identify length effects on SL performance and provide a clear answer about how the 

length of a sequence affects the SL outcome. If SL is a solid mechanism that is not 

affected by such things as cognitive load or working memory capacity, then the 

performance across the different length sequences should be the same, and as a result 

the learning rate should be the same. For example, if SL has a memory capacity 

component and is affected by the properties of the stimuli then, sequence length effects 

will be observed, with shorter sequences being learned better than the longer ones due 

to less cognitive load. That would result into a faster and better learning rate of shorter 

over longer sequences. 

 

b) How does SL occur in mixed length sequences? 

Most of the current experimental tasks that are involving SL, use same length stimuli. 

However, that is problematic as it lacks of ecological validity. In real world situations 

we are called to perform SL processes in a wide range of sensory input that contains 

mixed length sequences (e.g word learning). This new methodology should be able due 

to its design to (a) examine if mixed length sequences can be better learned than same 

length sequences, (b) demonstrate how mixing up the sequence lengths affects the 

learning of other length sequences and (c) highlight any limitations on the learning 

process that derive from sequence length. Blending shorter with longer sequences can 

either facilitate the learning within the task, make it harder, or not affect the learning at 

all. 



Chapter 3  

58 
 

In order to investigate the proposed research aims, a novel eye-tracking task that enables eye-

movement recordings throughout the experimental process will be designed. As Aslin & 

Newport (2012) suggested, there are no differences observed on the SL outcome between 

visual and auditory stimuli. The leading hypothesis that SL is unaffected by modalities lead to 

creating a series of visual SL tasks, to provide access on processes that occur during sequential 

SL, that would be harder to capture, if auditory stimuli were being used.  

The suggested design that this thesis proposes, suggests that every observation that is captured 

during the visual SL tasks can be equally reflected on auditory SL tasks and more specifically 

language sounds. Language includes words, that are formed with syllables. If the design 

manages to capture the processes of SL during sequence learning of visual stimuli, it could be 

later used in future research to understand how sequences of sounds (e.g., syllables, words) are 

learned and get access on the basic language acquisition mechanism and be applied on 

educational methods, and artificial intelligence systems. 

The new experimental paradigm used the visual modality, as it is the most research-wise 

investigated modality (Hutmacher, 2019), and tried to resemble a sequence learning paradigm 

that could occur in a language learning paradigm (Saffran et al.,1996) in the visual domain. 

The suggested design kept the nature of the task as implicit as possible and introduced the 

novelty of a gaze-contingent eye-movement paradigm on a “guess where the next dot will 

appear next task”, while recording a continuous stream of eye-movements from the beginning 

of the first trial until end of the task. This technical manipulation allowed to observe learning 

processes throughout a task, when exposure to the visual sequences start at time 0 and how the 

learning mechanism builds up knowledge about the visual sequences and pairing throughout 

the task while controlling for exposure. The main factors that were manipulated throughout 

these tasks were sequence length and mixture of sequence lengths within a task. In order to 
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validate and establish the efficiency of the new methodology suggested, only adult typical 

population with not known learning disabilities were recruited.
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New experimental design: Primary design, 
piloting data and considerations. 

 

 

 

 

 

Chapter Summary 

In this chapter, the reader will be given a full examination of the new methodology suggested 

for investigating sequential statistical learning. In the following sections the reader will get a 

summary of the current methodological issues around sequential statistical learning and the 

proposed methodology that will overcome those issues.  The methods of this chapter contain 

the primary experimental design (Design A), and relevant piloting data that led to the creation 

of Design A. A justification will be given about the various choices of experimental settings. 

Finally, in the discussion, an evaluation of Design A will be given. The critique of the primary 

design will lead to the creation of the final design that will be presented in the next Chapter 

(Chapter 5).  
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A. Introduction 

As it was demonstrated in Chapter 2, statistical learning (SL) has been argued to be one of the 

main mechanisms for processes like language acquisition, implicit learning from the sensory 

input (visual and auditory modality) and sometimes it has been used as a measure of cognitive 

function. Additionally, SL has been used as a way to understand better learning disabilities 

such as dyslexia or ADHD. Throughout these fields, a set of experimental methods have been 

used to understand SL and how it operates, mainly by focusing on the outcome of the 

procedure, rather than the procedure itself. However, these methods can sometimes restrain the 

full examination of the SL mechanism, and often lack ecological validity. 

Currently, there is an emergent need in the field to create a new method that will (a) examine 

SL during time course, (b) have an implicit character, (c) allow manipulations to the stimuli, 

such as to sequence length and mixture length effects in SL and finally (d) provide some insight 

about the information processing/chunking during SL in order to be able to access the 

mechanism itself rather than the outcome of the process. In line with the dominant view that 

SL is a domain general mechanism (Kirkham, Slemmer & Johnson, 2002; Thiessen, 2011), this 

new methodology was designed on the visual domain, by introducing a gaze-contingency eye-

tracking paradigm during sequential learning task. However, the technical design 

(experimental coding) of the suggested method, allows the introduction of auditory stimuli too 

in the task, allowing the investigation of auditory SL in the future. But in order to avoid 

multisensory perception cognitive load, and intermediate associations between the visual and 

the auditory stimuli, it was decided that the visual domain was the best way to test this new 

method and see if it can capture the actual SL process. Therefore, the new experimental 

paradigm involves learning sequences of locations in a semi-random array (not a grid) of 

identical images (dots). Dots are highlighted in sequences and participants are asked to 
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anticipate and look toward the location of the next dot in the sequence. Sequences are presented 

in a continual stream, with no indication of when a new sequence starts, and participants are 

only instructed to “Guess where the dot will appear next” by looking at which dot in the 

location array they think will be illuminated next. These instructions secure that the implicit 

nature of the task remains implicit and that the participants are not affected by directional 

explicit rules about the stimuli or the learning process. No information about pattern extraction 

or learning of sequences is given to participants. Participants are instructed as if the task is a 

single stimulus response (SR) task on a trial basis, and they do not have to make associations 

about prior trials. Leaning is determined by studying eye movements from timepoint 0 until 

the last trial of each task. There’s no separate familiarisation and testing phase in each task. 

Obviously, the new method is inspired by previous experimental paradigms, however it was 

constructed in such way to overcome previous problems and combine the benefits of previous 

methods. 

One of the most common methods used to examine SL in infants is to measure the duration of 

“preferential looking” suggesting that looking longer at a stimulus suggests its novelty. Saffran, 

Aslin & Newport (1996), investigated SL and language acquisition mechanisms on 8 months 

old infants by using that “preferential look” method. Their task consisted of a familiarisation 

phase, where infants were exposed to a continuous speech stream string (e.g. 

kupadilagotubidako), that consisted of three-syllable chunks/triplets (e.g. kupadi, lagotu, and 

bidako). The order in which these triplets occurred was free and therefore, transitional 

probabilities (TPs) were structured such that TPs from one syllable to the next were higher for 

stimuli within a triplet (e.g., padi) than for those that span a triplet boundary (e.g., dila). During 

the testing/preferential look phase, infants were presented with a word that was included in the 

familiarisation phase (e.g., kupadi) (familiar triplet) and a new one (e.g., gadilo) (novel triplet). 

Longer reaction times (preferential look) indicate non-learned items, and in this case the novel 
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triplets had significantly longer RTs than the familiar triplet. Even though this methodology 

sounds ideal for conducting language learning SL tasks in young infants, it has its limitations. 

Firstly, it is restraining as it assesses the learning at the end of the process and doesn’t allow 

any further details about how the learning occurs and if infants extract TPs or perform 

information chunking. Additionally, it is limiting the possible answers to two options, as any 

2AFC task would do, by increasing error variance that can not explain facts such as individual 

differences in learning. However, it was used as an inspiration of the current suggested new 

methodology, by introducing eye-tracking as the main technical equipment that would be used 

in the new design. Eye-tracking is one of the most well-established methodologies used in the 

field of psychology, suggesting that there is strong justification for the outcomes of the study. 

The idea that eyes can provide us with details about different cognitive processes, is a key 

component for the new methodology suggested as eye-movements can allow an implicit 

experimental design without introducing explicit task introductions, just by observing how, 

when and where the eyes move. That indicates that processes such as SL can be observed within 

more ecologically valid experimental set ups. 

However, this is not the first time that someone is suggesting an eye-tracking study to assess a 

mechanism as basic as SL.  Memory for example, especially visual memory has been studied 

many times by the usage of eye-tracking in adults, children and infants (Oakes, Baumgartner, 

Barrett, Messenger & Luck, 2013; Chevalier, Blaye, Dufau & Lucenet, 2010). It is known that 

infants acquire knowledge from experience with the world by using their senses. According to 

Eichenbaum (1997) the memory retrieval has ‘representational flexibility’, suggesting that it 

occurs despite changes in the environmental cues. Plenty of studies have shown age related 

changes in flexibility in various tasks such as (a) mobile conjugate tasks in 3-6months old 

where infants learn contingency between actions.  During a mobile conjugate task, the 

researchers tie the one side  of a ribbon around the ankle of the infant and the other side of the 
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ribbon on a mobile that hangs on the top of the infant’s crib.  In this set up the infant learns that 

the kicking will cause the movement of the mobile. During this process the focus of eye-

movements and the durations of the eye-movements of the children are being recorded (Rovee-

Collier, 1999; Hayne, Greco, Earley, Griesler & Rovee-Collier, 1986; Rovee-Collier,Griesler 

& Earley, 1985), (b) the delayed imitation task with 6- to 24-month-olds: during this task, the  

researchers use actions such as manipulating objects or using body movements, and expect 

infants to imitate those behaviours. To do so, they record the eye-movements of the children to 

see where they fixate their attention during this imitation process. Then they test if infants can 

imitate the actions they observed after delay (Hanna & Meltzoff, 1993; Hayne,Boniface & 

Barr, 2000; Hayne, MacDonald & Barr, 1997), and (c) visual paired-comparison task with 6- 

to 24-month-olds: this task assesses visual preferences and  discrimination abilities of infants. 

During the task, the researcher present pairs of visual stimuli to infants and measure their 

looking behaviour towards each stimulus (where they fixate, for how long etc), (Robinson & 

Pascalis, 2004). Based on these abilities Richmond and Nelson (2009) used a scene/face 

paradigm to access the nature of memory representations and memory encoding during infancy, 

using a Tobi eye-tracker to measure infant’s fixations. Their results replicated previous findings 

in adults in terms of the magnitude and the time course of the preferential looking, despite the 

differences in stimulus exposure between infants and adults. 

Even though eye-movements and gaze RTs provide strong evidence that eye-tracking can be a 

good way to examine basic cognitive mechanisms, across different age ranges in the 

developmental spectrum, also highlight the fact that certain experimental designs can be 

restrictive in the quality of information that they collect, even when using powerful technical 

methods such as eye-tracking. One of the main problems of the above methodological set ups, 

is that they focus solely on the outcome of the learning process, while ignoring any information 

about the learning time course, while claiming that the findings reflect an aspect of the learning 
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process. The preferential looking (spending more time on fixating on stimulus x rather than 

stimulus y, as x is recognised as novel) for example, assesses behaviour at the end of the 

learning process (or if there are intermediary preferential looking tasks, they take a snapshot of 

learning at different timepoints). That suggests, they do not examine how learning progresses 

but just capture parts of the learning process (usually at the end of a training phase). However, 

in processes such as sequential SL it is important to obtain a full image of the process to 

understand how each element of the sequence is associated with the previous one, and it’s not 

a learned vs non- learned process as a “2AFC task” would suggest. That’s why the current 

suggested experimental set up was designed to allow a gaze-contingent paradigm from the 

beginning of the task up to the end of the task, to be able to infer to learned or non-learned 

items of sequences but also to the relationship between the items of the sequence. Furthermore, 

the current design in future could be easily adjusted to examine eye movements during different 

experimental phases such as the training phase and the preferential looking (or testing) phase, 

to capture the holistic process of learning, but also allow comparisons between the different 

phases of learning. 

Similarly, another methodology used in the SL literature is that of “familiarization” (Slone & 

Johnson, 2018; Siegelman, Bogaerts, Elazar, Arciuli & Frost, 2018). In this methodology, 

novelty is being treated as the key element of research focus and differences between familiar 

and novel stimuli can reveal differences between the conditions. However, this methodological 

paradigm on its own isn’t efficient, as the exposure needed for each stimulus to be learned 

might differ depending on the perceptual complexity of the stimuli, the domain of the modality 

etc. However, it was used as a steppingstone in the new methodology suggested to examine 

learning of novel sequences from time point 0, capture the learning process of completely novel 

items while controlling for exposure. 
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After summarising the current methodologies used in SL, we can conclude that most of the 

experimental paradigms claim to reflect aspects/components of the SL process while they are 

actually studying the learning outcome of the process. That is limiting the actual information 

that we can get about the actual mechanism and therefore emerges the need for a new 

experimental design that captures the time course of the SL mechanism. Additionally, 

methodologies such as 2AFC and familiarization tasks, are better fit for understanding explicit 

learning mechanisms rather than implicit. SL is an implicit learning mechanism, and therefore 

it needs to be studied as an unconscious learning process, without participants being affected 

by instructional, or task procedural bias. 

After reviewing the problematic uses of each methodology above and their relation to the 

current new suggested method, the aim of the following sections in this chapter are to: 

(a) Provide a detailed description of the new experimental paradigm and the step-

by-step development of a fully functional experimental task. 

 

(b) Present data and analyses from different development steps of the new method 

to demonstrate the efficiency of the methods to show how learning over time 

occurs and how it overcomes prior limitations in SL methodologies. 

 

(c) Give a full explanation of how this current research methodology can be applied 

in other domains rather than the visual that have a temporal element, and what 

are the current design limitations. 
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B. Primary Experimental Design (Design A) & Piloting 

 

The demonstrated design A was part of a larger study with more tasks, but for the purposes of 

introducing the new design, we will only present in this chapter the task that was created for 

SL of sequences of 3 dots. 

 

Paradigm summary: 

The suggested experimental paradigm involves the recording of eye-movements, during a 

sequential visual SL task. The sequential visual SL task involves learning sequences of dots 

that appear on locations in a semi-random array. Dots are highlighted in sequences and 

participants are asked to anticipate and look toward the location of the next dot in the sequence. 

Sequences are presented in a continual stream, with no indication of when a new sequence 

starts. Learning is determined by studying raw eye-samples during the task and there is no 

separate learning and testing phase. Figure 4.1 demonstrates the presentation of a 3 dots 

sequence within the task, with the details about eye-tracking recordings and time displays. 
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Figure 4.1 This figure represents the presentation of a 3 dots sequence in the new experimental design. 

 

B.1. Ethics 

This project has been approved by the Ethics Committee of Nottingham Trent University, 

(NTU Ethics Procedure Approval Code No 2018/218). 

B.2. Participants 
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For this study 36 adults (30 female, 6 male) within the age range of 18-33 years old (M=21.06, 

SD=3.01), with not known learning disabilities or cognitive impairments were recruited. Figure 

4.B.1 shows the participants age and gender distribution. All participants had normal or 

corrected vision. Participants were recruited via the SONA reward system from the 

participation pool of Nottingham Trent University.  

 

 
Figure 4.B.2.1 This violin plot represents the age and gender frequency distribution of participants for Design A. 
Each red dot represents a participant.  

 

B.3. Materials 

The visual stimuli used for this study was a green dot that moved on a 16 locations array of 

grey dots on a black background. The code that generates the location patterns of grey dots 

(Appendix D) and the code that generates the actual experimental task (Appendix B) were both 
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Python based scripts (Python Software Foundation. Python Language Reference, version 2.7. 

Available at http://www.python.org). In total, 3 different location sets (Table 4.B.3.1, Figure 

4.B.3.2) were created and one of them was allocated to each participant. All the cartesian points 

within a location set, were designed to be equidistant to avoid internal distance bias during the 

eye-tracking. A visual representation of each location set can be found in Figure 4.A.2. The 

basic frameworks that were used to build up the operational scripts that connected the eye-

tracker operating system with the computer operating system, were mainly ioHub 

(https://github.com/isolver/ioHub) from where we resourced the eye-tracker connection scripts 

in order to activate the eye-tracker during the task, but also perform the calibration process and 

PsychoPy2 (https://www.psychopy.org/) where we build the experimental sequence. 

 

 

Table 4.B.3.1 Shows the x and y coordinates for the 3 different location sets that were created for design A. Each 
location set contained 16 different points, that were equidistant. Those cartesian points created the appropriate 
equidistant array for our visual stimuli to draw on the screen. 

http://www.python.org/
https://github.com/isolver/ioHub
https://www.psychopy.org/
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Figure 4.B.3.2 This figure is a visual representation of the 3 different location sets (LS1, LS2, LS3) that were used 
in Design A. Each location set contained 16 different points, that were equidistant. 

 

B.4. Equipment  

A Gazepoint GP3 (60 Hz) portable eye-tracker was used to record eye-movements during the 

experimental procedure. The eye-tracker has 0.5-1 points visual angle accuracy and can capture 

25cm (horizontal), 11cm (vertical) movement with a ±15 cm range of depth movement and a 

sampling rate of 60 Hz resulting in a recording of 60 eye-samples per second. The task was 

presented on a 19” monitor with 1280 x 1024 pix resolution and its dimensions were 471 x 281 

x 38 mm. The task was operating on a Windows x 64 Intel® core ASUS i7 laptop. A chinrest 

was placed on top of the desk, facing at the monitor at 70 cm distance.  
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B.5. Design 

In the current design, the interest focuses on how learning (number of eye-samples on the target 

location) occurs in sequences of 3 dots. For this purpose, task 1 was created and contained 4 

sequences (A, B, C, D) that consisted of 3 dots each one. Each trial began with a green dot 

been drawn on top of a grey dot - on an array of total 16 grey dot locations- until the participant 

looked at it and remained there for 275ms after which a blank period of the grey dot location 

array followed for 750ms (if learning of the location of the next dot occurs, then eye movements 

toward the dot would be expected during this blank period). A visual representation of a trial 

can be seen in Figure 4.B.5.1 The number of trials for the task was 480 (4 sequences * 40 

repetitions each sequence * 3 items each sequence). The target location in each trial was defined 

as the next location in the sequence. If participants have successfully learned the sequences, 

after the visual presentation of the 1st item (dot) of the sequence, they were expected to look 

straight in the next location within the 750ms gap between one location being in green and the 

next location being in green. The process was gaze-contingent, meaning that the design secured 

that the participants had looked at the green dot before moving into the next trial (i.e., the next 

green dot being shown). Eye-samples in within the radius of 2.75 times the size of the dot, were 

counted as hits in the area of interest (AOI). A visual representation of the AOI can be found 

in Figure 4.B.5.2. The size of the AOI was decided so that there was no overlap between the 

AOIs of the other displayed dots and the target dot, but also ensuring that the AOI was big 

enough to capture eye-samples on the target dot. Specific timings about the trials are given in 

the procedure section. In Table 4.B.5.1. is presented the different dimensions of stimuli 

(dot/target), AOI and display, with the relevant centred visual degrees calculation for horizontal 

and vertical axis. The visual degrees were calculated with the use of the online SR Research 

calculator, (https://www.sr-research.com/visual-angle-calculator/).  In Table 4.B.5.2, we can 

find the scores for the mean(M) and the standard deviation (SD) for the eye-samples that hit 

https://www.sr-research.com/visual-angle-calculator/
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the AOI during a trial in the 3 dots task, across all 36 participants. The total number of trials 

was 17244. 

 

Figure 4.B.5.2. This figure shows that AOI around the green target dot (in a 1280x 1024 px resolution). 

 Screen AOI Target 

Dimensions 1280 x 1024 
pix 

Radius AOI =45.84 pix (2.75 
times the radius of target/dot) 

Diameter =33.33 pix 

Radius = 16.67 pix 

 

Size in Pixels 1310720 pix 
(width * hight 
of monitor) 

6601 pix (3.14 * Radius AOI) 873 pix (3.14* Radius 
Targer/ Dot)  

Horizontal Visual Degrees 1 Horizontal Visual degree = 33.29 pix 

Vertical Visual Degrees 1 Vertical Visual degree = 44.64 pix 

Distance from Screen 700 mm (70 cm) 

Dimensions of monitor 471x 281 mm 

Table 4.B.5.1 Table of centred visual degrees, size in pixels, and dimensions for target, AOI and display. 
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Trial = Blank period of guessing(0-750ms) + Target appears on screen, participants look at it, 

it remains there for 275ms after participants have looked at it. (750ms-…) 

 M SD 

Blank period 2.44 6.79 

Target appears on Screen 23.9 22.8 

Table 4.B.5.2 This table shows the mean and the standard deviation of raw-eye-samples that hit the AOI during a 

trial. Scores were calculated based on a total sample of 17244 trials (36 participants-479 trials each participant). 

 

 

Counterbalancing & randomization of trials.  

All trials for the task were counterbalanced for location set per participant, while the sequence 

order and the locations allocation were randomized for each participant. Each sequence wasn’t 

allowed to appear twice in a row. Each location of the array was allocated on a single sequence 

item, to avoid overlapping of locations across sequences. All trial files were generated using 

R.3.2.5 version (R Core Team, 2013). 
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Figure 4.B.5.1 This figure represents an experimental trial in Design A.  

B.6. Procedure  

The experimental session procedure consisted of 5 different stages: 

1. Participant’s information, Consent form & Demographics: Since the participant entered 

in the eye tracking lab, he was provided with the Information Sheet about the study (Appendix 

A, Section A.1) and was given approximately 5 minutes to read through it. Then the participant 

was asked if he had any questions about the study (if so, was given further study details) and 

moved on signing the Consent Form (Appendix A, Section A.2). After the participant signed 

the Consent Form, he was allocated with an experimental ID number. The researcher opened 

the appropriate framework on the laptop and entered the experimental ID number, age and 

gender of the participant in the platform. 

2. Verbal instructions about the procedure & positioning for eye-tracking: In this stage 

the participant was asked to turn off his mobile phone or any other electronic devices he might 

had with him and sit comfortably in front of the experimental monitor, so that he could be given 
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the verbal instructions about the task. The verbal instructions for the task were the following: 

“In this task you will see a green dot moving in different locations. All you have to do is guess 

where the dot will appear next by looking at the location that you think the green dot will 

appear next.” Then the participant was asked if he had any questions about the instructions. If 

so, the researcher answered the question and moved on to the next step of positioning for the 

eye tracking. At this time point the participant was informed about the importance of keeping 

his head stable on the chinrest until the end of the task. Then the researcher explained the 

procedure of eye-tracking as follows: “Before you begin the experiment, you will have to do a 

small task that last about a minute. All you must do here is look at the centre of a dot that will 

be drawn in different locations on the screen. At this task you are not asked to guess, but just 

look at the centre of the dot. After this task is finished, you will move to the experimental task, 

where you will start the guessing”. Then the researcher positioned the head of the participant 

on the chinrest and pressed enter on the open framework on the laptop. Then a window 

appeared asking if the participant was ready to be calibrated. The researcher pressed enter the 

calibration process began. 

3. Calibration: As part of the procedure of conducting an eye-tracking experiment, 

participants did a 5-points calibration task, with a 20 pix calibration error. If the calibration was 

successful, the participant moved on the experimental task. Otherwise, the calibration process 

was repeated, until it was successful. A new calibration process was occurring before the 

beginning of each experimental task. Usually, the calibration process lasted less than 1 min. At 

the end of a successful calibration a window was drawn saying that the calibration was 

successful and giving the calibration error threshold. Then the researcher pressed enter and the 

experimental task began. 

4. Experimental Task: In the task, each trial began with a green dot been drawn on top of a 

grey dot - on a array of total 16 grey dot locations- until the participant looked at it and remained 
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there for 275ms, after which a blank period of the grey dot location array followed for 750ms. 

The task was gaze contingent, so participants had to look at each green dot to progress further 

in the task. The green dot was considered as seen if there was a hit within a radius of 2.75 times 

the size of the dot. The 750ms “blank” period is the crucial experimental period that will show 

if SL occurs. At the end of the task a black window was drawn on the screen that thanked the 

participant for his participation in the experiment. The window remained there until the 

participant pressed “space” on the keyboard. 

5. Debrief about the research aims of the study: At this stage the participant was verbally 

thanked for his participation by the researcher and given a Debrief Sheet (Appendix A, Section 

A.3) about the aims of the study. Then he was asked if he had any other questions relevant to 

the experiment and was given the SONA credits as a reward for his participation.  

The total task procedure lasted about 15 mins. 

B.7. Piloting prior to Primary Experimental Design- A justification of choices in 

experimental Design A. 

1. Choices of Equipment (GP3 eye-tracker) 

The GP3 (Gazepoint) eye-tracker was new experimental equipment that arrived at the 

department approximately at the same time as I started my PhD journey. Previous research that 

has been conducted with GP3 (Mannaru et al., 2017; Brand, Diamond, Thomas & Gilbert-

Diamond, 2021), has shown that even though it is a low frequency tracker (60 Hz) compared 

to others (e.g., Tobii, Eye-Link SR), it can provide reliable eye-tracking data. The GP3 trackers 

also have the advantage of low purchase cost and portable functionality, that could allow data 

collection outside of an experimental lab (e.g., schools, nurseries, etc.) if needed. The GP3 was 

therefore chosen as the equipment for design A. 
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2. Choice of Blank Period timing & Piloting 

Given the fact that Design A is an eye-tracking design, it was crucial to take into consideration 

the timing of basic eye-tracking movements such as saccades and fixations.  A typical saccade 

can last from 20 ms to 40 ms and a fixation is on average 250ms. Considering that the responses 

in Design A were recorded by eye-movements (hits on target location) during the blank period, 

we had to ensure that the participants had enough time and space to perform at least one fixation 

on target, meaning that the minimum blank period tested was 500ms to allow saccades, around 

the different targets (distance of targets across the window) and at least one fixation.  This 

would mean that with a 60Hz sampling rate we could have a maximum of 30 eye-samples (hits) 

on target for a blank period of 500ms. However, as it is shown in Figure 4.B.7.1, the piloting 

data for 3 participants (001, 002, 003) demonstrate that no learning was achieved during the 

500ms period. Therefore, we increased the blank period time to 600 ms, that would allow a 

number of 36 eye-samples (hits) on target. Figure 4.B.7.2, shows the piloting data for 600ms 

for 3 participants (001, 002, 003). No learning is evident across the three participants for the 

blank period of 600ms. Then it was decided to set up the blank period window to 700ms, to 

allow more time to elicit any learning taking place. During the 700ms blank window period a 

maximum of 42 eye-samples (hits) on target could be achieved. In Figure 4.B.7.3, it is shown 

that some learning was achieved by some participants (001, 002, 004), while some participants 

(003, 005) did not learn. In order to avoid having too long trials, as it would make the task too 

long and exhausting, and not lose the temporal element of the task (too long intervals between 

stimuli (dots)), we decided to choose a blank period of 750 ms. This way we could increase the 

number of stimuli presented (task with sequences of 4 or 5 dots) and still have a task that would 

last 15-20 minutes. It is crucial to highlight that because of the continuous nature of the task it 

was impossible to introduce breaks during a task, as it would disrupt the learning. 
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Figure 4.B.7.1. Piloting: Learning rate for 3 dots task during a blank period of 500ms per participant (001-003). 

Error bars represent 95% CIs. 

 

 

 

Figure 4.B.7.2. Piloting: Learning rate for 3 dots task during a blank period of 600ms per participant (001-003). 

Error bars represent 95% CIs. 
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Figure 4.B.7.3. Piloting: Learning rate for 3 dots task during a blank period of 700ms per participant (001-005). 

Error bars represent 95% CIs. 

3. Choice of sequence repetitions (occurrence). 

As it has been stated previously, the total duration of each task was a serious concern of this 

design, since no breaks could be introduced midway through the task, as they would disrupt 

the learning process. Therefore, we had to ensure that all the experimental manipulations were 

the best option possible in terms of time efficiency and demonstration of some actual learning 

capacity. We decided that 40 repetitions of each sequence in a task, was enough exposure to 

each sequence for participants to be able to demonstrate learning. There was no piloting with 

more or less repetitions, but it is something that could be considered in future designs. Previous 

research in statistical learning (Saffran et al., 1996) has shown that an amount of 45 repetitions 

per word (4 three-syllabic words, on a speech stream of 270 syllables per minute, on a speech 

stream of total duration of 2 minutes), is sufficient to show learning in 8-months old infants. 
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Since we are testing adults, we considered that 40 repetitions would be a sufficient amount of 

exposure to observe learning, as piloting data can confirm (see previous Figure 4.B.7.3). 

4. Choice of raw eye-samples over fixations. 

For this experimental paradigm, we have decided to look at raw eye samples rather than 

fixations, to demonstrate learning. This approach allowed us to analyse patterns of eye-

movements holistically throughout a task and record the process as a live learning procedure, 

with continuity from the 1st trial until the end, rather than observing learning on a trial-by-trial 

basis.  Focusing only on fixations on target locations in each trial could provide a robust 

measure for learning on a trial-by-trial basis, but it would disrupt the continuity of the task and 

it would limit the visualisation of the learning curves (how many fixations can fit in 750 ms? - 

the more data we have for learning (fixations vs. raw eye-samples) the more precise/naturalistic  

the magnitude of the curve). To visually establish this fact, Figure 4.B.7.4 and Figure 4.B.7.5 

were created. Figure 4.B.7.4 shows the learning of participant 005 based on raw eye-samples, 

and Figure 4.B.7.5 shows the learning of participant 005 based on fixations. As you can see 

from the graphs, the pattern of learning in the fixation graph mimics the pattern of learning in 

the raw eye-samples graphs (shape of curve), however it minimises the numeric variance that 

learning can get in this design, due to low learning rates and variance in learning across 

individuals. 
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Figure 4.B.7.4. This plot shows the learning rate across sequences in the 3 dots task, for participant 005, for Design 

A. On x-axis is the number of occurrence / exposure and on the y- axis is the number of eye-samples on the target 

location during the 750ms blank period. Note – there is a maximum of 45 eye-samples per trial. Error bars 

represent 95% CIs. 
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Figure 4.B.7.5. This plot shows the learning rate across sequences in the 3 dots task, for participant 005, for Design 

A. On x-axis is the number of occurrence / exposure and on the y- axis is the number of fixations on the target 

location during the 750ms blank period. Error bars represent 95% CIs. 

Raw eye samples have the advantage of higher temporal resolution over fixations. This 

suggests that raw eye samples provide a more detailed representation of eye movements, 

capturing the precise position of the eye at each sample point. The high temporal resolution of 

raw eye-samples allows the recording of learning in a more naturalistic, continuous manner in 

comparison to fixations which represent relatively longer periods of stable gaze. On the other 

hand, raw eye-samples increased the complexity of the data analysis due to the volume of the 

data and the complexity of the computations (calculating eye-samples over a certain period of 

time per trial on target location). Furthermore, raw eye-sample are more open to interpretability 
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in comparison to fixations. Fixations offer a clear demonstration of where attention is focused, 

while raw eye-samples require additional processing in order to determine if the eye-movement 

patterns represent learning. This subjectivity could lead to false interpretations of the data and 

as a result we would label data that are random hits on the target as “learning”. That said, 

random hits on the target – which would be potentially classed as learning – would account for 

very few samples of ‘eye on target’ and would therefore contribute little to the overall learning 

trajectories. That said, to mitigate any effect of random samples on target,  we visualised the 

data that are presented in this chapter (design A) and in the next chapters (data that derive from 

design B) and ensured that the raw eye-samples that were representing learning had (a) a 

consistency of movement pattern during a trial and (b) a continuity in time during the critical 

blank period time. To examine those components, we created plots for each task, for each 

participant, for each sequence, that were demonstrating the eye-movements during each trial 

(from the moment that x target appeared to screen, during the blank-period, and up until the 

moment the next target appeared on the screen).  These graphs were capturing the distance of 

the gaze from the AOI for the current trial and allowed us to observe the pattern of eye-

movements of individuals in detail and assess their reliability. A reliable learning pattern during 

a trial that (for example) a pair of targets is presented (e.g., 1-2) and which examines the 

learning of target 2 would demonstrate the following patterns:  

a. gaze away from AOI of target 2, as it should be looking at the target 1 

for the first 275 ms. 

b. gaze moving towards the AOI of target 2, during blank period of 750ms 

(guessing period) and remain there for at least a continuous time of 100 

ms (thus ensuring that raw samples on AOI are not samples from 

saccades across the screen). 
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c. gaze moving towards the AOI of target 2, after the end of 750ms, since 

target 2 has appeared on screen. 

An example of this graph for participant 005 can be found in the next section, in Figure 4.C.4. 

C. Results and Critical Evaluation of Design A 

This section consists of the evaluation of Design A, with some basic visualisation of the 

learning occurring during the task. 

C.1. Outcomes of Design A 

In Design A, a visualisation of the outcome was used to examine whether learning is achievable 

in a 3 items sequence. In order to do so, the data were cleaned data and only the raw eye-data 

that reflected learning were included in the data visualisation (scripts available in Appendix 

G). For this design demonstration, trials that consisted of eye samples to the first location of a 

new sequence (transition from the final position of the current sequence to the first position of 

the next sequence) were not removed from the data. However, it must be acknowledged that 

these trials are exogenous to the sequence learning process and in some way random (1/3 

chances to guess correctly if learning within all sequences is successful due to only being 4 

sequences with no sequence repeated immediately after itself and 1/16 chances to guess 

correctly if learning within all sequences is unsuccessful).  This issue will be addressed in the 

next Chapter (Chapter 5), where a comparison between those exogenous to the sequence trial 

and the endogenous to the sequence trial will be compared. But for the purpose of this design 

evaluation, they were included in the figures and descriptives statistics. Learning was 

calculated as the averaged eye samples on the target location across the endogenous sequence 

positions for each task within the 750ms of the blank period. For the 3 dots task the eye samples 

in target locations of the second and third items of the sequences were categorized as learning 
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data. Finally, a polynomial regression (method lm, y ~ poly(x,3)) was fitted to the data to 

extract a first impression about the form of the data. 

Figure 4.C.1 shows the percentage of learning in the 3 dots task from their 1st exposure until 

the 40th exposure aggregated across all 4 sequences. As it can be seen in Figure 4.C.1 the 

percentage score of learning is low, potentially indicating that very little learning took place 

(the number of eye samples is 45 because the 750 ms blank period equates to approximately 

45 eye samples). This led to the creation of closeup visualisation of the same data for each 

specific sequence (Figure 4.C.2) and a look into individual plots to examine whether the low 

numeric values derive from individual variation on performance. As it can be seen in Figure 

4.C.1 only an approximate of ~7,5% of eye samples manage to hit the target location, 

suggesting that the averaged results across participants showed that there are approximately 3 

to 4 out of the 45 eye-samples (Figure 4.C.2) on the target location by the end of task. These 

low numeric values could have many explanations; therefore, a further visualisation of 

individual differences was needed to evaluate the method (Figure 4.C.3). As we can see in 

Figure 4.C.3 There are many participants that fail to learn (e.g., 019,007), but there are also 

some participants that manage to show some learning (e.g., 005,024).  

 



Chapter 4 
 

87 
 

 

Figure 4.C.1 This plot visualises the learning rate across sequences in the 3 dots task for Design A. On x-axis is 
the number of occurrence / exposure and on the y- axis is the percentage (%) of eye-samples on the target location 
during the 750ms blank period. Note - there is a maximum of 45 eye-samples per trial. Error bars represent 95% 
CIs. 
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Figure 4.C.2 This plot provides a closer look into the effects across sequences in the 3 dots task for Design A, 
for each of the four 3 dot sequences (A, B, C, D). On x-axis is the number of occurrence / exposure and on the y- 
axis is the number of eye-samples on the target location during the 750ms blank period. Note – there is a maximum 
of 45 eye-samples per trial. Error bars represent 95% CIs. 
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Figure 4.C.3 This plot shows the learning across sequences in the 3 dots task for Design A, for each individual 
subject (001-036). The x-axis is the number of occurrence / exposure and on the y- axis is the number of eye-
samples on the target location during the 750ms blank period. Note there is a maximum of 45 eye-samples per 
trial. Horizontal lines at a y-axis of 0 indicate no learning (e.g., participant 019) with deviation from this indicating 
learning (e.g., participant 005). Error bars represent 95% CIs. 
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C.2. Critical Evaluation of Design A 

Design A seemed to efficiently record the process of the task, however indicated low levels of 

learning that could question the validity of the suggested method. This raised concerns about 

the need of creating a more powerful design, Design B, that will be discussed in the next chapter 

(Chapter 5). But before moving into a new design, it is crucial to highlight that design A 

achieved one of the primary design goals. It managed to successfully capture the learning 

process of sequential SL from the beginning of the task until the end, without disruptions, and 

by simply capturing the implicit character of the SL procedure, without explicit instructions. 

The success of Design A can be seen in Figure 4.C.4, which is an example of a participant’s 

performance from trial number 1 to trial 480 and shows the learning across time with the 

location of eye samples moving towards the next dot during the blank period, indicated by a 

shift in the red line towards 0 prior to the target being shown, (i.e., greater looking towards the 

target over time during the anticipatory blank period, indicating learning). 
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Figure 4.C.4 Plot with raw eye samples during a trial for participant 005. This plot demonstrates a 4 sequences – 
3 dots length task. On x-axis is the distance of the eye from the target location (as a proportion), so red dots at 0 
indicate the eye is on the target with increasing deviations from 0 meaning the eye is further and further away 
from the target.  On y-axis is the time period of a trial, with critical period (the blank period where the target 
location is not yet indicated) being 0- 0.75s. A1, A2, A3 etc represent the transitions from a dot to another one 
within a sequence (so A,B,C,D stand for the 4 different sequences) and 1,5,10… 40 is the number of exposure to 
that item of the sequence. The blue line is representing when the stimulus is drawn at the next location on the 
screen – this is drawn at .75. The figures show both learning and lack of learning. For example, the location of the 
second dot of sequence A (column A2) has been learned at the 10th exposure (row 10) as indicated by the distance 
of the eye to the target location reducing over time (red plot moving leftward toward 0 on the x-axis prior to 
crossing the blue line) until the target is displayed (indicated by the blue line). This is not the case on the 5th 
presentation (row directly above, labelled ‘5’) where the eye only shifts to the dot once the dot is displayed. 
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The GP3 (GazePoint) eyetracker has a maximum frequency of 60 Hz, suggesting that a 

maximum of 45 eye samples could be recorded during the 750 ms “blank period” of guessing. 

That low sampling rate might be responsible for the low numerical values in terms of number 

of eye samples, however there was a clear formulation of a learning curve. Therefore, the big 

question was created: “Are we supposed to perceive as learning a curve that goes from 0 to a 

maximum of 3 or 4 eye samples?” Those 3 or 4 eye samples could be on the right place at the 

right time due to a random saccade movement. Using a more powerful eye-tracker would 

provide more samples (eye locations) per second and alleviate this problem. Therefore, to 

improve the design a more powerful eye-tracker would increase the numerical power of the 

design, so that strong conclusions could be drawn for the effects observed in the data and the 

primary research aims. Additionally, that was a good reminder of always critically evaluating 

the efficiency of each equipment in a specific experimental set up. Sometimes the tools that are 

being used aren’t powerful enough to capture the strength of the mechanism that needs to be 

explored. But how do we deal or interpret the findings of a less powerful design? What are the 

criteria that allow to assess the efficacy of a tool, and how low numerical values can be 

indicators of actual effect patterns? This topic will be fully discussed in Chapter 8, where a 

technical comparison of the 2 eye-tracking systems will be given. 

Apart from the shift into a more powerful eye tracker, design A needs a methodological boost 

up. Although some individuals show learning (see Figure 4.C.3, 005, 032, 024, 027), there 

were other that showed none. That could be explained by having floor effects, due to the 

difficulty of the task, or lack of concentration of the participant, or simply individual 

differences in the learning process that are quite common in the field. If the task was really 

hard, with the usage of such low frequency eye-tracking (60Hz) we wouldn’t be able to capture 
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any learning at all. This way, the possible explanations for floor effects are reduced to (a) low 

frequency sampling equipment, (b) individual differences in learning and (c) lack of attention 

and concentration in the task. Therefore, by using higher frequency equipment and maintaining 

the concentration of the participant in the task by introducing the beep sound as a negative 

feedback form, we aimed to improve the design and provide a clearer answer as for why we 

observe these low numeric values and if the data from Design A are actually meaningful in a 

context of interpretation. 

To conclude, the coding software was easily adjustable and could be used with many eye-

trackers while running the exact same processing routine. The experimental code was very 

flexible and allowed adding experimental elements such as negative feedback in the process 

with ease. All these factors led to the creation of Design B that will be presented in Chapter 5. 
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Statistical Sequential Learning: Final 
Experimental Design (Design B) and the debate 
around within sequence transitions and 
exogenous sequence transitions. 
 

 

 

 

Chapter Summary 

In this chapter, we will examine the final experimental design that has generated the 

experimental data that we will analyse in the following chapters to answer our research aims. 

Furthermore, an analysis of on the basis of within-sequence vs. outside-sequence transitions 

will be given to support the rationale of exclusion of outside-sequence (exogenous) transitions 

from the future analyses.  More specifically, this chapter will be divided in two sections: section 

A, that will detail Design B and will provide a justification for the adaptations in it, in 

comparison to Design A (seen previous Chapter 4) and section B that will provide a theoretical 

and empirical rational for excluding between-sequence transitions from the future analysis, as 

they represent a form of learning that is different from the learning that occurs in within-

sequence transitions. 
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A.  Final Experimental Design (Design B): rationale, moderations and 

outcomes. 

A.1. Rationale of Design B 

In this chapter we will examine the alternations that we performed to Design A (previous 

chapter, Chapter 4), in order to maximise the learning outcome of the task. Design B is part of 

larger studies with more tasks. However, in order to compare Design B (final design) with 

Design A (primary design), in this section we will present only the task that was created for SL 

of sequences of 3 dots. 

As we saw from the previous chapter (Chapter 4), Design A was created to examine sequential 

SL after a series of pilot studies. In that set up, SL of sequences of 3 dots was examined, under 

the usage of a GP3 (60Hz) eye-tracker. However, from the evaluation of design A, we made 

three conclusions: (a) SL was recorded within the task, (b) numeric values of learning were 

low, and (c) there were many participants that didn’t demonstrate learning at all. Therefore, the 

need for an improved design arose. The design that will be presented in this chapter, Design B, 

is the improved version of Design A. In this set up, SL of sequences of 3 dots was examined 

under the usage of an Eye-link 1000 (1000Hz) eye-tracker which is a more powerful eye tracker 

(that can result in higher numeric values on the SL outcome - raw eye samples on target 

location) and additionally a negative reward manipulation was introduced in the task in order 

to motivate participants to do better in the task and increase the numeric values of the SL 

outcome.  The negative reward system in Design B worked by introducing a beep sound as part 

of the procedure that worked as feedback. If the participant failed to orient their eyes to the 

next location within the 750 ms blank period (i.e., they had not learned the location of the next 
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dot) then a beep would sound. That would act as motivation to do well on the task (i.e., learn) 

to avoid hearing the beep sound. Every time that participant was correctly guessing the next 

location the sound wasn’t heard. That would hopefully result in a task that would end up mostly 

silent after the 20th-40th repetition of the sequence for most of the participants that would 

concentrate on the task, while it would be consistently playing sound from the beginning until 

the end for the participants that were not learning during the task. It is expected that the sound 

feedback will have a negative reward effect (playing a sound when participants did not shift 

their eyes to the next location within the blank period) that will increase participant’s 

motivation.  

The “reward system” method is a method that has been used widely in the literature. Freedberg, 

Schacherer and Hazeltine (2016) used this different experimental paradigm to show how the 

associations between two stimuli (stimuli-response S-R) can be strengthened. In their study, 

they adapted the Seibel’s (1963) chord task. During the task participants were presented with 

multiple stimuli simultaneously and had to respond correctly while they were rewarded for 

choosing correctly for some chords, but not for all. What is currently known about introducing 

a reward in a task in a specific domain, such as a motor task, is that it improves learning on that 

specific domain, and so for example responses relying on rewarded motor programs are 

produced faster (e.g., Abe, 2011; Wächter et al., 2009). One possible explanation is that 

participants become reward biased and therefore produce them faster (e.g., Rescorla,1968, 

1988), however Freedberg et al. (2016) suggested that the reward strengthens the associations 

of S-R and therefore higher speed is expected due to stronger associations rather than the 

reward itself. This event is plausible if the S-R is on a one-to-one level or on a combination of 

stimulus and response match level (Freedberg et al., 2016). Similarly, the speed of performance 

can become faster when anticipating a reward (e.g., Haith, Reppert, & Shadmehr, 2012; Opris, 

Lebedev, & Nelson, 2011) but also rewarded stimuli are attended longer and perceived faster 
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than other stimuli that were associated with smaller reward (e.g., Anderson, Laurent, & Yantis, 

2011; Roper, Vecera & Vaidya, 2014). However, reward systems can lack ecological validity 

since there is not always a reward system in real life situations, so the process doesn’t imitate 

the actual real-life learning process and can lead to implications related to the implicit (non-

biased) character of the task and the applicability of the method in a variety of tasks across 

domains. In the new final methodology suggested, a reverse or negative reward system was 

used during the eye-tracking task, that worked as negative feedback (bip-sound) every time the 

participants failed to learn an item of a sequence during the task (failed to move their eyes to 

the next dot location before the dot was illuminated). This way the task managed to keep the 

implicit character of the task, while it motivated the participants to attend to the task and want 

to learn to avoid the bip-sound. 

A.2. Design B 

A.2.1. Ethics 

This project has been approved by the Ethics Committee of Nottingham Trent University, 

(NTU Ethics Procedure Approval Code No 2018/218). 

A.2.2. Participants 

For this study 36 adults (30 female, 6 male) within the age range of 18-23 years old (M=19.53, 

SD=1.11), with no known learning disabilities or cognitive impairments were recruited. Figure 

5.A.1 shows the participants age and gender distribution. All participants had normal or 

corrected vision. Participants were recruited via the SONA reward system from the 

participation pool of Nottingham Trent University. Participants that have already taken part in 

Design A (Chapter 4) were excluded to avoid familiarity to the task bias. 
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Figure 5.A.1 This violin plot represents the age and gender frequency distribution of participants for design B. 
Each red dot represents a participant.  

 

A.2.3. Materials 

The visual stimuli used for this study was a green dot that moved on a 16 location array of grey 

dots on a black background. The code that generates the location patterns was the same as used 

in previous studies. For the needs of the design, 6 different locations sets were used (Figure 

5.A.2). The exact coordinates of each location set can be found in Table 5.B.1. All the cartesian 

points within a location set, were designed to be equidistant to avoid internal distance bias 

during the eye-tracking. It is important to mention that the same experimental coding and 

software that was used in Design A with Gazepoint GP3 was now used on Design B with 

EyeLink 1000 (SR Research). 
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Table 5.A.1 Shows the x and y coordinates for the 6 different location sets that were created for study 4. Each 
location contained 16 different points, that were equidistant. Those cartesian points created the appropriate 
equidistant array for our visual stimuli to draw on. A visual representation of each location set can be found in 
Appendix E (Figures E.1-E.6). 
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Figure 5.A.2. This figure is a visual representation of the 6 different location sets (LS1, LS2, LS3, LS4, LS5, LS6) 
that were used in Design B. Each location set contained 16 different points, that were equidistant. 

 

A.2.4. Equipment  

An EyeLink 1000 (SR Research Ltd., Mississauga, Canada) eye-tracker was used, on a 

monocular chinrest recording mode (right eye), with a sampling rate of 1000 Hz, resulting in 

1000 eye samples per second. The task was presented on a 24” monitor with 1280 x 1024-pixel 

resolution and it’s dimensions were 533 x 299 x 38 mm. The task was operating on a Windows 

x 64 Intel® core i7 laptop. A chinrest was placed on top of the desk, facing at the monitor at 

50 cm distance. Finally, external to the laptop’s system speakers were used that were always 

used at a sound level of 50%. In Table 5.A.2. is presented the different dimensions of stimuli 

(dot/target), AOI and display, and the relevant visual angles. The visual degrees were 

calculated with the use of the online SR Research calculator, (https://www.sr-

research.com/visual-angle-calculator/).   

https://www.sr-research.com/visual-angle-calculator/
https://www.sr-research.com/visual-angle-calculator/
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 Screen AOI Target 

Dimensions 1280 x 1024 
pix 

Radius AOI =45.84 pix (2.75 
times the radius of target/dot) 

Diameter =33.33 pixels 

Radius = 16.67 pixels 

 

Size in Pixels 1310720 pix 
(width * hight 
of monitor) 

6601 pix (3.14 * Radius AOI) 873 pix (3.14* Radius 
Targer/ Dot)  

Horizontal Visual angle 53.01 4.5 1.63 

Vertical Visual angle 39.24 2.89 1.05 

Distance from Screen 500 mm (50 cm) 

Dimensions of monitor 533x 299 mm 

 

A.2.5. Design 

Same as in design A, but this time with a small but crucial experimental addition in the trial. 

The crucial difference between design A and this design B is that an additional beep sound was 

used in the design as a form of feedback. If the participant had correctly guessed where the next 

dot would appear then the beep sound wouldn’t be heard. Otherwise, the beep sound would be 

heard at the same time the next stimulus was drawn to the location. Eye-samples in within the 

radius of 2.75 times the size of the dot were counted as hits in the area of interest (AOI). 

Specific timings about the trials are given in the procedure section (Figure 5.A.3). 

 

Counterbalancing & randomization of trials.  

All trials for the task were counterbalanced for location set per participant, while the sequence 

order and the locations allocation were randomized for each participant. Each sequence wasn’t 

allowed to appear immediately after itself. Each location of the array was allocated on a single 
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sequence item, to avoid overlapping of locations across sequences. All trial files were generated 

using R.3.2.5 version (R Core Team, 2013). 

Figure 5.A.3 This figure represents an experimental trial in Design B. 

 

 

A.2.6. Procedure  

The experimental session procedure consisted of 5 different stages: 

1. Participant’s information, Consent form & Demographics: Same as Design A. 

2. Verbal instructions about the procedure & positioning for eye-tracking: In this stage 

the participant was asked to turn off his mobile phone or any other electronic devices he might 

had with him and sit comfortably in front of the experimental monitor, so that he could be given 

the verbal instructions about the task. The verbal instructions for the task were the following: 
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“In this task you will see a green dot moving in different locations. Every time the green dot 

appears in a location you will listen to a beep sound. All you have to do is guess where the dot 

will appear next by looking at the location that you think the green dot will appear next. The 

better you become at the guessing, the less often you will hear the beep sound”. Then the 

participant was asked if he had any questions about the instructions. If so, the researcher 

answered the question and moved on to the next step of positioning for the eye tracking. At 

this time point the participant was informed about the importance of keeping his head stable 

on the chinrest until the end of the task. Then the researcher explained the procedure of eye-

tracking as follows: “Before you begin the experiment, you will have to do a small task that 

last about a minute. All you must do here is look at the centre of a dot that will be drawn in 

different locations on the screen. At this task you are not asked to guess, but just look at the 

centre of the dot. After this task is finished, you will move to the experimental task, where you 

will start the guessing”. Then the researcher positioned the head of the participant on the 

chinrest and pressed enter on the open framework on the laptop. Then a window appeared 

asking if the participant was ready to be calibrated. The researcher pressed “enter” the 

calibration process began. 

3. Calibration/ Validation: As part of the procedure of conducting an eye-tracking 

experiment, participants did a 9-points calibration task, with a maximum 0.8 degrees 

calibration error. If the calibration was successful, the participant moved on the experimental 

task. Otherwise, the calibration process was repeated, until it was successful. A new 

calibration/validation process was occurring before the beginning of each experimental task. 

Usually the calibration/validation process lasted less than 1 min. At the end of a successful 

calibration a window was drawn saying that the calibration was successful indicating that the 

validation process could start. At the end of the validation process, the researcher pressed “esc” 

and the experimental task began. 
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4. Experimental Task: In each task, each trial began with a green dot been drawn on top of a 

grey dot - on a array of total 16 grey dot locations- until the participant looked at it and remained 

there for 275ms while a blank period of the grey dot location array followed for 750ms. If the 

participant had looked at the next location that the next green dot would appear during the 

blank period (before the actual stimulus is drawn), then the beep sound wasn’t displayed. 

Otherwise, the sound was displayed at the same time that next stimulus was drawn on the 

screen. The time between the beginning of the blank period until the first eye-sample on the 

next location target, the task was gaze contingent, securing that the dots have been seen 

otherwise the task wasn’t progressing. The green dot was considered as seen if there was a hit 

within a radius of 2.75 times the size of the dot. The 750ms “blank” period is the crucial 

experimental period that will show if SL occurs. At the end of the task, a black window was 

drawn on the screen that thanked the participant for his participation in the experiment. The 

window remained there until the participant pressed “space” on the keyboard.  

5. Debrief about the research aims of the study: Same as design A. 

The total task procedure lasted about 15 mins. 

 

A.3 Results and Critical Evaluation of Design B 

This section consists of a basic visualisation of the learning occurring during Design B, and 

additionally provides some critical evaluation about the current flaws and potential 

implications of the new methodology in different experimental set ups. 

A.3.1. Outcomes of Design B 

In Design B, a visualisation of the outcome was used to examine whether learning is achievable 

in a 3 items sequence, and if the new additions to the design have added power to the outcome 
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(R scripts for this chapter can be found in Appendix G). To observe the learning in the task we 

had to clean the data and select the eye-samples that reflected learning. For this design 

demonstration, trials that consisted of eye samples to the first location of a new sequence 

(transition from the final position of the current sequence to the first position of the next 

sequence) were not removed from the data. However, it must be acknowledged that these trials 

are exogenous to the sequence learning process and in some way random (1/3 chances to guess 

correctly if learning within all sequences is successful due to only being 4 sequences with no 

sequence repeated immediately after itself and 1/16 chances to guess correctly if learning 

within all sequences is unsuccessful).  This issue will be addressed in the next section (section 

B), where a comparison between those exogenous to the sequence trials and the endogenous to 

the sequence trials will be compared. But for the purpose of this design evaluation, they were 

included in the figures and descriptive statistics. Learning was calculated as the averaged eye 

samples on the target location across the endogenous sequence positions for each task. For the 

3 dots task the eye samples in target locations of the second and third items of the sequences 

were categorized as learning data. Then the percentage of learning was calculated as an overall 

of the eye-samples on the target location divided by the maxim possible number of eye-samples 

that could occur during the blank period of 750 ms, which was 750. Similar to design A, a 

polynomial regression (method lm, y ~ poly(x,3)) was fitted to the data to extract a first 

impression about the form of the data. 

As we can see in Figure 5.A.4 there is an increase to the learning outcome in comparison to 

Design A, with the percentage of eye-sample on the target location increasing from 7.5% to 

12.5%. That increase, in terms of pure numeric eye-sample values, is also more powerful (100 

samples, Figure 5.A.5) in Design B, as a more powerful equipment was used that increased the 

sampling power. It is important to mention at this point that although the numeric values still 

seem low in terms of percentage, there is a period where the participant has to do the eye- 
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movement planning (250ms), so it could be easily argued that the actual percentage would be 

a proportion of (hits on target/500) rather than (hits on target /750) as it is presented here. 

However, since the movement planning differs and can start at different points for each 

individual during the trial, it was decided that it’s clearer to keep as the crucial time window 

all the guessing phase of 750ms, even if that lowers our numeric values. Now we are certain 

that the number of eye-samples on the target location at the 40th repetition, can’t be due to 

randomness as they are ~100 and therefore we are overpassing problems such as the effects of 

low numeric values of Design A. 

 

Figure 5.A.4. This plot visualises the learning rate across sequences in in the 3 dots task for Design B. On x-axis 
is the number of occurrence / exposure and on the y- axis is the percentage (%) of eye-samples on the target 
location during the 750ms blank period. Reminder that there is a maximum of 750 eye-samples per trial. Error 
bars represent 95% CIs. 
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Figure 5.A.5 This plot provides a closer look into the effects across sequences in the 3 dots task for Design B, 
for each individual sequence (A, B, C, D). On x-axis is the number of occurrence / exposure and on the y- axis is 
the number of eye-samples on the target location during the 750ms blank period. Reminder that there is a 
maximum of 750 eye-samples per trial. Error bars represent 95% CIs. 

As it can be seen in Figure 5.A.6 there is still a variance on participants performance, however 

only a few participants fail to demonstrate learning (022, 033) and still their values are non-

zero. Additionally, there are plenty of participants that demonstrate great learning (007, 016, 

024) but their learning curves have different peaks and shapes demonstrating that exposure and 

tiredness can affect differently individuals.  
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Figure 5.A.6. This plot shows the learning across sequences in the 3 dots task for Design B, for each individual 
subject (001-036). On x-axis is the number of occurrence / exposure and on the y- axis is the number of eye-
samples on the target location during the 750ms blank period. Reminder that there is a maximum of 750 eye-
samples per trial. Error bars represent 95% CIs. 

A.3.2. Critical evaluation of Design B 

This improved design B, suggests that the new methodology can give powerful results but also 

overcome all the problems that were highlighted in the introduction of this chapter with 

previous methodologies. Previous methodologies used to assess learning solely at the end of 

the learning process (Saffran, Aslin & Newport, 1996; Slone & Johnson, 2018), but this novel 

methodology captures the learning while it occurs and develops. In other words, it shows the 

learning during the time course of the process, for each of the items of the sequential learning. 

The precise recording of raw eye-samples from the first exposure until the last exposure of 

each sequence, allowing us to infer processes that occur within sequences and across the task, 
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and by adding a continuity into the mechanism rather than examining it as a learned / non-

learned process. The precise timing recordings within the transitions of each sequence can be 

used to refer back to encoding and chunking processes that occur during sequential SL but also 

enlighten us about the effectiveness of positioning an item in a specific order in a sequence. 

Something else that could have potentially explained the improvement in performance is the 

nature of the instructions. The participants in this task didn’t have to “simply guess” where the 

next dot will appear. The instructions in Design B were “In this task you will see a green dot 

moving in different locations. Every time the green dot appears in a location you will listen to 

a beep sound. All you have to do is guess where the dot will appear next by looking at the 

location that you think the green dot will appear next. The better you become at the guessing, 

the less often you will hear the beep sound”. Even though the instructions had an implicit nature 

(not explicitly mentioning the word learning in the instructions or mentioning any information 

about the existence of patterns or sequences), they could still prompt the participant by hinting 

that the guessing isn’t random and therefore improvement in the performance can be noticed 

by receiving less beeps.  

Additionally, it minimises effects common in the literature, such as the effect of stimuli 

complexity (MacKenzie, Aslin & Fiser 2011). The usage of a green dot on an array of grey 

dots, is actually minimising the perceptual load of stimuli in the task and provides an 

understanding of the actual SL mechanism on a minimally loaded perceptual format. However, 

that doesn’t exclude the usage of more complex stimuli (different domain- audio, or load- 

perceptually complex stimuli) in future research manipulations. The findings on the current 

thesis can be used as the baseline of stimuli complexity for future research and allow further 

exploration of SL during more complex stimuli in different domains. 
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Previous studies included bias of reward learning processes (Abe et al., 2011; Freedberg et al., 

2016), bias deriving from the perceptual complexity of the stimuli used to explore the SL 

process (Robinson & Pascalis, 2004; Saffran et al., 1996) and sometimes bias over the implicit 

nature of the task in imitation paradigm tasks (Hayne, Boniface & Barr, 2000) or 

familiarization paradigm tasks (Arciuli & Simpsons, 2011). The new paradigm that we suggest 

in this chapter, due to its minimal stimulus complexity and the nature of the instructions 

(implicit learning, non-explicit instructions, simple guessing of dots, no information about 

temporal sequences) manages to overcome these issues. More specifically, this new 

methodology has internal validity (Andrade, 2018) as the design (gaze contingent eye-tracking, 

guessing process, minimal stimuli complexity), conduct (implicit instructions) and analysis 

(eye-samples on target location during time course of learning) provide a clear understanding 

of how SL occurs without bias. Similarly, it has external validity (Andrade, 2018), as it can be 

generalised to other concepts, and more precisely it demonstrates high ecological validity as 

the experimental procedure imitates the real-life SL processes, therefore, can be generalized to 

real-life settings. The negative feedback sound was introduced in the task to increase 

participants’ motivation (Burgers, Eden, van Engelenburg, & Buningh, 2015) and therefore 

engage more with the task. However, it should be acknowledged that the multisensory input of 

the beep sound and visual dot could have caused an increase in the cognitive load (Broadbent 

et al., 2018; Brünken, Steinbacher, Plass & Leutner, 2002), and this is something that future 

work may want to examine. 

To conclude, before moving into the next conceptual research questions of the current thesis, 

it is important to highlight the importance of this design for the general field of cognitive 

psychology and SL. It is a method that it’s programming and structure allow multiple 

experimental manipulations, on many eye-tracking systems, across different domains, age 

ranges (infants, children, adults) and could be used as part of further investigation of SL 
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mechanism in special populations such as autistic (Jones, Tarpey , Hamo , Carberry , Brouwer 

& Lord, 2018) or ADHD (Parks & Stevenson, 2018; Tenev, Markovska-Simoska, Kocarev, 

Pop-Jordanov, Müller & Candrian, 2014) population that have demonstrated differences on SL 

tasks in comparison to typical population. Additionally, further explorations and improvements 

could be added to increase the ecological validity of the task, depending on the specific 

experimental set up and research question.  

B.  Sequential Statistical Learning: Which transitions represent purely 

sequential SL in Design B? 

B.1. Rationale 

In this section, we will examine sequential SL with the use of Design B across different 

sequence length tasks (2 dots, 3 dots, 4 dots, 2&3 dots, 2&4 dots, 3&4 dots). In the previous 

section, we looked at the data only from 1 task, the task with the 3 dot sequences. In this section 

will preview all 6 tasks and we will examine how the transitions in each sequence represent 

sequential SL.   

B.2. Methods 

B.2.1. Ethics 

Same as stated above in Section A.2.1 

B.2.2. Participants 

Same as in stated above in, Section A.2.2. 

B.2.3. Materials 

Same as stated above in, Section A.2.3. 
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B.2.4. Equipment  

Same as stated above in, section A.2.4. 

B.2.5. Design 

The outcome variable in this study was the number of eye-samples on the target location. The 

predictor variables in this study were the sequences length (2 dots, 3 dots or 4 dots) and the 

type of task (mixed sequences learning task or non- mixed sequences learning task). Six 

conditions were created: 

(a) Task 1 contained 4 sequences (A, B, C, D) that consisted of 2 dots each (2 dots task), 

(b) Task 2 contained 4 sequences (A, B, C, D) that consisted of 3 dots each (3 dots task),  

(c) Task 3 contained 4 sequences (A, B, C, D) that consisted of 4 dots each (4 dots task), 

(d) Task 4 contained 4 sequences (A, B, C, D) in total, 2 of which consisted of 3 dots and 2 of 

which consisted of 2 dots (2&3 dots task),  

(e) Task 5 contained 4 sequences (A, B, C, D) in total, 2 of which consisted of 2 dots and 2 of 

which consisted of 4 dots (2&4 dots task), 

(f) Task 6 contained 4 sequences (A, B, C, D) in total, 2 of which consisted of 3 dots and 2 of 

which consisted of 4 dots (3&4 dots task). 

Task 1, 2 and 3 involve sequences with the same length only (i.e.non-mixed length). Tasks 4, 

5 and 6 are mixed length conditions, because they involve sequences of different lengths (2 of 

one length, 2 of another). Every task contained 40 occurrences (repetitions) of each sequence, 

and each sequence was not allowed to be presented twice in a row. Each task contained a 

different number of trials as shown in Table 5.B.1, because it consisted of different sequence 

lengths and mixtures of lengths. 
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Each trial (Figure 5.B.1) began with a green dot – on an array of 16 dot locations – until the 

participant looked at it and rested their gaze for 275ms. It was then followed by a blank grey 

dot period for 750ms. And then the next in order sequence item-green dot was presented on the 

screen. The number of trials for each task can be found in Table 5.B.1. The target location in 

each trial was defined as the next location in the sequence. If participants have successfully 

learned the sequences, after the visual presentation of the 1st item (dot) of the sequence, they 

were expected to look immediately to the location of the next item in the sequence. Participants 

were required to look at the green dot before moving into the next trial and a beep sound was 

displayed as feedback if the participant failed to anticipate the dot location prior to it changing 

green. The beep sound was omitted if the participant correctly anticipated the location of the 

next dot prior to it being illuminated green. Eye-samples within the radius of 2.75 times the 

size of the dot were counted as hits in the area of interest (AOI). Specific timings about the 

trials are given in the procedure section. Visual angles are same as in section A.2.6 (Chapter 

5). 
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Figure 5.B.1 This figure is an example trial in the experiment. 

 

 

Task  Total trials  Calculation 

Task 1- 2 dots  320 4 sequences * 40 repetitions each sequence * 
2 dots each sequence 

Task 2- 3 dots 480  4 sequences * 40 repetitions each sequence * 
3 dots each sequence 

Task 3- 4 dots 640  4 sequences * 40 repetitions each sequence * 
4 dots each sequence 

Task 4- 2&3 dots 400  (2 sequences * 40 repetitions each sequence * 
2 dots each sequence) + (2 sequences * 40 
repetitions each sequence * 3 dots each 
sequence) 
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Task 5- 2&4 dots 480  (2 sequences * 40 repetitions each sequence * 
2 dots each sequence) + (2 sequences * 40 
repetitions each sequence * 4 dots each 
sequence) 

Task 6- 3&4 dots 560  (2 sequences * 40 repetitions each sequence * 
3 dots each sequence) + (2 sequences * 40 
repetitions each sequence * 4 dots each 
sequence) 

Table 5.B.1 This table shows the number of trials for each experimental task in this study. 

 

All trials were counterbalanced for location set per participant. We created a total of 6 different 

potential matches of location set (location sets) – task (6 tasks) for all 36 subjects, in order to 

ensure that the learning observed is not related to a specific visual component of the visual 

allocation of the locations array but it is purely driven by the task. Additionally, the order of 

the tasks was semi-counterbalanced to avoid certain tasks reflecting order task effects. The 

sequence order and the locations allocation were randomized for each participant. No sequence 

was followed immediately by itself. Each location of the array was allocated to a single 

sequence item, to avoid overlapping of locations across sequences.  

B.2.6. Procedure  

Same as stated above in, Section A.2.6., with the only difference that in between tasks, an 

approximate 5-minute break was introduced. The total duration of the experiment was 2 hours.  

 

B.3. Analysis 

B.3.1 Data Visualization- Is there evidence of learning across the 6 tasks? 

Before conducting any statistical analysis to the data, we were interested in exploring the 

learning curves of the data with locally estimated smoothing functions. To do so, we created 
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with the use of R Studio (R Core Team, 2013) a descriptive plot that fitted a locally estimated 

smooth linear regression (method loess y ~ x) to our data to get a first impression about the 

learning rate of for each task (Figure 5.B.1). All plotting and analysis code for this chapter can 

be found in Appendix N. Learning was calculated as the averaged eye samples (of all 36 

participants) on the target location across positions for each task. Specific details about the 

rationale of data extraction/selection for each research question differs and will be given prior 

the statistical modelling of that research question. 

This indicates that learning was rated as the average of eye samples on the specific target 

location across positions.  For 2 dots task, we averaged the eye samples that were in the correct 

location for the second positioned item of the sequence (position 2), for the 3 dots task, we 

averaged the eye samples that were in the correct location for the second and third positioned 

items of the sequences (position 2 and position 3) and similarly we did for the 4 dots task. For 

the mixed length sequences task (2&4, 3&4, 2&3) we had 2 different approaches depending 

on our research question.  

In this section the term transition will be used. A transition in this data analysis represents the 

raw eye-samples during blank period (750ms) during the transitioning between the current dot 

(1) and the next dot (2). If we place this context in the actual experimental set up of sequences, 

this means that some transitions will occur within a sequence (internal, or within-sequence 

transitions) and some will occur between transitions (exogenous or between-sequence 

transitions). In the case of a 3-dot task for example, where sequence A is followed by sequence 

B, and each dot represents an ordered item of a sequence, the participants will see the dots A1, 

A2, A3, B1, B2, B3.  The transitions: A1-A2, A2-A3, B1-B2, B2-B3 are internal (within 

sequence transitions) as they all take place within the same sequence. The transition A3-B1 is 

an exogenous (between sequence) transition as it occurs between two different sequences.  

Therefore, the raw eye-samples that are recorded during the blank period on every 1st target 
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position, are representing a 1st transition to a sequence, which is labelled as exogenous. When 

we looked at learning within task, and how well participants learned, we averaged the eye 

samples that were in the correct location for each position/transition, for each task.  

As we can see in Figure 5.B.1, learning can be demonstrated across all six tasks, and across all 

target positions. However, the learning for the 1st position of each target (represents the 

transition to the 1st item of a new sequence (between-sequence)) is lower than the within- 

sequence transitions (learning o2 position 2, position 3 & position 4). That is something that 

can be predicted by the nature of the task, since eye samples on position 1 of a sequence 

(transition from the final position of the current sequence to the first position of the next 

sequence) are exogenous to the within sequence learning process and in some way random (1/3 

chances to guess correctly if learning within all sequences is successful due to only being 4 

sequences with no sequence repeated immediately after itself and 1/16 chances to guess 

correctly if learning within all sequences is unsuccessful). Therefore, it was decided to perform 

further exploration of the data and perform a comparison between the learning rate of within-

sequence transitions (position 2, position 3 and position 4) vs. between sequence transitions 

(position 1).  The new factorial variable was named type of transition and consisted of two 

levels, (a) the between-sequence transition (learning on position 1) and (b) the within-sequence 

transition (learning on position 2, position3, position 4).  In figure 5.B.2, the learning for 

between-sequence transitions and within-sequence transitions has been aggregated across all 

sequences and all tasks. 
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Figure 5.B.1 This plot shows the learning rate across the 6 different tasks (2 dots, 2&3dots, 2&4 dots, 3 dots, 
3&4 dots, 4 dots) for each target position within a sequence. The x-axis is the number of occurrence / exposure 
and the y- axis is the number of eye-samples on the target location during the 750ms blank period. Note: there is 
a maximum of 750 eye-samples per trial. Error bars represent 95% CIs. 

 

 

Figure 5.B.2 This plot shows the aggregated learning rate across all tasks for the different types of transitions 
(transition between-sequences (1st transition to a new sequence) vs. transition within sequence). On the x-axis is 
the number of occurrence / exposure and on the y- axis is the number of eye-samples on the target location during 
the 750ms blank period. Note: there is a maximum of 750 eye-samples per trial. Error bars represent 95% CIs. 
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As it is shown in Figure 5.B.2, the learning across the 2 types of transitions seem to differ. 

Therefore, further statistical analysis was designed to explore this relationship. 

B.3.2. Statistical Modelling Approach 

All data processing (scripts in Appendix C) and analysis (scripts in Appendix N) were 

conducted in R version 3.6.3 (R Core Team, 2013) with main tools the lme4 (Bates, Meachler, 

Bolker, & Walker, 2015) and tidyverse (Wickham et al., 2019) packages. After research aims 

were set, it was decided that the best statistical approach was the usage of Generalised Linear 

Mixed Effects Models- GLMMs (McCullagh & Nelder, 1989; Skrondal & Rabe-Hesketh, 

2004). GLMMs provide flexibility to explore possible interactions of our independent variables 

(task, sequence length, position in sequence, occurrence- exposure, type of task (mixed length/ 

non-mixed)), provide the ability to predict the exact relationship of each independent variable 

with the expected outcome (learning rate) but also understand sources of random variability in 

the outcome. The main fixed effect that is being examined in this section is the type of 

transition: 1st transition to new sequence (exogenous transitions) vs. in-sequence transitions 

(internal transitions). The random effects in our data derive from the variable of sequences that 

it is clustered within participants. However, the models presented below, did not include 

random slopes. This was intentionally done, since the models including random slopes couldn’t 

be computationally resolved. Random slopes are important for GLMMS, as they are used to 

model how the dependent variable (learning) changes as a function of the independent variables 

(occurrence, condition, etc.) while accounting for the variability introduced by the random 

effects (participants). These random effects capture the variations between different groups or 

clusters within our data. If the random slopes were included in the model, that would allow the 

model to estimate the individual-specific or group-specific relationships between the 

independent and dependent variables. This means that the relationship between learning 

(dependent variable) and occurrence, condition, etc. (independent variables) can vary across 
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different levels of the random effects (participants). By not including the slopes, we have lost 

this flexibility of the model to account for this variance and therefore we have a less accurate 

and realistic representation of the modelled data. The choice of removing the random slopes 

from the model, simplifies the model and allows it to be resolved. This is a common practice 

that has been recommended by other researchers such as Walker (2018). All the future models 

that will follow in this thesis, are in line with this practice and for computational reasons, they 

will not include random slopes. 

Again, in this analysis, the outcome variable is the number of samples on the location of the 

next item in the sequence at each presentation of the sequence. Where there is no learning then 

the value will be zero. The triggering in the descriptive plots of the data in the methodological 

chapter 3 and earlier on in this chapter in the data visualisation, is the fact that there are many 

zero inflated values (eye samples), so it is necessary to adjust the primary GLMMs by 

introducing a Poisson transformation (Lambert, 1992; Casals, Langohr, Carrasco, Rönnegård, 

2015) into the statistical model. This will account for the probability distribution of count data. 

Since the zero-inflated values represent the “non-learned” items and are meaningful for the 

interpretation of the data and the modelling, as they are part of the learning curve growth, no 

further manipulation was on dealing with them was applied in the statistical modelling. 

Similarly, the component of time was modelled and tested as a polynomial function, for the 

reasons explained in Chapter 4 (nature of learning growth curves). For this reason, 3 

polynomial models (Table 5.B.2) were used to examine which occurrence- exposure function 

explains better the learning rate: (a) ~poly(occurrence,1) which refers to a linear function (x1), 

(b) ~poly(occurrence,2) which refers to a quadratic function (x2), and finally (c) 

poly(occurrence,3) which refers to a cubic function (x3). The cubic function 

[poly(occurrence,3)] provides a significantly better fit (ANOVA tested, see Table 5.B.3) in all 
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tasks and therefore was used as the basic structural component for the synthesis of more 

complex models.  

 

Model type R model Curve Shape Meaning 

Baseline model glmer(on_target_pre_total ~ 1 + 

(1|subno) + (1|seq:subno), data, 

family = poisson()) 

 

Linear shape Learning isn’t related to 

exposure 

Shape model 1 glmer(on_target_pre_total ~ 

poly(occurrence,1) + (1|subno) + 

(1|seq:subno), data , family = 

poisson()) 

Linear shape Exposure can predict learning 

in a linear function. 

Shape model 2 glmer(on_target_pre_total ~ 

poly(occurrence,2) + (1|subno) + 

(1|seq:subno), data , family = 

poisson()) 

Quadratic shape Exposure can predict learning 

in a quadratic function. 

Shape model 3 glmer(on_target_pre_total ~ 

poly(occurrence,3) + (1|subno) + 

(1|seq:subno), data , family = 

poisson()) 

Cubic shape Exposure can predict learning 

in cubic function. 

Table 5.B.2 This table demonstrates the baseline statistical model and the testing curve shape models. The cubic 
shape model was significantly a better fit to the data for all tasks, and therefore was chosen to be the baseline 
model for the rest predictor factors in the next research questions. 

 

 

Model Comparison χ2 P-value 

Baseline Model vs Shape Model 1 640013 <.001 

Shape Model 1 vs Shape Model 2 80142 <.001 

Shape Model 2 vs Shape Model 3 33958 <.001 

Table 5.B.3 This table shows the ANOVA results from the statistical comparison of shape models in Table 5.B.2. 

 

The above model comparison revealed that shape model 3 was the best fit to the data and 

therefore will be used as the baseline learning model to answer the following research 
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questions. From now on learning will be estimated as cubic function of occurrence. The code 

for these models can be found in Appendix N, section N.1. 

 

B.3.3. Hypothesis modelling testing- Is there a difference in the learning depending on the 

type of the transition (1st transition (exogenous) vs. internal to the sequence transitions)? Is 

the learning of the 1st transition into the 1st item of a new sequence statistically different from 

the learning observed across transitions within the same sequence (e.g., for 3 dots task 

transitions to the 2nd and 3rd dot for each sequence)? 

To answer this research question, we created a baseline and 2 hypothesis models, and then the 

model with the best fit (ANOVA comparison) was selected as the model describing better the 

data. The full R scripts for this analysis can be found in Appendix N, section N.2. 

Model type R model Meaning 

Baseline model glmer(on_target_pre_total ~ poly(occurrence,3) + 

(1|subno) + (1|sequence:subno), data, family = 

poisson()) 

Exposure can predict learning in a 

cubic function. 

Hypothesis model 

1 
glmer(on_target_pre_total ~ poly(occurrence,3) + 

transition_type+ (1|subno) + (1|sequence:subno), 

data, family = poisson()) 

Exposure can predict learning in a 

cubic function & the type of 

transition differentiates the learning 

outcome. 

Hypothesis model 

2 
glmer(on_target_pre_total ~ poly(occurrence,3) * 

transition_type + (1|subno) + (1|sequence:subno), 

data, family = poisson()) 

Exposure can predict learning in a 

cubic function & the type of 

transition differentiates the learning 

outcome and that changes during 

exposure. 

Table 5.B.4 This table demonstrates the baseline learning model and the testing hypothesis models. 

 

 

Model Comparison  χ2 P-value 

Baseline Model vs Hypothesis Model 1 492254 <.001 
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Hypothesis Model 1 vs Hypothesis Model 2 13206 <.001 

Table 5.B.5. This table shows the ANOVA results from the statistical comparison of shape models in Table 5.B.4. 

 

The above results suggest that the learning demonstrated by the 1st transitions in these data is 

significantly different from the learning of the in-sequence transitions and that relationship is 

changing over exposure. A table with the specific residuals can be found in Appendix N, 

section N.3, Table N.1.  

B.4 Conclusions 

These findings make sense since the learning of the 1st transition to a new sequence relies on 

the learning of the in-sequence transitions in the first place. The trials that consisted of eye 

samples to the first location of a new sequence (transition from the final position of the current 

sequence to the first position of the next sequence) are exogenous to the within sequence 

learning process and in some way random (1/3 chances to guess correctly if learning within all 

sequences is successful due to only being 4 sequences with no sequence repeated immediately 

after itself and 1/16 chances to guess correctly if learning within all sequences is unsuccessful). 

Therefore, the learning observed in the 1st transition of a sequence, could be either considered 

a baseline for the task since it represents “random” learning in the task or it could be considered 

a result of the learning that takes place within the sequence in a semi-random manner (The 

more sequences an individual learns, the better chances he has to guess correctly the 1st 

transition to a new sequence). For example, in the case of the 3 dots task, that consists of 4 

sequences (A, B, C, D), an individual must have successfully segmented all 4 sequences (A, 

B, C, D) and all the within sequence transitions (A1-A2, A2-A3) to be able to reach the chance 

of 1/3 of guessing correctly for between sequence transitions. This means that the nature of the 

learning of 1st transitions changes over time within the task, as it starts as a random guess (1/16 

locations on array) and evolves into a semi-dependent guessing that relies on the in-sequence 
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learning. Therefore, since the nature of the learning of the 1st transitions is distinguished from 

the learning that takes places within the within-sequence transitions (part of SL learning), the 

1st transitions have been excluded from future data analysis in the next chapters. This decision 

is in-line with the thesis focus, that is fixating on within-sequences SL learning and relevant 

effects.
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The temporal element of SL: Positioning effects 
on Statistical Learning (SL) during a sequential 

visual task- is SL an all or none process? 
 

 

 

Chapter Summary  

In this chapter we will examine the temporal element of SL during a sequence learning task, 

by examining positioning effects within sequences. As we saw in Chapter 2, most of the studies 

do not consider the time course of learning but the end product of it. Since sequence SL has a 

temporal component, the holistic perception of learning (all or none) of the parts of the 

sequence may not be valid, because each element of the sequence occurs in a unique timepoint 

and that timepoint is related with the presentation of the next item suggesting a serial process 

of learning. Firstly, we will examine the theories about the SL process and the different 

predictions that they would suggest on the learning outcome for each item positioned within a 

sequence. For the examination of this chapter, we will be using the data from Chapter 5. Then 

in the results section, we will perform the appropriate Generalized Linear Mixed Effects 

Models (GLMMs) to answer questions such as (a) Is there a consistent pattern of positioning 

effects across tasks? And if so (b) how do the positioning effects operate on mixed length 

sequential learning tasks? The end of the chapter discusses the implications of the current 

findings on current SL models and real-life applications of the findings on educational 

paradigms. 
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A. Introduction 

As we saw in the literature review in Chapter 2, SL can be described as an implicit cognitive 

learning mechanism, where the learning occurs by the ability of extracting transitional 

probabilities and statistical patterns from the sensory input and forming them into a coherent 

unit of knowledge, which can be later used to retrieve the memory of the input or predict the 

next input (Aslin & Newport, 2012). That in other words suggests that in a sequence with items 

A, B, C, D, at the beginning of the SL process, people perceive these items as individual 

elements, however after a certain amount of exposure to the sequence, people will form a unit 

about the sequence ABCD and will be able to perform predictions about what element of the 

sequence will follow. So, if for example the have been exposed to the AB part of the unit they 

can successfully guess that the CD part will follow.  

However, it isn’t clear in the literature how this unit is being formed. There have been many 

theories developed to explain the SL process and multiple SL computational models that tried 

to clarify how SL occurs within a sequence and how it can affect the learning of each individual 

item of the sequence. In the following paragraphs we will present some of the most popular of 

these theories and models and their predictions about the forming of learning the unit ABCD. 

One of the first people that tried to understand the SL process and forming of learning units 

was Estes. The Estes models (1959), suggest an all-or-none-learning understanding of SL. 

According to these models, learning occurs in a non-continuous manner (all or none), 

accounting for continuous learning by introducing the factor of stimulus – response connection 

(S-R). The idea is that you can form or not an S-R connection during an experimental trial, 

however you need plenty of these connections in order to be able to produce a correct response 

(exposure factor). In these models a probability of a correct response on an experimental trial 

is estimated as a proportion of stimulus elements conditioned to that response on the specific 
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trial. This conceptualisation of the learning process was innovative at the time that it was 

developed and widely used and developed during that period (Suppes & Atkinson, 1960; Estes, 

Hopkins, & Grothers 1960). These models were called pattern models (Estes, 1959; Suppes & 

Atkinson, 1960), and their main characteristic was that only one pattern (stimulus element) was 

allowed to be presented on each trial. That suggested that for example, in an A-B-C-D 

sequence, the learning would take place as pairs of SR associations, for AB, BC, CD, and 

therefore the unit of ABCD wasn’t possible. This all or none learning approach was reflection 

on the S-R associations and not on higher level units (sequences of triplets etc.). 

A new approach on the understanding of SL learning came by Atkinson (1961) and the 

incremental model. The fundamental idea behind this model was that a stimulus element can 

be in one of a finite number of conditioning states on any experimental trial. That suggests that 

on a single-stimulus version of this model with different number of possible responses, the 

maximum number of states varies with the number of possible response and therefore is not a 

simple function of reinforcement or motivation. That theory could have direct implications for 

the sequential SL paradigm as suggested in our methodological paradigm (Chapter 4). In our 

methodological paradigm, stimuli have a unique position in time and within a sequence, but 

response choices are constantly 16 (16 location array) suggesting that in a sequence of ABCD 

items we can consider AB, BC and CD as S-R pairs. Since ABCD can be allocated on an array 

of 16 locations, once some of those locations is learned, and some S-R associations are made, 

that affects the learning of the future S-R associations. In other words, it suggests a hierarchical 

structure that allows more flexibility between stimulus-response connection, recommending 

that in our ABCD sequence paradigm, the learning of the AB unit can affect the learning of BC 

unit (e.g., because the location of B is now known and so the remaining 15 locations can be 

discounted) and the learning of the BC unit can affect the learning of the CD unit.  
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Because SL is by definition a theory that uses a mathematical concept and relies on the 

probabilistic nature of events, it has been applied to numerous cognitive learning models that 

tried to encode human behaviour. Some of them are the mathematical models of memory 

(Norman, 1970) and the multistore model of memory from Atkinson and Shiffrin (1968). In 

both models, stimulus sampling theory (SST) (Estes, 1950) and the probability of certain 

stimulus occurring in a certain time period and therefore the pairing of that stimuli with a given 

response, was the key element component. Again, in these models we can observe the 

hierarchical element of SL, but also a shift to the focus on the timing/serial component by 

giving a whole different perspective on the meaning of SL procedure. Sequential SL has a 

temporal component because each element of the sequence occurs in a unique timepoint and 

that timepoint is related to the presentation of the previous and next items suggesting a serial 

process of learning. That could be reflected in our ABCD unit learning, as the ability of a 

person to learn parts of the sequence (e.g., learn the BCD unit without A, or learn the CD unit 

without B). The important element here is that we can either have one unit of knowledge ABCD 

if all 3 subunits are learned successfully (AB, BC, CD) but we can also allow the knowledge 

of subunits AB and CD as 2 individual sequences if the learning of the BC unit is unsuccessful. 

In a series of experiments Fiser and Aslin (2005) investigated the ability to generalize 

knowledge that derived from a visual SL (multi-element shapes) task on new stimuli, in order 

to understand better how the encoding of information occurs during SL, by comparing the 

learning of units in triplets and pairs based on familiarity (random vs familiar). In their first 

experiment they found that base triplets were chosen more often than random triplets, but also 

that base pairs that were embedded in the triplets, didn’t significantly differ from random pairs. 

In experiment 2 they wanted to examine whether the results of experiment one, were deriving 

from participant’s inability to learn pairs. However, when participants were asked to perform 

a pair learned and pair novel task, participants preferred the known pairs over random pairs. In 
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experiment 3, they found that participants would more often select familiar pairs and familiar 

triplets over random shape combinations when scenes composed from only triplets or only 

pairs were randomly intermixed during the familiarization phase. Then they decided to use 

pairs and quadruples to examine the holistic or pair chunking encoding process of SL. The 

findings in experiment 4 suggested that both familiar quadruples and familiar pairs were 

preferred significantly over random combinations of elements. However, participants were 

unable to distinguish pairs embedded in the quadruples over random pairs, even after doubling 

the duration of familiarization. In their experiment 5, they used 3 types of trials: (a) the single 

trials that were noise elements with high-frequency that were later compared to the low-

frequency shapes, (b) the quadruple trials, that were subparts of the two sextuples and were 

compared with random quadruples (c) the key test trials that strong vs. weak pairs were 

compared with random non familiar shape pairs. In all these tasks, participants were choosing 

more frequently the familiar rather than novel or high frequency elements, while strong pairs 

were selected more frequently than weak pairs. These findings suggest a completely new 

approach to encoding during SL, as they suggest that extraction of independent parts is possible 

(with highly coherent subsets of elements, of different levels of complexity from the scene in 

parallel and without an explicit task), but there were differences in performance, with groupings 

being remembered to a different extent, depending on whether they were part of a larger or 

complex cluster of elements. Furthermore, stronger pairs are encoded significantly better than 

weak pairs even when the weak pairs are presented more often during familiarisation. This 

study, even though it presents solid evidence about the encoding of visual SL, it doesn’t account 

for the element of time and sequential SL, a context that is commonly used in language SL 

processes, since a lot of the language structures (e.g., syllables form into a word unit) come as 

temporal sequences. In all the series of the experiments the pairs, triplets and quadruplets were 

presented simultaneously, and not serially. That creates a gap in the literature about how 
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learning occurs in time when stimuli are presented serially. A great paradigm of serial SL is 

language learning and how infant learns to form their first words based on exposure of specific 

ordered syllables over time. 

Additionally, even if we can retrieve information about the encoding of information, we don’t 

have any information about the actual temporal process that led to the unit of knowledge, since 

all the tasks described, were capturing the outcome of the learning process rather than the 

process itself. That suggests that it could be possible to have an anticipation of pairs vs triplets 

during the encoding phase of a ABC unit, but this wasn’t captured due to assessing the process 

by its outcome. That methodology didn’t provide any information at all about the stages of 

building for example the triplet ABC, instead validating that ABC was learned as a unit at the 

end. It could have been the case that if B wasn’t learned then the ABC unit couldn’t be 

formulated, because the subunits (if they exist) of AB and BC that lead to the learning of ABC 

couldn’t be formulated. Similarly, the quadruplet unit of ABCD could have occurred by 

learning AB, BC, CD, or AB, CD as 2 independent pairs (non-continuous) and then binding 

them into the unit of ABCD. 

In order to cover this gap in the literature, we decided to investigate how visual statistical 

learning occurs during a serial sequence learning task, where items in the sequence occur one 

after another in a set order and record the learning of each item of the sequence individually 

from the beginning until the end of the task. The main idea behind this decision was to 

understand the role of each item in sequence and how does that affect the learning of units 

during the encoding phase. 

The focus now of this chapter will be on whether the positioning of an item in a sequence can 

affect the learning outcome for that item, and if there are other factors such as sequence length, 

that can affect this positioning effect and why. Firstly, we are interested in investigating 
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whether there is a consistent learning pattern between the learned items of a sequence. That 

translates in the paradigm of the ABCD sequence, that we are interested to examine if there is 

a consistent performance learning pattern between AB, BC, CD. If that’s the case, we can 

directly suggest that sequential SL is not an all or none learning process but has a continuity in 

time and that continuity could potentially reflect a hierarchical structure of unit learning in 

sequential SL. 

Finally, once we identify if there are any consistent learning patterns, we will have to consider 

which factors drive those performance patterns, and basically if the consistency of the learning 

patterns relies on factors such as sequence length or mixture type of sequences (mixed 

sequences or non-mixed sequences tasks) in order to be able to extract some meaningful 

information about which factors affect the learning of unit ABCD in the current set up. 

In order to answer the above questions, we used the experimental paradigm that we suggested 

in our methodological paradigm in Chapter 5 with sequences of 2 dots, 3 dots and 4 dots in 

mixed length and non-mixed length tasks. More details about the method and the design can 

be found in the section below. 

B. Methods 

Same as reported in Chapter 5, section B.2. 

C. Results 

C.1. Statistical Modelling Approach 

All data processing (scripts in Appendix C) and analysis (scripts in Appendix H) was conducted 

in R version 3.6.3 (R Core Team, 2013) with main tools the lme4 (Bates, Meachler, Bolker, & 

Walker, 2015) and tidyverse (Wickham et al., 2019) packages. After research aims were set, it 
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was decided that the best statistical approach was the usage of Generalised Linear Mixed 

Effects Models- GLMMs (McCullagh & Nelder, 1989; Skrondal & Rabe-Hesketh, 2004). 

GLMMs provide flexibility to explore possible interactions of our independent variables (task, 

sequence length, position in sequence, occurrence- exposure, type of task (mixed length/ non-

mixed)), provide the ability to predict the exact relationship of each independent variable with 

the expected outcome (learning rate) but also understand sources of random variability in the 

outcome. The main fixed effect that is being examined in this chapter is the item position. The 

random effects in our data derive from the variable of sequences that it is clustered within 

participants.  

Again, in this analysis, the outcome variable is the number of samples on the location of the 

next item in the sequence at each presentation of the sequence. Where there is no learning then 

the value will be zero. The triggering in the descriptive plots of the data in Chapter 4 with the 

GP3 data and in Chapter 5 with Eye-Link data, is the fact that there are many zero inflated 

values (eye samples), so it is necessary to adjust the primary GLMMs by introducing a Poisson 

transformation (Lambert, 1992; Casals, Langohr, Carrasco, Rönnegård, 2015) into the 

statistical model. This will account for the probability distribution of count data. Since the zero-

inflated values represent the “non-learned” items and are meaningful for the interpretation of 

the data and the modelling, as they are part of the learning curve growth, no further 

manipulation was on dealing with them was applied in the statistical modelling. Similarly, the 

component of time was modelled and tested as a polynomial function, for the reasons explained 

in Chapter 4 (nature of learning growth curves). For this reason, 3 polynomial models (Table 

6.1) were used to examine which occurrence- exposure function explains better the learning 

rate: (a) ~poly(occurrence,1) which refers to a linear function (x1), (b) ~poly(occurrence,2) 

which refers to a quadratic function (x2), and finally (c) poly(occurrence,3) which refers to a 

cubic function (x3). The cubic function [poly(occurrence,3)] provides a significantly better fit 
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(ANOVA tested, see Table 6.1) in all tasks and therefore was used as the basic structural 

component for the synthesis of more complex models.  

 

Model type R model Curve Shape Meaning 

Baseline 

model 

glmer(on_target_pre_total ~ 

1 + (1|subno) + (1|seq:subno), 

data, family = poisson()) 

 

Linear shape Learning isn’t related to 

exposure 

Shape model 

1 

glmer(on_target_pre_total ~ 

poly(occurrence,1) + 

(1|subno) + (1|seq:subno), 

data , family = poisson()) 

Linear shape Exposure can predict 

learning in a linear 

function. 

Shape model 

2 

glmer(on_target_pre_total ~ 

poly(occurrence,2) + 

(1|subno) + (1|seq:subno), 

data , family = poisson()) 

Quadratic shape Exposure can predict 

learning in a quadratic 

function. 

Shape model 

3 

glmer(on_target_pre_total ~ 

poly(occurrence,3) + 

(1|subno) + (1|seq:subno), 

data , family = poisson()) 

Cubic shape Exposure can predict 

learning in cubic function. 

Table 6.1 This table demonstrates the baseline statistical model and the testing curve shape models. The cubic 
shape model was significantly a better fit to the data for all tasks, and therefore was chosen to be the baseline 
model for the rest predictor factors in the next research questions. 

 

 

Model Comparison χ2 P-value 

Baseline Model vs Shape Model 1 564589 <.001 

Shape Model 1 vs Shape Model 2 73576 <.001 

Shape Model 2 vs Shape Model 3 23359 <.001 

Table 6.2 This table shows the ANOVA results from the statistical comparison of shape models in Table 6.1. 

 

The above model comparison revealed that shape model 3 was the best fit to the data and 

therefore will be used as the baseline learning model to answer the following research 

questions. From now on learning will be estimated as cubic function of occurrence. 
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C.2. Hypothesis modelling testing- Is there a hierarchical structure in the SL process in our 

data? Does position of an item, affect its learning outcome? 

To answer this research question, we created a baseline and 4 hypothesis models, and then the 

model with the best fit (ANOVA comparison) was selected as the model describing better the 

data. 

Model type R model Meaning 

Baseline model glmer(on_target_pre_total ~ poly(occurrence,3) + 

(1|subno) + (1|sequence:subno), data, family = 

poisson()) 

Exposure can predict learning in a 

cubic function. 

Hypothesis model 

1 
glmer(on_target_pre_total ~ poly(occurrence,3) + 

positions + (1|subno) + (1|sequence:subno), data, 

family = poisson()) 

Exposure can predict learning in a 

cubic function & the item position 

differentiates the learning outcome. 

Hypothesis model 

2 
glmer(on_target_pre_total ~ poly(occurrence,3) * 

positions + (1|subno) + (1|sequence:subno), data, 

family = poisson()) 

Exposure can predict learning in a 

cubic function & the item position 

differentiates the learning outcome 

and that changes during exposure. 

Hypothesis model 

3 

glmer(on_target_pre_total ~ poly(occurrence,3) * 

positions + type + (1|subno) + (1|sequence:subno), 

data, family = poisson()) 

Exposure can predict learning in a 

cubic function, the item position 

differentiates the learning outcome 

and that changes during exposure, 

and the type of task (mixed length or 

non-mixed length) can affect the 

learning outcome. 

Hypothesis model 

4 

glmer(on_target_pre_total ~ poly(occurrence,3) * 

positions * type + (1|subno) + (1|sequence:subno), 

data, family = poisson()) 

Exposure can predict learning in a 

cubic function, the item position 

differentiates the learning outcome 

and that changes during exposure, 

and the type of task (mixed length or 

non-mixed length) interacts with the 

item position over time, affecting the 

learning outcome. 

Table 6.3 This table demonstrates the baseline learning model and the testing hypothesis models. 
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Model Comparison  χ2 P-value 

Baseline Model vs Hypothesis Model 1 115186 <.001 

Hypothesis Model 1 vs Hypothesis Model 2 6237.7 <.001 

Hypothesis Model 2 vs Hypothesis Model 3 1.8651 0.172 

Hypothesis Model 2 vs Hypothesis Model 4 12100 <.001 

Table 6.4. This table shows the ANOVA results from the statistical comparison of shape models in Table 6.3. 

 

The above results suggest that there are position effects in our data, that are describing the 

learning process and they change over exposure. Additionally, they suggest that the learning 

rate is different across the type of tasks and that can be reflected on positions. For example, the 

scores for the 4th position are greater in the 2&4 dots task than they are in the 3&4 dots task 

and similarly the scores for the 4th position are greater in the 3&4 dots task than they are in the 

4 dots task. A table with the specific residuals can be found in Appendix E, Table E.1. However, 

within each task, there is a persistent pattern with the last item of the sequences being learned 

better than the previous and so on.   

From the results of this analysis, we can see a hierarchical structure in the learning process with 

the learning performance increasing as the position of the item increases in the sequence. In 

other words, learning rate of the 1st association < learning rate of the 2nd association< learning 

rate of the nth association (see Figure 6.1, Figure 6.2). There is a clear positioning pattern of 

the learning process, that can be used as evidence to reject the all or none hypothesis of learning 

and partially support evidence for a hierarchical structure in sequential SL. That effect is 

persistent across tasks and sequence lengths indicating that it is not associated with the 

properties of the sequence but rather the mechanism itself. 
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Figure 6.1. This figure shows the fitted values of the hypothesis model 2, for the 6 tasks (2 dots,2&3 dots, 2&4 
dots, 3dots, 3&4 dots, 4 dots). On the x-axis is the number of repetitions of item or in other words exposure to 
that specific sequence (how many times that stimulus has been shown) and on the y-axis is the mean number of 
eye samples on the target during the blank period (750ms). The colour of the line represents the learning rate for 
each individual item position within the task. Error bars represent 95% CIs. 
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Figure 6.2. This figure shows the fitted values of the hypothesis model 2, for the 6 tasks (2 dots,2&3 dots, 2&4 
dots, 3dots, 3&4 dots, 4 dots) and each individual sequence length within task (2 dots, 3 dots, 4dots). On the x-
axis is the number of repetitions of item or in other words exposure to that specific sequence (how many times 
that stimulus has been shown) and on the y-axis is the mean number of eye samples on the target  during the blank 
period (750ms). The colour of the line represents the learning rate for each individual item position within the 
task. Error bars represent 95% CIs. 
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D. Discussion 

The positioning effects that were found in this chapter reject the “all or none learning” nature 

of SL as they suggest clear event related relationship between the associations of the sequence 

formed. There is a consistent pattern in the positioning effect, with the first association of the 

sequence being learned more slowly and the final item more quickly. Since that effect is 

consistent and persistent across sequence lengths and types of tasks (mixed length/ same 

length), it suggests that it is not related to the properties of the stimuli or the sequence itself, 

but rather on the actual SL mechanism. Therefore, it suggests a hierarchical nature of SL that 

operates hierarchically on the temporal domain, rather than the actual structural sequential 

domain, supporting an encoding process that aligns with the principles of the models suggested 

by Atkinson and Shiffrin (1968) and Norman (1970). 

The finding about the speed of learning for each of the different positions can reveal how the 

encoding of information occurs. For example, in the sequence paradigm of A, B, C, D items, 

if learning CD occurs before the BC, and the BC before the AB, then we are dealing with a 

different way of chunking information. Furthermore, if instead of pairs we observe triplets in 

the sequences of 3 dots but pairs in the sequences of 4 dots, that implies that there are 2 

distinctive mechanisms for chunking information. Additionally, we could have same pair and 

triplet effects only presented in mixed length tasks suggesting that the SL mechanism is being 

affected by sequential properties of the sequences that are mixed with the sequence A, B, C, D 

(e.g E, F, G-length of 3 items sequence). Finally, it could be the case, that there isn’t a case of 

faster learned but better learned, that could be explained as an effect of procedural facilitation 

within a sequence.  

At this stage, we need to acknowledge that the numeric values that demonstrate learning across 

all tasks are low (100-200 eye-samples on target) in comparison to the maximum possible 
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recording value of 750 eye samples on target. However, that doesn’t reflect poor learning in 

total, but individual differences in learning, since these results are aggregated data of both 

participants that learned and didn’t learn the task. Individual differences are expected to be part 

of the observed mechanism and therefore exclusion of data from non- learners was not an 

option. Additionally, it is important to understand that this sequential SL process that we 

recorded occurred with specific time limitations per trial, that can be limiting for the time 

course of eye-movements. Even though we allowed a 750ms window for learning to occur 

during the blank window period of guessing, if we include the eye-movements planning and 

the anticipation of multiple target locations (16 in total) (Wu & Kowler, 2013), that reduces 

the actual reaction time substantially (e.g., if eye movement planning and anticipation of 

location take 500ms, only 250 ms is left, equating to 250 eye-samples on target per total, for 

learning that develops during a trial). However, once the sequence is learned, the planning can 

occur immediately once the 1st item of a sequence occurs, and the gaze can be directed 

immediately on the position of the next items in the sequence as a reflection of a learned 

association of S-R with a maximum of 750 eye samples on target location. 

A direct implication of those findings could be applied in educational paradigms. Many 

researchers use the paradigm of SL to improve vocabulary growth (Stokes, Kern, Dos Santos, 

2011; Stokes, 2010) in infants and reading ability in children (Arciuli, 2018; Elleman, Steacy, 

Compton, 2018). By selecting to position specific learning targets in SL task-games we could 

improve the results of the current applications used and facilitate both teachers and the children 

and their families. Furthermore, the findings can be applied in special education intervention 

programs or in improving current teaching methods of reading in schools for both typical 

learners and those ones with learning disabilities (Arcuili, 2018; Gabay, Thiessen & Holta, 

2015). Currently it is known that developmental dyslexia is associated with impaired statistical 

learning ability (Gabay, Thiessen, Holta, 2015) but also dysgrapgia (McCloskey & Rapp, 2017) 
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However, there is evidence (Arcuili, 2018; Protopapas et al., 2017) that the SL principles can 

be used as a supplementary method to the explicit (rule-based) method with positive results on 

children’s reading ability and orthographic learning.  

The main limitation of the current design is the fact that it focuses on the encoding of the 

information and not the generalisation part. So it might be the case that while we are building 

up the unit of knowledge during the SL task we form the units in an X way, but when we 

retrieve that information in order to be able to generalise it for the creation of new units we use 

a different mechanism Y. Future research, could be easily adapted to the current paradigm to 

examine whether the mechanism X as identified in the encoding phase is the same that applies 

for the generalisation phase too. If these mechanisms differ, that suggests that SL operates with 

hierarchical structures within the mechanism. 

To conclude, the findings above suggest a temporal hierarchical encoding process of sequential 

SL on the visual domain. These hierarchical effects are persistent across sequence properties 

and tasks properties suggesting that they reflect actual part of the SL mechanism rather than 

procedural or perceptual effects. 
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Effects of sequence length and sequence 
mixture type on SL rate on the visual domain. 

 

 

 
Chapter Summary 

In this chapter we are demonstrating the application of the methodology presented in Chapter 

5 to investigate the effect of sequence length and the effect of same-length sequence sets vs. 

mixed-length sequence sets on the rate of sequence learning (SL). Sequences of 2, 3 and 4 

items were used to test whether shorter sequences facilitate greater learning than longer 

sequences. Additionally, we predicted that if the length of the sequences is mixed in a task, the 

tasks that contain shorter length sequences will be learned better than for longer length 

sequences, since the amount of information that will have to be processed will be smaller. 

Finally, a difference in performance of sequences with specific lengths (2, 3 or 4) will be 

observed between mixed length tasks and same length tasks, hypothesising that longer 

sequences are better learned when they are mixed with shorter sequences rather than when they 

are presented in a same length task, again due to the amount of information contained in each 

task. As stated in the literature review in Chapter 2, sequence length is an issue broadly 

investigated in language learning in particular but also visual SL cognitive psychology in 

general.  The application of the new experimental paradigm suggested in Chapter 5, aims to 

clarify how sequential SL occurs in the visual domain, and how the length of the sequences 

impacts on the sequential SL rate on mixed length and non-mixed length tasks.  
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A. Introduction 

Sequence length has been used by various researchers in the field as one of the factors that 

affect the SL process, in processes such as language learning, machine learning and deep 

learning, and neuronal memory processes. Part of the literature suggests that SL can be affected 

by sequence length and others suggest that SL has unlimited capacity and therefore is not 

affected by sequence length. Furthermore, naturalistic language involves mixed lengths of 

words, but infants have shown inability to segment mixed lengths words by the age of 8 

months-old. Therefore, we decided to test the methodology developed in Chapter 5, to examine 

how sequence length affects the SL rate on a sequential SL task in the visual domain. 

Additionally, we decided to further investigate whether the learning rate of mixed-length 

sequences differs from the learning rate of non-mixed length sequences and the potential 

sequence length effects of those differences. 

Heimbauer, Conway, Christiansen, Beran and Owren (2018) investigated the impact of 

sequence length and grammar complexity on artificial grammar learning (AGL) on nonhuman 

primates (i.e. macaques). It is well established that humans and nonhuman primates use implicit 

sequential learning and pattern extraction abilities to categorise and organise environmental 

stimuli (Conway, Christiansen & Morten, 2001). Heimbauer et al. (2018) showed that over the 

training period, macaques responded faster to sequences that were generated from the artificial 

grammar in comparison to random sequences, validating their ability to perform a sequential 

SL task. Additionally, they were able to generalise the learned pattern to novel sequences of 

the same grammar. Furthermore, macaques were found to learn and generalise the grammar 

for sequences with up to eight items. 

Milne, Petkov and Wilson (2018) further investigated sequential learning in humans and 

monkeys in the visual and auditory domain, using an AGL paradigm. Both groups 
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demonstrated sensitivity to item order in both modalities. Interestingly, both species 

demonstrated similar response patterns to the visual and auditory sequences, suggesting that 

SL is an evolutionary mechanism that passed on to human species from primates through 

evolution, but also that it operates comparably across different modalities. However, this 

sequence length is a feature of explicit sequential learning, and it is already known that longer 

sequences are harder to be remembered than shorter ones (Ebbinghaus, 1964/1885).   

Jacoby, Woloshyn, and Kelly (1989) suggested that explicit memory has limited capacity while 

implicit memory has no such limitations. Therefore Howard (Howard & Howard, 1992; 

Howard, Mutter, & Howard, 1992) investigated whether sequence length limits performance 

in implicit tasks. In her studies she reported that short sequences are learned better than longer 

sequences in implicit learning tasks. Pascual-Leone et al. (1993) agreed with Howard that 

longer sequences are more difficult to learn and therefore decrease the probability of procedural 

learning. He suggested a comparison between an 8-items sequence and a 12-items sequence 

paradigm, by saying “In the case of the 8-item sequence, the subject has to retain in the memory 

buffer at least the previous 8 asterisk positions in order to identify the pattern. In the case of 

the 12-item sequence the minimal required storage is 12 items, which in some individuals may 

exceed their declarative short-term memory. An essential demand on the memory buffer is the 

appropriate temporal indexing of the occurrence of asterisk positions so that the sequence can 

be stored and retrieved as a sequence” (Pascual-Leone et al., 1993, p. 600). Pascual-Leone et 

al. (1993) concludes that longer sequences are harder to learn and introduced the idea of 

temporal indexing of the occurrence of the sequence items. 

Stadler and Neely (1997), inspired by the research of Pascual-Leone et al. (1993) and Howard 

et al. (1992) investigated sequence length effects on implicit serial learning tasks. They 

proposed that the structure of the sequence might be more important than the sequence length 

for the implicit learning process. Sequential structure can be coded and described in many ways 
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(e.g., Attneave, 1959; Vitz & Todd, 1969). Stadler and Neely (1997) used redundancy as their 

information metric and sequence structure component: in particular, they used a paradigm from 

the sequence learning paradigm of Nissen and Bullemer (1987). “In Nissen and Bullemer's 

(1987) sequence of DBCACBDCBA, the level can be one trial (D, B, C, etc.), pairs of trials 

(DB, BC, CA, etc.), triplets (DBC, BCA, CAC, etc.), and so on. If every possible run of a given 

level occurs in the sequence with equal frequency, redundancy is zero” (Stadler and Neely, 

1997, p.15). They attribute the learning outcome to an interaction of learning mechanism and 

short-term memory, rather than reducing length effects entirely to a consequence of short-term 

memory capacity limitations.  

Spiegel and McLaren (2006) performed a series of studies in which they compared the human 

performance in Serial Reaction Time (SRT) tasks with the predictions that the simple recurrent 

network (SRN) model of associative sequence learning (by Elman ,1990) produced. The 

researchers observed that the predictions of the SRN were similar to the human performance, 

and therefore suggesting that sequence learning occurs in an associative manner and not in a 

rule-based manner. Additionally, they noticed that previous models of associative sequence 

learning such as simple associative chaining models failed to match the performance of the 

SRN models. This could be due to the fact that simple associative chain models do not rely on 

the extraction of statistical regularities of the sequences. Therefore, they concluded that human 

sequence learning occurs in an associative manner and relies on the extraction of statistical 

regularities from the sequences.  

In language learning, sequential learning has been used in the format of syllables to study word 

learning, usually with sequences of 2, 3 or 4 items (syllables) to resemble to language as close 

as possible. Saffran, Aslin and Newport (1996) investigated SL and language acquisition 

mechanisms on 8 months old infants by using transitional probabilities (TPs). Word boundaries 

were determined after exposure in the stream of sounds on the basis of transitional probabilities 
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that differed internally and externally of a word. They found successful segmentation for 

artificial words with 3 syllables and artificial words with 3 syllables after mere exposure to a 

continuous stream of sounds. The conclusion is that word segmentation, a basic process 

involved in language acquisition, is successfully accomplished by 8 months old infants. Word 

segmentation is achieved by using statistical relationships between neighbouring sounds.  

Witteloostuijn, Lammertink, Boersma, Wijnen and Rispens (2019) investigated sequential SL 

in the visual domain, with sequences of 3 items.  They used a 2AFC and 3 AFC paradigm to 

examine SL performance on the visual domain, on early-school-aged children. Their aim was 

to introduce the concept of RT to explain part of the variability in individual differences in SL. 

The visual statistical learning (VSL) task contained triplets. During the familiarization phase 

participants were presented with an alien character on the screen and had to give a button 

response to proceed to the next alien. During the testing phase, participants, had either to choose 

the triplet that they have seen before, or complete a missing stimulus of the triplet. Half of the 

participants performed a cover task, while the other half did not. The researchers successfully 

measured the online sensitivity to the statistical structure by comparing the RTs for the 

predictable vs the unpredictable aliens, and the results suggested that RTs were significantly 

shorter for the predictable than the unpredictable elements. That suggests that early school aged 

children are sensitive to TPs during exposure and that RTs are a good measure to assess that 

observation. 

Frank, Goldwater, Griffiths and Tenenbaum (2010), decided to explore word segmentation and 

sentence length via a sequential SL task. More specifically they examined SL of word 

segmentation while controlling for sentence length, exposure and number of word types. Even 

though the behavioural data showed a clear effect of those components on SL performance, 

suggesting that longer sequence length, less exposure (less frequent stimuli) and more language 
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(greater diversity) make language learning harder, their computational proposals failed to 

replicate those findings. 

Thiessen (2017) approached the memory limitations suggested by previous researchers in a 

different way. His computational framework suggests that statistical learning arises from a set 

of processes, that are present in the mechanism of memory and consist of activation, 

interference, integration of information and forgetting (Perruchet & Vinter, 1998; Thiessen et 

al, 2013).  According to this approach statistical learning does not involve explicit computation 

of statistics and TPs but is the result of fundamental memory processes. 

Johnson and Tyler (2010) used TPs to examine how infants perform in mixed length streams 

of sequences. They highlight that the paradigms of artificial languages being used in past 

methodologies (Saffran et al., 1996; Heimbauer et al., 2018) to examine language learning have 

been using same length of sequences and therefore they significantly differ from naturalistic 

languages. They compared the SL ability between two age group of infants (5,5 months-old vs 

8months old) of segmenting word boundaries, by exposing the two groups in streams of 

artificial language that contained four same length words (all CVCV) or four mixed length 

words (two CVCV, two CVCVCV), with equal TPs across word types. Their findings 

suggested that both infant groups performed equally well in the same length words task, and 

successfully identified the word boundaries, however both groups failed to demonstrate 

learning for the mixed length words. 

It is well established that infants use a sequential SL mechanism to learn language, and they 

are particularly good at it, while adults seem to have memory capacity limits when dealing with 

longer sequences. As temporal indexing seems to be crucial for the sequential SL process as 

shown in Chapter 5, using mixed length of sequences in the same task, could affect the learning 

rate of mixed length sequences since the mechanism of unit learning (pairs vs triplets) might 
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facilitate a task of  2& 4 dots (using pairs for both) or impede a task of 3&4 or 2&3 dots task 

(if it uses pairs for the sequences of 2 and 4  dots and triplets for the sequences of 3 dots). 

The aim of the current chapter is to use the experimental data from Chapter 5, in order to 

examine sequential SL effects on adults the visual domain, by comparing their performance in 

sequences of 2, 3 and 4 items, in mixed and non-mixed sequence length tasks. We predicted 

that shorter sequences will be learned better than longer ones, and that longer sequences will 

be learned better when they are presented with shorter ones in mixed sequence length task, 

rather than when they are presented in same length tasks.  

 

B. Methods 

Same as stated in Chapter 5 (section B) & Chapter 6. 

C. Results 

C.1. Data Visualisation 

Before conducting any statistical analysis to the data, we were interested in to exploring the 

learning curves of the data with locally estimated smoothing functions. To do so, we created 

with the usage of R Studio (R Core Team, 2013) a descriptive plot that fitted a locally estimated 

smooth linear regression (method loess y ~ x) to our data to get a first impression about the 

learning rate for each task (Figure 7.1). All plotting and analysis code for this chapter can be 

found in Appendix I. Trials that consisted of eye samples to the first item of a new  sequence 

(transition from the final position of the current sequence to the first position of the next 

sequence) were removed within task, as they were considered exogenous  to the sequence 

learning process and in some way random (1/3 chances to guess correctly if learning within  all 

sequences is successful due to limited locations (16) and 1/16 chances to guess correctly if 
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learning within all sequences is unsuccessful).  Learning was calculated as the averaged eye 

samples (of all 36 participants) on the target location across positions for each task. Specific 

details about the rationale of data extraction/selection for each research question differs and 

will be given prior the statistical modelling of that research question. 

This indicates that learning was rated as the average of eye samples on the specific target 

location across positions.  For 2 dots task, we averaged the eye samples that were in the correct 

location for the second positioned item of the sequence (position 2), for the 3 dots task, we 

averaged the eye samples that were in the correct location for the second and third positioned 

items of the sequences (position 2 and position 3) and similarly we did for the 4 dots task. For 

the mixed length sequences task (2&4, 3&4, 2&3) we had 2 different approaches depending 

on our research question.  

When we looked at learning within task, and how well participants learned a mixed length task, 

we averaged the eye samples that were in the correct location for each position, for each 

sequence length type. For example, in the 2&3 dots we averaged (a) the eye samples in the 

target location for the second positioned item of the sequence for the sequences with 2 dots 

sequences length and (b) the eye samples in the target location for the second and third 

positioned item of the sequences for the sequences with 3 dots sequence length.  For the same 

research question performed our analysis similarly for the rest of the mixed length tasks (2&4, 

3&4). 

However, when we were interested in how positioning of the item in a mixed length sequence 

is affecting the learning, we only kept the common positions across the different sequence 

lengths tasks. 
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Figure 7.1 Demonstrates the learning rate for all the participants, across the 6 different tasks (2 dots, 3 dots, 4 
dots, 2&3 dots, 2&4 dots, 3&4 dots), for each item position within the sequence. On the x-axis is the number of 
repetitions of an item or in other words exposure to that specific sequence (how many times that stimulus has been 
shown) and on the y- axis is the mean number of eye samples on the target location during the blank period 
(750ms). Since our eye-tracker is recording at 1000Hz, the maximum value that the y-axis can take is 750 samples. 
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The different line colours represent the position of the item within the sequence; for 2 dots, only position 2 can be 
shown (i.e., learning the next dot in a 2-dot sequence) whereas for four dots, three can be shown (learning the 
positions of the second, third, and fourth dots). Error bars represent 95% CIs. 

 

C.2. Statistical Modelling 

All data analysis was conducted in the statistical programming environment R (R Core Team, 

2013). Data were modelled using Generalised Linear Mixed Effects Models (GLMMs) 

(McCullagh & Nelder, 1989; Skrondal & Rabe-Hesketh, 2004) using the R-package lme4 

Bates, Meachler, Bolker, & Walker, 2015) and R-package tidyverse (Wickham et al., 2019). 

The code for the analysis of this chapter can be found in Appendix I. Predictors were included 

for sequence length, position in sequence, occurrence- exposure, type of sequence (mixed 

length, non-mixed) and interactions of occurrence, sequence length and type of sequence, 

provide the ability to predict the relationship of each independent variable with the expected 

outcome (learning rate) but also understand sources of random variability in the outcome. The 

fixed effects that are being examined in this chapter is the sequence length (how many dots had 

the sequence) and the type of task (mixed length task or same length task). The random effects 

in our data derive from the variable of sequences (4 sequences each task, A, B, C, D) that it is 

clustered within participants (36 in total).  

A baseline GLMM (Table 7.1) was created to define the best baseline model for the data, before 

accounting for the variability derived from sequence length effects. The main component that 

affected the structure of the GLMMs was the structure of function of occurrence- exposure, 

suggesting that as exposure increases, the eye-samples increase and therefore learning occurs.    

Exposure occurs in time and many studies have shown that learning during time is not linear 

but rather quadratic or polynomial.  The psychological factors that can affect the non-linear 

nature of learning during time, can be tiredness or general natural learning limitations (Miller, 

1956; Mastorakis, 2018; Endress & Szabó, 2017).  The general natural learning limitations 
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suggest that once the individual reaches his individual learning threshold, they can’t exceed the 

learning rate and the curve begins to flatten at its pick point. That threshold varies across 

individuals and is usually being used as a psychometric tool for cognitive scientists (Gold, Law, 

Connolly & Bennur, 2010). Since the SL process in the current design requires processes such 

as retrieval of the location and saccade planning, a maximum of 750 ms during the learning 

phase is hard to occur, unless learning has been automated. As Ghahghaei and Preeti Verghese 

(2015) suggest, efficient saccade planning requires time, and in this paradigm the time is being 

deducted from the actual guessing time (the 750 ms blank period). The data contained a large 

number of zero eye samples on the target, but zero values represented no learning in the tasks, 

therefore were considered as a meaningful part of the learning growth curves and were not 

removed or manipulated by some function. In total 4 different models were created to select 

the shape of the learning curve. A cubic function of occurrence provided the best fit (Table 7.2) 

to our modelling data and therefore was chosen as the baseline model for the rest of the analysis 

in this chapter. The models used in the comparison of fits can be found in Table 7.1 and were 

representing 3 different hypotheses for the curve shape (linear, quadratic, cubic). 

 

Model type R model Curve Shape 

Baseline model glmer(on_target_pre_total ~ 1 + (1|subno) + (1|seq:subno), data, family 

= poisson()) 

 

Linear shape 

Shape model 1 glmer(on_target_pre_total ~ poly(occurrence,1) + (1|subno) + 

(1|seq:subno), data , family = poisson()) 

Linear shape 

Shape model 2 glmer(on_target_pre_total ~ poly(occurrence,2) + (1|subno) + 

(1|seq:subno), data , family = poisson()) 

Quadratic shape 

Shape model 3 glmer(on_target_pre_total ~ poly(occurrence,3) + (1|subno) + 

(1|seq:subno), data , family = poisson()) 

Cubic shape 

Table 7.1 This table demonstrates the baseline statistical model and the testing curve shape models. The cubic 
shape model was a significantly better fit to the data for all tasks, and therefore was chosen to be the baseline 
model for the remaining research questions. 
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Model Comparison χ2 P-value 

Baseline Model vs Shape Model 1 564589 <.001 

Shape Model 1 vs Shape Model 2 73576 <.001 

Shape Model 2 vs Shape Model 3 23359 <.001 

Table 7.2 This table shows the ANOVA results from the statistical comparison of shape models in Table 7.1. 

 

C.3 Is sequence length affecting the learning rate on same length tasks? Are shorter 

sequences learned faster and better than longer ones? 

In order to answer this question, we extracted all the “meaningful” eye-samples on target 

positions for all the same length tasks (2 dots, 3dots, 4dots) and run the models as shown in 

Table 7.3.  The “meaningful” eye-samples on target positions, are the eye-samples on the target 

positions that the participants were expected to learn the locations for. Therefore, all eye-

samples on the first item of a sequence, in every task were excluded, as they were not indicators 

of learning but random guessing (since any sequence is followed by one of three other 

sequences), while the within sequence positions were classified as learning data. A cubic 

polynomial function was fitted.  

The baseline model predicted that learning was a cubic function of occurrence, suggesting that 

learning relies merely on exposure and no other factor. Hypothesis model 1 adds on the baseline 

model, with sequence length as a predictor of learning in same length sequences, on an intercept 

level. Hypothesis model 2 adds on baseline model the sequence length as an interaction 

predictor variable (on a slope level). The model fit comparison can be found in Table 7.4. 

Hypothesis model 2 was proven to be a better fit to the data. 
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Model type R model Interpretation 

Baseline model glmer(on_target_pre_total ~ poly(occurrence,3)  

+ (1|subno) + (1|sequence:subno), data, family = 

poisson()) 

Learning can be explained as a 

cubic function of occurrence 

(exposure) 

Hypothesis model 

1 
glmer(on_target_pre_total ~ poly(occurrence,3)+ 

sequence_length  + (1|subno) + 

(1|sequence:subno), data, family = poisson()) 

Learning can be explained as a 

cubic function of occurrence and 

sequence length (on an intercept 

level) 

Hypothesis model 

2 
glmer(on_target_pre_total ~ poly(occurrence,3)* 

sequence_length  + (1|subno) + 

(1|sequence:subno), data, family = poisson()) 

Learning can be explained as cubic 

function of occurrence and 

interaction sequence length (on a 

slope level) 

Table 7.3. This table shows the models that were used in R to examine whether sequence length has an impact on 
learning rate in same length sequence tasks. An ANOVA was performed between the hypothesis and baseline 
model, that demonstrated that the hypothesis model is explaining the data significantly better than the baseline 
model. 

 

Model Comparison χ2 P-value 

Baseline Model vs Hypothesis 
Model 1 

1.7854 0.409 

Baseline Model vs Hypothesis 
Model 2 

8591.5 <.001 

Table 7.4. Shows model fits comparison of models stated in Table 7.3 

 

Figure 7.2 and Figure 7.3 show better learning for the 2 dots compared to the 3 dots task and 

the 4 dots task, confirming the hypothesis that shorter sequences are learned both faster and 

more robustly compared to the slope of curves in different tasks in Figure 7.2). 

The odds ratios of Hypothesis model 2 can be found in Appendix E, Table E.2.The model 

suggests that 2 dots sequences are learned significantly better than 3 dots and 4 dots sequences, 
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however 3 dots sequences and 4 dots sequence perform at similar scores their curves differ in 

shape. 

 
Figure 7.2. This figure shows the fitted values of the hypothesis model 2 (line) for the 3 same length tasks (2 dots, 
3 dots, 4 dots). On the x-axis is the number of repetitions of item or in other words exposure to that specific 
sequence (how many times that stimulus has been shown) and on the y- axis is the mean number of eye samples 
on the target –location area during the blank period of (750ms). Error bars represent 95% CIs.  
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Figure 7.3. This figure shows the fitted values of the hypothesis model(line) for the 3 same length tasks (2 dots, 3 
dots, 4 dots) on the same graph. On the x-axis is the number of repetitions of item or in other words exposure to 
that specific sequence (how many times that stimulus has been shown) and on the y- axis is the mean number of 
eye samples on the target during the blank period (750ms). Error bars represent 95% CIs. 

 

C.4. Is sequential learning achievable in mixed length tasks? If so, how does 
sequence length affect performance in mixed length tasks? 

In order to answer this question, we extracted all the “meaningful” eye-samples on target 

positions for all the mixed length tasks (2&3 dots, 2&4dots, 3&4dots) and run the models as 

shown in Table 7.5.  The “meaningful” eye-samples on target positions, are the eye-samples 

on the target positions that the participants were expected to learn the locations for. Therefore, 

all eye-samples on the first item of a sequence, in every task were excluded, as they were not 



Chapter 7 
 

156 
 

indicators of learning but pseudo-random guessing, while the within sequence positions were 

classified as learning data. A cubic polynomial function was fitted. The baseline model 

predicted that learning was a cubic function of occurrence, suggesting that learning relies 

merely on exposure and no other factor. Hypothesis model 1 adds on the baseline model, the 

sequence length as a predictor of learning in same length sequences, on an intercept level. 

Hypothesis model 2 adds on baseline model the sequence length as an interaction predictor 

variable (on a slope level). Hypothesis model 2 was found to be a significantly better fit to the 

data (Table 7.6). Figure 7.4 shows the fit of the model plotted for each task for each sequence 

length, while Figure 7.5 shows the total learning across sequence lengths within each mixed 

length task. 

 

Model type R model Interpretation 

Baseline model  glmer(on_target_pre_total ~ 

poly(occurrence,3)  + (1|subno) + 

(1|sequence:subno), data, family = poisson()) 

Learning can be explained as a cubic 

function of occurrence (exposure) 

Hypothesis 

model 1  

glmer(on_target_pre_total ~ 

poly(occurrence,3)+ sequence_length  + 

(1|subno) + (1|sequence:subno), data, family = 

poisson()) 

Learning can be explained as a cubic 

function of occurrence and sequence 

length (on an intercept level) 

Hypothesis 

model 2  

glmer(on_target_pre_total ~ 

poly(occurrence,3)* sequence_length  + 

(1|subno) + (1|sequence:subno), data, family = 

poisson()) 

Learning can be explained as cubic 

function of occurrence and interaction 

sequence length (on a slope level) 

 

Table 7.5. This table shows the models that were used in R to examine whether sequence length has an impact on 
learning rate in same length sequence tasks. An ANOVA was performed between the hypothesis and baseline 
model, that demonstrated that the hypothesis model is explaining the data significantly better than the baseline 
model. 
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Model Comparison χ2 P-value 

Baseline Model vs Hypothesis 

Model 1 

20.099 <.001 

Hypothesis Model 1 vs 

Hypothesis Model 2 

2981.4 <.001 

Table 7.6. This table shows the models fits scores of the models tested in Table 7.5. 

 

 

Figure 7.4. This figure shows the fitted values of the hypothesis model 2(line) for the 3 mixed length tasks (2&3 
dots, 2&4 dots, 3&4 dots). On the x-axis is the number of repetitions of item or in other words exposure to that 
specific sequence (how many times that stimulus has been shown) and on the y- axis is the mean number of eye 
samples on the target during the blank period (750ms). The colour of the line represents the learning rate for 
different sequence lengths within the task. Error bars represent 95% CIs. 
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Figure 7.5. This figure shows the fitted values of the hypothesis model 2 (line), for the 3 mixed length tasks (2&3 
dots, 2&4 dots, 3&4 dots). On the x-axis is the number of repetitions of item or in other words exposure to that 
specific sequence (how many times that stimulus has been shown) and on the y- axis is the mean number of eye 
samples on the target during the blank period (750ms). Error bars represent 95% CIs. 

 

The analysis results of the models suggest that learning in mixed length tasks can be explained 

as a cubic function of occurrence and its interaction with sequence length. As we can see in 

Figure 7.4 and Figure 7.5, the mixed length tasks that contain even numbers of sequence 

lengths (2&4 dots) performed better than the tasks that contained a mixture of even and odd 

sequence lengths (2&3 dots, 3&4 dots), suggesting evidence towards a distinctive coding 
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mechanism between different sequence lengths that operates with both pairs and triplets and 

therefore causing facilitation on even length mixed sequences due to a shared chunking 

strategy. The odds ratios of Hypothesis model 2 can be found in Appendix E, Table E.3. 

C.5. Is sequence length affected by the type of task (mixed/non-mixed)? If so, 
how does the type of task affect sequence length learning? 

To answer this question, we extracted all the “meaningful” eye-samples on target positions for 

all tasks (2 dots, 2&3 dots, 2&4 dots, 3 dots, 3&4 dots, 4 dots) and run the models as shown in 

Table 7.7.  The “meaningful” eye-samples on target positions, are basically the eye-samples on 

the target positions that the participants were expected to learn the locations for. Therefore, all 

the eye-samples of the first item of a sequence, in every task were excluded, as they were not 

indicators of learning but pseudo-random guessing, while the within sequence positions were 

classified as learning data. The baseline model was predicting that learning in these tasks occurs 

on cubic shape during exposure. The hypothesis fits were then compared through an ANOVA. 

The ANOVA showed that hypothesis model 4 was a significantly better fit for the data (Table 

7.8). The fits of the model can be seen in Figure 7.6, demonstrating that sequence length effects 

differ between mixed and same length tasks. 

 

Model type R model Interpretation 

Baseline model  glmer(on_target_pre_total ~ 

poly(occurrence,3)  + (1|subno) + 

(1|sequence:subno), data, family = poisson()) 

Learning can be interpreted as a cubic 

function of occurrence (exposure) 

Hypothesis 

model 1  

glmer(on_target_pre_total ~ 

poly(occurrence,3) + type + (1|subno) + 

(1|sequence:subno), data=df_learning, family 

= poisson()) 

Learning can be predicted as a cubic 

function of occurrence and type of task 

(mixed/non-mixed) is a predictor of 

learning (intercept level). 
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Hypothesis 

model 2 

glmer(on_target_pre_total ~ 

poly(occurrence,3) * type + (1|subno) + 

(1|sequence:subno), data=df_learning, family 

= poisson()) 

Learning can be predicted as a cubic 

function of occurrence and type of task 

(mixed/non-mixed) is an interaction 

predictor of learning (slope level). 

Hypothesis 

model 3 

glmer(on_target_pre_total ~ 

poly(occurrence,3) *type + sequence_length + 

(1|subno) + (1|sequence:subno), 

data=df_learning, family = poisson()) 

Learning can be predicted as a cubic 

function of occurrence, type of task 

(mixed/non-mixed) is an interaction 

predictor of learning (slope level) and 

sequence length is a predictor of learning 

(intercept level). 

Hypothesis 

model 4  

glmer(on_target_pre_total ~ 

poly(occurrence,3) * type * sequence_length 

+ (1|subno) + (1|sequence:subno), 

data=df_learning, family = poisson()) 

Learning can be predicted as a cubic 

function of occurrence, type of task 

(mixed/non-mixed) is an interaction 

predictor of learning (slope level). And 

sequence length is an interaction predictor 

of learning (slope level). 

Table 7.7. This table shows the models that were used in R to examine whether sequence length has an impact on 
learning rate in same length sequence tasks. An ANOVA was performed between the hypothesis and baseline 
model, that demonstrated that the hypothesis model is explaining the data significantly better than the baseline 
model. 

 

 

Model Comparison χ2 P-value 

Baseline Model vs Hypothesis 

Model 1 

1.8396 .175 

Baseline Model vs Hypothesis 

Model 2 

1926.3 <.001 

Hypothesis Model 2 vs 

Hypothesis Model 3 

19.287 <.001 

Hypothesis Model 3 vs 

Hypothesis Model 4 

10177 <.001 

Table 7.8. This table shows the models comparison fits for the models used in Table 7.7 
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Figure 7.6. This figure shows the fitted values of the hypothesis model 4 (line), for the mixed length tasks and 
non-mixed tasks. On the x-axis is the number of repetitions of item or in other words exposure to that specific 
sequence (how many times that stimulus has been shown) and on the y- axis is the mean number of eye samples 
on the target during the blank period (750ms). Error bars represent 95% CIs. 

The results of hypothesis model 4, suggest that sequence length doesn’t have a robust effect on 

the SL mechanism, but in contrast it depends on the type of task and the environment that 

surrounds a sequence. As we can see in Figure 7.6 shorter sequences of 2 items are learn worse 

and slower when they are mixed with long length sequences of 4 items rather than when they 

are presented on their own. Similarly, longer sequences of 4 dot items are better learned within 

mixed length tasks rather than same length tasks. Finally, sequences of 3 items perform equally 
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across mixed and non-mixed length tasks. The odds ratios of Hypothesis model 4 can be found 

in Appendix E, Table E.4. 

 

Discussion 

Our results suggest that sequential SL is achievable with the new methodology across same 

and mixed length tasks and sequences with length of 2, 3 and 4 items. Our findings confirm 

partially the findings that previous literature suggest, with shorter sequences (2 items) being 

learned faster than longer ones (3 items, 4 items) in same length tasks. Additionally, we found 

that when longer sequences of 4 items are mixed with shorter sequences of 2 items, the learning 

of the longer sequences improves. But it is important to mention that the learning of 2 dots 

items drops significantly when they are combined with long sequences (4 items sequences) 

rather than when they are presented in a same length task. Furthermore, we found that sequence 

length effects are not consistent across mixed and non-mixed tasks. Only the 3 dots task seems 

to behave similarly in mixed and non-mixed tasks. 4 dots sequences seem to be learned better 

in the mixed length tasks, as they were paired with shorter sequences, and 2 dots items were 

learned better on non-mixed length, as they were paired with shorter sequences. That suggests 

supportive evidence towards a binary mechanism of chunking that operates with pairs and 

triplets and therefore facilitates the learning of even length sequences (2&4 dots) task, as they 

share a common chunking mechanism.  

Previous research in the field of cognitive linguistics and language processing has found that 

chunking and predictability are two factors crucial for the learning of grammatical 

dependencies. Wang, Zevin and Mintz (2019) found that the learning of non-adjacent 

dependencies in artificial language can be influenced by factors such as the frequency and the 

predictability of the target words. The term non-adjacent dependencies is used to describe the 
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grammatical relationships between words in a sentence that are not immediately adjacent to 

each other.  According to their findings, participants demonstrated better learning when the 

dependencies were more frequent and when the target words were more predictable based on 

the preceding context.  This assumes that learners have the ability to extract and generalise 

non- adjacent dependencies from a continuous stream and this ability is heavily influenced by 

the statistical properties of the steam.  

Furthermore, Wang, Zevin, Trueswell and Mintz (2020) investigated the chunking mechanism 

in language processing and how it affects the learning of adjacent dependencies.  In this 

instance, the term chunking represents the process of grouping words into phrases. The 

researchers claimed that the process of chunking could influence the way we perceive and learn 

those adjacent dependencies, and therefore words that are grouped together in a coherent chunk 

are easier to learn and be recalled and as a result it maximises the learning of the dependencies 

between those words. To test this hypothesis, they used the artificial language learning 

paradigm in a series of experiments. During each experiment, participants were exposed to 

sentences containing adjacent dependencies in an artificial language and were asked to learn 

these patterns. The sentences were manipulated to create different grouping conditions: some 

sentences had strong cues for grouping the adjacent words together, while others had weak 

cues or no cues at all. The results of these experiments showed that the adjacent dependencies 

were better learned when there were strong grouping cues compared to weak or no cues.  

Therefore, they concluded that chunking occurs in a top-down grouping manner and that this 

chunking can facilitate the learning of the adjacent dependencies. 

Our findings, contradict the findings of Johnson and Tyler (2010), that suggested that mixed 

length words can’t be segmented successfully by 5,5 and 8 months old infants. However, it is 

important to mention that we examine adult population and that our task was performed on the 

visual domain rather than the auditory. A possible explanation for the different findings could 
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be the fact that during infancy, the chunking mechanisms are still developing therefore mixture 

of lengths impedes the learning, while same length words are easier to be learned. Even in our 

results, there was successful learning across all mixtures of task, however the learning rate of 

mixed sequences that contained odd and even number of lengths was lower. Our research 

findings apply on the visual domain, so the results found can be applied on the sequential SL 

on the visual domain. But infants learn language mainly from the auditory environmental input 

or multisensory input (audio-visual mapping and associative learning). Further research using 

the same methodology should focus on replicating these findings on the auditory domain and 

expanding the tasks into sequences of 5 and 6 dots lengths to examine how the chunking 

mechanism operates in those.  

It is already known that adults can learn up to 12 item sequences, therefore it would be 

interesting to replicate the same learning patterns with mixed and not mixed longer sequences. 

This way the ecological validity of the task could be improved, since it could imitate 

approximately better processes such as visual SL or word segmentation, and vocabulary growth 

that is related to language exposure (syllables, words, sentences level). SL is a process that 

occurs implicitly and is suggested by the literature that has no capacity limitations. By 

expanding the current methodology in longer sequences, we could imitate real-life learning 

situations and manage to understand how sequential statistical learning occurs during time. 

To conclude, the data show that during a sequential SL task, shorter sequences are learned 

better than longer ones in same length tasks. In mixed length tasks, sequences that contain even 

numbers of sequence length are better learned than sequences that contain a mixture of even 

and odd numbers of sequence lengths. This finding supports the concept of a binary chunking 

mechanism that operates with pairs and triplets. If it was just pairs, we wouldn’t see a difference 

between even and odd number mixed length sequences (a 3 items sequence would be learned 

as AB, BC). It is obvious that there is something in the 3 dots task that is affecting the learning 
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rate. Future research should focus on examining differences in performance between mixed 

length tasks that contain even and odd number of sequences, in order to understand if the 

differences observed in the current study are due to the fact that chunking operates only with 

pairs and therefore learning of triplets impedes the learning process, or whether there are two 

mechanisms one that works with pairs and one that works with triplets and when combined, 

learning is slower. The next chapter will evaluate some of the current limitations of this design, 

such as low numeric values, by introducing the eye-movements component in the evaluation 

of the design, in order to explain why low numeric values, represent learning in the current set 

up and how different experimental set ups improve their design by using lower cost and 

frequency equipment such as Gazepoint GP3 (60 Hz). 
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A critical evaluation of eye-tracking in the field 
of experimental psychology & a technical 

comparison between a high frequency (EyeLink 
1000 - 1000 Hz, SR Research Ltd., Mississauga, 

Canada) and low frequency (Gazepoint GP3- 60 
Hz,) eye-tracker based on the thesis 

experimental paradigm. 

 
 
 
 
 

 
Chapter Summary 

This chapter will discuss the contribution of eye-tracking in the field of experimental 

psychology, with main focus on the fields of clinical and cognitive psychology. After 

evaluating the current applications of eye-tracking in research, a technical comparison between 

the two eye-tracking systems (Gazepoint GP3 60 Hz vs EyeLink 1000Hz) will be presented 

based on the applications of both systems on the methodology suggested in the current thesis. 

Finally, the implications and limitations of each system in applied research will be discussed, 

by highlighting the reliability of certain equipment specifications such as sampling frequency 

in research methods, in specific research contexts. 
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A. The contribution of eye-tracking in the field of experimental psychology. 

Eye-tracking is a widely used experimental tool in the field of cognitive psychology (e.g., 

visual attention, social interaction, body perception, reading, etc.) and clinical psychology 

(autism spectrum disorder (ASD), ADHD, Parkinson’s disease, etc.) across the age spectrum 

(infants, children, adults, elders). Technically speaking, eye-tracking is the process of 

measuring eye movements by examining the duration and the location of the eye-movements. 

By determining facts such as where the individual is looking (x,y coordinates), what  is the 

individual looking at, or how long the individual is looking at something, we can extract 

meaningful interpretations about the cognitive processes that occur during or prior (planning) 

to the eye movement period.  

The most common eye-tracking movements studied in the field of experimental psychology, 

are fixations and saccades. A fixation occurs when the visual gaze is fixated on a location with 

x and y coordinates and usually lasts from 150ms up to 300ms while saccades are the 

movements prior and after a fixation occurs (duration less than 100ms) and are used to change 

the location of the fixation. Additionally, Purves,  et al. (2001)  stated that there are four types 

of eye-movements: (a) the saccades, that are fast ballistic movements that eyes make when they 

change their point of fixation and usually last less than 100ms, (b) the smooth pursuit 

movements, that are slower eye movements that eyes use to track moving objects that usually 

start 100-150ms after the movements of the moving object, (c) the vergence movements that 

are aligning the fovea of each eye when the target is located at different distances for the 

individual (disjunctive movements) and finally (d) the vestibulo-ocular movements  that 

stabilise the eyes on a stimuli accounting for head movements. 

Frazier et al. (2016) used eye-tracking as a new tool for creating a novel autism risk index 

based on eye movements. In the past, abnormal social attentional patterns have been observed 
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in infants with ASD, when engaging in fixations on other people’s eyes (Jones & Klin, 2013) 

or social scenes (Chawarska, Macari & Shic, 2013), by reporting reduced fixation times. 

Similar abnormalities in visual social cues have been observed in preschool children (Vivanti, 

Trembath & Dissanayake, 2014), older children (Magrelli et al., 2013) and adults (Rice, 

Moriuchi, Jones & Klin, 2012) with ASD. Therefore, Frazier et al. (2016) decided to compare 

duration of fixations on a series of social attention tasks (static facial affect, dynamic vs. 

naturalistic scenes, etc.) that have been used previously in the field and compare those durations 

across non-ASD and ASD children. The researchers used eye-tracking technology to observe 

and analyse eye movements in infants and young children, specifically focusing on patterns of 

visual attention. They hypothesized that infants and children with ASD will exhibit distinctive 

eye movement patterns in comparison to the neurotypical children. The data from the study 

were analysed with a machine learning algorithm and created the Autism Risk Index (ARI). 

ARI consisted of various eye movement parameters, such as gaze duration, saccade length, and 

fixation count, and could distinguish between ASD and non – ASD children with high 

accuracy. 

Navarro, González and Molina (2018) used eye-tracking in students with or without attentional 

difficulties, across a range of tasks including images, text and videos. They found persistent 

gaze differences between the two groups when the stimuli presented were images, however 

when the stimuli were text or videos those differences were only present at the first exposure 

with the stimuli and then disappeared. Rutledge, Schweitzer, Guyer and Young (2010), aimed 

to further investigate decision-making in people with ADHD with the use of eye-tracking. They 

used a utility tone-discrimination task across adults with or without ADHD. During the 

decision-making task, the participant’s eye-movements were recorded. Their findings showed 

decision durations were faster in individuals without ADHD, while there was a big variability 

on decision durations across individuals with ADHD.  However, gaze durations are not the 
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only eye measurements that have been used to investigate ADHD. Aya, Toshinobu, Haruhisa, 

Akira, Shigenobu, Nobumasa (2020), used pupillometry to investigate alertness deficits in 

ADHD individuals. They hypothesised that the pupil diameter reflects the firing of 

norepinephrine neurons in the locus coeruleus, so differences in pupil dilation can reflect 

deficits in the norepinephrine - locus coeruleus neuromodulatory system that is responsible for 

alertness. They monitored the kinetics of pupil diameter of ADHD and typically developing 

adults during an auditory continuous performance task. They found that adults with ADHD 

had larger tonic pupil diameter in comparison with typically developing adults, while they 

exhibited a suppressed stimulus-evoked phasic pupil dilation. That is, atypical pupil behaviour 

according to Aya et al. (2020) is reflecting the hyperactive norepinephrine - locus coeruleus 

system that results in the alertness deficits of ADHD individuals. 

Lee (2017) used eye-tracking to understand sentence formulation while speaking in patients 

with Parkinson’s Disease (PD). To do so, Lee (2017) used two competing models for sentence 

production in PD patients. The first one suggested that PD patients have increased demands 

during speech production due to high levels of buffering of words, to minimise speech 

disfluencies while the second one suggests that word planning occurs one word at a time 

resulting in compromised performance on speech accuracy and fluency. During the task 

participants had to give a description of a scene with 3 items and formulate a sentence 

explaining the position of the three items in relation to the others (e.g., “the A and the B are 

above the C”), while the name codability of the objects varied. Gaze durations were recorded 

for each one of the objects, during sentence production. PD patients demonstrated word by 

word planning, providing supporting evidence for the second sentence production model while 

objects with low codability contained more disfluencies and word-finding errors than high 

codability objects. 
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Eye-tracking has been used in the field of clinical psycholinguistics to examine not only speech 

production as stated above, but also as a screening tool for processes like reading in individuals 

with dyslexia. Benfatto, Seimyr, Ygge, Pansell, Rydberg, Agneta et al. (2016), highlighted that 

an early intervention is important for dyslexia, and therefore identifying high risk individuals 

from an early age is needed. They recorded the eye-movements of high risk and low risk 

children with reading difficulties at the age of 9-10 years while they were reading. This new 

risk assessment as suggested by Benfatto et al. (2016) is not using the typical screening 

methods for dyslexia that involve oral and written tests but using eye-tracking that allows the 

recording of the reading process in real-time. Finally, they concluded that even though dyslexia 

is mainly a language-based learning disability, creating assessments that do not measure 

straight verbal responses, like eye-tracking, can be an efficient way to identify high risk 

dyslexic children with reading difficulties at early stages. 

Another research area that eye-tracking has been frequently used is body perception and body 

dysmorphic disorder (BDD). According to Greenberg, Reuman, Hartmann, Kasarskis and 

Wilhelm (2014), individuals with BDD have negative attention bias and as a result they are 

overfocusing mainly on negative attributes. Similarly, Toh, Castle and Rossell (2015), 

investigated facial affect recognition between BBD and Obsessive- Compulsive Disorder 

(OCD) individuals with the use of eye-tracking. During the experimental procedure, 

participants were viewing pictures of Facial Affect (Ekman & Friesen, 1975), while their eye-

movements were being recorded. The study findings suggest that BDD participants exhibited 

fewer fixations of shorter durations to facial areas such as the eyes, nose and mouth, while 

participants with severe BDD/OCD demonstrated lower accuracies, fewer fixations and greater 

saccade amplitudes. 

Liang, Tsai and Hsu (2017) used eye-tracking to measure sustained visual attention in 

individuals with social anxiety (SA), by assessing the time course of attentional processing. In 
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their study they recorded the eye-movements of individuals with and without SA during a 

multiple emotional stimuli free-viewing paradigm. During the task a stream of angry, sad, 

happy and neutral faces was presented for 10s per trial. Individuals with SA showed stronger 

engagement with the thread at the early stages of the processing, while it was harder for them 

to disengage their attention from the thread once they had fixated on it and paid less attention 

to positive stimuli at a later stage than the individuals without SA. 

However, apart from purely clinical applications of eye-tracking in the field of psychology, 

eye-tracking has been one of the main experimental tools for investigating learning processes 

and environments. Jamet (2014) used eye-tracking in order to examine the effects of visual 

cues on multimedia learning in typical populations.  In this study, individuals were exposed to 

multimedia computer learning environments that either contained or not visual cues and their 

eye-movements were recorded. The visual cue was the change of colour of an item, when the 

item was verbally evoked by the environment. Individuals that were exposed to visual cues 

spent less time fixating on irrelevant areas in the multimedia environment and allowed more 

time for the synchronization of auditory and visual processing leading to better learning. 

Koc-Januchta, Höffler, Prechtl, and Leutner (2017), used eye-tracking as a way to measure 

cognitive learning style in college students. The students were split into two groups: the 

visualizers and the verbalizers, based on some questionnaires that the students answered about 

their visual or verbal cognitive style and during the task they were asked to learn about two 

different topics, by means of verbal (text) and visual (image) combinations, while their eye-

movements were being recorded. The results show that visualisers spent significantly more 

time on the images than verbalizers, and similarly verbalizers spent more time processing the 

text format of the information. Both types of learners learn actively from the information 

contained in their type of source information, supporting their cognitive learning style, but 

visualisers performed better in comprehending the information given rather than verbalisers. 
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After exhibiting some examples of the research conducted in the field of psychology, that use 

eye-tracking as a tool of understanding better attentional processing and learning processes in 

clinical and non-clinical populations, it is clear that eye-tracking requires precision and 

accuracy. During the development of the new experimental paradigm that this thesis suggested 

as a new way of examining sequential SL in Chapters 4 and 5, 2 different eye- trackers have 

been used (Gazepoint GP3 and EyeLink 1000). These two eye-tracking systems have basic 

technical differences, but both of them can be used to examine concepts like the ones explained 

above (reading, attentional processing, visual cues etc) with specific set ups and requirements, 

to avoid implementing type I and type II errors in the findings that would derive from an 

overpowered or underpowered design. In the next section, the limitations of the new sequential 

SL experimental paradigm for each of the two eye-trackers will be explained and evaluated 

through a technical and numeric comparison of the learning outcomes in the data. Gazepoint 

GP3 is a relatively new eye-tracker, not as popular as EyeLink 1000, with very little evaluation 

of the system by experimental research. This chapter is adding to the current knowledge by 

evaluating the performance of the two eye-tracking systems on the same task. 

B. A technical comparison of two eye-tracking systems based on the thesis 

experimental paradigm: Gazepoint GP3 vs EyeLink 1000. 

As it was stated in the previous chapters EyeLink 1000 (SR Research Ltd., Mississauga, 

Canada) is a more powerful tool, that samples in higher frequency, with greater precision and 

accuracy than Gazepoint GP3 (60 Hz). In Table 7.1 are contained some of the basic technical 

differences between the two eye-tracking systems. However, precision and accuracy at that 

high level is not necessarily always the requirement for every design. Gazepoint GP3 (60 Hz) 

is a low-cost eye-tracker that can be easily used in non-laboratory environments such as 
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schools, nurseries, hospitals etc. That fact increases the research value of the specific 

equipment, as it allows easy data collection, across different age groups, locations and set ups.  

 

 Gazepoint GP3 EyeLink 1000- SR Reserarch 

Frequency 60Hz 250 Hz, 500Hz, 1000Hz, 2000 Hz 

Recording Type Binocular Monocular, Binocular 

Calibration Points 5-point, 9-point 3-point, 5-point, 9-point 

Portable Yes No 

System Requirements Intel Core i5 – 8th generation or 
faster, 8 GB RAM, Windows 7, 8.1 

or 10. Mac and Linux are not 
supported. 

External Host PC, 

Windows (2000, XP), Mac or Linux. 

Glasses Compatibility Yes Yes 

Set ups Laptop Mount, Monitor Mount, mini 
tripod 

Tower Mount, Primate Mount, Arm Mount 

Depth movement ±15 cm range of depth movement ±10 mm depth/ 20 cm (Arm Mount -Remote) 

Horizontal/Vertical 
Movement 

25cm (horizontal) x 11cm (vertical) 
movement 

±25 mm horizontal or vertical or 22cm 
(horizontal) x 18cm (vertical) (Arm Mount- 

Remote) 

Visual Angle 
accuracy 

0.5° –1 ° of visual angle accuracy down to 0.15° (0.25° to 0.5° typical) 

0.5° (Arm Mount- Remote) 

Table 7.1 This table demonstrates the technical specifications of Gazepoint GP3and EyeLink 1000. 

 

As we have already seen in Chapter 4 and in Chapter 5, the new experimental eye-tracking 

method that we suggest uses eye-tracking on different modes (time displayed and gaze 

contingent) and assesses learning as the raw eye-samples on the target location during the 

guessing “blank period” of 750ms. During that time period a Gazepoint GP3 can maximally 

record 45 eye-samples while EyeLink 1000 can record 750 eye- samples. At first, it seems an 

obvious assumption to say that EyeLink 1000 is a better option for the design, however that 

happens because we evaluate the comparison based on numeric values and not as a proportion 

of percentage learned. It is a priori defacto that the numeric values of eye-samples on target of 
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Gazepoint GP3 will be lower than the ones of EyeLink 1000 due to the huge difference in the 

sampling rate. A fair evaluation of both systems in the current design, would calculate learning 

as a proportion of eye-samples on target, divided by the number of maximum eye-samples that 

each eye-tracker can record during the 750ms “blank period” of guessing. In order, to evaluate 

the efficiency of the eye-trackers Figure 7.1 has been created and demonstrates the percentage 

of learning rates for the 2 dots task from 2 different experiments, one run with EyeLink 1000 

and one with Gazepoint GP3, that was calculated as explained above and fitted as a smooth 

cubic function of occurrence. 

 

 

Figure 7.1. This figure shows the percentage learning scores for each eye-tracker. The linear fit of the curves has 
been estimated as a smoothed cubic function of occurrence over the observed percentage scores of learning in the 
Gazepoint GP3 and EyeLink 1000 experiment for the 2 dots task. Error bars represent 95% CIs. 
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As we can see from Figure 7.2, when the numeric values are transformed into percentages, the 

gap of performance between Gazepoint GP3 and EyeLink 1000 reduces significantly. At this 

point, it is also important to mention that the experiment conducted on the EyeLink 1000 had 

a methodological addition of feedback sound, that could explain the difference in performance 

across the tasks. Arguably, the percentage scores of learning remain low, for both eye-trackers, 

but if we take into consideration the eye-movement planning that occurs during the 750ms 

“blank period” of guessing, and the fact that each item of the sequence is presented only 40 

times in total in the task, the performance can be argued to be not low at all. Additionally, both 

scores are results of aggregated scores across participants that learned and participants that 

didn’t learn. There was no point to exclude the non-learners from the tasks as they evidence 

individual differences in learning patterns, and since the suggested methodology is new, it 

requires to be shown at its full extent in order to be fairly evaluated. 

 

Spatial Acuity comparison of GP3 and Eye-Link 1000 

Process of Spatial Acuity Analysis for GP3 and Eye-Link 1000 

Selection of eye-tracking data (definition of stimuli & eye-tracking movements): For this 

analysis, I used the 2 dots task data that was collected from Design A (GP3) and Design B 

(Eye-Link). As it is common practice in this type of analysis I selected fixations and their 

durations instead of raw samples. More specifically, I will be using the fixations and their 

characteristics on target locations, after the target has appeared. I did not want to choose the 

blank period of guessing as observations about less fixations or smaller durations during this 

period could be due to poorer learning rather than actual differences between the two eye-

trackers. By using the fixations on the targets, after the targets have appeared on screen, we 

guarantee that what we measure reflects the acuity differences between the eye-trackers and 
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not necessarily differences in learning or participant’s skills. Another element that needs to be 

highlighted is the fact that the two data sets come from different participants and have some 

small design differences (Design B had a beep sound as negative feedback, while Design A 

didn’t). Therefore, the data might be biased. Trials that had no fixations on target location were 

removed from the data. 

Focus of analysis: number of fixations on target locations, duration of fixations on target 

locations, accuracy of fixations on target locations (distance from target).  

Analysis 

Before conducting any sample comparisons, we looked at the descriptive statistics for the 

number of fixations per trial for each eye-tracker (Table 7.2) and the descriptive statistics for 

the duration and distance from target location for each fixation, for each eye-tracker (Table7.3) 

 M SD Number of trials that 

had fixations (N) 

Number of Fixations per 

trial (GP3) 

2.38 1.17 2992 

Number of Fixations per 

trial (Eye-Link 1000) 

1.11 0.39 4524 

Table 7.2. This table shows the descriptive statistics for the number of fixations on target location during the 2 
dots task, across all 36 participants, for the two different eye-trackers.  

 

 M SD Number of total 

fixations across 11484 

trials (N) 

Duration of fixation (GP3) 0.313 (ms) 0.16 7108 
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Distance from target (GP3) 453.59 (pixels) 190.28 7108 

Duration of fixation (Eye-

Link 1000) 

0.263(ms) 0.20 5011 

Distance from target (Eye-

Link 1000) 

401.82 (pixels) 166.93 5011 

Table 7.3. This table shows the descriptive statistics for the duration and the distance from target for each fixation 
on target location during the 2 dots task, across all 36 participants, for the two different eye-trackers.  

 

An independent-samples t-test was conducted to compare the number of fixations per trial in 

the GP3 eye-tracker and Eye-Link 1000 eye-tracker. There was a significant difference in the 

amount of fixations for GP3 (M=2.38, SD=1.17) and Eye-Link 1000 (M=1.11, SD=0.39); 

t(7514)=67.66, p < .001. This suggests that GP3 had significantly more fixations per trial on 

target locations than Eye-Link 1000.  

An independent- samples t-test was conducted to compare the duration of fixations in the GP3 

eye-tracker and Eye-Link 1000 eye-tracker (as shown in Figure 7.2). There was a significant 

difference in fixation duration for GP3 (M=0.31, SD=0.16) and Eye-Link 100 (M=0.26, 

SD=0.20); t(12117)= 15.330, p < .001. This suggests that GP3 had significantly longer 
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fixations on target than Eye-Link 1000.

 

Figure 7.2. This boxplot shows the scores for duration for each fixation on target location during the 2 dots task, 
across all 36 participants, for the two different eye-trackers.  

 

An independent- samples t-test was conducted to compare the distance from target on the 

fixations that were within the AOI for the GP3 eye-tracker and Eye-Link 1000 eye-tracker (as 

shown in Figure 7.3). There was a significant difference in the distance from target for GP3 

(M=453.59, SD=190.28) and Eye-Link 1000 (M=401.82, SD=166.93); t(12117)= 15.51, p 

< .001. This suggests that Eye-Link 1000 was significantly closer to the target location. 
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Figure 7.3. This boxplot shows the scores for the distance from target for each fixation on target location during 

the 2 dots task, across all 36 participants, for the two different eye-trackers.  

Scripts for this analysis can be found in Appendix J (section J.2). 

Conclusions 

After the analysis of the empirical data between the 2 eye-trackers, we can assume that GP3 

collected more fixations on target per trial, and those fixations lasted significantly longer in 

comparison to the Eye-Link 1000. Additionally, Eye-Link seemed to be more precise in terms 

of spatial resolution, as the fixations appeared to be significantly closer to the target than the 

ones collected from the GP3. Therefore, we can assume that in an experimental paradigm like 

the one detailed in this thesis, accuracy and precision on target location is crucial. This was 

proven to be significant in the eye-tracking data collected by the Eye-Link 1000 eye-tracker. 

Additionally, the duration of the fixations and the number of fixations on target are not crucial 

for our design since we focused on raw eye-samples for the data interpretation/analysis. This 

suggests that future experiments, that will use the same methodology, should use Eye-Link 

1000, as it provides better spatial accuracy. 
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C. Evaluating Gazepoint GP3 and Eye-Link 1000 use in different research 

contexts. 

On the one hand, Gazepoint GP3 can be an ideal eye-tracker for a design that demands data 

collection in non-laboratory-based environments, as it is cheap, small, light, portable and 

requires only a laptop to operate. For example, studies that require data collection in nurseries, 

schools, retirement houses, hospitals, art centres, or even online could use Gazepoint GP3. 

Similarly, any design that contains large visual stimuli or wide areas or involves the recording 

of processes that their duration can be easily captured by 60 samples per second, can be 

efficiently run with a Gazepoint GP3. Gazepoint GP3 is also useful in designs similar to mine 

that are counting raw eye-samples on target locations, or fixations/saccades rather than 

focusing on pupil size differences. The only concern when dealing with count eye-data, is that 

the count data should be transformed as a percentage proportion of the estimate outcome 

variable, in order for the results to be reliable and reflect the actual process recorded. On the 

other hand, there are research areas in clinical psychology, that use eye-tracking as a risk 

assessment criterion for learning disabilities and clinical disorders. In these cases, high 

precision and accuracy are pre-requirements of the method, so usage of a low frequency eye-

tracker like Gazepoint GP3 could be problematic. Designs that require maximum spatial and 

temporal precision of the recording of eye-movements should use EyeLink 1000. 

EyeLink 1000 is one of the most commonly used eye-trackers in the field of psychology while 

Gazepoint GP3 is a relatively new eye-tracker that is trying to establish its worth in the field. 

In the following paragraphs I will preview some of the research contexts where the two eye-

trackers have been used. 
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Murphy and Connaughton (2017) used EyeLink 1000 to examine automatic visual processing 

of social information in individuals with schizophrenia. They recruited 20 individuals with 

schizophrenia and 20 control individuals that were exposed to passive natural scenes that 

contained social (people) and non-social objects while their eye-movements were recorded. 

Their results suggested that individuals with schizophrenia spent significantly less time looking 

at the social objects, and they fixated more on non-social objects than the control group. In a 

design like this, the focus about choosing equipment would be based on the duration of 

fixations and their latency. From our results, we know that the GP3 had significantly longer 

fixation durations than Eye-Link 1000, therefore it could be potentially used for a similar 

design.  

Eye-Link 1000 has been also used to examine bilingualism and word parsing. Tremblay (2011) 

compared the performance of native and non-native speakers of French on a parsing 

recognition task of misaligned syllables and word boundaries in a context of liaison. 

Participants had their eye-movements recorded while they had to recognise the auditory 

stimulus (word) in one out of four words that they were given as options per trial. The 

proportion of fixations on those four words during the trial duration was measured. Their results 

suggest that non-native speakers recognised harder liaison-initial real words, and consonant-

initial words slower than liaison-initial nonsense words. However, native speakers recognised 

faster consonant-initial real and nonsense words than liaison-initial ones.  In this design, the 

number of fixations and their duration is crucial, however the key element is the precision of 

location of the eye-movements. The stimuli are words, therefore have a very precise and small 

AOI. Based on our findings Eye-Link 1000 is the most suitable tracker as it can provide better 

spatial precision of the eye-movements.  

Wu, Filipe, Leek and Thierry (2013) used EyeLink 1000 (SR Research Ltd., Mississauga, 

Canada) to investigate lexical access processing in bilingualism. In total they recruited 20 
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Chinese -English bilinguals and 20 native speakers of English. During the task, participants 

were presented with (a) the filler trials that contained one string of shapes (circles or squares) 

and three English words that worked as distractors, on a 4-item grid, and (b) the experimental 

trials, that consisted of four locations with English words, including a critical word that 

phonologically overlapped with the Chinese word for the shape of circle or square when 

translated into Chinese. At the end of each trial participants had to give a key response by 

clicking one out of 3 buttons, depending on if they say squares, circles, or a word. Their eye-

movements were recorded throughout the task. Their results suggested that during the 

experimental trials bilingual participants looked more often and for longer durations the critical 

word that overlapped phonologically, while native speakers didn’t. They concluded that lexical 

representations for both languages are activated in bilinguals, even for tasks that do not require 

explicit language processing but contain incidental word processing.  This design focused on 

the duration of fixations and differences in them, but also in the spatial precision of the 

fixations. Therefore, a higher frequency tracker like an Eye-Link 1000, that has better spatial 

precision of eye-movements, is the most suitable equipment. 

Sibley, Foroughi, Brown and Coyne (2018), used Gazepoint GP3 (60Hz) in order to examine 

whether this low-cost equipment could replicate previous research findings between working 

memory capacity the resting pupil size. To do so, they recruited a total number of 79 Navy and 

Marine Corps student pilots that firstly gave access to the experimenters to their aviation 

selection test scores, and then performed two tasks: (a) a colour change task where participants 

had the baseline of their pupil size measured based on the changes of the screen luminance and 

(b) an automated operation span test where participants were presented with a series of 75 math 

calculation tasks and 75 letter recall tasks. The Gazepoint GP3 eye-tracking system on 

binocular mode, detected the light flex of the pupil across all participants during the colour 

change task, however it failed to replicate previous findings about resting pupil size. 
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Additionally, a negative correlation instead of a positive correlation between the partial 

Operation Span scores and the resting pupil size measured in millimetres was observed. The 

researchers concluded that Gazepoint GP3 system’s millimetre pupil size measurements should 

not be used as measurements of individual differences across participants. In our analysis, we 

didn’t perform any type of analysis around pupillometry. However, there is no indicator of why 

GP3 wouldn’t be suitable for the task, since it outperformed Eye-Link 1000 on recording more 

fixations per trial and on recording longer fixations.   

Gazepoint GP3 (60Hz), has been used in the literature to investigate online language learning 

in combination with electroencephalogram (EEG) and behavioural data, by Notaro and 

Diamond (2018). They monitored the eye-movements, while they were recording EEG and 

mouse tracking (cursor movements and clicks), while adult participants performed online 

classes with only visual content of German language on Duolingo. The creation of this 

multimodal dataset aimed to be used for future analysis and further methods development. 

However, the fact that Gazepoint GP3 was used in a multimodal data collection set up, 

demonstrates one of its many potentials in future research and demonstrates how it’s portability 

and accuracy can become handy in such designs. The fact that GP3 is small, portable and easy 

to adapt to any laptop or screen, gives the advantage in multi-equipment experimental set-ups 

like this one. However, one could argue that a higher frequency eye-tracker like Eye-Link 1000 

would record more precisely temporal changes in eye-movements, therefore would provide a 

more precise eye-tracking filter for eye-movement artifacts in the EEG data. 

Furthermore, Gazepoint GP3 (60 Hz) has been used by Costescu and Rosan (2019) for 

educational purposes on individuals with ASD, in order to create an assessment protocol. The 

idea behind this research was that since individuals with ASD struggle with written social 

information, eye-tracking could be used to identify differences in visual patterns while 

processing social information between individuals with low and high autism spectrum traits. 
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They concluded that individuals with high autism spectrum traits had different visual attention 

patterns and social vignettes than individuals with low autism spectrum traits and suggested 

that those could be applied in intervention techniques for social skills in individuals with ASD. 

This research provides evidence that GP3 has been used in clinical experimental set ups, and 

that it was able to record all the components that differed between the low and high autism 

spectrum traits. However, in a set up like this one, accuracy in spatial and temporal resolution 

is crucial. Since Eye-Link 1000 has better temporal resolution (higher frequency) and spatial 

resolution (higher precisions on locations of eye-movements), it could be used for this design, 

to provide more reliable results, especially if they are intended to be used to form clinical 

assessments.   

D. Conclusions 

To conclude, before deciding in favour of or against a technical equipment such as an eye-

tracker, we should evaluate the design requirements and how the design measurements and 

outcome variables can be affected by the technical equipment manipulation. Not all designs 

require high efficiency and accuracy precision in order to capture the mechanisms suggested, 

and therefore low frequency equipment can be found handy for such designs and data collection 

in non-laboratory-based environments. Gazepoint GP3 has been found to be non-restrictive in 

terms of the quality of data obtained, so it is highly recommended for set ups like mine that 

assess implicit learning, even on time ranges smaller or equal to 750ms.
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An evaluation of thesis outcomes and 
application of thesis findings in different 

research contexts. 
 
 
 
 
 
 
 

Chapter summary 
This Chapter reflects the new experimental paradigm on previous methodologies that have 

been used in the literature and highlights limitations of the current design and how they can be 

overcome in future designs. Additionally, a critical evaluation of the findings about the 

sequence length effects and the information processing findings is given, in relation to previous 

theories and findings. Finally, an application of these research findings is suggested within 

educational and clinical concepts and further research directions are proposed. 
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A. A critical evaluation of the new experimental paradigm on previous methodologies 

used to investigate SL, limitations and implications on future research. 

The current thesis developed a new experimental paradigm that is observing learning in real 

time rather than assessing the sequential SL process at the end of it. It also demonstrates 

evidence for a hierarchical structure of sequential SL in information processing rather an all-

or-none processing in learning. The positioning effects found in the tasks of this thesis, are 

similar across all sequence lengths and mixtures of lengths, suggesting that the learning of an 

item increases as its position in the sequence increases. In other words, in a sequence of ABCD, 

the learning follows the pattern of AB<BC<CD. The sequence length effects demonstrated 

differences in learning between same length and mixed length tasks for the sequences with 2 

items and 4 items, while performance was similar across types of tasks (mixed/non-mixed 

lengths) for the 3 items sequence. Sequences of 2 dots were learned significantly better when 

they were presented in a same length task, than when they were mixed with longer sequences, 

while sequences of 4 dots were learned better when they were mixed with shorter sequences of 

2 dots. 

Th element of novelty is introduced in this thesis by the creation of a new experimental 

paradigm in sequential SL. This new experimental paradigm offers a new perspective on how 

the SL mechanism should be observed and measured. As we have seen from previous chapters, 

most of the methodologies used to observe or assess the SL mechanism have been measuring 

the learning outcome at the end of the SL process (Saffran et al.,1996; Saffran, Johnson, Aslin 

& Newport, 1999; Perruchet & Vinter, 1998; Newport & Aslin, 2004; Johnson & Tyler, 2010), 

rather than evaluating and observing the process while it occurs, and the learning develops. 

That was indeed problematic, since many procedural and perceptual effects that related to the 

stimuli of the task or the procedure of the task, were classified as effects that derived from the 

SL mechanism, since there was little option to discriminate between those two. Additionally, 
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processes such as information encoding in SL, that are widely used in artificial language 

contexts (Monaghan et al., 2019; Hoch, Tyler & Tillmann, 2013) or language learning models, 

were unable to be accessed while they were occurring due to task designs and therefore, they 

were evaluated as the results of the process. 

The main contribution of the suggested new experimental paradigm is that provides a solution 

to the above problem and allows the mechanism of SL to be observed during its time course in 

order to provide more details about how SL occurs and develops over time. Furthermore, the 

task doesn’t include any prior familiarisation/ exposure to the task or explicit instructions about 

the form of the task and therefore allows for the observation of the SL mechanism across all 

timepoints, when exposure to the stimuli/procedure is 0 and the learning process is completely 

implicit (non-biased from instructions- “Guess where the dot will appear next”). This fact 

implies that the new experimental paradigm is ecologically valid (due to its implicit nature) but 

is also construct and content valid since it measures an implicit SL mechanism, from the start 

of the process with an implicit task. 

The experimental coding of the new paradigm allows the usage of two eye-tracking systems 

(Gazepoint GP3; EyeLink 1000, SR Research Ltd., Mississauga, Canada) and mouse tracking 

(hasn’t been used in an experimental set up in this thesis) via open source/access frameworks 

promoting this way the concept of Open Access/Source Science and allowing future 

experimental manipulations to be created fast and efficiently across different equipment and 

modalities. All experimental set up variables such as durations of gaze-contingent and time 

displayed windows, sizes of AOIs, allocation and number of location arrays on the monitor, 

etc, can be easily controlled by changing the numeric values in the experimental run or set up 

file. This way, this new experimental methodology, can not only be applied on the research 

aims of the current thesis, but can also be used by future researchers that investigate sequential 

SL in different concepts and under different experimental specifications.  
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The most important obstacle that this new design overcame, was the fact that it achieved to 

capture sequential SL developing during time, by observing the time course of the mechanism 

rather than the resulting outcome on an external measure of SL. Future research can use the 

finding of the current thesis, and further investigate sequential SL in in reading (Arciuli, 2018), 

word segmentation (Johnson & Tyler, 2010) and speech perception (Franco et al., 2015). 

Furthermore, the current paradigm offers a clear observation of individual differences in 

learning patterns during SL across participants. Individual differences in SL, were not part of 

the thesis research aims, however they are a huge research topic in the literature (Misyak & 

Christiansen, 2012; Siegelman, Bogaerts & Frost, 2017) and therefore individual learning rates 

have been plotted and attached in Appendix K (sections K.1- K.6), from the 6 sequential SL 

tasks of 2 dots, 3 dots, 4 dots, 2&3 dots, 2&4 dots and 3&4 dots. The plots were generated with 

an R script that is in Appendix L (Section L.1), by fitting a smoothed cubic function of 

occurrence on the raw data. Learning was measured as raw eye-samples on target location 

during the guessing period of 750ms (blank period). Eye-samples on the first item of a 

sequence, were excluded since they were not representing part of the learning process, but they 

were random across the location array during the task (the sequences were presented on a 

continuous stream, so there was no clue about when or which the next sequence would be). By 

understanding better individual differences in learning mechanisms such as SL, that are highly 

involved in processes such as language learning, we can understand better why there is such 

variability in learning performance in infants during language learning and vocabulary growth, 

but also how exposure can facilitate the learning process and improve the learning outcome in 

educational intervention programmes.  

Similarly, the individual differences in SL also recommend that not everyone is equally good 

at SL, but with a combination of both explicit and implicit rules as Arcuili et al. (2018) 

suggested, greater learning can be achieved. Even though, SL is a domain general mechanism 
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as examined by the literature, domain specific differences in performance occur due to 

differences in processing the modalities (stimuli processing) and previous exposure to these 

modalities (expertise in modalities- exposure to stimuli). Further investigation across different 

types of learners (verbal vs visual) and modalities in SL (auditory visual) would be able to 

provide a solution of how SL performance can be improved by using the new experimental 

paradigm with sequences of visual – as it is now, auditory non-verbal and auditory verbal 

stimuli. During the experimental auditory tasks, in each trial each location would be associated 

with an auditory stimulus (verbal or non-verbal) and it would be presented on the visual array 

with a green dot, suggesting a multimodal sequential SL paradigm, where the association of 

the location and the auditory stimuli is mediated by the association of the location and the 

visual stimuli (green dot) on the monitor. That experimental set up would provide more 

information about SL across different domains and during multisensory input, but would also 

increase the ecological validity, since multisensory input is common in everyday learning 

environments. For example, infants in their everyday life, when they are playing with toys or 

eating are being exposed to an auditory verbal stimulus(word) and a visual stimulus (object in 

the scene) and are expected to learn that the specific object is associated with the verbal label 

in order to successfully build a mental representation. 

However, as every experimental paradigm, it comes with its limitations. One of the main 

limitations of this paradigm is that it observes the learning within a very specific time window 

(blank period of guessing) that is only 750 ms. Given the circumstances within our 

experimental set up the exposure was a pre-set factor of 40 occurrences (experimental time 

limitations) for each item of a sequence within a task. In terms of the actual learning process, 

that could imply that participants haven’t had enough exposure to the sequences, or enough 

time to plan eye-movements while they are still learning the sequence. Furthermore, even when 

a sequence is learned, and individuals can plan in advance of the blank period their eye-
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movements, it is not necessary to attend to the target/correctly guessed location for longer than 

200-250 ms. This fact was evident in the thesis results by the low means of hits on target-

learning (aggregated across participants), since the learning was calculated as a count of raw 

eye-samples on the target location during the blank period of 750ms, and the percentage of 

learning rate was calculated as the proportion of the raw eye-samples on target, divided by the 

maximum recording of eye-samples number that each eye-tracker allowed (depending on its 

frequency). That suggests that the observed count data that were interpreted as “bad scores” of 

learning, could have actually been misinterpreted, either because participants didn’t have 

enough time to look more on the target location due to anticipation of eye—movement planning 

on that window, or due to the fact that participants did not have to attend for 750ms even when 

they learned the location. In order to deal with this problem, all the modelling that occurs in 

chapters 6 and 7 has been replicated in a binomial format in Appendix M, where learning was 

calculated as a binary variable of 0s and 1s. The threshold for defining a location as learned 

was calculated by getting the mean of eye-samples on the first item, from each of the 4 

sequences, across all 6 tasks and all 36 subjects. That threshold was representing the hit on 

target by chance process. That threshold was 13,21 eye-samples on target and because it was 

aggregated across participants that did and didn’t learn, it was rounded up to 25 eye-samples 

to make the threshold criterion stricter. Any target with equal or greater than 25 eye-samples 

on it was classified as learned (1), and every target with less than 25 eye-samples was classified 

as non-learned (0). The binary models replicate the findings of the Poisson distribution models 

in every aspect but with higher learning scores. Since they don’t add additional information 

about the data, they were not included as part of the analysis in this thesis but are demonstrated 

in Appendix M to show how different mathematic calculations can account for low numeric 

values and validate that the results of this thesis are accurate.  
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Finally, another limitation of the current experimental set up, was the fact that learning was 

aggregated across learners and non-learners in this thesis. Since, the new experimental design 

was under examination for its validity, it was important to include in the data the participants 

that didn’t learn and try to understand why this happened. Part of the non-learners is reflecting 

individual differences in SL, as 40 occurrences might not be enough exposure for them to learn 

the task. Another part of the non-learners represents the participants that were not motivated to 

do the task, the participants that lost their attentional focus on the task and were confused by 

the implicit nature of the task or the participants that were exhausted by the duration of the total 

experiment. That parameter was controlled in Design B and in the data presented in the analysis 

chapters, by introducing into the design the negative feedback beep sound that motivated 

participants to perform well in the task (guess correctly) and concentrate, and by adding breaks 

after each task. Future experiments that use the suggested new experimental paradigm are 

highly recommended to increase the amount of occurrence within a task, so that they can allow 

more exposure within a task that could potentially lead to greater learning. 

B. A reflection of the findings on information processing during sequential SL. 

The positioning effects in Chapter 6, suggest a hierarchical structure in the SL process. In more 

details, this thesis has provided clear evidence that across all 6 tasks, an increased learning rate 

is observed as the item order in the sequence increases. In other words, the learning of the 

location of the nth dot is less than the learning of the n+1th dot etc where n is the order of the 

item in a sequence. These findings suggest evidence against the all or none understanding of 

learning. According to the all or none theory of learning in our experimental paradigm a 

sequence of ABCD items can either be learned as a whole (that doesn’t allow differences in 

scores between the S-R of AB, BC and CD) or it can’t be learned at all. 
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These findings are additionally suggesting evidence for a unit chunking mechanism of SL 

(Franco & Destrebecqz, 2012; Isbilen, Mccauley, Kidd & Christiansen, 2020), rather than 

simple TPs (Perruchet, 2018; Perruchet & Desault, 2008; Newport, Hauser, Spaepen & Aslin. 

2004). If the information processing relied merely on TPs, then no differences in the learning 

of the items within the sequence would be expected, since TPs were even across all items within 

a sequence. However, future research should use the same experimental paradigm to 

investigate how unit chunking information occurs during SL (pairs or triplets) and if it is solid 

or depends on the length of a sequence (even or odd number). That hypothesis could be easily 

added by introducing sequences of greater lengths in the tasks, and by creating tasks that 

contain part-known sequences and part-new sequences and compare the learning across the 

different tasks. 

Also, the same experimental design could be used to examine information recall and 

generalisation, by introducing greater exposure of the task until the learning of the pattern-

implicit rule (sequence length, e.g 3 dots) was successful on an 75% level and above and then 

introduce a task that contained the same pattern-implicit rule (sequence length, e.g.3dots task) 

on a different location array. A comparison between the two learning rates would show how 

once the learning of a pattern is successful, it can be generalised to facilitate the learning of 

novel stimuli that contain the same pattern-implicit rule. 

These findings can be used by AGL (Beran & Qwren, 2018; Lieberman et al., 2004) models, 

or artificial language models, to provide a deeper understanding on how SL occurs and improve 

current methodologies and models that are being used to understand language learning or visual 

SL in adults and infants. Furthermore, studies that allow simultaneous data collection of EEG 

and eye-tracking data with the usage of this experimental paradigm and the portable Gazepoint 

GP3 eye-tracker, can identify neuronal networks that are activated during the encoding and the 
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retrieval information phase, and differences in activation frequencies when the knowledge is 

generalised to novel stimuli. 

C. A reflection of the findings on sequence length and mixture length effects during 

sequential SL. 

Sequence length is one of the main components of sequential SL (Saffran et al., 1999; Sanchez 

& Reber, 2018; Slone & Johnson, 2018; Stadler & Neely, 1997; Heimbauer, Conway, 

Christiansen, Beran & Owren, 2018) and it is necessary to understand how it works, in order 

to understand how processes such as language learning, vocabulary growth, and word 

segmentation occur. The findings of this thesis, suggest that longer sequences are harder to 

learn than shorter sequences, however when sequence lengths are mixed within a task the 

learning of longer sequences is facilitated and the learning of shorter sequences is impeded, in 

comparison to the performance in the same length tasks.  

This kind of information is extremely useful if we consider that infants use SL as their main 

mechanism to learn language and form their verbal units in stages of syllables, words and 

sentences. These verbal units coexist in multiple lengths, and most of the times are blended 

within a stream of multiple lengths that is presented in specific order during time. For example, 

a syllable consists from 1, 2, 3…etc letters or sounds, a word can consist of 1, 2, 3, …etc. 

syllables, and a sentence can consist of 1, 2, 3...etc. lengths of words. Understanding how the 

mixture of lengths within these verbal units facilitates or impedes learning can be crucial for 

educational and clinical developmental reasons.  

Interestingly, it is still unclear if the difference in performance across the difference lengths 

when lengths are mixed and not, occurs due to procedural cognitive load. It could be the case 

that in a same length task that consists of 4 sequences each with a sequence length of 4 dots, 

participants need to learn 16 different locations, but in a mixed length task of 2 sequences of 2 
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dots and 2 sequences of 4dots participants have to learn only 12 locations and therefore less 

information processing. However, it could be the case that due to the way encoding occurs 

(pairs or triplets), even for mixed length sequence tasks (2&4 dots) there is facilitation from 

applying the rule of chunking of one sequence length (e.g. pairs) to the other (4 dots) that leads 

to faster learning. If the observed differences are actually due to procedural cognitive load, then 

the longer sequences in same length task the harder the learning would be, while when those 

long sequences are mixed with shorter their learning will increase. 

Furthermore, sequences of mixed lengths have shown that the difference in performance 

observed between mixed and non-mixed length task, might not rely on the sequence length 

itself, but on the way that information encoding happens during sequential SL. We saw that 

participants performed significantly better in the 2&4 dots task rather than the 2&3 and 3&4 

dots tasks. If the difference in performance relied purely on the amount of information that 

needs to be processed, it would be expected to see the learning rate of 2&3 dots task to be 

higher than the learning rate of 2&4 dots task. Also, the fact that 3 dots task performed equally 

well across mixed and non-mixed tasks should be taken into consideration.  

One possible explanation that could explain all the sequence length and mixture findings could 

be that chunking mechanism operates with both triplets and pairs. Therefore, when an even 

number of sequence lengths is blended (2&4) dots, it is automatically facilitated due to the 

usage of the same chunking mechanism (pairs). However, when sequences with odd and even 

lengths are blended, the learning is impeded, as the chunking mechanism anticipates between 

the usage of pairs and triplets. In order to be able to answer that question, sequences with 5 

items and 6 items should be introduced to the experimental paradigm. By comparing 

performance between mixed length tasks, with different consistencies in lengths (e.g. 2&5 dots, 

3&5 dots, 2&4 dots, 5& 4 dots), we would be able to understand how the chunking occurs and 

if the impediment of learning is clearly due procedural cognitive load. 
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D. Application of thesis findings in applied educational and clinical concepts & future 

research directions. 

The findings of this thesis have direct implications in the research field as explained in the 

sections above, but also in applied educational psychology, clinical psychology and 

psycholinguistics. 

Since SL is the main mechanism of language learning (written and verbal format), direct 

implications of these findings could be applied in education. By creating online task/ games 

that implicitly contain linguistic structures and by formulating and ordering the structures in a 

way that facilitates and maximises the learning, we could examine how typically developed 

and atypical children learn language (vocabulary, reading, orthography-spelling), while 

maintaining a pleasant character in the educational task. 

A series of studies (Arciuli, 2018; Arciuli & Conway, 2018; Arciuli & Simpson, 2011) have 

shown that SL should be applied in educational contexts in order to facilitate learning across 

typically and atypically developed children. Since SL is a mechanism highly involved in 

processes such as language learning (Saffran et al.,1996), vocabulary learning (Chan & 

Monaghan, 2019), reading (Arciuli, 2018), orthography (Protopapas et al., 2017), and word 

segmentation (Perruchet & Vinter ,1998; Perruchet & Desaulty, 2008), the experimental 

paradigm of this thesis must be applied in future research in developmental projects, in order 

to provide a clearer understanding of differences observed in SL performance between different 

developmental age groups and across modalities.  

Additionally, the experimental design suggested above could be used in clinical populations 

with developmental disabilities (dyslexia, dyspraxia, ASD, ADHD), in order to understand 

why SL is harder, how information is being processed during sequential SL and how we can 

intervene in order to facilitate the learning in the process. As it was shown in Chapter 8, eye-
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movements have always been a solid method of diagnostics and performance comparisons 

across clinical populations. What this new design is suggesting, is not only the observation of 

differences in performance across typical vs atypical, but an identification of the problem 

during the learning procedure when targeted to the problem solution.  

Jones, Tarpey, Hamo, Carberry, Brouwer and Lord (2018) investigated the mechanism of SL 

on young autistic children and suggested that poor verbal abilities of ASD children can be 

explained by differences observed in visual SL performance in a task between typical and ASD 

children. Jones & Klin (2013) also highlighted the importance of early assessment of ASD, 

since visual attentional decline can be evident on ASD infants from the early age of 2-6 months- 

old. A methodology like the one suggested in the thesis, could provide useful information about 

the differences in SL processing between typical individuals and ASD individuals from a very 

young age, in order to tackle the potential cognitive deficits in advance. 

Since SL performance across the visual and auditory domains have been shown to differ in 

individuals with ADHD (Kaitlyn & Stevenson, 2018), the new paradigm could be used across 

individuals with ADHD and typical individuals to provide more details about how information 

encoding and pattern recognition occurs in ADHD (Joao, Marcelo, Efujita & Luis, 2012). 

Additional expansion of the developmental spectrum of the task is also recommended, since 

SL has been widely investigated in infants and children to understand processes such as 

language learning (Saffran et al.,1999; Slones & Johnson, 2018; Arciuli, 2018; Arciuli & 

Simpson, 2011). 

Areas such as computational models of language, that have been using TPs as the main 

mechanism of SL, can be directly affected by the implementations of this thesis. Reforming 

currently existing models, in accordance to the encoding of information via chunking units and 

not TPs, could improve models performance, increase the fit of their predictions and result in 
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models that imitate better the actual language learning process. The same experimental 

paradigm could be used so that the sequential learning occurs within sequences of verbal 

information (written or auditory), to validate suggested orthographic (Protopapas et al., 2017) 

and speech production (Lee, 2017) theories that use SL as their main mechanism. 

E. Conclusions 

To conclude, this thesis is suggesting a new strong experimental paradigm that investigates the 

SL mechanism during its time course, rather than assessing its outcome at the end of the 

process. That allows the observation of the learning while it is developing from time-point zero 

and requests zero prior exposure to the stimuli or the experimental procedure, contrast with 

other methods such as artificial language tasks that were exposing participants to already 

known streams of syllables (Saffran et al., 1996; Aslin & Newport, 2012). The items 

positioning effects shown in this thesis, provide strong evidence that SL learning used a unit 

chunking information processing that has a hierarchical structure, rather than a mechanism of 

extraction of TPs. Sequence length effects on the other hand, showed that while 3 items dots 

are learned in same tasks and mixed task with a same rate, 4-item sequences are learned better 

when they are mixed with 2-item sequences, than when being learned in a same length task. 

However, 2-item sequences are learned better when they are presented in non-mixed tasks. 

Furthermore, performance across mixed length sequence tasks revealed that tasks that contain 

sequences with even sequence length number (2&4), the learning rate of the task is significantly 

better than in tasks with mixtures of odd and even sequence lengths (2&3, 3&4). Finally, 

findings of this thesis can be implemented in future research about information processing in 

sequential SL and language learning in both typical and atypical populations. 
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Appendix A – Study Participation Documents 

A.1 Information Sheet and Consent Form. 
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A.2 Debrief Form.  
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Appendix B – Python Experimental scripts 

B.1 Experimental Set Up Script. 

from __future__ import division 1 
from psychopy import visual, sound, core 2 
from psychopy.iohub.client import launchHubServer 3 
from collections import OrderedDict as od 4 
import pandas as pd 5 
 6 
import os 7 
import sys 8 
 9 
sys.dont_write_bytecode = True # just during testing 10 
 11 
 12 
class alearn(object): 13 
    ''' 14 
    sets up window and provides stimuli for Sophia's associative  15 
    learning (alearn) experiments 16 
    ''' 17 
     18 
    def __init__(self, session_info, outfile, tracker_type = 'mouse'): 19 
        '''tracker_type must be mouse, SR or GP3''' 20 
         21 
         22 
        self.tracker_type = tracker_type 23 
        self.session_info = session_info 24 
        self.outfile = outfile 25 
         26 
        self.quitnow = False 27 
         28 
        self.io_config_files = {'mouse':'configs/iohub_config.yaml', 29 
                                'SR':'configs/iohub_config_sr_1.yaml', 30 
                                'GP3':'configs/iohub_config_gp3.yaml'} 31 
     32 
         33 
        # launch iohub and set devices 34 
        self.io_config = {'experiment_code':'alearn', 35 
                          'session_info': self.session_info, 36 
                          'datastore_name':self.outfile, 37 
                          'iohub_config_name': 38 
self.io_config_files[self.tracker_type]} 39 
     40 
        self.io = launchHubServer(**self.io_config) 41 
         42 
        self.keyboard = self.io.devices.keyboard 43 
        self.display = self.io.devices.display 44 
 45 
        if self.tracker_type == 'mouse': 46 
            self.mouse = self.io.devices.mouse 47 
        else: 48 
            self.tracker = self.io.devices.tracker 49 
            50 
        self.stimdir = "stimuli" 51 
         52 
        self.win = 'none' 53 
         54 
        self.winsize = (0,0) 55 



Appendix B 

220 
 

         56 
        self.showAOI = False #set to false from run 57 
         58 
        # globals used for playing sequences of sounds 59 
        # these are initialised with get_sounds() 60 
        self.si = 0 61 
        self.sstart = 'none' 62 
         63 
        self.gazedot_visible = False 64 
         65 
         66 
        # this defines various different sets of locations 67 
        # the keys must correspond to the location lables used in the trial 68 
file 69 
        # The values below are just for testing. Normally created at 70 
runtime with  71 
        # the get_locations function below. 72 
        self.locations_data = od([ 73 
                ('A', ((-.3,.3), 74 
                       (0,0), 75 
                       (0,.3))) 76 
                ,('B',((-.3,.3), 77 
                       (0,0), 78 
                       (0,.3), 79 
                       (-.1,.2))) 80 
                ])         81 
     82 
            83 
    def setup(self, background_colour = (0,0,0)): 84 
        ''' 85 
        get a window and create some display object parameters 86 
        ''' 87 
         88 
        # launch window, automatically detecting full screen display size 89 
        self.win = visual.Window(pos = (0,0), 90 
                                 units = 'pix', 91 
                                 color = background_colour, 92 
                                 fullscr=True, 93 
                                 allowGUI = False)         94 
         95 
        print "Window size: %d by %d"%(self.win.size[0],self.win.size[1])         96 
                 97 
                98 
        #just for testing 99 
        # al.locations should be specified at runtime using  100 
        # al.locations = 101 
al.location_sets(al.win.size[1],al.locations_data)[k] 102 
        # here k is a key from al.locations.data 103 
#        y = self.win.size[1] 104 
#        self.locations = od([  105 
#                            (1, (-y/3,y/3)), 106 
#                            (2, (0,y/3)), 107 
#                            (3, (y/3, y/3)), 108 
#                            (4, (-y/3,0)), 109 
#                            (5, (0,0)), 110 
#                            (6, (y/3,0)), 111 
#                            (7, (-y/3,-y/3)), 112 
#                            (8, (0,-y/3)), 113 
#                            (9, (y/3,-y/3)) 114 
#                            ]) 115 
         116 
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        gazedot_opacity = 1 117 
        if self.gazedot_visible: 118 
            gazedot_opacity = 1 119 
                     120 
        self.gazedot = visual.GratingStim(self.win, tex=None,mask='gauss', 121 
                         pos=[0, 0],size=[25,25], 122 
                         opacity=gazedot_opacity, units='pix')                        123 
                 124 
     125 
    def get_locations_data(self, loc_filename, sheet = 'locs1'): 126 
        '''takes excel file  127 
        loc_filename = path. Sheet has columns for set-label, x, y 128 
        ''' 129 
        Df =  pd.read_excel(loc_filename,sheet_name = sheet, 130 
            na_values = [], keep_default_na = False) 131 
 132 
        dct = od() 133 
 134 
        for a,c,d in zip(Df.location_set,Df.x,Df.y): 135 
            dct.setdefault(a,[]) 136 
            dct[a].append((c,d)) 137 
             138 
        l = ((i[0],tuple(i[1])) for i in dct.items())       139 
         140 
        dct = od(l) 141 
         142 
        for k in dct.keys(): 143 
            dct[k] = sorted(dct[k], key = lambda x: (x[1]), reverse = True) 144 
 145 
        return dct 146 
     147 
    def location_sets(self, y, locdat): 148 
        '''returns dictionary of different sets of locations 149 
        locdat -- locations data dictionary 150 
        y -- display height 151 
        ''' 152 
         153 
        def get_pixel_coords(y,locs): 154 
            '''returns dict of x,y screen coordinates/n 155 
            y -- display height (for win.size)/n 156 
            locs = list of x,y coordinates expressed as proportion of 157 
screen height 158 
            varying from -.5 to +.5 because locations are centre-159 
anchored''' 160 
         161 
            d = od([]) 162 
            i = 1     163 
            for loc in locs: 164 
                d[i] = (loc[0]*y,loc[1]*y) 165 
                i += 1  166 
            return d         167 
         168 
        d = od([]) 169 
        for k in locdat.keys(): 170 
            d[k] = get_pixel_coords(y,locdat[k]) 171 
             172 
        return d       173 
     174 
    def get_locations(self, loc_filename, sheet = 'locs1'): 175 
        '''winy = display height'''         176 
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        return 177 
self.location_sets(self.win.size[1],self.get_locations_data(loc_filename, 178 
sheet)) 179 
     180 
    def image_stim(self,imagefilename, size = 1/12, position = (0,0)): 181 
        """ 182 
        Create PsychoPy image objects. 183 
         184 
        imagefilename -- file name for image (has to be png?) 185 
         186 
        size -- x and y multiplier (one value), as proportion of screen 187 
width. 188 
        Image will be forced to square 189 
        """ 190 
        winx,winy = self.win.size 191 
        192 
        x = winx*size 193 
        y = (winy*size*(winx/winy)) 194 
 195 
        im = visual.ImageStim(self.win, units='pix' 196 
                              , image = 197 
os.path.join('.',self.stimdir,imagefilename) 198 
                              , size = (x,y) 199 
                              , pos = position 200 
                              ) 201 
         202 
        return im 203 
         204 
    def get_aoi(self, imx, imy, scale = 2, ratio = 1): 205 
               206 
        """ 207 
        Create rectangle around image (probably).  208 
        Visible if alearn.showAOI == True 209 
         210 
        imx,imy -- dimensions of associated image or row of images, in 211 
pixels 212 
         213 
        scale -- multiplier on y of image (e.g. 2 gives aoi twice as high 214 
as image) 215 
         216 
        ratio -- proportion of (y aoi - y image) to add to x of aoi 217 
        """ 218 
         219 
        y = imy*scale 220 
        x = imx + (y-imy)*ratio 221 
 222 
        return visual.Circle(self.win, radius=0.5, edges=32,  223 
                           units='pix',  224 
                           size = (x,y), 225 
                           lineWidth = 1, 226 
                           opacity = int(self.showAOI)) 227 
           228 
     229 
    def get_sounds(self,soundfilename): 230 
        """ 231 
        initialises sound sequence play globals         232 
        returns one or more psychopy sound stim 233 
        """ 234 
         235 
        self.sstart = core.getTime() 236 
        self.si = 0           237 



Appendix B 

223 
 

         238 
        sounds = []         239 
         240 
        if 'none' not in soundfilename: 241 
            if type(soundfilename) in (str, unicode):             242 
                soundfilename = [soundfilename]      243 
                 244 
            sounds = [sound.Sound(os.path.join('.',self.stimdir,sname)) for 245 
sname 246 
                              in soundfilename] 247 
 248 
        return sounds 249 
                               250 
 251 
    def q(self): 252 
        '''close gracefully''' 253 
        self.win.close() 254 
        self.io.quit() 255 
         256 
    def ioq(self): 257 
        '''quit just iohub server - useful when testing''' 258 
        self.io.quit() 259 
 260 
     261 
    def escaped(self): 262 
        '''test for quit key'''       263 
        if 'escape' in self.keyboard.getKeys(): 264 
            self.io.sendMessageEvent("escape key pressed to quit",  265 
                                     category = 'Experiment') 266 
            print "Escape key pressed to quit at %.3f\n"%(core.getTime()) 267 
            return True 268 
 269 
     270 
    def set_image_aoi(self,target_image, foil_image, target_location,  271 
                      image_size = 1/12, aoi_scale = 2, aoi_ratio = 1): 272 
        """ 273 
        Places an image at each of the locations in self.locations 274 
        target_image is placed at target_location 275 
        creates aoi image around target 276 
        foil is placed at each of the other locations defined in  277 
        self.locations 278 
         279 
        target_image -- target image filename\n 280 
        foil_image -- foil (non target) image filename\n 281 
        target_location -- must be integer and be a key in self.locations\n  282 
        image_size -- a screen size multiplier \n 283 
        aoi_scale -- aoi proportion of image height \n 284 
        aoi_ratio -- proportion of aoi height to add to width   285 
         286 
        returns list of psychopy images objects and an aoi image  287 
        with correct positions already set  288 
         289 
        """ 290 
         291 
        # get list of positions 292 
        positions = self.locations.values() 293 
         294 
        # make list of image files 295 
        image_files = [foil_image for p in positions] 296 
 297 
        # set image file at target position         298 
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        image_files[positions.index(self.locations[target_location])] = 299 
target_image 300 
         301 
        # make psychopy images 302 
        images = [self.image_stim(im,  303 
                                  size = image_size, 304 
                                  position = p) for (p,im) in 305 
zip(positions,image_files)] 306 
         307 
        # make aoi 308 
        imx,imy = 309 
images[positions.index(self.locations[target_location])].size 310 
         311 
        aoi = self.get_aoi(imx, imy, scale = aoi_scale, ratio = aoi_ratio) 312 
         313 
        aoi.pos = self.locations[target_location] 314 
         315 
        return images, aoi 316 
          317 
     318 
    def draw_stim(self, images, aoi, locs = [], sounds = [], sound_interval 319 
= 0, draw_image = True): 320 
        ''' 321 
        Draws an psychopy image or images, optionally modifying their 322 
location 323 
        Draws gazedot and aoi. 324 
        Optionally plays one or more sounds, with sound_interval pause 325 
between each sound.\n 326 
         327 
        This is not called directly by the experiment run script but used 328 
by the 329 
        display functions below. 330 
        ''' 331 
         332 
        self.quitnow = self.escaped() # check for escape key 333 
 334 
        if self.tracker_type != 'mouse': 335 
            if self.tracker.getLastGazePosition(): 336 
                gpos = self.tracker.getLastGazePosition() # returns 202 if 337 
runtime gaze location not supported 338 
            else:  339 
                gpos = (-999,-999) 340 
                print 'could not get tracker last position' 341 
        else:  342 
            gpos = self.mouse.getPosition() 343 
             344 
        self.gazedot.pos = gpos 345 
        gaze_in_aoi = False 346 
         347 
        # draw stuff 348 
        if draw_image:  349 
            if locs: 350 
                for image,loc in zip(images,locs): 351 
                    image.pos = loc 352 
                    image.draw() 353 
                    #print "image dimensions (draw stim) = ",image.size 354 
            else:  355 
                for image in images: 356 
                    image.draw() 357 
         358 
        aoi.draw() 359 
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         360 
        self.gazedot.draw() 361 
         362 
        #play sequence of sounds 363 
        if sounds:                364 
            if core.getTime() >= self.sstart and self.si < len(sounds):                    365 
                sounds[self.si].play() 366 
                print "%d, %s played at %.3f"%(self.si, 367 
sounds[self.si].fileName, core.getTime())             368 
                self.sstart += sound_interval 369 
                self.si += 1 370 
             371 
 372 
        gaze_in_aoi = self.gazedot.overlaps(aoi) 373 
         374 
        flip_time = self.win.flip() 375 
         376 
        return {'gaze_overlap': gaze_in_aoi, 377 
                'time':flip_time,  378 
                'gaze_position': gpos} 379 
                   380 
     381 
    def timed_display(self,imagefilename = ['foil.png','foil.png'], 382 
                  loc = 1, 383 
                  locs = [], 384 
                  image_size = 1/12, #proportion of display width 385 
                  aoi_scale = 2, #aoi height = image height * aoi_scale 386 
                  aoi_ratio = 1, #porportion of aoi extra height to add to 387 
aoi width 388 
                  dur = 2.000, #duration 389 
                  label = 'timed_display',  390 
                  soundfilename = [], 391 
                  sound_interval = 1.000, #time between sounds in more than 392 
one (s) 393 
                  draw_nothing = False, 394 
                  blank_on_exit = True): 395 
         396 
        ''' 397 
        Shows a shape (and aoi) for a period dur at location with keyword 398 
loc 399 
        imagefilename can be list of filenames or a single string 400 
        ''' 401 
         402 
        out = od([])   # dictionary to collect variable to output 403 
         404 
        if not self.quitnow: 405 
             406 
            foilpng,targetpng = imagefilename 407 
                                408 
            images,aoi = self.set_image_aoi(targetpng, foilpng, loc,  409 
                      image_size = image_size, aoi_scale = aoi_scale, 410 
aoi_ratio = aoi_ratio) 411 
             412 
            sounds = []   413 
            if soundfilename:             414 
                sounds = self.get_sounds(soundfilename) 415 
             416 
            flip = self.draw_stim(images, aoi, sounds, sound_interval, 417 
locs, 418 
                                  draw_image = not draw_nothing) 419 
             420 
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            onset = flip['time'] 421 
            gaze_pos = flip['gaze_position'] 422 
             423 
            out['onset_time'] = onset 424 
            out['onset_gaze_pos'] = gaze_pos 425 
             426 
            while core.getTime() - onset <= dur and not self.quitnow: 427 
                flip = self.draw_stim(images, aoi, sounds, sound_interval, 428 
locs, 429 
                                  draw_image = not draw_nothing) 430 
         431 
            if blank_on_exit:  432 
                self.win.flip() 433 
              434 
            out['end_time'] = flip['time'] 435 
            out['end_gaze_pos'] = flip['gaze_position'] 436 
                         437 
            print '%s onset = %.3f'%(label,onset) 438 
             439 
            return out 440 
 441 
 442 
    def gaze_contingent_display(self,imagefilename = ['foil.png', 443 
'target.png'], 444 
                                label = 'gaze contingent display', 445 
                                loc = 1, 446 
                                locs = [], # see note 447 
                                image_size = 1/12, #proportion of display 448 
width 449 
                                aoi_scale = 2, #aoi height = image height * 450 
aoi_scale 451 
                                aoi_ratio = 1, #porportion of aoi extra 452 
height to add to aoi width 453 
                                #dur = 3.000, #duration 454 
                                nofix_sound = '', # if wav file then its 455 
played if no fix on location at onset 456 
                                soundfilename = [], 457 
                                sound_interval = 1.000, #time between 458 
sounds if more than one (s) 459 
                                threshold = .3, 460 
                                persist_after_gaze = 1.0, 461 
                                draw_nothing = False, 462 
                                blank_on_exit = False): 463 
     464 
        ''' 465 
        shows a shape until a minimum gaze duration is reached 466 
        threshold is time that gaze needs to be in aoi before progress 467 
        persist after gaze is time in ms that display remains on screen 468 
        after gaze duration threshold met/n/n 469 
         470 
        locs is not normally needed. It overides locations defined in 471 
self.locations 472 
        and must be same length and self.locations. 473 
        ''' 474 
         475 
        out = od([])   # dictionary to collect variables to output 476 
              477 
        if not self.quitnow:     478 
            i = 0 479 
            switch = 0 480 
             481 
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            foilpng,targetpng = imagefilename 482 
                                483 
            images,aoi = self.set_image_aoi(targetpng, foilpng, loc,  484 
                      image_size = image_size, aoi_scale = aoi_scale, 485 
aoi_ratio = aoi_ratio) 486 
             487 
            images_2,aoi= self.set_image_aoi(foilpng, foilpng, loc,  488 
                      image_size = image_size, aoi_scale = aoi_scale, 489 
aoi_ratio = aoi_ratio) 490 
            sounds = []   491 
            if soundfilename:             492 
                sounds = self.get_sounds(soundfilename) 493 
             494 
            flip = self.draw_stim(images, aoi, sounds, sound_interval, 495 
locs, 496 
                                  draw_image = not draw_nothing) 497 
             498 
            if not flip['gaze_overlap'] and nofix_sound: 499 
                500 
sound.Sound(os.path.join('.',self.stimdir,nofix_sound)).play() 501 
                 502 
            onset = flip['time'] 503 
            gaze_pos=flip['gaze_position'] 504 
                                            505 
            out['onset_time'] = onset 506 
            out['onset_gaze_pos'] = gaze_pos 507 
            out['location_x'] = self.locations[loc][0] 508 
            out['location_y'] = self.locations[loc][1] 509 
             510 
            while switch == 0 and not self.quitnow: 511 
                flip = self.draw_stim(images, aoi, locs, sounds, 512 
sound_interval, 513 
                                      draw_image = not draw_nothing) 514 
                 515 
                if flip['gaze_overlap']:                 516 
                    on_target_start = flip['time'] 517 
                    #on_target_first_position=flip['gaze_position'] 518 
                                   519 
                    i += 1            520 
                     521 
                    while flip['gaze_overlap'] and not self.quitnow: 522 
                        flip = self.draw_stim(images, aoi, locs, sounds, 523 
sound_interval, 524 
                                              draw_image = not 525 
draw_nothing) 526 
                         527 
                        if core.getTime() - on_target_start >= threshold: 528 
                            thresh_met_time = flip['time']  529 
                            last_position_in_aoi = flip['gaze_position'] 530 
                            duration = thresh_met_time - onset 531 
                             532 
                            out['gaze_dur_threshold_reached'] = 533 
thresh_met_time 534 
                            out['gaze_dur_threshold_reached_pos'] = 535 
last_position_in_aoi 536 
                            out['entries_before_gaze'] = i 537 
                             538 
                            switch = 1                   539 
                             540 
                            print ('\n%s onset = %.3f, duration = %.3f, 541 
entries = %d\n'  542 
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                                                        543 
%(label,onset,duration,i)) 544 
                             545 
                            while core.getTime() - thresh_met_time <= 546 
persist_after_gaze and not self.quitnow: 547 
                                flip = self.draw_stim(images_2, aoi, locs, 548 
sounds, sound_interval, 549 
                                                      draw_image = not 550 
draw_nothing) 551 
                             552 
                            break 553 
                             554 
                     555 
                     556 
                out['end_time'] = core.getTime() 557 
                 558 
                if switch:  559 
                    break 560 
             561 
            if blank_on_exit:  562 
                self.win.flip() 563 
                 564 
            return out 565 
 566 
     567 
    def yes_to_question(self,msg_text): 568 
        msg = visual.TextStim(self.win,msg_text) 569 
        msg.draw() 570 
        self.win.flip() 571 
        core.wait(.2) 572 
        self.keyboard.clearEvents() 573 
        if 'y' in self.keyboard.waitForKeys():      574 
            return True 575 
        else: 576 
            return False 577 
 578 
         579 
    def pause_until_anykey(self, msg_text = "Press any key to 580 
continue..."): 581 
        msg = visual.TextStim(self.win,msg_text) 582 
        msg.draw() 583 
        self.win.flip() 584 
        core.wait(.2) 585 
        self.keyboard.clearEvents() 586 
        keys = self.keyboard.waitForKeys() 587 
        print("Key press detected: {}".format(keys)) 588 
        self.win.flip() 589 
         590 
 591 
 592 
#%% 593 
 594 
# just for testing      595 
if __name__ == '__main__': 596 
     597 
   from aseq_setup import alearn as _alearn 598 
#   from calibration_setup import calibration 599 
 600 
   info = od([('Subject Name','Mark'), 601 
                        ('Session Code','todays date'), 602 
                        ('Tracker type, mouse / SR / GP','GP3'), 603 
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                        ('Location', 'school or nursery name'), 604 
                        ('Age, months',0), 605 
                        ('Sex: M,F','F'), 606 
                        ('baseline / main', 'baseline'), 607 
                        ('familiar / unfamiliar', 'familiar'), 608 
                        ('image / speech', 'image'), 609 
                        ('Comments', 'I have no comments') 610 
                    ]) 611 
     612 
   sess_info = od([('code',info['Session Code']), 613 
                             ('name',info['Subject Name']), 614 
                             ('comments',info['Comments']), 615 
                             ('user_variables',{}) 616 
                             ])     617 
     618 
   outfile = 'test'     619 
     620 
   al = _alearn(sess_info,outfile, tracker_type = 'mouse') 621 
    622 
   def testbed(): 623 
        al.gazedot_visible = False 624 
        al.setup() 625 
        al.locations = 626 
al.location_sets(al.win.size[1],al.locations_data)['B'] 627 
        #al.q() 628 
         629 
   testbed() 630 
 

B.2 Calibrartion Set Up Script.

""" 1 
Created on Thu Jun 21 10:42:47 2018 2 
 3 
@author: psychlaptop 4 
""" 5 
 6 
from __future__ import division, print_function, absolute_import 7 
 8 
from psychopy import core, visual 9 
from psychopy.gui.qtgui import infoDlg, warnDlg 10 
from psychopy.iohub.client import launchHubServer 11 
 12 
 13 
def calibration(mytracker): 14 
    GP_CAL_ERR_THRESHOLD = 20.0 15 
    infoDlg("Eye Tracker Setup", 16 
        "Press OK to start\neye tracker setup / calibration procedure.") 17 
    run_cal = True 18 
    while run_cal is True: 19 
          r = mytracker.runSetupProcedure() 20 
          if isinstance(r, dict): 21 
        # iohub-GP3 interface setup call returns the GP3 cal results as a 22 
dict.         23 
        # Parse GP3 calibration results dict 24 
             cal_avg_err = r.get('SUMMARY',{}).get('AVE_ERROR') 25 
             if cal_avg_err is None: 26 
                 # Not a GP3 tracker?? 27 
                 run_cal = False 28 
                 continue     29 
             num_calpt = len([k for k in r.keys() if k.startswith('RV')]) 30 
             num_val_calpt = r.get('SUMMARY',{}).get('VALID_POINTS') 31 
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             if num_calpt == num_val_calpt and cal_avg_err < 32 
GP_CAL_ERR_THRESHOLD:                                                                       33 
                    infoDlg("Calibration Successful", "Calibration 34 
Complete. Average Error: %.2f"%(cal_avg_err)) 35 
                    run_cal = False 36 
             else: 37 
                warnDlg("Calibration Failed", "Calibration Incomplete (%d 38 
of %d valid). Average Error: %.2f\nPress OK to restart 39 
Calibration."%(num_val_calpt, num_calpt, cal_avg_err)) 40 
          else: 41 
                 run_cal = False 42 
 

B.3 Experimental Run Script. 

# -*- coding: utf-8 -*- 1 
 2 
from __future__ import division, absolute_import 3 
from psychopy import gui, core 4 
from psychopy.data import importConditions, TrialHandler 5 
from psychopy import visual, sound, core 6 
from datetime import datetime 7 
from collections import OrderedDict 8 
from aseq_setup_sound import alearn 9 
from calibration_setup import calibration 10 
import os 11 
import sys 12 
 13 
 14 
 15 
#%% Get Session-level information via dialogue box 16 
 17 
# for real 18 
show_dialogue = True 19 
ismouse = False #forces mouse if true 20 
 21 
# for testing 22 
#show_dialogue = False 23 
#ismouse = True 24 
 25 
 26 
# The information 27 
sys.dont_write_bytecode = True # just during testing 28 
 29 
working_dir = os.getcwd() 30 
print "\nworking directory = ", working_dir 31 
 32 
try: scriptname = os.path.basename(__file__) 33 
except: scriptname = '' 34 
 35 
info = OrderedDict([('Experiment name','aseq-exp4') 36 
                    ,('Subject Number (integer from 1 to 36)','1') 37 
                    ,('Trial file name','exp2_very_short.csv') 38 
                    ,('Condition',('C1','C2','C3','C4','C5','C6','ALL')) 39 
                    ,('Date',(datetime.now().strftime('%Y%m%d_%H%M'))) 40 
                    ,('Tracker type: mouse/SR/GP3',('mouse','SR','GP3')) 41 
                    ,('Age',0) 42 
                    ,('Sex',('F','M')) 43 
                    ]) 44 
 45 
if ismouse: info['Tracker type: mouse/SR/GP3'] = 'mouse' 46 
 47 
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# run the diaglogue box 48 
if show_dialogue: 49 
    exp_dlg = gui.DlgFromDict(info, title = '', order = info.keys()) 50 
 51 
# the session info takes a user_variables dictionary 52 
# this is not unpacked in the hdf5 53 
# but I've made an R script to handle this 54 
user_vars = OrderedDict([('age',info['Age']), 55 
                         ('sex',info['Sex']), 56 
                         ('trialfile',info['Trial file name']), 57 
                         ('tracker_type', info['Tracker type: 58 
mouse/SR/GP3']) 59 
                         ]) 60 
 61 
# this is read in by iohub as part of the config 62 
sess_info = OrderedDict([('name',str(info['Subject Number (integer from 1 63 
to 36)']).rjust(2,'0')), 64 
                         ('user_variables',user_vars), 65 
                         ('condition', info['Condition']), 66 
                         ('date',info['Date'])]) 67 
 68 
# get file name (io automatically adds extension) 69 
outf = '%s_%s_%s'%(info['Experiment 70 
name'],sess_info['name'],sess_info['condition']) #add tracker file 71 
index = len([f for f in os.listdir('./output') if outf in f]) 72 
outf = os.path.join('.','output','%s'%(outf)) 73 
if index:  74 
    outf = '%s_v%d'%(outf,index+1) #add version if filename exists 75 
 76 
print 'data saved to %s.hdf5'%(outf) 77 
 78 
#%% run functions 79 
 80 
def calibrate(): 81 
    al.pause_until_anykey(''' 82 
    If this experiment inolves eyetracking then you will now be asked to 83 
calibrate. 84 
      85 
    Press any key to continue... 86 
    ''') 87 
    if iseyetracking: 88 
        al.tracker.setRecordingState(False) 89 
        al.win.close()#to have access on  calibration windows 90 
        calibration(al.tracker) 91 
        al.setup(background_colour=(-1,-1,-1)) 92 
        #al.win = visual.Window(pos = (0,0), #new bit 93 
                                 #units = 'pix', 94 
                                 #color = (-1,-1,-1), 95 
                                 #fullscr=True, 96 
                                 #allowGUI = False) 97 
        #al.win.open() 98 
        al.tracker.setRecordingState(True) 99 
         100 
def run_trial(trial, trial_count):     101 
        102 
        al.io.sendMessageEvent("Trial_start",category = 'trial') 103 
                     104 
        trial['trial_start_time'] = core.getTime() 105 
        106 
        dat = al.gaze_contingent_display(imagefilename =['foil.png', 107 
'target.png'], 108 
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                                   loc = trial['location'], 109 
                                   image_size = 1/20, #proportion of 110 
display width 111 
                                   aoi_scale = 2.75, #aoi height = image 112 
height * aoi_scale 113 
                                   aoi_ratio = 1, #porportion of aoi extra 114 
height to add to aoi width 115 
                                   threshold = 0.275, 116 
                                   nofix_sound = 'tone2.wav', 117 
                                   persist_after_gaze = 0.750) 118 
         119 
        if not al.quitnow: 120 
            trial['onset_time'] = dat['onset_time'] 121 
            trial['location_x'] = dat['location_x'] 122 
            trial['location_y'] = dat['location_y'] 123 
            trial['onset_gaze_pos'] = str(dat['onset_gaze_pos']) 124 
            125 
trial['gaze_dur_threshold_reached']=dat['gaze_dur_threshold_reached'] 126 
            trial['gaze_dur_threshold_reached_pos'] 127 
=str(dat['gaze_dur_threshold_reached_pos']) 128 
            trial['entries_before_gaze'] = dat['entries_before_gaze']  129 
 130 
        al.io.sendMessageEvent("Trial_end",category = 'trial') 131 
                     132 
        trial['trial_order_id'] = trial_count 133 
        trial['trial_end_time'] = core.getTime()  134 
                 135 
        al.io.addTrialHandlerRecord(trial.values()) 136 
         137 
def prepare_block(trial): 138 
    # assumes same location set througout block 139 
    al.locations = 140 
al.get_locations('./configs/locations_file.xlsx')[trial['location_set']] 141 
    print "using location set",trial['location_set'] 142 
    print al.locations 143 
                            144 
    calibrate() 145 
    #al.win = visual.Window(pos = (0,0), #new bit 146 
                                # units = 'pix', 147 
                                # color = (-1,-1,-1), 148 
                                 #fullscr=True, 149 
                                 #allowGUI = False)     150 
    return 0 151 
 152 
def run_experiment(trials): 153 
    154 
    blocking_variable = 'condition' 155 
    prev_trial = '' 156 
    trial_count = 0 157 
     158 
    for trial in trials: 159 
 160 
        # actions at the very start of the experiment 161 
        if not prev_trial: 162 
            prepare_block(trial) 163 
     164 
        # actions at the start of each block 165 
        elif trial[blocking_variable] != prev_trial[blocking_variable]: 166 
            prepare_block(trial) 167 
             168 
        #actions for each trial 169 
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        run_trial(trial,trial_count) 170 
        prev_trial = trial         171 
        trial_count += 1 172 
     173 
    al.pause_until_anykey(''' 174 
    That's it. Thank you. And goodbye. 175 
      176 
    Press any key to finish... 177 
    ''') 178 
      179 
    al.q() 180 
    print "\nExperiment run ended successfully" 181 
     182 
 183 
#%% do it all  184 
 185 
 186 
#Note that the csv file that gives trials also includes empty columns for 187 
DVs etc 188 
TrialFilename = os.path.join('.','trials',user_vars['trialfile']) 189 
 190 
trials, ecnames = importConditions(TrialFilename, returnFieldNames=True) 191 
 192 
# to maintain order in output - create ordered rather than normal dict for 193 
each trial 194 
trials = [OrderedDict([(name,trial[name]) for name in ecnames]) for trial 195 
in trials] 196 
 197 
# get just trials for specific subject 198 
 199 
if sess_info['condition']==(str('ALL')): 200 
    trials = [trial for trial in trials if 201 
(str(trial['subno']).rjust(2,'0') == sess_info['name'])] 202 
else: 203 
    trials = [trial for trial in trials if 204 
(str(trial['subno']).rjust(2,'0') == sess_info['name']) and 205 
(str(trial['condition'])==sess_info['condition'])] 206 
 207 
# intiate alearn class and start ioHub 208 
al = alearn(sess_info,outf, tracker_type = user_vars['tracker_type']) 209 
iseyetracking = user_vars['tracker_type'] in ("SR","GP3") 210 
 211 
# create trial handler object 212 
trials = TrialHandler(trials, nReps = 1, method= 'sequential') 213 
al.io.createTrialHandlerRecordTable(trials, cv_order = ecnames) 214 
 215 
# run the experiment 216 
al.setup(background_colour=(-1,-1,-1)) 217 
run_experiment(trials) 218 
 219 

1 

1 
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Appendix C – Data Extraction R scripts 

C.1 R script to get Hdf5 file. 

###### filename = get_hdf5.R 1 
library(tidyverse) 2 
library(stringr) 3 
library(hdf5r) 4 
 5 
#this is where the magic happens 6 
h5f <- H5File$new(filename, mode = "r") 7 
 8 
# get the names of the individual datasets in your hdf5 file 9 
getDatasetName = function(x){tail(strsplit(x,'/')[[1]],1)} 10 
 11 
# write all datasets in hdf5 file to separate data frames 12 
for(dset in list.datasets(h5f)){ 13 
  sname = getDatasetName(dset) 14 
  assign(sname,h5f[[dset]][])  15 
  } 16 
 17 
if('user_variables' %in% names(session_meta_data)){ 18 
  source("./distance/get_session_uservars.R")} 19 
 20 
h5f$close_all() 21 
rm(dset,filename,h5f,sname,getDatasetName) 22 
 
 
C.2 R script to get session variables for each participant from Hdf5 file.

#######filename= get_session_uservars 1 
library(stringr) 2 
 3 
# io hub uservars appear as a column in session_meta_data  4 
# with values like this {"age": 0, "sex": "M"} 5 
# There isn't a sensible way of fixing this in PyschoPy 6 
# so this turns these into separate, names, columns 7 
# it will work for whatever user variables you collect 8 
# (i.e. not just age and sex) 9 
# should be sourced in the main get_hdf5 script 10 
 11 
d1 = session_meta_data %>%  12 
  mutate(uv = as.character(user_variables), 13 
         # remove quotes and { } 14 
         uv = str_replace_all(uv,"\\}|\\{|\"",''), 15 
         # split 16 
         uv = str_split(uv,"\\: |\\, ")) %>% 17 
  select(uv) 18 
 19 
uv = d1$uv 20 
# get alternate values (i.e. the dict keys) from first item in vector 21 
nms = unlist(uv[1])[c(T,F)]  22 
# remove these names from all items in vector to leave just the dict values 23 
d1 = data.frame(lapply(uv, Filter, f = function(x) !(x %in% nms))) 24 
# transpose 25 
d1 = data.frame(t(d1)) 26 
# name columns 27 
names(d1) = nms 28 
#add back in 29 
session_meta_data = cbind(session_meta_data,d1) 30 
session_meta_data$user_variables = NULL 31 
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rm(uv,d1,nms) 32 
 
 
C.3 R script to wrangle hdf5 files from path and sorting out the trials.

' 1 
This assumes one file per subject per session. 2 
So that each trial has unique and sequential start times. 3 
' 4 
 5 
library(magrittr) 6 
 7 
# get filename of most recently created file 8 
 9 
Getfilefrompath <- function() 10 
  {fs=list.files(path,full.names=T) 11 
  for (i in fs){ 12 
    filename=i[length(i)] 13 
  return (filename)}} 14 
 15 
GetMostRecentFilename <- function() 16 
    {fs = list.files("../output/new_pilot",full.names = T) 17 
    fs = fs[order(file.info(fs)$ctime)] 18 
    filename = fs[length(fs)] 19 
    cat(paste0("\nMost recent data = ",filename,'\n')) 20 
     21 
    return(filename)} 22 
 23 
 24 
 25 
MatchTrialsToSamples <- function(trials,samples) 26 
  { 27 
  samples$trial_order_id = 'none' 28 
    for (r in 1:nrow(trials)) 29 
      { 30 
      start = trials[r,]$trial_start_time 31 
      end = trials[r,]$trial_end_time 32 
      trialno = trials[r,]$trial_order_id 33 
      samples[samples$time >= start & samples$time <= end,]$trial_order_id 34 
<- trialno 35 
    } 36 
   37 
  samples <-  merge(samples, trials, 38 
                       all.x = T, by = 'trial_order_id') 39 
   40 
  return(samples) 41 
} 42 

C.4 R script that loops overs Hdf5files and extracts session variables and eye-movements for GP3, using  
the above C.1, C.2, and C.3 scripts.  

library(tidyverse) 1 
library(magrittr) 2 
library(hdf5r) 3 
#---- 4 
# Functions 5 
dist <- function(x1,x2,y1,y2){ 6 
  sqrt((x1-x2)**2 + (y1-y2)**2) 7 
} 8 
 9 
# ---- 10 
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# get data 11 
 12 
 13 
path="./exp3" 14 
files <- list.files(path, full.names=T) 15 
files_list<-data.frame(files) 16 
for (x in files){ 17 
  filename=x 18 
  #remove hdf5 ending 19 
  gsub(x, pattern=".hdf5$", replacement="") 20 
  source("./distance/get_hdf5.R") 21 
   22 
  rm(list=Filter(function(x) {c("data.frame") %in% class(get(x)) & 23 
      !(x %in% c("EXP_CV_1","BinocularEyeSampleEvent"))}, ls()))  24 
   25 
  EXP_CV_1 %<>%  26 
    group_by(condition) %>% #add ST 27 
     28 
    #make numberic 29 
    mutate_at(vars(onset_time,  30 
                   trial_start_time, 31 
                   gaze_dur_threshold_reached,  32 
                   trial_end_time, 33 
                   location_x, 34 
                   location_y, 35 
                   occurrence),  36 
              funs(as.numeric)) %>%  37 
    #add columns with next target location coordinates and next stimuli 38 
onset 39 
    mutate(location_x_next = lead(location_x,1), 40 
           location_y_next = lead(location_y,1), 41 
           next_trial_start_time = lead(trial_start_time,1), 42 
           43 
next_gaze_dur_threshold_reached=lead(gaze_dur_threshold_reached,1))%>%  44 
    ungroup()#add ST 45 
   46 
  #clean the last trial of each condition that has NAs 47 
  EXP_CV_1<-na.omit(EXP_CV_1) 48 
   49 
  summary(EXP_CV_1) 50 
   51 
  #subset into smaller data frames based on condition 52 
  df1<-subset(EXP_CV_1, condition=="C1") 53 
   54 
  df2<-subset(EXP_CV_1, condition=="C2") 55 
   56 
   57 
   58 
  df3<-subset(EXP_CV_1, condition=="C3") 59 
   60 
   61 
  df1 %<>%  62 
    group_by(seq, occurrence) %>%  63 
    mutate(transitions = 1, 64 
           transitions = cumsum(transitions), 65 
           seqID_trans = paste0(seq,transitions)) 66 
  df2 %<>%  67 
    group_by(seq, occurrence) %>%  68 
    mutate(transitions = 1, 69 
           transitions = cumsum(transitions), 70 
           seqID_trans = paste0(seq,transitions)) 71 
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  df3 %<>%  72 
    group_by(seq, occurrence) %>%  73 
    mutate(transitions = 1, 74 
           transitions = cumsum(transitions), 75 
           seqID_trans = paste0(seq,transitions)) 76 
  ############################################################# 77 
  #match to eyesamples trials  78 
  MatchTrialsToSamples <- function(trials,samples) 79 
  { 80 
    samples$trial_order_id = 'none' 81 
    for (r in 1:nrow(trials)) 82 
    { 83 
      start = trials[r,]$gaze_dur_threshold_reached; print 84 
      end = trials[r,]$next_gaze_dur_threshold_reached 85 
      trialno = trials[r,]$trial_order_id 86 
      samples[samples$time >= start & samples$time < end,]$trial_order_id 87 
<- trialno 88 
    } 89 
     90 
    samples <-  merge(trials, samples, 91 
                      all.x = T, by = 'trial_order_id') %>%  92 
      arrange(time) 93 
     94 
     95 
    return(samples) 96 
  } 97 
   98 
  #match the subsets(it works only with small chunks of code) 99 
  dfall_1<-MatchTrialsToSamples(df1,BinocularEyeSampleEvent) 100 
   101 
  dfall_2<-MatchTrialsToSamples(df2,BinocularEyeSampleEvent) 102 
   103 
  dfall_3<-MatchTrialsToSamples(df3,BinocularEyeSampleEvent) 104 
   105 
  #for each data set max distance 1 106 
  dms<- unique(with(df1,expand.grid(location_x,location_y))) %>%  107 
    rename(x = Var1, y = Var2) %>%  108 
    unite(x_y,x,y) %>%  109 
    mutate(x_y2 = x_y) 110 
   111 
  dms2 <-  unique(with(dms, expand.grid(x_y,x_y2))) %>%  112 
    separate(Var1, c("x1","y1"), sep = '_') %>%  113 
    separate(Var2, c("x2","y2"), sep = '_') %>%  114 
    mutate_all(funs(as.numeric)) %>%  115 
    mutate(dist = dist(x1,x2,y1,y2)) %>%  116 
    summarise(max_disp_dist = max(dist)) 117 
   118 
   119 
  dfall_1$maxdist<- as.numeric(c(dms2["max_disp_dist"])) 120 
   121 
   122 
   123 
  dfall_1 %<>%  124 
    mutate(event_sample_time = time - gaze_dur_threshold_reached, 125 
           trial_duration = trial_end_time - trial_start_time, 126 
           onset_time_of_2nd = next_trial_start_time - 127 
gaze_dur_threshold_reached, 128 
           threshold_reached_for_trial = gaze_dur_threshold_reached - 129 
trial_start_time, 130 
           distance_sample_to_next_target = 131 
dist(right_gaze_x,location_x_next,right_gaze_y,location_y_next),  132 
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           distance_current_target_to_next_target = 133 
dist(location_x,location_x_next,location_y,location_y_next), 134 
           # distance from next target as proportion of distance between 135 
previous target to next target 136 
           proportion_distance_2 = distance_sample_to_next_target / 137 
distance_current_target_to_next_target) 138 
  dfall_1 <- dfall_1 %>% 139 
    mutate( 140 
      event_sample_time=time-gaze_dur_threshold_reached, 141 
      trial_duration=next_gaze_dur_threshold_reached-142 
gaze_dur_threshold_reached, 143 
      onset_time_of_2nd=next_trial_start_time-gaze_dur_threshold_reached) 144 
   145 
   146 
   147 
  # distance from next target as proportion of maximum array dimension 148 
(distance between two most distant points) 149 
  dfall_1%<>%  150 
    mutate(proportion_distance = distance_sample_to_next_target /maxdist) 151 
   152 
   153 
  dfall_1 <-dfall_1%>% 154 
    select(subno,condition,location, seq, location_set, target, seqID_trans 155 
,transitions,trial_order_id,occurrence,time, 156 
           157 
trial_start_time,trial_end_time,trial_duration,event_sample_time,threshold_158 
reached_for_trial, 159 
           onset_time_of_2nd,event_sample_time, 160 
           onset_time,onset_gaze_pos,gaze_dur_threshold_reached,  161 
           gaze_dur_threshold_reached_pos,location_y,location_x, 162 
right_gaze_x, right_gaze_y, proportion_distance_2, 163 
           location_x_next, location_y_next, next_trial_start_time, 164 
proportion_distance, 165 
           distance_current_target_to_next_target, 166 
distance_sample_to_next_target ) 167 
   168 
   169 
   170 
  171 
###########################################################################172 
################################ 173 
  #for each data set max distance 2 174 
  dms<- unique(with(df2,expand.grid(location_x,location_y))) %>%  175 
    rename(x = Var1, y = Var2) %>%  176 
    unite(x_y,x,y) %>%  177 
    mutate(x_y2 = x_y) 178 
   179 
   180 
  dms2 <-  unique(with(dms, expand.grid(x_y,x_y2))) %>%  181 
    separate(Var1, c("x1","y1"), sep = '_') %>%  182 
    separate(Var2, c("x2","y2"), sep = '_') %>%  183 
    mutate_all(funs(as.numeric)) %>%  184 
    mutate(dist = dist(x1,x2,y1,y2)) %>%  185 
    summarise(max_disp_dist = max(dist)) 186 
   187 
   188 
   189 
  dfall_2$maxdist<- as.numeric(c(dms2["max_disp_dist"])) 190 
   191 
   192 
   193 
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  dfall_2 %<>%  194 
    mutate(event_sample_time = time - gaze_dur_threshold_reached, 195 
           trial_duration = trial_end_time - trial_start_time, 196 
           onset_time_of_2nd = next_trial_start_time - 197 
gaze_dur_threshold_reached, 198 
           threshold_reached_for_trial = gaze_dur_threshold_reached - 199 
trial_start_time, 200 
           distance_sample_to_next_target = 201 
dist(right_gaze_x,location_x_next,right_gaze_y,location_y_next),  202 
           distance_current_target_to_next_target = 203 
dist(location_x,location_x_next,location_y,location_y_next), 204 
           # distance from next target as proportion of distance between 205 
previous target to next target 206 
           proportion_distance_2 = distance_sample_to_next_target / 207 
distance_current_target_to_next_target) 208 
   209 
   210 
   211 
   212 
  dfall_2 <- dfall_2 %>% 213 
    mutate( 214 
      event_sample_time=time-gaze_dur_threshold_reached, 215 
      trial_duration=next_gaze_dur_threshold_reached-216 
gaze_dur_threshold_reached, 217 
      onset_time_of_2nd=next_trial_start_time-gaze_dur_threshold_reached) 218 
  # distance from next target as proportion of maximum array dimension 219 
(distance between two most distant points) 220 
  dfall_2%<>%  221 
    mutate(proportion_distance = distance_sample_to_next_target /maxdist) 222 
  dfall_2 <-dfall_2%>% 223 
    select(subno,condition,location, seq, location_set, target, seqID_trans 224 
,transitions,trial_order_id,occurrence,time, 225 
           226 
trial_start_time,trial_end_time,trial_duration,event_sample_time,threshold_227 
reached_for_trial, 228 
           onset_time_of_2nd,event_sample_time, 229 
           onset_time,onset_gaze_pos,gaze_dur_threshold_reached,  230 
           gaze_dur_threshold_reached_pos,location_y,location_x, 231 
right_gaze_x, right_gaze_y, proportion_distance_2, 232 
           location_x_next, location_y_next, next_trial_start_time, 233 
proportion_distance, 234 
           distance_current_target_to_next_target, 235 
distance_sample_to_next_target ) 236 
   237 
   238 
  239 
###########################################################################240 
##################################### 241 
  #for each data set max distance 3 242 
  dms<- unique(with(df3,expand.grid(location_x,location_y))) %>%  243 
    rename(x = Var1, y = Var2) %>%  244 
    unite(x_y,x,y) %>%  245 
    mutate(x_y2 = x_y) 246 
   247 
   248 
  dms2 <-  unique(with(dms, expand.grid(x_y,x_y2))) %>%  249 
    separate(Var1, c("x1","y1"), sep = '_') %>%  250 
    separate(Var2, c("x2","y2"), sep = '_') %>%  251 
    mutate_all(funs(as.numeric)) %>%  252 
    mutate(dist = dist(x1,x2,y1,y2)) %>%  253 
    summarise(max_disp_dist = max(dist)) 254 
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   255 
   256 
   257 
  dfall_3$maxdist<- as.numeric(c(dms2["max_disp_dist"])) 258 
   259 
   260 
  dfall_3 %<>%  261 
    mutate(event_sample_time = time - gaze_dur_threshold_reached, 262 
           trial_duration = trial_end_time - trial_start_time, 263 
           onset_time_of_2nd = next_trial_start_time - 264 
gaze_dur_threshold_reached, 265 
           threshold_reached_for_trial = gaze_dur_threshold_reached - 266 
trial_start_time, 267 
           distance_sample_to_next_target = 268 
dist(right_gaze_x,location_x_next,right_gaze_y,location_y_next),  269 
           distance_current_target_to_next_target = 270 
dist(location_x,location_x_next,location_y,location_y_next), 271 
           # distance from next target as proportion of distance between 272 
previous target to next target 273 
           proportion_distance_2 = distance_sample_to_next_target / 274 
distance_current_target_to_next_target) 275 
   276 
  dfall_3 <- dfall_3 %>% 277 
    mutate( 278 
      event_sample_time=time-gaze_dur_threshold_reached, 279 
      trial_duration=next_gaze_dur_threshold_reached-280 
gaze_dur_threshold_reached, 281 
      onset_time_of_2nd=next_trial_start_time-gaze_dur_threshold_reached) 282 
  # distance from next target as proportion of maximum array dimension 283 
(distance between two most distant points) 284 
  dfall_3%<>%  285 
    mutate(proportion_distance = distance_sample_to_next_target /maxdist) 286 
  dfall_3 <-dfall_3 %>% 287 
    select(subno,condition,location, seq, location_set, target, seqID_trans 288 
,transitions,trial_order_id,occurrence,time, 289 
           290 
trial_start_time,trial_end_time,trial_duration,event_sample_time,threshold_291 
reached_for_trial, 292 
           onset_time_of_2nd,event_sample_time, 293 
           onset_time,onset_gaze_pos,gaze_dur_threshold_reached,  294 
           gaze_dur_threshold_reached_pos,location_y,location_x, 295 
right_gaze_x, right_gaze_y, proportion_distance_2, 296 
           location_x_next, location_y_next, next_trial_start_time, 297 
proportion_distance, 298 
           distance_current_target_to_next_target, 299 
distance_sample_to_next_target ) 300 
   301 
   302 
  303 
###########################################################################304 
################# 305 
  ###### up to here is ok############ 306 
  # # square diagonal 307 
  # dms <- EXP_CV_1 %>%  308 
  #   summarise(minx = min(location_x), 309 
  #             miny = min(location_y), 310 
  #             maxx = max(location_x), 311 
  #             maxy = max(location_y)) %>%  312 
  #   mutate(max_disp_dist = dist(minx,maxx,miny,maxy)); dms 313 
   314 
 315 
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  dfall<-dffinal<-rbind(dfall_1,dfall_2,dfall_3) 316 
  #save dataframe in csv file 317 
  write.csv(dfall, paste0('./outcome/',basename(x),'.csv'))} 318 
 319 
path="folder_outcome_csv_x" 320 
 321 
filenames <- list.files(path,full.names=TRUE) 322 
All <- lapply(filenames,function(i){ 323 
  read.csv(i, header=TRUE)}) 324 
df <- do.call(rbind.data.frame, All) 325 
save(df,file="experiment_x.Rdata") 326 
load("experiment_x.Rdata") 327 

1 

C.5 R script that loops overs Hdf5files and extracts session variables and eye-movements for SR EyeLink, 
using the above C.1, C.2, and C.3 scripts. 
#---- 1 
# Setup 2 
library(tidyverse) 3 
library(magrittr) 4 
library(dplyr) 5 
library(hdf5r) 6 
 7 
pythag <- function(x1,x2,y1,y2){ 8 
  sqrt((x1-x2)**2 + (y1-y2)**2) 9 
} 10 
 11 
 12 
#path="C://Users/psychlaptop/Desktop/" 13 
path="C://Users/psychlaptop/Desktop/data_analysis_thesis/exp2" 14 
 15 
 16 
files <- list.files(path, full.names=T) 17 
 18 
Df_all = tibble() 19 
 20 
# ---- 21 
filename = list.files(path, full.names=T)[1] #for testing 22 
 23 
for (filename in files){ 24 
 25 
   26 
  message(paste("\n\nProcessing",filename)) 27 
 28 
  #gsub(x, pattern=".hdf5$", replacement="") 29 
  h5f <- H5File$new(filename, mode = "r") 30 
   31 
  # get the names of the individual datasets in your hdf5 file 32 
  getDatasetName = function(x){tail(strsplit(x,'/')[[1]],1)} 33 
   34 
  # write all datasets in hdf5 file to separate data frames 35 
  for(dset in list.datasets(h5f)){ 36 
    sname = getDatasetName(dset) 37 
    assign(sname,h5f[[dset]][]) } 38 
 39 
  if('user_variables' %in% names(session_meta_data)){ 40 
    source("get_session_uservars.R")} 41 
   42 
  h5f$close_all() 43 
 44 
  rm(list=Filter(function(x) {c("data.frame") %in% class(get(x)) & 45 
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      !(x %in% c("EXP_CV_1","MonocularEyeSampleEvent", "Df_all"))}, ls()))  46 
   47 
  MonocularEyeSampleEvent %<>% 48 
    select(time, gaze_x, gaze_y) 49 
  50 
# compute various trial-level variables 51 
   52 
  EXP_CV_1 %<>%  53 
    group_by(condition) %>%  54 
    mutate_at(vars(onset_time,  55 
                   trial_start_time, 56 
                   gaze_dur_threshold_reached,  57 
                   trial_end_time, 58 
                   trial_order_id, 59 
                   location_x, 60 
                   location_y, 61 
                   occurrence, 62 
                   subno),  63 
              list(as.numeric)) %>%  64 
    #add columns with next target location coordinates and next stimuli 65 
onset 66 
    mutate(location_x_next = lead(location_x,1), 67 
           location_y_next = lead(location_y,1), 68 
           next_trial_start_time = lead(trial_start_time,1), 69 
           70 
next_gaze_dur_threshold_reached=lead(gaze_dur_threshold_reached,1) 71 
           ,subno = sprintf("%03d",subno))%>%  72 
    ungroup()  73 
   74 
  # get the maximum distance across locations (note that for Experiment 1 75 
the 76 
  # locations were the same in all three conditions?) 77 
  #remove empty rows from part data 78 
 79 
  # add transition indexes 80 
  EXP_CV_1 %<>%  81 
    group_by(condition, occurrence, seq) %>%  82 
    mutate(transitions = 1, 83 
           transitions = cumsum(transitions), 84 
           seqID_trans = paste0(seq,transitions), 85 
           seq_len = max(transitions)) %>%  86 
    ungroup() 87 
 88 
   89 
  # get the maximum distance across locations (note that for Experiment 1 90 
the 91 
  # locations were the same in all three conditions?) 92 
  #remove empty rows from part data 93 
   94 
  EXP_CV_1<-na.omit(EXP_CV_1, cols='onset_time') 95 
  96 
  EXP_CV_1 %<>%  97 
    group_by(condition) %>%  98 
    filter(length(occurrence)>= 120) %>%  99 
    ungroup() 100 
   101 
   source('get_location_dists.R') 102 
  # merge trials and samples 103 
  EXP_CV_1 %<>% mutate(ID = 1, 104 
                       ID = cumsum(ID)) 105 
   106 
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  MonocularEyeSampleEvent$ID <- 107 
findInterval(x=MonocularEyeSampleEvent$time,  108 
                             vec=EXP_CV_1$gaze_dur_threshold_reached) 109 
   110 
   111 
   112 
  Df <-left_join(MonocularEyeSampleEvent,EXP_CV_1, by = 'ID') %>%  113 
    arrange(time) %>%  114 
    filter(time < next_gaze_dur_threshold_reached) 115 
   116 
  rm(MonocularEyeSampleEvent) 117 
  gc(verbose = F) #might help with freeing up memory 118 
   119 
  #rm(list=Filter(function(x){!(x %in% c("Df",'files','pythag', 'Df_all', 120 
'EXP_CV_1'))}, ls())) 121 
 122 
   123 
  Df %<>% 124 
    mutate(event_sample_time=time-gaze_dur_threshold_reached 125 
           ,distance_sample_to_next_target = 126 
pythag(gaze_x,location_x_next,gaze_y,location_y_next) 127 
           ,distance_sample_to_current_target = 128 
pythag(gaze_x,location_x,gaze_y,location_y) 129 
    ) 130 
   131 
  # AOI around target is circle with radius .5 * minimum distance between 132 
locations. 133 
  AOI_radius = .5*min(Df$min_loc_dist) 134 
  message(paste('AOI radius = ',AOI_radius)) 135 
   136 
   137 
  # fixations on target. pre is for period before target appears. post is 138 
period after it appears. 139 
  Df_on_targ <- Df %>%   140 
    mutate(on_target_pre_total = ifelse(distance_sample_to_next_target < 141 
AOI_radius & 142 
                                    event_sample_time <.75 &  143 
                                    event_sample_time >=0 144 
                                  ,1,0), 145 
           on_target_pre = ifelse(distance_sample_to_next_target < 146 
AOI_radius & 147 
                                          event_sample_time <.75 &  148 
                                          event_sample_time >=.5 149 
                                        ,1,0), 150 
           on_target_post = ifelse(distance_sample_to_next_target < 151 
AOI_radius & 152 
                                     event_sample_time >.75 &  153 
                                     event_sample_time < 1 154 
                                   ,1,0), 155 
           on_target_preandpost=ifelse(distance_sample_to_next_target < 156 
AOI_radius & 157 
                                         event_sample_time >=0 &  158 
                                         event_sample_time < 1 159 
                                       ,1,0)) %>%  160 
    group_by(ID) %>%  161 
    summarise(on_target_pre = sum(on_target_pre), 162 
              on_target_pre_total = sum(on_target_pre_total) 163 
              ,on_target_post = sum(on_target_post), 164 
              on_target_preandpost=sum(on_target_preandpost)) 165 
   166 
    EXP_CV_1 %<>% left_join(Df_on_targ, by = 'ID') %>% 167 
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    select(subno,condition,location_set,seq,target,location, 168 
           occurrence,trial_order_id,ID,seqID_trans,transitions,seq_len, 169 
on_target_pre_total, 170 
           on_target_pre,on_target_post,on_target_preandpost) 171 
     172 
    rm(Df,Df_on_targ) 173 
    gc(verbose = F) 174 
    Df_all <- rbind(Df_all,EXP_CV_1)  175 
     176 
} 177 
 178 
#Df_all <- rbind(Df_on_target,EXP_CV_1)  179 
save(Df_all,file="data/exp2_final.Rdata") 180 
 181 
 182 
rm(list=Filter(function(x){!(x %in% c('Df_all'))}, ls())) 183 
 184 
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Appendix D – Equidistant Points Python Scripts 

D.1 Script that generates equal size circles of a given radius into an arbitrary shape. 

from __future__ import division 1 
 2 
import numpy as np 3 
from scipy import misc 4 
import matplotlib.pyplot as plt 5 
 6 
 7 
def plot_points(points): 8 
    """ 9 
    : points are list of x,y tuples 10 
    """ 11 
     12 
    plt.plot([p[0] for p in points],[p[1] for p in points],'ro') 13 
    plt.show() 14 
    plt.clf() 15 
     16 
def print_points(points):         17 
    for p in points: 18 
        print '\t'.join([str(c) for c in p]) 19 
 20 
#1/6->9 points,1/ 7->14,15 points 21 
#16 points 1/9 22 
#seelect to remove some 23 
def tessalate(imagefile,radius = 1/6.5): 24 
    """ 25 
    : radius is radius if circle as proportion image height / width 26 
    : image must be png (?) of RGB figure with transparent background 27 
     28 
    I created the image in powerpoint - encolsed shape with no border - 29 
then 30 
    copied into Irfanview, set background to black, and saved as png with 31 
    background as transparent. 32 
    """ 33 
     34 
    image = misc.imread(imagefile) 35 
    image = misc.imresize(image,(1000,1000)) 36 
     37 
    ys, xs, _ = image.shape 38 
    x, y = np.meshgrid(np.arange(xs), np.arange(ys), sparse=True) 39 
    radius = xs*radius 40 
 41 
    points = [] 42 
     43 
    for i in range(int(-0.5 * ys / radius), int(xs / radius)): 44 
        for j in range(int(ys / radius)): 45 
            x0 = 2 * radius * (i + 0.5 * j) 46 
            y0 = 2 * radius * np.sqrt(3)/2 * j 47 
     48 
            r = np.sqrt((x - x0) ** 2 + (y - y0) ** 2) 49 
     50 
            indicator = r < radius 51 
     52 
            if np.any(image[indicator, 0] != 0): 53 
                 54 
                if x0 <= 1000 and y0 <= 1000: 55 
                    points.append((round(((x0-500)/1000),4),round(((500-56 
y0)/1000),4)))             57 
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                 58 
                #image[r < radius] = [150, 0, 0, 250] 59 
 60 
    plt.imshow(image) 61 
    plt.show() 62 
    plt.clf() 63 
     64 
    plot_points(points)     65 
     66 
    return points 67 
 68 
def rotate(point, angle, origin = (0,0)): 69 
    """ 70 
    Rotate a point counterclockwise by a given angle around a given origin. 71 
 72 
    The angle should be given in degrees 73 
    """ 74 
     75 
    angle = np.deg2rad(angle)     76 
    ox, oy = origin 77 
    px, py = point 78 
 79 
    qx = ox + np.cos(angle) * (px - ox) - np.sin(angle) * (py - oy) 80 
    qy = oy + np.sin(angle) * (px - ox) + np.cos(angle) * (py - oy) 81 
     82 
     83 
    return (round(qx,4), round(qy,4))  84 
     85 
def rotate_all(points, angle, origin = (0,0), scale = 1): 86 
    points = [rotate(p,angle,origin) for p in points] 87 
 88 
    # centre points 89 
    xs = [p[0] for p in points] 90 
    ys = [p[1] for p in points] 91 
    xs = [x -((max(xs)+min(xs))/2) for x in xs] 92 
    ys = [y -((max(ys)+min(ys))/2) for y in ys]  93 
     94 
    points = zip(xs,ys) 95 
     96 
    #scale 97 
    points = [(scale*p[0],scale*p[1]) for p in points]     98 
     99 
    plot_points(points) 100 
    print_points(points) 101 
    return points 102 
     103 
# get 4 rows of 3 packed points 104 
points = tessalate("images/blob5.png",radius=1/6) 105 
points.remove((0.5, -0.0774)) 106 
points.remove((0.5, 0.5)) 107 
plot_points(points) 108 
 109 
# variations 110 
points1 = rotate_all(points, 17, scale = .8) 111 
points2 = rotate_all(points, 97, scale = .8) 112 
points2 = rotate_all(points, 343, scale = .8) 113 
 114 
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D.2 Script that generates coordinates for equidistant points (for the array of locations used in 
experiments) by using function tessalate from D.1.

# -*- coding: utf-8 -*- 1 
 2 
from collections import OrderedDict as od 3 
         4 
         5 
imfile = './images/blob5.png' 6 
# this image looks like this 7 
 8 
plt.imshow(misc.imread(imfile)) 9 
 10 
# pack with circles (probably too big) 11 
points = tessalate(imfile,radius=1/9.4) 12 
points 13 
plot_points(points) 14 
 15 
# rotate points by 37 degress, and reduce scale to .6 of display area 16 
points2 = rotate_all(points, 76, scale = 0.6) 17 
 18 
# these look like this... 19 
plot_points(points2) 20 
 21 
##using these###### 22 
#generate 3 backgroungs for my 2, 3, 2_3mixed seq experiments 23 
#create more than 12 ..then delete the ones that I don't need 24 
points3=rotate_all(points, 110, scale = .6) 25 
points3 26 
plot_points(points3) 27 
 28 
 29 
points4=rotate_all(points, 35, scale = .6) 30 
points4 31 
 32 
plot_points(points4) 33 
 34 
 35 
points5=rotate_all(points, 155, scale = .6) 36 
plot_points(points5) 37 
 38 
 39 
locations_for_tasks = od([('location_set1',points3), 40 
    ('location_set2',points4), 41 
    ('location_set3',points5) 42 
    ]) 43 
locations_for_tasks 44 
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Appendix E- Tables 

 
Table E.1 Part 1 This table shows the residuals of the model of hypothesis model 4, in Chapter 5, Section 
C.2 describing positioning effects in learning across all tasks (fixed effects). 



Appendix E 

249 
 

 
 

Table E.1 Part 2 This table shows the residuals of the model of hypothesis model 4, in Chapter 5, Section 
C.2 describing positioning effects in learning across all tasks (fixed effects). 
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Table E.1 Part 3 This table shows the residuals of the model of hypothesis model 4, in Chapter 5, Section 
C.2 describing positioning effects in learning across all tasks (random effects). 
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Table E.2 This table shows the residuals of the model of hypothesis model 2, in Chapter 6, Section C.3 
describing learning in same length sequences. 
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Table E.3 This table shows the residuals of the model of hypothesis model 2, in Chapter 6, Section C.4 
describing learning in mixed length sequences. 
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Table E.4 Part 1 This table shows the residuals of the model of hypothesis model 4 , in Chapter 6, Section 
C.5 describing learning in different types of tasks and  lengths of sequences. 
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Table E.4 Part 2 This table shows the residuals of the model of hypothesis model 4, in Chapter 6, Section 
C.5 describing learning in different types of tasks and lengths of sequences
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Appendix F – Stimuli 

 

F.1 Stimuli used in experimental task. 

                    

 

 

F.2 Shape images that were used to generate equidistant points in scripts attached in Appendix D. 
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Appendix G- Data visualisation R scripts for Chapter 4 and Chapter 5 

G.1 R script for extracting demographic information of participants for Design A and Design B. 

library(dplyr) 1 
library(tidyverse) 2 
library(magrittr) 3 
#functions 4 
#transform factor into numeric 5 
as.numeric.factor<- function(x){as.numeric(levels(x))[x]} 6 
#transform factor into numeric 7 
 8 
demographics_total<-tibble() 9 
#exp3 10 
load("data/exp3_dem.Rdata") 11 
###### 12 
Df_all%>% 13 
  select(age,sex,name)-> df;df 14 
sapply(df,class) 15 
df$age<-as.numeric.factor(df$age) 16 
sapply(df,class) 17 
################ 18 
 19 
male<-nrow(filter(df,sex=='M')) 20 
female<-nrow(filter(df,sex=='F'))  21 
mean_age<-mean(df$age) 22 
range_age<- list(range(df$age)) 23 
min_age<-min (df$age) 24 
max_age<-max (df$age) 25 
sd_age<-sd(df$age) 26 
######################## 27 
demographic_3<-data.frame(female, male,mean_age, sd_age,min_age, max_age) 28 
 29 
demographic_3 %<>% 30 
  mutate(experiment= 'exp3')  31 
 32 
demographics_total<-rbind(demographics_total,demographic_3) 33 
 34 
#--------------------------------------------------------------------------35 
-------- 36 
#exp4 37 
load("data/exp4_dem.Rdata") 38 
###### 39 
Df_all%>% 40 
  select(age,sex,name)-> df;df 41 
df[df$age=="0"]<-"19" 42 
sapply(df,class) 43 
df$age<-as.numeric.factor(df$age) 44 
sapply(df,class) 45 
################ 46 
 47 
male<-nrow(filter(df,sex=='M')) 48 
female<-nrow(filter(df,sex=='F'))  49 
mean_age<-mean(df$age) 50 
range_age<- list(range(df$age)) 51 
min_age<-min (df$age) 52 
max_age<-max (df$age) 53 
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sd_age<-sd(df$age) 54 
######################## 55 
demographic_4<-data.frame(female, male,mean_age, sd_age,min_age, max_age) 56 
 57 
demographic_4 %<>% 58 
  mutate(experiment= 'exp4')  59 
 60 
demographics_total<-rbind(demographics_total,demographic_4) 61 
 62 
 63 
write.csv(demographics_total,"./summary_stats_demographics.csv", row.names 64 
= FALSE)65 

1 

G.2 R script for plotting demographic information of participants for Design A and Design B. 

library(tidyverse) 1 
library(magrittr) 2 
library(dplyr) 3 
library(ggplot2) 4 
 5 
load("data/exp3_dem.Rdata") 6 
df3<-Df_all 7 
 8 
load("data/exp4_dem.Rdata") 9 
df4<-Df_all 10 
 11 
df<-rbind(df3,df4) 12 
 13 
data_summary <- function(x) { 14 
  m <- mean(x) 15 
  ymin <- m-sd(x) 16 
  ymax <- m+sd(x) 17 
  return(c(y=m,ymin=ymin,ymax=ymax))} 18 
 19 
 20 
sapply(df,class) 21 
as.numeric.factor<- function(x){as.numeric(levels(x))[x]} 22 
df$age<-as.numeric.factor(df$age) 23 
sapply(df,class) 24 
 25 
 26 
 27 
#------------------- 28 
 29 
df3$age<-as.numeric.factor(df3$age) 30 
 31 
df3%>% 32 
  ggplot(aes(y= age, x=sex, fill=sex))+ 33 
  geom_violin(trim=TRUE ,size=1)+ 34 
  geom_jitter(colour=2, size=2, position=position_jitter(0.2))+ 35 
  scale_fill_brewer(palette="Purples")+ 36 
  stat_summary(fun.data=data_summary, colour=1, size=0.7)+ 37 
  theme_classic()+ 38 
  ylim(17,35)+ 39 
  labs(title="Descriptive statistics for participant's age & gender for 40 
Design A", x= "Participant's gender", y="Participant's age") 41 
 42 
ggsave('exp3_participants.png',height = 15, width = 15, units = 'cm') 43 
 44 
#--------------------------------------- 45 
df4$age<-as.numeric.factor(df4$age) 46 
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df4$sex <-factor(df4$sex, levels=c("M", "F"), labels=c("M", "F")) 47 
 48 
 49 
df4%>% 50 
  ggplot(aes(y= age, x=sex, fill=sex))+ 51 
  geom_violin(trim=TRUE ,size=1)+ 52 
  geom_jitter(colour=2, size=2, position=position_jitter(0.2))+ 53 
  scale_fill_brewer(palette="Oranges")+ 54 
  stat_summary(fun.data=data_summary, colour=1, size=0.7)+ 55 
  theme_classic()+ 56 
  ylim(18,35)+ 57 
  labs(title="Descriptive statistics for participant's age & gender for 58 
Design B", x= "Participant's gender", y="Participant's age") 59 
 60 
ggsave('exp4_participants.png',height = 15, width = 15, units = 'cm')61 
 
 
G.3 R script for experimental plots for design A. 
library(tidyverse) 1 
library(reshape2) 2 
library(magrittr) 3 
library(dplyr) 4 
 5 
 6 
load("./data/exp3_final.Rdata") 7 
df1 <- Df_all %>% as_tibble() 8 
names(df1) 9 
df3 <- subset(df1, condition == "C1") 10 
# transform df3 into percentage for meth chap  11 
df3$percentage_on_target<-(df3$on_target_pre_total/45)*100 12 
#### 13 
df3 %>% 14 
  ggplot(aes(y = percentage_on_target, x = occurrence) )+ 15 
  geom_smooth(size= 1.2, method='lm', formula = y ~ poly(x,3))+ 16 
  facet_grid(~condition)+ 17 
  theme_minimal(base_size = 10)+ 18 
  ylim(0,100)+ 19 
  labs(title ="Learning rate in 3 dots tasks - Design A")+ 20 
  xlab("Number of repetition of item - exposure")+ 21 
  ylab("Percentage of eye samples on target position \n during  blank 22 
period")+ 23 
  ggsave('../plots/exp3/ percentage.png', height = 15, width = 15, units = 24 
'cm') 25 
 26 
##### 27 
#individual differences 28 
 29 
df3 %>% 30 
  ggplot(aes(y = on_target_pre_total, x = occurrence) )+ 31 
  geom_smooth(size= 0.8, method='lm', formula = y ~ poly(x,3))+ 32 
  facet_wrap(~subno)+ 33 
  theme_minimal(base_size = 10)+ 34 
  ylim(0,45)+ 35 
  labs(title ="Learning rate in 3 dots tasks - Design A")+ 36 
  xlab("Number of repetition of item - exposure")+ 37 
  ylab("Number of eye-samples on  target position \n during  blank 38 
period")+ 39 
  ggsave('../plots/exp3/ meth_3.png', height = 13, width = 15, units = 40 
'cm') 41 
 42 
###### per sequence learning 43 
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df3 %>% 44 
  ggplot(aes(y = on_target_pre_total, x = occurrence, colour=seq) )+ 45 
  geom_smooth(size= 0.8, method='lm', formula = y ~ poly(x,3))+ 46 
  theme_minimal(base_size = 10)+ 47 
  labs(title ="Learning rate in 3 dots tasks - Design A")+ 48 
  xlab("Number of repetition of item - exposure")+ 49 
  ylab("Number of eye-samples on  target position \n during  blank 50 
period")+ 51 
  ggsave('../plots/exp3/ meth_3.png', height = 13, width = 15, units = 52 
'cm') 53 
############### 54 
 55 
 56 
######raw samples distance from target 57 
 58 
library(tidyverse) 59 
library(magrittr) 60 
library(hdf5r) 61 
#---- 62 
# Functions 63 
dist <- function(x1,x2,y1,y2){ 64 
  sqrt((x1-x2)**2 + (y1-y2)**2) 65 
} 66 
 67 
# ---- 68 
# get data 69 
 70 
 71 
path="./exp3" 72 
files <- list.files(path, full.names=T) 73 
files_list<-data.frame(files) 74 
for (x in files){ 75 
  filename=x 76 
  #remove hdf5 ending 77 
  gsub(x, pattern=".hdf5$", replacement="") 78 
  source("./distance/get_hdf5.R") 79 
   80 
  rm(list=Filter(function(x) {c("data.frame") %in% class(get(x)) & 81 
      !(x %in% c("EXP_CV_1","BinocularEyeSampleEvent"))}, ls()))  82 
   83 
  EXP_CV_1 %<>%  84 
    group_by(condition) %>% #add ST 85 
     86 
    #make numberic 87 
    mutate_at(vars(onset_time,  88 
                   trial_start_time, 89 
                   gaze_dur_threshold_reached,  90 
                   trial_end_time, 91 
                   location_x, 92 
                   location_y, 93 
                   occurrence),  94 
              funs(as.numeric)) %>%  95 
    #add columns with next target location coordinates and next stimuli 96 
onset 97 
    mutate(location_x_next = lead(location_x,1), 98 
           location_y_next = lead(location_y,1), 99 
           next_trial_start_time = lead(trial_start_time,1), 100 
           101 
next_gaze_dur_threshold_reached=lead(gaze_dur_threshold_reached,1))%>%  102 
    ungroup()#add ST 103 
   104 
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  #clean the last trial of each condition that has NAs 105 
  EXP_CV_1<-na.omit(EXP_CV_1) 106 
   107 
  summary(EXP_CV_1) 108 
   109 
  #subset into smaller data frames based on condition 110 
  df1<-subset(EXP_CV_1, condition=="C1") 111 
   112 
  df2<-subset(EXP_CV_1, condition=="C2") 113 
   114 
   115 
   116 
  df3<-subset(EXP_CV_1, condition=="C3") 117 
   118 
   119 
  df1 %<>%  120 
    group_by(seq, occurrence) %>%  121 
    mutate(transitions = 1, 122 
           transitions = cumsum(transitions), 123 
           seqID_trans = paste0(seq,transitions)) 124 
  df2 %<>%  125 
    group_by(seq, occurrence) %>%  126 
    mutate(transitions = 1, 127 
           transitions = cumsum(transitions), 128 
           seqID_trans = paste0(seq,transitions)) 129 
  df3 %<>%  130 
    group_by(seq, occurrence) %>%  131 
    mutate(transitions = 1, 132 
           transitions = cumsum(transitions), 133 
           seqID_trans = paste0(seq,transitions)) 134 
  ############################################################# 135 
  #match to eyesamples trials  136 
  MatchTrialsToSamples <- function(trials,samples) 137 
  { 138 
    samples$trial_order_id = 'none' 139 
    for (r in 1:nrow(trials)) 140 
    { 141 
      start = trials[r,]$gaze_dur_threshold_reached; print 142 
      end = trials[r,]$next_gaze_dur_threshold_reached 143 
      trialno = trials[r,]$trial_order_id 144 
      samples[samples$time >= start & samples$time < end,]$trial_order_id 145 
<- trialno 146 
    } 147 
     148 
    samples <-  merge(trials, samples, 149 
                      all.x = T, by = 'trial_order_id') %>%  150 
      arrange(time) 151 
     152 
     153 
    return(samples) 154 
  } 155 
   156 
  #match the subsets(it works only with small chunks of code) 157 
  dfall_1<-MatchTrialsToSamples(df1,BinocularEyeSampleEvent) 158 
   159 
  dfall_2<-MatchTrialsToSamples(df2,BinocularEyeSampleEvent) 160 
   161 
  dfall_3<-MatchTrialsToSamples(df3,BinocularEyeSampleEvent) 162 
   163 
   164 
   165 
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   166 
   167 
  #for each data set max distance 1 168 
  dms<- unique(with(df1,expand.grid(location_x,location_y))) %>%  169 
    rename(x = Var1, y = Var2) %>%  170 
    unite(x_y,x,y) %>%  171 
    mutate(x_y2 = x_y) 172 
   173 
  dms2 <-  unique(with(dms, expand.grid(x_y,x_y2))) %>%  174 
    separate(Var1, c("x1","y1"), sep = '_') %>%  175 
    separate(Var2, c("x2","y2"), sep = '_') %>%  176 
    mutate_all(funs(as.numeric)) %>%  177 
    mutate(dist = dist(x1,x2,y1,y2)) %>%  178 
    summarise(max_disp_dist = max(dist)) 179 
   180 
   181 
  dfall_1$maxdist<- as.numeric(c(dms2["max_disp_dist"])) 182 
   183 
   184 
   185 
  dfall_1 %<>%  186 
    mutate(event_sample_time = time - gaze_dur_threshold_reached, 187 
           trial_duration = trial_end_time - trial_start_time, 188 
           onset_time_of_2nd = next_trial_start_time - 189 
gaze_dur_threshold_reached, 190 
           threshold_reached_for_trial = gaze_dur_threshold_reached - 191 
trial_start_time, 192 
           distance_sample_to_next_target = 193 
dist(right_gaze_x,location_x_next,right_gaze_y,location_y_next),  194 
           distance_current_target_to_next_target = 195 
dist(location_x,location_x_next,location_y,location_y_next), 196 
           # distance from next target as proportion of distance between 197 
previous target to next target 198 
           proportion_distance_2 = distance_sample_to_next_target / 199 
distance_current_target_to_next_target) 200 
  dfall_1 <- dfall_1 %>% 201 
    mutate( 202 
      event_sample_time=time-gaze_dur_threshold_reached, 203 
      trial_duration=next_gaze_dur_threshold_reached-204 
gaze_dur_threshold_reached, 205 
      onset_time_of_2nd=next_trial_start_time-gaze_dur_threshold_reached) 206 
   207 
   208 
   209 
  # distance from next target as proportion of maximum array dimension 210 
(distance between two most distant points) 211 
  dfall_1%<>%  212 
    mutate(proportion_distance = distance_sample_to_next_target /maxdist) 213 
   214 
   215 
  dfall_1 <-dfall_1%>% 216 
    select(subno,condition,location, seq, location_set, target, seqID_trans 217 
,transitions,trial_order_id,occurrence,time, 218 
           219 
trial_start_time,trial_end_time,trial_duration,event_sample_time,threshold_220 
reached_for_trial, 221 
           onset_time_of_2nd,event_sample_time, 222 
           onset_time,onset_gaze_pos,gaze_dur_threshold_reached,  223 
           gaze_dur_threshold_reached_pos,location_y,location_x, 224 
right_gaze_x, right_gaze_y, proportion_distance_2, 225 
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           location_x_next, location_y_next, next_trial_start_time, 226 
proportion_distance, 227 
           distance_current_target_to_next_target, 228 
distance_sample_to_next_target ) 229 
 230 
###########################################################################231 
################################ 232 
  #for each data set max distance 2 233 
  dms<- unique(with(df2,expand.grid(location_x,location_y))) %>%  234 
    rename(x = Var1, y = Var2) %>%  235 
    unite(x_y,x,y) %>%  236 
    mutate(x_y2 = x_y) 237 
   238 
   239 
  dms2 <-  unique(with(dms, expand.grid(x_y,x_y2))) %>%  240 
    separate(Var1, c("x1","y1"), sep = '_') %>%  241 
    separate(Var2, c("x2","y2"), sep = '_') %>%  242 
    mutate_all(funs(as.numeric)) %>%  243 
    mutate(dist = dist(x1,x2,y1,y2)) %>%  244 
    summarise(max_disp_dist = max(dist)) 245 
   246 
   247 
   248 
  dfall_2$maxdist<- as.numeric(c(dms2["max_disp_dist"])) 249 
   250 
   251 
   252 
  dfall_2 %<>%  253 
    mutate(event_sample_time = time - gaze_dur_threshold_reached, 254 
           trial_duration = trial_end_time - trial_start_time, 255 
           onset_time_of_2nd = next_trial_start_time - 256 
gaze_dur_threshold_reached, 257 
           threshold_reached_for_trial = gaze_dur_threshold_reached - 258 
trial_start_time, 259 
           distance_sample_to_next_target = 260 
dist(right_gaze_x,location_x_next,right_gaze_y,location_y_next),  261 
           distance_current_target_to_next_target = 262 
dist(location_x,location_x_next,location_y,location_y_next), 263 
           # distance from next target as proportion of distance between 264 
previous target to next target 265 
           proportion_distance_2 = distance_sample_to_next_target / 266 
distance_current_target_to_next_target) 267 
   268 
   269 
   270 
   271 
  dfall_2 <- dfall_2 %>% 272 
    mutate( 273 
      event_sample_time=time-gaze_dur_threshold_reached, 274 
      trial_duration=next_gaze_dur_threshold_reached-275 
gaze_dur_threshold_reached, 276 
      onset_time_of_2nd=next_trial_start_time-gaze_dur_threshold_reached) 277 
  # distance from next target as proportion of maximum array dimension 278 
(distance between two most distant points) 279 
  dfall_2%<>%  280 
    mutate(proportion_distance = distance_sample_to_next_target /maxdist) 281 
  dfall_2 <-dfall_2%>% 282 
    select(subno,condition,location, seq, location_set, target, seqID_trans 283 
,transitions,trial_order_id,occurrence,time, 284 
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           285 
trial_start_time,trial_end_time,trial_duration,event_sample_time,threshold_286 
reached_for_trial, 287 
           onset_time_of_2nd,event_sample_time, 288 
           onset_time,onset_gaze_pos,gaze_dur_threshold_reached,  289 
           gaze_dur_threshold_reached_pos,location_y,location_x, 290 
right_gaze_x, right_gaze_y, proportion_distance_2, 291 
           location_x_next, location_y_next, next_trial_start_time, 292 
proportion_distance, 293 
           distance_current_target_to_next_target, 294 
distance_sample_to_next_target ) 295 
   296 
   297 
  298 
###########################################################################299 
##################################### 300 
  #for each data set max distance 3 301 
  dms<- unique(with(df3,expand.grid(location_x,location_y))) %>%  302 
    rename(x = Var1, y = Var2) %>%  303 
    unite(x_y,x,y) %>%  304 
    mutate(x_y2 = x_y) 305 
   306 
   307 
  dms2 <-  unique(with(dms, expand.grid(x_y,x_y2))) %>%  308 
    separate(Var1, c("x1","y1"), sep = '_') %>%  309 
    separate(Var2, c("x2","y2"), sep = '_') %>%  310 
    mutate_all(funs(as.numeric)) %>%  311 
    mutate(dist = dist(x1,x2,y1,y2)) %>%  312 
    summarise(max_disp_dist = max(dist)) 313 
   314 
   315 
   316 
  dfall_3$maxdist<- as.numeric(c(dms2["max_disp_dist"])) 317 
   318 
   319 
  dfall_3 %<>%  320 
    mutate(event_sample_time = time - gaze_dur_threshold_reached, 321 
           trial_duration = trial_end_time - trial_start_time, 322 
           onset_time_of_2nd = next_trial_start_time - 323 
gaze_dur_threshold_reached, 324 
           threshold_reached_for_trial = gaze_dur_threshold_reached - 325 
trial_start_time, 326 
           distance_sample_to_next_target = 327 
dist(right_gaze_x,location_x_next,right_gaze_y,location_y_next),  328 
           distance_current_target_to_next_target = 329 
dist(location_x,location_x_next,location_y,location_y_next), 330 
           # distance from next target as proportion of distance between 331 
previous target to next target 332 
           proportion_distance_2 = distance_sample_to_next_target / 333 
distance_current_target_to_next_target) 334 
   335 
  dfall_3 <- dfall_3 %>% 336 
    mutate( 337 
      event_sample_time=time-gaze_dur_threshold_reached, 338 
      trial_duration=next_gaze_dur_threshold_reached-339 
gaze_dur_threshold_reached, 340 
      onset_time_of_2nd=next_trial_start_time-gaze_dur_threshold_reached) 341 
  # distance from next target as proportion of maximum array dimension 342 
(distance between two most distant points) 343 
  dfall_3%<>%  344 
    mutate(proportion_distance = distance_sample_to_next_target /maxdist) 345 
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  dfall_3 <-dfall_3 %>% 346 
    select(subno,condition,location, seq, location_set, target, seqID_trans 347 
,transitions,trial_order_id,occurrence,time, 348 
           349 
trial_start_time,trial_end_time,trial_duration,event_sample_time,threshold_350 
reached_for_trial, 351 
           onset_time_of_2nd,event_sample_time, 352 
           onset_time,onset_gaze_pos,gaze_dur_threshold_reached,  353 
           gaze_dur_threshold_reached_pos,location_y,location_x, 354 
right_gaze_x, right_gaze_y, proportion_distance_2, 355 
           location_x_next, location_y_next, next_trial_start_time, 356 
proportion_distance, 357 
           distance_current_target_to_next_target, 358 
distance_sample_to_next_target ) 359 
   360 
   361 
  362 
###########################################################################363 
################# 364 
  ###### up to here is ok############ 365 
  # # square diagonal 366 
  # dms <- EXP_CV_1 %>%  367 
  #   summarise(minx = min(location_x), 368 
  #             miny = min(location_y), 369 
  #             maxx = max(location_x), 370 
  #             maxy = max(location_y)) %>%  371 
  #   mutate(max_disp_dist = dist(minx,maxx,miny,maxy)); dms 372 
   373 
   374 
 375 
  dfall<-dffinal<-rbind(dfall_1,dfall_2,dfall_3) 376 
  #save dataframe in csv file 377 
  write.csv(dfall, paste0('./outcome/',basename(x),'.csv'))} 378 
############## 379 
###plot distance 380 
 381 
dfall%>% 382 
  filter(condition=="C1") -> df2;df2 383 
 384 
 385 
Df2 <- df2%>%  386 
  387 
select(event_sample_time,proportion_distance,occurrence,transitions,onset_t388 
ime_of_2nd, seqID_trans) %>%  389 
  filter_all(any_vars(!is.na(.))) 390 
 391 
 392 
Df2 %>% 393 
  filter(occurrence  %in% c(1, 5,10,15,20,25,30,35,40))%>% 394 
  ggplot(aes(y=event_sample_time, x=proportion_distance))+ 395 
  labs(x = "Proportion of distance from target")+ 396 
  labs(y = "Time of trial")+ 397 
  geom_point(colour='red',alpha = 1, size = 0.2,na.rm =FALSE) +  398 
  geom_hline(aes(yintercept = onset_time_of_2nd),colour='blue3', linetype = 399 
'solid') + 400 
  facet_grid(occurrence~seqID_trans)+ 401 
  ylim(0,1.5) + 402 
  theme(axis.text = element_text(size = 5))+ 403 
  xlim(0,1.5)+ 404 
  labs(title ="Raw eyedata of participant 005 - Design A")+ 405 
  ggsave('templ1.png', width = 15, height = 12.5, units = 'cm')406 
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G.4 R script for experimental plots for design B. 
 
library(tidyverse) 1 
library(reshape2) 2 
library(magrittr) 3 
library(dplyr) 4 
 5 
load("../data/exp4_final.Rdata") 6 
 7 
df1 <- Df_all %>% as_tibble() 8 
names(df1) 9 
 10 
recode_if <- function(x, condition, ...) { 11 
  if_else(condition, recode(x, ...), x) 12 
} 13 
 14 
#transform data in usable format 15 
#transform data in usable format 16 
df1$sequence<-as.factor(paste(df1$seq, df1$condition, sep = "_")) 17 
 18 
df2<-df1 %>%  19 
  mutate(type = ifelse(condition %in% c("C1", "C4", "C5"), "non_mixed", 20 
                             ifelse(condition %in% c("C2", "C3", "C6"), 21 
"mixed", NA)), 22 
               condition = recode(condition,   23 
                                  C1 = "4 dots", 24 
                                  C2 = "2&4 dots", 25 
                                  C3 = "3&4 dots", 26 
                                  C4 = "3 dots", 27 
                                  C5 = "2 dots", 28 
                                  C6 = "2&3 dots"), 29 
               sequence_length=recode(seq_len, 30 
                                      "4"="4 dots", 31 
                                      "2"="2 dots", 32 
                                      "3"="3 dots")) %>% 33 
   34 
        mutate(positions=factor(paste0("position",transitions+1)), 35 
               target_position=positions) 36 
 37 
 38 
df2 <- df2 %>% 39 
  mutate(target_position = recode_if(target_position, sequence_length == "4 40 
dots" & positions == "position5", "position5" = "position_next")) 41 
 42 
 43 
df2$target_position[df2$sequence_length == '3 dots' & df2$positions == 44 
'position4'] <- "position_next" 45 
 46 
df2$target_position[df2$sequence_length == '2 dots' & df2$positions == 47 
'position3'] <- "position_next" 48 
 49 
 50 
df2<- df2%>% 51 
  mutate(type_transition= ifelse(positions %in% c("position_next"), 52 
"1st_transition", 53 
                                 ifelse(positions %in% c("position2", 54 
"position3", "position4"), "in_sequence_transition",NA ))) 55 
 56 
df2<-df2%>% 57 
  mutate(  target_position=recode(target_position, 58 
                                  "position_next"="position1", 59 
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                                  "position2"="position2", 60 
                                  "position3"="position3", 61 
                                  "position4"="position4")) 62 
df2<- df2%>% 63 
  select(on_target_pre_total,positions,seq, target_position, 64 
sequence_length,occurrence,condition,subno,sequence) 65 
write.csv(df2, "ready_data_exp4.csv") 66 
 67 
###########################################################################68 
############################################## 69 
 70 
df6 <- subset(df2, condition == "3 dots") 71 
df6$percentage_on_target<-(df6$on_target_pre_total/750)*100 72 
df6 %>% 73 
  ggplot(aes(y = percentage_on_target, x = occurrence) )+ 74 
  geom_smooth(size= 1.2, method='lm', formula = y ~ poly(x,3))+ 75 
  facet_grid(~condition)+ 76 
  theme_minimal(base_size = 10)+ 77 
  ylim(0,100)+ 78 
  labs(title ="Learning rate in 3 dots tasks - Design B")+ 79 
  xlab("Number of repetition of item - exposure")+ 80 
  ylab("Percentage of eye samples on  target position \n during  blank 81 
period")+ 82 
  ggsave('../plots/exp4/percentage.png', height = 15, width = 15, units = 83 
'cm') 84 
 85 
 86 
df6 %>% 87 
  ggplot(aes(y = on_target_pre_total, x = occurrence, colour=seq) )+ 88 
  geom_smooth(size= 1.2, method='lm', formula = y ~ poly(x,3))+ 89 
  facet_grid(~condition)+ 90 
  theme_minimal(base_size = 10)+ 91 
  labs(title ="Learning rate in 3 dots tasks - Design B")+ 92 
  xlab("Number of repetition of item - exposure")+ 93 
  ylab("Number of eye-samples on  target position \n during  blank 94 
period")+ 95 
  ggsave('../plots/exp4/ meth_2.png', height = 15, width = 15, units = 96 
'cm') 97 
 98 
 99 
#individual differences 100 
 101 
df6 %>% 102 
  ggplot(aes(y = on_target_pre_total, x = occurrence) )+ 103 
  geom_smooth(size= 0.8, method='lm', formula = y ~ poly(x,3))+ 104 
  facet_wrap(~subno)+ 105 
  theme_minimal(base_size = 10)+ 106 
  ylim(0,NA)+ 107 
  labs(title ="Learning rate in 3 dots tasks - Design B")+ 108 
  xlab("Number of repetition of item - exposure")+ 109 
  ylab("Number of eye-samples on  target position \n during  blank 110 
period")+ 111 
  ggsave('../plots/exp4/ meth_3.png', height = 13, width = 15, units = 112 
'cm') 113 

1 
 
 
 
G.5 R scripts for piloting data 
 1 
library(lme4) 2 
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library(dplyr) 3 
library(tidyverse) 4 
library(reshape2) 5 
library(magrittr) 6 
library(effects) 7 
library(sjPlot) 8 
library(sjmisc) 9 
library(sjlabelled) 10 
 11 
#500ms 12 
load("data/piloting_500.Rdata") 13 
str(Df_all) 14 
##piloting data gp3 15 
 16 
df<-Df_all%>% 17 
  filter(condition == "C1") %>% 18 
  mutate( condition = recode(condition,   19 
                             C1 = "3 dots")) 20 
 21 
df%>%  22 
  ggplot(aes(x=occurrence, y=on_target_pre_total),group=subno) + 23 
  geom_smooth( method = "loess")+ 24 
  theme_classic(base_size = 10)+ 25 
  facet_wrap(~subno)+ 26 
  coord_cartesian(ylim = c(0, 30))+ 27 
  labs(title ="Learning rate across 3 dots task for a 500ms blank period 28 
per participant")+ 29 
  xlab("Number of repetition of item - exposure")+ 30 
  ylab("Number of eye-samples on  target position \n during  blank period 31 
of 500ms")+ 32 
  ggsave('./new_plots/piloting_500.png', height = 8,width = 16.6, units = 33 
'cm') 34 
 35 
 36 
#600ms 37 
load("data/piloting_600.Rdata") 38 
str(Df_all) 39 
##piloting data gp3 40 
 41 
df<-Df_all%>% 42 
  filter(condition == "C1") %>% 43 
  mutate( condition = recode(condition,   44 
                             C1 = "3 dots")) 45 
 46 
df%>%  47 
  ggplot(aes(x=occurrence, y=on_target_pre_total),group=subno) + 48 
  geom_smooth( method = "loess")+ 49 
  theme_classic(base_size = 10)+ 50 
  facet_wrap(~subno)+ 51 
  coord_cartesian(ylim = c(0, 36))+ 52 
  labs(title ="Learning rate across 3 dots task for a 600ms blank period 53 
per participant")+ 54 
  xlab("Number of repetition of item - exposure")+ 55 
  ylab("Number of eye-samples on  target position \n during  blank period 56 
of 600ms")+ 57 
  ggsave('./new_plots/piloting_600.png', height = 8,width = 16.6, units = 58 
'cm') 59 
 60 
#700ms 61 
load("data/piloting_700.Rdata") 62 
str(Df_all) 63 
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##piloting data gp3 64 
 65 
df<-Df_all%>% 66 
  filter(condition == "C1") %>% 67 
  mutate( condition = recode(condition,   68 
                             C1 = "3 dots")) 69 
 70 
df%>%  71 
  ggplot(aes(x=occurrence, y=on_target_pre_total),group=subno) + 72 
  geom_smooth( method = "loess")+ 73 
  theme_classic(base_size = 10)+ 74 
  facet_wrap(~subno)+ 75 
  coord_cartesian(ylim = c(0, 42))+ 76 
  labs(title ="Learning rate across 3 dots task for a 700ms blank period")+ 77 
  xlab("Number of repetition of item - exposure")+ 78 
  ylab("Number of eye-samples on  target position \n during  blank period 79 
of 700ms")+ 80 
  ggsave('./new_plots/piloting_700.png', height = 8,width = 13, units = 81 
'cm') 82 
 
 
G.6 R script for fixation and eye-sample graphs in Chapter 4. 
 1 
load("data/Rdata_exp3.Rdata") 2 
df<- Df_all%>%  3 
  filter(condition %in% c("C1"))%>% 4 
  mutate(condition=recode(condition, C1= "3 dots" )) 5 
df %>% 6 
  filter(subno %in% c("005"))%>% 7 
  ggplot(aes(y = on_target_pre_total, x = occurrence) )+ 8 
  geom_smooth(size= 0.8, method='lm', formula = y ~ poly(x,3))+ 9 
  facet_wrap(~subno)+ 10 
  theme_minimal(base_size = 10)+ 11 
  ylim(0,20)+ 12 
  labs(title ="Learning rate in 3 dots task for participant 005 - Design 13 
A")+ 14 
  xlab("Number of repetition of item - exposure")+ 15 
  ylab("Number of eye-samples on  target position \n during  blank 16 
period")+ 17 
  ggsave('./new_plots/ eye_sample_gp3.png', height = 13, width = 15, units 18 
= 'cm') 19 
 20 
load("./fixations_gp3.Rdata") 21 
df<- Df_all%>%  22 
  filter(condition %in% c("C1"))%>% 23 
  mutate(condition=recode(condition, C1= "3 dots" )) 24 
df %>% 25 
  filter(subno %in% c("005"))%>% 26 
  ggplot(aes(y = on_target_pre_total, x = occurrence) )+ 27 
  geom_smooth(size= 0.8, method='lm', formula = y ~ poly(x,3))+ 28 
  facet_wrap(~subno)+ 29 
  theme_minimal(base_size = 10)+ 30 
  ylim(0,2)+ 31 
  labs(title ="Learning rate in 3 dots task for participant 005 - Design 32 
A")+ 33 
  xlab("Number of repetition of item - exposure")+ 34 
  ylab("Number of fixations on  target position \n during  blank period")+ 35 
  ggsave('./new_plots/ fixation_gp3.png', height = 13, width = 15, units = 36 
'cm') 37 
 38 
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Appendix H – Analysis R Scripts for Chapter 6 

H.1 R script for models and model fit for positioning effects. 

###POSITIONING####### 1 
 2 
library(lme4) 3 
library(tidyverse) 4 
library(reshape2) 5 
library(magrittr) 6 
library(effects) 7 
library(sjPlot) 8 
library(sjmisc) 9 
library(sjlabelled) 10 
load("data/exp4_final.Rdata") 11 
df1 <- Df_all %>% as_tibble() 12 
names(df1) 13 
 14 
#transform data in usable format 15 
#transform data in usable format 16 
df1$sequence<-as.factor(paste(df1$seq, df1$condition, sep = "_")) 17 
df1 %>% mutate(type = ifelse(condition %in% c("C1", "C4", "C5"), 18 
"non_mixed", 19 
                             ifelse(condition %in% c("C2", "C3", "C6"), 20 
"mixed", NA)), 21 
               condition = recode(condition,   22 
                                  C1 = "4 dots", 23 
                                  C2 = "2&4 dots", 24 
                                  C3 = "3&4 dots", 25 
                                  C4 = "3 dots", 26 
                                  C5 = "2 dots", 27 
                                  C6 = "2&3 dots"), 28 
               sequence_length=recode(seq_len, 29 
                                      "4"="4 dots", 30 
                                      "2"="2 dots", 31 
                                      "3"="3 dots")) %>% 32 
   33 
   34 
  mutate(positions=factor(paste0("position",transitions+1)), 35 
         positions=recode(positions, 36 
                          position5="position_next"), 37 
         trans = factor(paste0("trans", transitions)))%>% 38 
   39 
  dplyr::select(on_target_pre_total,positions,sequence_length, type, 40 
occurrence, transitions, trans,condition, subno, sequence) -> df2;df2 41 
 42 
#learning for condition-task 4 dots 43 
df3 <- subset(df2, transitions %in% 1:3 & condition == "4 dots") 44 
#learning for condition-task 3 dots 45 
df4<- subset(df2, transitions %in% 1:2 & condition == "3 dots") 46 
#learning for condition-task 2 dots 47 
df5<- subset(df2, transitions %in% 1:1 & condition == "2 dots") 48 
 49 
 50 
 51 
#learning for condition-task 2&3 dots 52 
df6 <- subset(df2, sequence_length == "3 dots"  & condition == "2&3 dots" & 53 
transitions %in% 1:2 ) 54 
df7<-subset(df2, sequence_length == "2 dots"  & condition == "2&3 dots" & 55 
transitions %in% 1:1 ) 56 
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df8<-rbind(df6,df7) 57 
 58 
#learning for condition-task 2&4 dots 59 
df9 <- subset(df2, sequence_length == "4 dots"  & condition == "2&4 dots" & 60 
transitions %in% 1:3 ) 61 
df10<-subset(df2, sequence_length == "2 dots"  & condition == "2&4 dots" & 62 
transitions %in% 1:1 ) 63 
df11<-rbind(df9,df10) 64 
 65 
 66 
#learning for condition-task 2&4 dots 67 
df12 <- subset(df2, sequence_length == "4 dots"  & condition == "3&4 dots" 68 
& transitions %in% 1:3 ) 69 
df13<-subset(df2, sequence_length == "3 dots"  & condition == "3&4 dots" & 70 
transitions %in% 1:2 ) 71 
df14<-rbind(df12,df13) 72 
 73 
library(data.table) 74 
#bind the learnind data in one df 75 
df_learning<-rbind(df14,df11,df8,df5,df4,df3) 76 
setDT(df_learning)[ , new_subno := .GRP, by = .(subno)] 77 
 78 
rm(list=Filter(function(x){!(x %in% c('df2','df_learning'))}, ls())) 79 
######################################################################### 80 
formula_3<- glmer(on_target_pre_total ~ poly(occurrence,3)  + (1|subno) + 81 
(1|sequence:subno), data=df_learning, family = poisson()) 82 
formula_2<- glmer(on_target_pre_total ~ poly(occurrence,2)  + (1|subno) + 83 
(1|sequence:subno), data=df_learning, family = poisson()) 84 
formula_1<- glmer(on_target_pre_total ~ poly(occurrence,1)  + (1|subno) + 85 
(1|sequence:subno), data=df_learning, family = poisson()) 86 
formula_0<- glmer(on_target_pre_total ~ 1  + (1|subno) + 87 
(1|sequence:subno), data=df_learning, family = poisson()) 88 
 89 
anova(formula_0, formula_1) 90 
anova(formula_1, formula_2) 91 
anova(formula_2, formula_3) 92 
 93 
formula_4<- glmer(on_target_pre_total ~ poly(occurrence,3)+positions  + 94 
(1|subno) + (1|sequence:subno), data=df_learning, family = poisson()) 95 
formula_5<- glmer(on_target_pre_total ~ poly(occurrence,3)*positions  + 96 
(1|subno) + (1|sequence:subno), data=df_learning, family = poisson()) 97 
formula_6<- glmer(on_target_pre_total ~ poly(occurrence,3)*positions + type 98 
+ (1|subno) + (1|sequence:subno), data=df_learning, family = poisson()) 99 
formula_7<- glmer(on_target_pre_total ~ poly(occurrence,3)*positions * type  100 
+ (1|subno) + (1|sequence:subno), data=df_learning, family = poisson()) 101 
anova(formula_3, formula_4) 102 
anova(formula_4,formula_5) 103 
anova(formula_5,formula_6) 104 
anova (formula_5, formula_7) 105 
tab_model(formula_7,p.style = c( "both")) 106 
summary(formula_7) 107 
df_learning$fitted_model<-fitted(formula_7) 108 
 109 
df_learning%>%  110 
  ggplot(aes(x=occurrence, y=fitted_model, colour=positions),group=subno) + 111 
  geom_smooth( method = "lm", formula = y ~ poly(x,3))+ 112 
  theme_minimal(base_size = 10)+ 113 
  facet_grid(~condition)+ 114 
  coord_cartesian(ylim = c(0, 250))+ 115 
  labs(title ="Fit of Model for positioning effects  across  tasks")+ 116 
  xlab("Number of repetition of item - exposure")+ 117 
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  ylab("Number of eye-samples on  target position \n during  blank 118 
period")+ 119 
  ggsave('./plots/position_condition.png', height = 16.6,width = 16.6, 120 
units = 'cm') 121 
 122 
df_learning%>%  123 
  ggplot(aes(x=occurrence, y=fitted_model, colour=positions),group=subno) + 124 
  geom_smooth( method = "lm", formula = y ~ poly(x,3))+ 125 
  theme_minimal(base_size = 10)+ 126 
  facet_grid(sequence_length~condition)+ 127 
  coord_cartesian(ylim = c(0, 250))+ 128 
  labs(title ="Fit of Model for positioning effects \nacross different 129 
sequence lengths & tasks")+ 130 
  xlab("Number of repetition of item - exposure")+ 131 
  ylab("Number of eye-samples on  target position \n during  blank 132 
period")+ 133 
  ggsave('./plots/position_condition per seq.png', height = 16.6,width = 134 
16.6, units = 'cm') 135 
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Appendix I – Analysis R Scripts for Chapter 7 

 

I.1 R Script for visualisation of learning across tasks and fit of curve in Chapter 7, Section C.1 and C.2. 1 

 1 
library(lme4) 2 
library(tidyverse) 3 
library(reshape2) 4 
library(magrittr) 5 
library(effects) 6 
library(sjPlot) 7 
library(sjmisc) 8 
library(sjlabelled) 9 
load("data/exp4_final.Rdata") 10 
df1 <- Df_all %>% as_tibble() 11 
names(df1) 12 
 13 
#transform data in usable format 14 
#transform data in usable format 15 
df1$sequence<-as.factor(paste(df1$seq, df1$condition, sep = "_")) 16 
df1 %>% mutate(type = ifelse(condition %in% c("C1", "C4", "C5"), 17 
"non_mixed", 18 
                             ifelse(condition %in% c("C2", "C3", "C6"), 19 
"mixed", NA)), 20 
               condition = recode(condition,   21 
                                  C1 = "4 dots", 22 
                                  C2 = "2&4 dots", 23 
                                  C3 = "3&4 dots", 24 
                                  C4 = "3 dots", 25 
                                  C5 = "2 dots", 26 
                                  C6 = "2&3 dots"), 27 
               sequence_length=recode(seq_len, 28 
                                      "4"="4 dots", 29 
                                      "2"="2 dots", 30 
                                      "3"="3 dots")) %>% 31 
   32 
   33 
  mutate(positions=factor(paste0("position",transitions+1)), 34 
         positions=recode(positions, 35 
                          position5="position_next"), 36 
         trans = factor(paste0("trans", transitions)))%>% 37 
   38 
  dplyr::select(on_target_pre_total,positions,sequence_length, type, 39 
occurrence, transitions, trans,condition, subno, sequence) -> df2;df2 40 
 41 
#learning for condition-task 4 dots 42 
df3 <- subset(df2, transitions %in% 1:3 & condition == "4 dots") 43 
#learning for condition-task 3 dots 44 
df4<- subset(df2, transitions %in% 1:2 & condition == "3 dots") 45 
#learning for condition-task 2 dots 46 
df5<- subset(df2, transitions %in% 1:1 & condition == "2 dots") 47 
 48 
 49 
 50 
#learning for condition-task 2&3 dots 51 
df6 <- subset(df2, sequence_length == "3 dots"  & condition == "2&3 dots" & 52 
transitions %in% 1:2 ) 53 
df7<-subset(df2, sequence_length == "2 dots"  & condition == "2&3 dots" & 54 
transitions %in% 1:1 ) 55 
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df8<-rbind(df6,df7) 56 
 57 
#learning for condition-task 2&4 dots 58 
df9 <- subset(df2, sequence_length == "4 dots"  & condition == "2&4 dots" & 59 
transitions %in% 1:3 ) 60 
df10<-subset(df2, sequence_length == "2 dots"  & condition == "2&4 dots" & 61 
transitions %in% 1:1 ) 62 
df11<-rbind(df9,df10) 63 
 64 
 65 
#learning for condition-task 3&4 dots 66 
df12 <- subset(df2, sequence_length == "4 dots"  & condition == "3&4 dots" 67 
& transitions %in% 1:3 ) 68 
df13<-subset(df2, sequence_length == "3 dots"  & condition == "3&4 dots" & 69 
transitions %in% 1:2 ) 70 
df14<-rbind(df12,df13) 71 
 72 
library(data.table) 73 
#bind the learnind data in one df 74 
df_learning<-rbind(df14,df11,df8,df5,df4,df3) 75 
setDT(df_learning)[ , new_subno := .GRP, by = .(subno)] 76 
 77 
rm(list=Filter(function(x){!(x %in% c('df2','df_learning'))}, ls())) 78 
######################################################################### 79 
 80 
df_learning%>%  81 
  ggplot(aes(x=occurrence, y=on_target_pre_total, 82 
colour=positions),group=subno) + 83 
  geom_smooth( method = "loess")+ 84 
  theme_minimal(base_size = 10)+ 85 
  facet_grid(~condition)+ 86 
  coord_cartesian(ylim = c(0, 250))+ 87 
  labs(title ="Learning rate across different tasks")+ 88 
  xlab("Number of repetition of item - exposure")+ 89 
  ylab("Number of eye-samples on  target position \n during  blank 90 
period")+ 91 
  ggsave('./plots/learning across conditions.png', height = 16.6,width = 92 
16.6, units = 'cm') 93 
 94 
########## shape of curve during occurence 95 
formula_0<- glmer(on_target_pre_total ~ 1  + (1|subno) + 96 
(1|sequence:subno), data=df_learning, family = poisson()) 97 
formula_1<- glmer(on_target_pre_total ~ poly(occurrence,1)  + (1|subno) + 98 
(1|sequence:subno), data=df_learning, family = poisson()) 99 
anova(formula_0, formula_1) 100 
formula_2<- glmer(on_target_pre_total ~ poly(occurrence,2)  + (1|subno) + 101 
(1|sequence:subno), data=df_learning, family = poisson()) 102 
formula_3<- glmer(on_target_pre_total ~ poly(occurrence,3)  + (1|subno) + 103 
(1|sequence:subno), data=df_learning, family = poisson()) 104 
 105 
anova(formula_1, formula_2) 106 
anova(formula_3, formula_2) 107 
 
 
 
 
 
 
 
 
I.2 R Script for modelling learning in same length tasks in Chapter 7, Section C.3. 
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library(lme4) 1 
library(tidyverse) 2 
library(reshape2) 3 
library(magrittr) 4 
library(effects) 5 
library(sjPlot) 6 
library(sjmisc) 7 
library(sjlabelled) 8 
load("data/exp4_final.Rdata") 9 
df1 <- Df_all %>% as_tibble() 10 
names(df1) 11 
 12 
#transform data in usable format 13 
df1$sequence<-as.factor(paste(df1$seq, df1$condition, sep = "_")) 14 
df1 %>% mutate(type = ifelse(condition %in% c("C1", "C4", "C5"), 15 
"non_mixed", 16 
                             ifelse(condition %in% c("C2", "C3", "C6"), 17 
"mixed", NA)), 18 
               condition = recode(condition,   19 
                                  C1 = "4 dots", 20 
                                  C2 = "2&4 dots", 21 
                                  C3 = "3&4 dots", 22 
                                  C4 = "3 dots", 23 
                                  C5 = "2 dots", 24 
                                  C6 = "2&3 dots"), 25 
               sequence_length=recode(seq_len, 26 
                                      "4"="4 dots", 27 
                                      "2"="2 dots", 28 
                                      "3"="3 dots")) %>% 29 
   30 
   31 
  mutate(positions=factor(paste0("position",transitions+1)), 32 
         positions=recode(positions, 33 
                          position5="position_next"), 34 
         trans = factor(paste0("trans", transitions)))%>% 35 
   36 
  dplyr::select(on_target_pre_total,positions,sequence_length, type, 37 
occurrence, transitions, trans,condition, subno, sequence) -> df2;df2 38 
########################################################## 39 
 40 
 41 
 42 
df3 <- subset(df2,type == 'non_mixed') 43 
df4<-subset(df3, transitions %in% 1:1 & condition == "2 dots") 44 
df5<-subset(df3, transitions %in% 1:2 & condition == "3 dots") 45 
df6<-subset(df3, transitions %in% 1:3 & condition == "4 dots") 46 
dfmain<-rbind(df4,df5,df6) 47 
 48 
 49 
########### 50 
formula_0<- glmer(on_target_pre_total ~ 1  + (1|subno) + 51 
(1|sequence:subno), data=dfmain, family = poisson()) 52 
formula_1<- glmer(on_target_pre_total ~ poly(occurrence,1)  + (1|subno) + 53 
(1|sequence:subno), data=dfmain, family = poisson()) 54 
anova(formula_0, formula_1) 55 
formula_2<- glmer(on_target_pre_total ~ poly(occurrence,2)  + (1|subno) + 56 
(1|sequence:subno), data=dfmain, family = poisson()) 57 
formula_3<- glmer(on_target_pre_total ~ poly(occurrence,3)  + (1|subno) + 58 
(1|sequence:subno), data=dfmain, family = poisson()) 59 
 60 
anova(formula_1, formula_2) 61 
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anova(formula_3, formula_2) 62 
 63 
 64 
formula_4<- glmer(on_target_pre_total ~ poly(occurrence,3)+sequence_length  65 
+ (1|subno) + (1|sequence:subno), data=dfmain, family = poisson()) 66 
formula_5<- glmer(on_target_pre_total ~ poly(occurrence,3)*sequence_length  67 
+ (1|subno) + (1|sequence:subno), data=dfmain, family = poisson()) 68 
anova(formula_3,formula_4) 69 
anova(formula_3,formula_5) 70 
tab_model(formula_5,p.style ="asterisk",   show.intercept = TRUE, 71 
          show.est = TRUE, 72 
          show.ci = 0.95, 73 
          show.se = NULL, 74 
          show.std = NULL, 75 
          show.p = TRUE, 76 
          show.stat = TRUE, 77 
          show.df = FALSE, 78 
          show.zeroinf = TRUE, 79 
          show.r2 = TRUE, 80 
          show.re.var = TRUE, 81 
          show.ngroups = TRUE, 82 
          show.fstat = TRUE, 83 
          show.aic = TRUE, 84 
          show.loglik = TRUE, 85 
          show.obs = TRUE, 86 
          show.reflvl = TRUE) 87 
 88 
 89 
dfmain$fitted_model<-fitted(formula_5) 90 
 91 
dfmain%>%  92 
  ggplot(aes(x=occurrence, y=fitted_model),group=subno) + 93 
  geom_smooth( method = "lm", formula = y ~ poly(x,3))+ 94 
  theme_minimal(base_size = 10)+ 95 
  facet_wrap(~condition)+ 96 
  labs(title ="Fit of Model for learning rate across same length tasks")+ 97 
  xlab("Number of repetition of item - exposure")+ 98 
  ylab("Number of eye-samples on  target position \n during  blank 99 
period")+ 100 
  ggsave('./plots/fit  same length_condition.png', height = 16.6,width = 101 
16.6, units = 'cm') 102 
 103 
dfmain%>%  104 
  ggplot(aes(x=occurrence, y=fitted_model, colour=condition),group=subno) + 105 
  geom_smooth( method = "lm", formula = y ~ poly(x,3))+ 106 
  theme_minimal(base_size = 10)+ 107 
  labs(title ="Fit of Model for learning rate across same length tasks")+ 108 
  xlab("Number of repetition of item - exposure")+ 109 
  ylab("Number of eye-samples on  target position \n during  blank 110 
period")+ 111 
  ggsave('./plots/fit  same length_condition.png', height = 16.6,width = 112 
16.6, units = 'cm')113 
 
 
 
 
 
I.3 R Script for modelling learning in mixed length tasks in Chapter 7, Section C.4. 

library(lme4) 1 
library(tidyverse) 2 
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library(reshape2) 3 
library(magrittr) 4 
library(effects) 5 
library(sjPlot) 6 
library(sjmisc) 7 
library(sjlabelled) 8 
load("data/exp4_final.Rdata") 9 
df1 <- Df_all %>% as_tibble() 10 
names(df1) 11 
 12 
#transform data in usable format 13 
df1$sequence<-as.factor(paste(df1$seq, df1$condition, sep = "_")) 14 
df1 %>% mutate(type = ifelse(condition %in% c("C1", "C4", "C5"), 15 
"non_mixed", 16 
                             ifelse(condition %in% c("C2", "C3", "C6"), 17 
"mixed", NA)), 18 
               condition = recode(condition,   19 
                                  C1 = "4 dots", 20 
                                  C2 = "2&4 dots", 21 
                                  C3 = "3&4 dots", 22 
                                  C4 = "3 dots", 23 
                                  C5 = "2 dots", 24 
                                  C6 = "2&3 dots"), 25 
               sequence_length=recode(seq_len, 26 
                                      "4"="4 dots", 27 
                                      "2"="2 dots", 28 
                                      "3"="3 dots")) %>% 29 
   30 
   31 
  mutate(positions=factor(paste0("position",transitions+1)), 32 
         positions=recode(positions, 33 
                          position5="position_next"), 34 
         trans = factor(paste0("trans", transitions)))%>% 35 
   36 
  dplyr::select(on_target_pre_total,positions,sequence_length, type, 37 
occurrence, transitions, trans,condition, subno, sequence) -> df2;df2 38 
########################################################## 39 
 40 
 41 
#learning for condition-task 2&3 dots 42 
df6 <- subset(df2, sequence_length == "3 dots"  & condition == "2&3 dots" & 43 
transitions %in% 1:2 ) 44 
df7<-subset(df2, sequence_length == "2 dots"  & condition == "2&3 dots" & 45 
transitions %in% 1:1 ) 46 
df8<-rbind(df6,df7) 47 
 48 
#learning for condition-task 2&4 dots 49 
df9 <- subset(df2, sequence_length == "4 dots"  & condition == "2&4 dots" & 50 
transitions %in% 1:3 ) 51 
df10<-subset(df2, sequence_length == "2 dots"  & condition == "2&4 dots" & 52 
transitions %in% 1:1 ) 53 
df11<-rbind(df9,df10) 54 
#learning for condition-task 2&4 dots 55 
df12 <- subset(df2, sequence_length == "4 dots"  & condition == "3&4 dots" 56 
& transitions %in% 1:3 ) 57 
df13<-subset(df2, sequence_length == "3 dots"  & condition == "3&4 dots" & 58 
transitions %in% 1:2 ) 59 
df14<-rbind(df12,df13) 60 
df_mixed<-rbind(df14,df11, df8) 61 
formula_3<- glmer(on_target_pre_total ~ poly(occurrence,3)  + (1|subno) + 62 
(1|sequence:subno), data=df_mixed, family = poisson()) 63 
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formula_4<- glmer(on_target_pre_total ~ poly(occurrence,3)+sequence_length  64 
+ (1|subno) + (1|sequence:subno), data=df_mixed, family = poisson()) 65 
 66 
formula_5<- glmer(on_target_pre_total ~ poly(occurrence,3)*sequence_length  67 
+ (1|subno) + (1|sequence:subno), data=df_mixed, family = poisson()) 68 
 69 
anova(formula_3,formula_4) 70 
anova(formula_4,formula_5) 71 
 72 
summary(formula_5) 73 
tab_model(formula_5,p.style ="asterisk",   show.intercept = TRUE, 74 
          show.est = TRUE, 75 
          show.ci = 0.95, 76 
          show.se = NULL, 77 
          show.std = NULL, 78 
          show.p = TRUE, 79 
          show.stat = TRUE, 80 
          show.df = FALSE, 81 
          show.zeroinf = TRUE, 82 
          show.r2 = TRUE, 83 
          show.re.var = TRUE, 84 
          show.ngroups = TRUE, 85 
          show.fstat = TRUE, 86 
          show.aic = TRUE, 87 
          show.loglik = TRUE, 88 
          show.obs = TRUE, 89 
          show.reflvl = TRUE) 90 
 91 
 92 
df_mixed$fitted_model<-fitted(formula_5) 93 
 94 
df_mixed%>%  95 
  ggplot(aes(x=occurrence, y=fitted_model, 96 
colour=sequence_length),group=subno) + 97 
  geom_smooth( method = "lm", formula = y ~ poly(x,3))+ 98 
  theme_minimal(base_size = 10)+ 99 
  facet_wrap(~condition)+ 100 
  coord_cartesian(ylim = c(0, 250))+ 101 
  labs(title ="Fit of Model for learning rate across mixed length tasks")+ 102 
  xlab("Number of repetition of item - exposure")+ 103 
  ylab("Number of eye-samples on  target position \n during  blank 104 
period")+ 105 
  ggsave('./plots/ 2 mixed length_condition.png', height = 16.6,width = 106 
16.6, units = 'cm') 107 
 108 
df_mixed%>%  109 
  ggplot(aes(x=occurrence, y=fitted_model),group=subno) + 110 
  geom_smooth( method = "lm", formula = y ~ poly(x,3))+ 111 
  theme_minimal(base_size = 10)+ 112 
  facet_wrap(~condition)+ 113 
  coord_cartesian(ylim = c(0, 250))+ 114 
  labs(title ="Fit of Model for learning rate across mixed length tasks")+ 115 
  xlab("Number of repetition of item - exposure")+ 116 
  ylab("Number of eye-samples on  target position \n during  blank 117 
period")+ 118 
  ggsave('./plots/ 1 mixed length_condition.png', height = 16.6,width = 119 
16.6, units = 'cm')120 
I.4 R Script for modelling learning in mixed length tasks vs same length tasks in Chapter 7, Section C.5. 

 

library(lme4) 1 



Appendix I 

278 
 

library(tidyverse) 2 
library(reshape2) 3 
library(magrittr) 4 
library(effects) 5 
library(sjPlot) 6 
library(sjmisc) 7 
library(sjlabelled) 8 
load("data/exp4_final.Rdata") 9 
df1 <- Df_all %>% as_tibble() 10 
names(df1) 11 
 12 
#transform data in usable format 13 
#transform data in usable format 14 
df1$sequence<-as.factor(paste(df1$seq, df1$condition, sep = "_")) 15 
df1 %>% mutate(type = ifelse(condition %in% c("C1", "C4", "C5"), 16 
"non_mixed", 17 
                             ifelse(condition %in% c("C2", "C3", "C6"), 18 
"mixed", NA)), 19 
               condition = recode(condition,   20 
                                  C1 = "4 dots", 21 
                                  C2 = "2&4 dots", 22 
                                  C3 = "3&4 dots", 23 
                                  C4 = "3 dots", 24 
                                  C5 = "2 dots", 25 
                                  C6 = "2&3 dots"), 26 
               sequence_length=recode(seq_len, 27 
                                      "4"="4 dots", 28 
                                      "2"="2 dots", 29 
                                      "3"="3 dots")) %>% 30 
   31 
   32 
  mutate(positions=factor(paste0("position",transitions+1)), 33 
         positions=recode(positions, 34 
                          position5="position_next"), 35 
         trans = factor(paste0("trans", transitions)))%>% 36 
   37 
  dplyr::select(on_target_pre_total,positions,sequence_length, type, 38 
occurrence, transitions, trans,condition, subno, sequence) -> df2;df2 39 
 40 
#learning for condition-task 4 dots 41 
df3 <- subset(df2, transitions %in% 1:3 & condition == "4 dots") 42 
#learning for condition-task 3 dots 43 
df4<- subset(df2, transitions %in% 1:2 & condition == "3 dots") 44 
#learning for condition-task 2 dots 45 
df5<- subset(df2, transitions %in% 1:1 & condition == "2 dots") 46 
 47 
 48 
 49 
#learning for condition-task 2&3 dots 50 
df6 <- subset(df2, sequence_length == "3 dots"  & condition == "2&3 dots" & 51 
transitions %in% 1:2 ) 52 
df7<-subset(df2, sequence_length == "2 dots"  & condition == "2&3 dots" & 53 
transitions %in% 1:1 ) 54 
df8<-rbind(df6,df7) 55 
 56 
#learning for condition-task 2&4 dots 57 
df9 <- subset(df2, sequence_length == "4 dots"  & condition == "2&4 dots" & 58 
transitions %in% 1:3 ) 59 
df10<-subset(df2, sequence_length == "2 dots"  & condition == "2&4 dots" & 60 
transitions %in% 1:1 ) 61 
df11<-rbind(df9,df10) 62 
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 63 
 64 
#learning for condition-task 3&4 dots 65 
df12 <- subset(df2, sequence_length == "4 dots"  & condition == "3&4 dots" 66 
& transitions %in% 1:3 ) 67 
df13<-subset(df2, sequence_length == "3 dots"  & condition == "3&4 dots" & 68 
transitions %in% 1:2 ) 69 
df14<-rbind(df12,df13) 70 
 71 
library(data.table) 72 
#bind the learnind data in one df 73 
df_learning<-rbind(df14,df11,df8,df5,df4,df3) 74 
setDT(df_learning)[ , new_subno := .GRP, by = .(subno)] 75 
############# 76 
formula_3<- glmer(on_target_pre_total ~ poly(occurrence,3)  + (1|subno) + 77 
(1|sequence:subno), data=df_learning, family = poisson()) 78 
formula_4<- glmer(on_target_pre_total ~ poly(occurrence,3) +type + 79 
(1|subno) + (1|sequence:subno), data=df_learning, family = poisson()) 80 
formula_41<- glmer(on_target_pre_total ~ poly(occurrence,3) *type + 81 
(1|subno) + (1|sequence:subno), data=df_learning, family = poisson()) 82 
anova(formula_3,formula_4) 83 
anova(formula_41, formula_3) 84 
formula_5<- glmer(on_target_pre_total ~ poly(occurrence,3) *type + 85 
sequence_length + (1|subno) + (1|sequence:subno), data=df_learning, family 86 
= poisson()) 87 
formula_6<- glmer(on_target_pre_total ~ poly(occurrence,3) *type * 88 
sequence_length + (1|subno) + (1|sequence:subno), data=df_learning, family 89 
= poisson()) 90 
anova(formula_4,formula_41) 91 
 92 
anova(formula_41, formula_5) 93 
anova( formula_5, formula_6) 94 
 95 
 96 
tab_model(formula_6,p.style = "asterisk",   show.intercept = TRUE, 97 
          show.est = TRUE, 98 
          show.ci = 0.95, 99 
          show.se = NULL, 100 
          show.std = NULL, 101 
          show.p = TRUE, 102 
          show.stat = TRUE, 103 
          show.df = FALSE, 104 
          show.zeroinf = TRUE, 105 
          show.r2 = TRUE, 106 
          show.re.var = TRUE, 107 
          show.ngroups = TRUE, 108 
          show.fstat = TRUE, 109 
          show.aic = TRUE, 110 
          show.loglik = TRUE, 111 
          show.obs = TRUE, 112 
          show.reflvl = TRUE) 113 
 114 
summary(formula_6) 115 
df_learning$fitted_model<-fitted(formula_6) 116 
 117 
 118 
df_learning%>%  119 
  ggplot(aes(x=occurrence, y=fitted_model, 120 
colour=sequence_length),group=subno) + 121 
  geom_smooth( method = "lm", formula = y ~ poly(x,3))+ 122 
  theme_minimal(base_size = 10)+ 123 
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  facet_wrap(~type)+ 124 
  coord_cartesian(ylim = c(0, 250))+ 125 
  labs(title ="Fit of Model for learning rate across tasks")+ 126 
  xlab("Number of repetition of item - exposure")+ 127 
  ylab("Number of eye-samples on  target position \n during  blank 128 
period")+ 129 
  ggsave('./plots/ nonmixed mixed length_condition.png', height = 130 
16.6,width = 16.6, units = 'cm') 131 
 132 
rm(list=Filter(function(x){!(x %in% c('df2','df_learning'))}, ls())) 133 
 134 
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Appendix J - R Script for plot in Chapter 8 

J.1 R script that generates in one graph the percentage of the learning rate in the task of 2 dots for the 
GP3 and the EyeLink 1000. 

 

library(tidyverse) 1 
library(reshape2) 2 
library(magrittr) 3 
library(dplyr) 4 
 5 
 6 
load("./data/exp3_final.Rdata") 7 
df1 <- Df_all %>% as_tibble() 8 
names(df1) 9 
 10 
load("./data/exp4_final.Rdata") 11 
df2 <- Df_all %>% as_tibble() 12 
names(df2) 13 
#transform data in usable format 14 
str(df2) 15 
df2$seq_len<-as.factor(df2$seq_len) 16 
df2 %>% mutate(type = ifelse(condition %in% c("C1", "C2"), "non_mixed", 17 
                             ifelse(condition %in% c("C3"), "mixed", NA)), 18 
               condition = recode(condition,   19 
                                  C1 = "3 dots", 20 
                                  C2 = "2 dots", 21 
                                  C3 = "2&3dots"), 22 
               sequence_length=recode(seq_len, 23 
                                      "2"="2 dots", 24 
                                      "3"="3 dots")) %>% 25 
   26 
   27 
  mutate(positions=factor(paste0("position",transitions+1)), 28 
         positions=recode(positions, 29 
                          position5="position_next"), 30 
         trans = factor(paste0("trans", transitions)))%>% 31 
   32 
  select(on_target_pre_total,positions,sequence_length, occurrence, 33 
transitions, trans,condition, subno, seq,type) -> df4;df4 34 
 35 
################## 36 
df1$sequence<-as.factor(paste(df1$seq, df1$condition, sep = "_")) 37 
df1 %>% mutate(sequence_length=recode(seq_len, 38 
                                      "4"="4 dots", 39 
                                      "2"="2 dots", 40 
                                      "3"="3 dots")) %>% 41 
   42 
   43 
  mutate(positions=factor(paste0("position",transitions+1)), 44 
         positions=recode(positions, 45 
                          position5="position_next"), 46 
         trans = factor(paste0("trans", transitions)))%>% 47 
   48 
  dplyr::select(on_target_pre_total,positions,sequence_length, occurrence, 49 
transitions, trans,condition, subno) -> df3;df3 50 
########################################################## 51 
 52 
library(data.table) 53 
setDT(df3)[ , new_subno := .GRP, by = .(subno)] 54 
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setDT(df4)[ , new_subno := .GRP, by = .(subno)] 55 
 56 
dfgp3<-subset(df3, transitions %in% 1:1 & condition == "C2") 57 
dfsr<-subset(df4, transitions %in% 1:1 & condition == "2 dots") 58 
 59 
 60 
dfgp3$percentage_on_target<-(dfgp3$on_target_pre_total/45)*100 61 
 62 
dfsr$percentage_on_target<-(dfsr$on_target_pre_total/750)*100 63 
 64 
 65 
ggplot(data=dfgp3,aes(y = percentage_on_target, x = occurrence) )+ 66 
  geom_smooth(size= 1.2, method='lm', formula = y ~ poly(x,3))+ 67 
  geom_smooth(data=dfsr,size= 1.2, method='lm', formula = y ~ poly(x,3), 68 
colour= 'red')+ 69 
  theme_minimal(base_size = 10)+ 70 
  ylim(0,100)+ 71 
  labs(title ="Learning rate in 2 dots tasks with \nGP3(blue-line)and 72 
Eyelink 1000 (red-line)")+ 73 
  xlab("Number of repetition of item - exposure")+ 74 
  ylab("Percentage of eye samples on target position \n during  blank 75 
period") 76 
 77 
ggsave(' percentage 2 dots across eye trackers.png', height = 15, width = 78 
15, units = 'cm') 79 
 80 

 

J2.R script that generates t-tests and graphs for spatial acuity analysis. 

 1 

#load GP3 2 
load('./fixations_gp3_comp.Rdata') 3 
 4 
gp3<-Df_all 5 
 6 
#load sr 7 
load('./fixations_sr_comp.Rdata') 8 
sr<-Df_all 9 
 10 
 11 
 12 
#filter data 13 
gp3<-gp3%>%filter(condition %in% c("C2"))%>% 14 
  mutate(condition=recode(condition, C2= "2 dots" ))%>% 15 
  filter(on_target_post != 0) 16 
 17 
sr<-sr%>%filter(condition %in% c("C5"))%>% 18 
  mutate(condition=recode(condition, C5= "2 dots" ))%>% 19 
  filter(on_target_post != 0) 20 
 21 
######## 22 
all = bind_rows( 23 
  mutate(gp3, eye_tracker = "gp3"), 24 
  mutate(sr, eye_tracker = "sr") 25 
)  26 
 27 
#################################################### 28 
 29 
 30 
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 gp3%>% 31 
  summarise(mean = mean(on_target_post), n = n(), sd=sd(on_target_post)) 32 
 33 
 sr%>% 34 
   summarise(mean = mean(on_target_post), n = n(), sd=sd(on_target_post)) 35 
  36 
  37 
 38 
 ##duration 39 
 gp3%>% 40 
   summarise(mean = mean(duration), n = n(), sd=sd(duration)) 41 
  42 
sr%>% 43 
   summarise(mean = mean(duration), n = n(), sd=sd(duration))  44 
  45 
 ###distance from target  46 
gp3%>% 47 
  summarise(mean = mean(distance_sample_to_current_target), n = n(), 48 
sd=sd(distance_sample_to_current_target)) 49 
 50 
sr%>% 51 
  summarise(mean = mean(distance_sample_to_current_target), n = n(), 52 
sd=sd(distance_sample_to_current_target)) 53 
########### 54 
#visualise 55 
library(psyntur) 56 
t_test(data=all,duration~eye_tracker) 57 
 58 
t_test(data=all,distance_sample_to_current_target~eye_tracker) 59 
# distance of fixation from target 60 
ggplot(all, aes(y = distance_sample_to_current_target,  x = eye_tracker, 61 
color= eye_tracker)) + 62 
  geom_boxplot()+theme_minimal()+ 63 
  scale_color_brewer(palette="Dark2")+ 64 
  labs(title ="Distance of fixations within the AOI from target")+ 65 
  xlab(" Eye-tracker")+ 66 
  ylab("Distance from target in pixels")+ 67 
  ggsave('./distance from target.png', height = 10,width = 17, units = 68 
'cm') 69 
 70 
# duration of fixation from target 71 
 72 
ggplot(all, aes(y = duration,  x = eye_tracker, color= eye_tracker)) + 73 
  geom_boxplot()+theme_minimal()+ 74 
  scale_color_brewer(palette="Dark2")+ 75 
  labs(title ="Duration of fixations within the AOI")+ 76 
  xlab(" Eye-tracker")+ 77 
  ylab("Duration of fixations in ms")+ 78 
  ggsave('./duration from target.png', height = 10,width = 17, units = 79 
'cm') 80 
 81 
 82 
  83 
 #####check per trial amount of fixations 84 
 85 
 86 
gp1<-gp3%>% 87 
  drop_na()%>% 88 
  group_by(subno,condition, seq,target,occurrence)%>% 89 
  mutate(total_post_fixations=sum(on_target_post), 90 
         total_duration= sum(duration)/total_post_fixations)%>% 91 



Appendix J 

284 
 

  92 
select(subno,condition,target,trial_order_id,occurrence,ID,total_post_fixat93 
ions, 94 
         total_duration)%>% 95 
  ungroup()%>% 96 
  distinct() 97 
 98 
sr1<-sr%>% 99 
  drop_na()%>% 100 
  group_by(subno,condition, seq,target,occurrence)%>% 101 
  mutate(total_post_fixations=sum(on_target_post), 102 
         total_duration= sum(duration)/total_post_fixations, 103 
         104 
total_distance=sum(distance_sample_to_current_target)/total_post_fixations)105 
%>% 106 
  107 
select(subno,condition,target,trial_order_id,occurrence,ID,total_post_fixat108 
ions, 109 
         total_duration,total_distance)%>% 110 
  ungroup()%>% 111 
  distinct() 112 
  113 
gp1%>% 114 
  summarise(mean = mean(total_post_fixations), n = n(), 115 
sd=sd(total_post_fixations)) 116 
 117 
sr1%>% 118 
  summarise(mean = mean(total_post_fixations), n = n(), 119 
sd=sd(total_post_fixations))  120 
 121 
all1 = bind_rows( 122 
  mutate(gp1, eye_tracker = "gp3"), 123 
  mutate(sr1, eye_tracker = "sr") 124 
)  125 
  126 
t_test(data=all1, total_post_fixations~eye_tracker) 127 
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Appendix K- Individual Differences in learning performance in 6 tasks 
 

 

K.1 Figure of individual differences in 4 dots task. 

 

 

Figure K.1 This plot shows the learning across sequences in the 4 dots task, for each individual subject (001-036). 
On x-axis is the number of occurrence / exposure and on the y- axis is the number of eye-samples on the target 
location during the 750ms blank period. Reminder that there is a maximum of 750 eye-samples per trial. 
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K.2 Figure of individual differences in 3 dots task. 

 

 

Figure K.2 This plot shows the learning across sequences in the 3 dots task, for each individual subject (001-
036). On x-axis is the number of occurrence / exposure and on the y- axis is the number of eye-samples on the 
target location during the 750ms blank period. Reminder that there is a maximum of 750 eye-samples per trial. 
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K.3 Figure of individual differences in 3&4 dots task. 

 

 

Figure K.3 This plot shows the learning across sequences in the 3&4 dots task, for each individual subject (001-
036). On x-axis is the number of occurrence / exposure and on the y- axis is the number of eye-samples on the 
target location during the 750ms blank period. Reminder that there is a maximum of 750 eye-samples per trial. 
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K.4 Figure of individual differences in 2 dots task. 

 

 

Figure K.4 This plot shows the learning across sequences in the 2 dots task, for each individual subject (001-036). 
On x-axis is the number of occurrence / exposure and on the y- axis is the number of eye-samples on the target 
location during the 750ms blank period. Reminder that there is a maximum of 750 eye-samples per trial. 
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K.5 Figure of individual differences in 2&3 dots task. 

 

 

Figure K.5 This plot shows the learning across sequences in the 2&3 dots task, for each individual subject (001-
036). On x-axis is the number of occurrence / exposure and on the y- axis is the number of eye-samples on the 
target location during the 750ms blank period. Reminder that there is a maximum of 750 eye-samples per trial. 
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K.6 Figure of individual differences in 2&4 dots task. 

 

 

Figure K.6 This plot shows the learning across sequences in the 2&4 dots task, for each individual subject (001-
036). On x-axis is the number of occurrence / exposure and on the y- axis is the number of eye-samples on the 
target location during the 750ms blank period. Reminder that there is a maximum of 750 eye-samples per trial. 
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Appendix L - R Script for individual differences in Appendix K 

 

L.1 R Script for the plot of individual differences for the 6 different tasks. 

#Individual differences plots in 6 tasks 1 
library(tidyverse) 2 
library(reshape2) 3 
load("data/exp4_final.Rdata") 4 
df1 <- Df_all %>% as_tibble() 5 
names(df1) 6 
 7 
#transform data in usable format 8 
df1$sequence<-as.factor(paste(df1$seq, df1$condition, sep = "_")) 9 
df1 %>% mutate(type = ifelse(condition %in% c("C1", "C4", "C5"), 10 
"non_mixed", 11 
                             ifelse(condition %in% c("C2", "C3", "C6"), 12 
"mixed", NA)), 13 
               condition = recode(condition,   14 
                                  C1 = "4 dots", 15 
                                  C2 = "2&4 dots", 16 
                                  C3 = "3&4 dots", 17 
                                  C4 = "3 dots", 18 
                                  C5 = "2 dots", 19 
                                  C6 = "2&3 dots"), 20 
               sequence_length=recode(seq_len, 21 
                                      "4"="4 dots", 22 
                                      "2"="2 dots", 23 
                                      "3"="3 dots")) %>% 24 
   25 
   26 
  mutate(positions=factor(paste0("position",transitions+1)), 27 
         positions=recode(positions, 28 
                          position5="position_next"), 29 
         trans = factor(paste0("trans", transitions)))%>% 30 
   31 
  dplyr::select(on_target_pre_total,positions,sequence_length, type, 32 
occurrence, transitions, trans,condition, subno, sequence) -> df2;df2 33 
options(scipen=999) 34 
 35 
# sequence length on same length tasks 36 
df_nonmixed <- subset(df2,type == 'non_mixed') 37 
# sequence length on mixed length tasks 38 
df_mixed <-subset(df2,type == 'mixed') 39 
 40 
#select meaningful transitions 41 
sl_data<-df_nonmixed %>% filter((transitions %in% 1:1 & condition == "2 42 
dots") | 43 
                                  (transitions %in% 1:2 & condition == "3 44 
dots")| 45 
                                  (transitions %in% 1:3 & condition == "4 46 
dots")) 47 
 48 
ml_data <- df_mixed %>% filter((sequence_length == "3 dots"  & condition == 49 
"2&3 dots" & transitions %in% 1:2 ) | 50 
                                 (sequence_length == "2 dots"  & condition 51 
== "2&3 dots" & transitions %in% 1:1 ) | 52 
                                 (sequence_length == "4 dots"  & condition 53 
== "2&4 dots" & transitions %in% 1:3 ) | 54 
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                                 (sequence_length == "2 dots"  & condition 55 
== "2&4 dots" & transitions %in% 1:1 ) | 56 
                                 (sequence_length == "4 dots"  & condition 57 
== "3&4 dots" & transitions %in% 1:3 ) | 58 
                                 (sequence_length == "3 dots"  & condition 59 
== "3&4 dots" & transitions %in% 1:2 )) 60 
 61 
#data for 6 tasks, only learning transitions included 62 
df_learning<-rbind(sl_data,ml_data) 63 
 64 
#individual differences for 2 dots 65 
df_learning %>%  66 
  filter(condition == "2 dots")%>%  67 
  ggplot(aes(y = on_target_pre_total, x = occurrence) )+ 68 
  geom_smooth(size= 1.2, method='lm', formula = y ~ poly(x,3))+ 69 
  facet_wrap(~subno)+ 70 
  theme_minimal(base_size = 10)+ 71 
  coord_cartesian(ylim=c(0,550))+ 72 
  labs(title ="Individual differences in 2 dots task.")+ 73 
  xlab("Number of repetition of item - exposure")+ 74 
  ylab("Number of eye samples on  target position \n during  blank 75 
period")+ 76 
  ggsave('sub 2.png', height = 16.5, width = 15, units = 'cm') 77 
 78 
 79 
#individual differences for 3 dots 80 
df_learning %>%  81 
  filter(condition == "3 dots")%>%  82 
  ggplot(aes(y = on_target_pre_total, x = occurrence) )+ 83 
  geom_smooth(size= 1.2, method='lm', formula = y ~ poly(x,3))+ 84 
  facet_wrap(~subno)+ 85 
  theme_minimal(base_size = 10)+ 86 
  coord_cartesian(ylim=c(0,550))+ 87 
  labs(title ="Individual differences in 3 dots task.")+ 88 
  xlab("Number of repetition of item - exposure")+ 89 
  ylab("Number of eye samples on  target position \n during  blank 90 
period")+ 91 
  ggsave('sub 3.png', height = 16.5, width = 15, units = 'cm') 92 
 93 
#individual differences for 4 dots 94 
df_learning %>%  95 
  filter(condition == "4 dots")%>%  96 
  ggplot(aes(y = on_target_pre_total, x = occurrence) )+ 97 
  geom_smooth(size= 1.2, method='lm', formula = y ~ poly(x,3))+ 98 
  facet_wrap(~subno)+ 99 
  theme_minimal(base_size = 10)+ 100 
  coord_cartesian(ylim=c(0,550))+ 101 
  labs(title ="Individual differences in 4 dots task.")+ 102 
  xlab("Number of repetition of item - exposure")+ 103 
  ylab("Number of eye samples on  target position \n during  blank 104 
period")+ 105 
  ggsave('sub 4.png', height = 16.5, width = 15, units = 'cm') 106 
 107 
#individual differences for 2&3 dots 108 
df_learning %>%  109 
  filter(condition == "2&3 dots")%>%  110 
  ggplot(aes(y = on_target_pre_total, x = occurrence) )+ 111 
  geom_smooth(size= 1.2, method='lm', formula = y ~ poly(x,3))+ 112 
  facet_wrap(~subno)+ 113 
  theme_minimal(base_size = 10)+ 114 
  coord_cartesian(ylim=c(0,550))+ 115 
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  labs(title ="Individual differences in 2&3 dots task.")+ 116 
  xlab("Number of repetition of item - exposure")+ 117 
  ylab("Number of eye samples on  target position \n during  blank 118 
period")+ 119 
  ggsave('sub 2&3.png', height = 16.5, width = 15, units = 'cm') 120 
 121 
#individual differences for 2&4 dots 122 
df_learning %>%  123 
  filter(condition == "2&4 dots")%>%  124 
  ggplot(aes(y = on_target_pre_total, x = occurrence) )+ 125 
  geom_smooth(size= 1.2, method='lm', formula = y ~ poly(x,3))+ 126 
  facet_wrap(~subno)+ 127 
  theme_minimal(base_size = 10)+ 128 
  coord_cartesian(ylim=c(0,550))+ 129 
  labs(title ="Individual differences in 2&4 dots task.")+ 130 
  xlab("Number of repetition of item - exposure")+ 131 
  ylab("Number of eye samples on  target position \n during  blank 132 
period")+ 133 
  ggsave('sub 2&4.png', height = 16.5, width = 15, units = 'cm') 134 
 135 
#individual differences for 3&4 dots 136 
df_learning %>%  137 
  filter(condition == "3&4 dots")%>%  138 
  ggplot(aes(y = on_target_pre_total, x = occurrence) )+ 139 
  geom_smooth(size= 1.2, method='lm', formula = y ~ poly(x,3))+ 140 
  facet_wrap(~subno)+ 141 
  theme_minimal(base_size = 10)+ 142 
  coord_cartesian(ylim=c(0,550))+ 143 
  labs(title ="Individual differences in 3&4 dots task.")+ 144 
  xlab("Number of repetition of item - exposure")+ 145 
  ylab("Number of eye samples on  target position \n during  blank 146 
period")+ 147 
  ggsave('sub 3&4.png', height = 16.5, width = 15, units = 'cm') 148 
 149 
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Appendix M - Binomial Analysis (R Scripts and results) 

M.1 R Script for creating the learning threshold for binomial modelling.

library(lme4) 1 
library(tidyverse) 2 
library(reshape2) 3 
library(magrittr) 4 
library(effects) 5 
library(sjPlot) 6 
library(sjmisc) 7 
library(sjlabelled) 8 
load("data/exp4_final.Rdata") 9 
df1 <- Df_all %>% as_tibble() 10 
names(df1) 11 
 12 
#transform data in usable format 13 
df1$sequence<-as.factor(paste(df1$seq, df1$condition, sep = "_")) 14 
df1 %>% mutate(type = ifelse(condition %in% c("C1", "C4", "C5"), 15 
"non_mixed", 16 
                             ifelse(condition %in% c("C2", "C3", "C6"), 17 
"mixed", NA)), 18 
               condition = recode(condition,   19 
                                  C1 = "4 dots", 20 
                                  C2 = "2&4 dots", 21 
                                  C3 = "3&4 dots", 22 
                                  C4 = "3 dots", 23 
                                  C5 = "2 dots", 24 
                                  C6 = "2&3 dots"), 25 
               sequence_length=recode(seq_len, 26 
                                      "4"="4 dots", 27 
                                      "2"="2 dots", 28 
                                      "3"="3 dots")) %>% 29 
   30 
   31 
  mutate(positions=factor(paste0("position",transitions+1)), 32 
         positions=recode(positions, 33 
                          position5="position_next"), 34 
         trans = factor(paste0("trans", transitions)))%>% 35 
   36 
  dplyr::select(on_target_pre_total,positions,sequence_length, type, 37 
occurrence, transitions, trans,condition, subno, sequence) -> df2;df2 38 
########################################################## 39 
#get  eyesamples on first occurence for 1st transition for every 40 
#sequence (ABCD) and all 36 subjects (864 in totall) 41 
 42 
df3<-df2 %>% filter(occurrence== 1 & transitions ==1) 43 
mean(df3$on_target_pre_total) 44 
# mean =13.21 so threshold 25 samples 45 
 46 
#create data frame for binomial Glmms 47 
df2<-df2%>% mutate(learning = ifelse(on_target_pre_total>= 25, "1", #yes 48 
                         ifelse(on_target_pre_total<25, "0", NA))) #no 49 
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M.2 R Script for binomial modelling of positioning effects in learning. 

#run the getting threshold.R script first 1 
 2 
options(scipen=999) 3 
 4 
#use the df_learning 5 
 6 
p1<-glmer(on_target_pre_total ~ poly(occurrence,3)  + (1|subno) + 7 
(1|sequence:subno), data=df_learning, family = binomial) 8 
p2<-glmer(on_target_pre_total ~ poly(occurrence,3) + positions  + (1|subno) 9 
+ (1|sequence:subno), data=df_learning, family = binomial) 10 
p3<-glmer(on_target_pre_total ~ poly(occurrence,3) * positions  + (1|subno) 11 
+ (1|sequence:subno), data=df_learning, family = binomial) 12 
p4<-glmer(on_target_pre_total ~ poly(occurrence,3) * positions + condition  13 
+ (1|subno) + (1|sequence:subno), data=df_learning, family = binomial) 14 
p5<-glmer(on_target_pre_total ~ poly(occurrence,3) * positions * condition  15 
+ (1|subno) + (1|sequence:subno), data=df_learning, family = binomial) 16 
 17 
anova(p1,p2) 18 
anova(p1,p2) 19 
anova(p1,p2) 20 
anova(p1,p2) 21 
 22 
df_learning$fitted_model_trans<-fitted(m63) 23 
 24 
df_learning %>% 25 
  ggplot(aes(x=occurrence, y= 26 
fitted_model_trans,colour=positions),group=subno) + 27 
  geom_smooth( method = "lm", formula = y ~ poly(x,3))+ 28 
  theme_minimal(base_size = 10)+ 29 
  facet_wrap(~condition)+ 30 
  labs(title ="Fit of Model for learning rate across mixed length tasks")+ 31 
  xlab("Number of repetition of item - exposure")+ 32 
  ylab("Learning Rate (0-1)")+ 33 
  ylim(0,1)+ 34 
  ggsave('./plots/ transitions 1.png', height = 16.6,width = 16.6, units = 35 
'cm') 36 
 

M.3 R Script for binomial modelling of sequence length effects in learning. 

 

 1 

#run the getting threshold.R script first 2 
options(scipen=999) 3 
 4 
# sequence length on same length tasks 5 
df_nonmixed <- subset(df2,type == 'non_mixed') 6 
# sequence length on mixed length tasks 7 
df_mixed <-subset(df2,type == 'mixed') 8 
 9 
#select meaningful transitions 10 
sl_data<-df_nonmixed %>% filter((transitions %in% 1:1 & condition == "2 11 
dots") | 12 
                                      (transitions %in% 1:2 & condition == 13 
"3 dots")| 14 
                                   (transitions %in% 1:3 & condition == "4 15 
dots")) 16 
 17 
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ml_data <- df_mixed %>% filter((sequence_length == "3 dots"  & condition == 18 
"2&3 dots" & transitions %in% 1:2 ) | 19 
                                 (sequence_length == "2 dots"  & condition 20 
== "2&3 dots" & transitions %in% 1:1 ) | 21 
                                 (sequence_length == "4 dots"  & condition 22 
== "2&4 dots" & transitions %in% 1:3 ) | 23 
                                 (sequence_length == "2 dots"  & condition 24 
== "2&4 dots" & transitions %in% 1:1 ) | 25 
                                 (sequence_length == "4 dots"  & condition 26 
== "3&4 dots" & transitions %in% 1:3 ) | 27 
                                 (sequence_length == "3 dots"  & condition 28 
== "3&4 dots" & transitions %in% 1:2 )) 29 
 30 
#sequence length and type of task effects 31 
df_learning<-rbind(sl_data,ml_data) 32 
###########################################################################33 
####### 34 
###SEQUENCE LENGTH EFFECTS ON SAME LENGTH TASKS 35 
#check the polynomial on occurrence that is still valid 36 
sl_data$learning<-as.numeric(sl_data$learning) 37 
m01<-glmer(learning ~ poly(occurrence,1) + (1|subno) + (1|sequence:subno), 38 
sl_data, family = binomial) 39 
m02<-glmer(learning ~ poly(occurrence,2) + (1|subno) + (1|sequence:subno), 40 
sl_data, family = binomial) 41 
m03<-glmer(learning ~ poly(occurrence,3) + (1|subno) + (1|sequence:subno), 42 
sl_data, family = binomial) 43 
 44 
anova(m01,m02) 45 
anova(m03,m02) 46 
sl_data$learning<-as.numeric(sl_data$learning) 47 
m0<-glmer(learning ~ poly(occurrence,3) + (1|subno) + (1|sequence:subno), 48 
sl_data, family = binomial) 49 
m1<-glmer(learning ~ poly(occurrence,3) + sequence_length  + (1|subno) + 50 
(1|sequence:subno), sl_data, family =binomial)  51 
m21<-glmer(learning ~ poly(occurrence,3) * sequence_length  + (1|subno) + 52 
(1|sequence:subno), sl_data, family =binomial)  53 
 54 
anova(m0,m1) 55 
anova(m1,m21) 56 
sl_data$fitted_model_sl<-fitted(m21) 57 
 58 
slsum<- summary(m21) 59 
slsum 60 
sl_data$learning<-as.numeric(sl_data$learning) 61 
#plot 62 
sl_data%>% 63 
  ggplot(aes(x=occurrence, y= fitted_model_sl),group=subno) + 64 
  geom_smooth( method = "lm", formula = y ~ poly(x,3))+ 65 
  theme_minimal(base_size = 10)+ 66 
  facet_wrap(~condition)+ 67 
  labs(title ="Fit of Model for learning rate across same length tasks")+ 68 
  xlab("Number of repetition of item - exposure")+ 69 
  ylab("Learning Rate (0-1)")+ 70 
  ylim(0,1)+ 71 
  ggsave('./plots/ sl-1.png', height = 16.6,width = 16.6, units = 'cm') 72 
####################################################################### 73 
 74 
#####  SEQUENCE LENGTH EFFECTS IN MIXED LENGTH TASKS 75 
 76 
ml_data$learning<-as.numeric(ml_data$learning) 77 
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m01<-glmer(learning ~ poly(occurrence,1) + (1|subno) + (1|sequence:subno), 78 
ml_data, family = binomial) 79 
m02<-glmer(learning ~ poly(occurrence,2) + (1|subno) + (1|sequence:subno), 80 
ml_data, family = binomial) 81 
m03<-glmer(learning ~ poly(occurrence,3) + (1|subno) + (1|sequence:subno), 82 
ml_data, family = binomial) 83 
 84 
anova(m01,m02) 85 
anova(m03,m02) 86 
 87 
m<-glmer(learning ~ poly(occurrence,3) + (1|subno) + (1|sequence:subno), 88 
ml_data, family = binomial) 89 
m12<-glmer(learning ~ poly(occurrence,3) + sequence_length  + (1|subno) + 90 
(1|sequence:subno), ml_data, family =binomial)  91 
m2<-glmer(learning ~ poly(occurrence,3) * sequence_length  + (1|subno) + 92 
(1|sequence:subno), ml_data, family =binomial)  93 
 94 
anova(m,m12) 95 
anova(m12,m2) 96 
ml_sum<-summary(m12) 97 
ml_sum 98 
# m12 best fit    ###################################  99 
ml_data$fitted_model_ml<-fitted(m12) 100 
ml_data$learning<-as.numeric(ml_data$learning) 101 
ml_data%>% 102 
  ggplot(aes(x=occurrence, y= 103 
fitted_model_ml,colour=sequence_length),group=subno) + 104 
  geom_smooth( method = "lm", formula = y ~ poly(x,3))+ 105 
  theme_minimal(base_size = 10)+ 106 
  facet_wrap(~condition)+ 107 
  labs(title ="Fit of Model for learning rate across mixed length tasks")+ 108 
  xlab("Number of repetition of item - exposure")+ 109 
  ylab("Learning Rate (0-1)")+ 110 
  ylim(0,1)+ 111 
  ggsave('./plots/ sl-2.png', height = 16.6,width = 16.6, units = 'cm') 112 
 113 
################################## 114 
 115 
##################type of task & sequence length 116 
  df_learning$learning<-as.numeric(df_learning$learning) 117 
  m0001<-glmer(learning ~ poly(occurrence,1)  + (1|subno) + 118 
(1|sequence:subno), data=df_learning, family = binomial) 119 
  m0002<-glmer(learning ~ poly(occurrence,2)  + (1|subno) + 120 
(1|sequence:subno), data=df_learning, family = binomial) 121 
  m0003<-glmer(learning ~ poly(occurrence,3)  + (1|subno) + 122 
(1|sequence:subno), data=df_learning, family = binomial) 123 
  anova(m0001,m0002) 124 
  anova(m0002,m0003) 125 
   126 
z1<-glmer(learning ~ poly(occurrence,3) + type + (1|subno) + 127 
(1|sequence:subno), data=df_learning, family = binomial) 128 
z2<-glmer(learning ~ poly(occurrence,3) * type + (1|subno) + 129 
(1|sequence:subno), data=df_learning, family = binomial) 130 
z3<-glmer(learning ~ poly(occurrence,3) *type + sequence_length + (1|subno) 131 
+ (1|sequence:subno), data=df_learning, family = binomial) 132 
z4<-glmer(learning ~ poly(occurrence,3) * type * sequence_length + 133 
(1|subno) + (1|sequence:subno), data=df_learning, family = binomial) 134 
 135 
anova(z1,z2) 136 
anova(z3,z2) 137 
anova(z3,z4) 138 
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anova(z4,z2) 139 
df_learning$fitted_model_type<-fitted(z4) 140 
 141 
df_learning %>% 142 
  ggplot(aes(x=occurrence, y= 143 
fitted_model_type,colour=sequence_length),group=subno) + 144 
  geom_smooth( method = "lm", formula = y ~ poly(x,3))+ 145 
  theme_minimal(base_size = 10)+ 146 
  facet_wrap(~type*condition)+ 147 
  labs(title ="Fit of Model for learning rate across mixed length tasks")+ 148 
  xlab("Number of repetition of item - exposure")+ 149 
  ylab("Learning Rate (0-1)")+ 150 
  ylim(0,1)+ 151 
  ggsave('./plots/ sl-3.png', height = 16.6,width = 16.6, units = 'cm') 152 
 153 
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M.4 Model fits of sequence length effects in learning. 
 

 

Figure M.1 demonstrates the fits of the binomial transformation of  hypothesis model 2 (Chapter 6- Section C.3) 
for the same length tasks (2 dots, 3 dots, 4 dots) On the x-axis is the number of repetitions of item or in other 
words exposure to that specific sequence (how many times that stimulus has been shown) and on the y- axis is the 
mean rate of from (0-1) for the target –location area during the blank period of (750ms). Any target with greater 
or equal 25 eye-samples on it is considered as learned (1), while any target with less than 25 eye-samples on it is 
considered not learned (0). 
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Figure M.2 demonstrates the fits of the binomial transformation of hypothesis model 2 (Chapter 6- Section C.4) 
for the mixed length tasks (2&3 dots, 2&4 dots, 3&4 dots). On the x-axis is the number of repetitions of item or 
in other words exposure to that specific sequence (how many times that stimulus has been shown) and on the y- 
axis is the mean rate of from (0-1) for the target –location area during the blank period of (750ms). Any target 
with greater or equal 25 eye-samples on it is considered as learned (1), while any target with less than 25 eye-
samples on it is considered not learned (0). 
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Figure M.3 demonstrates the fits of the binomial transformation of hypothesis model 4 (Chapter 6- Section C.5) 
for sequence length effects and sequence mixture effects across all tasks (2 dots, 3 dots, 4 dots, 2&3 dots, 2&4 
dots, 3&4 dots). On the x-axis is the number of repetitions of item or in other words exposure to that specific 
sequence (how many times that stimulus has been shown) and on the y- axis is the mean rate of from (0-1) for the 
target –location area during the blank period of (750ms). Any target with greater or equal 25 eye-samples on it is 
considered as learned (1), while any target with less than 25 eye-samples on it is considered not learned (0). 
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Figure M.4 demonstrates the fits of the binomial transformation of hypothesis model 4 (Chapter 5 - Section C.2) 
for position effects across all tasks (2 dots, 3 dots, 4 dots, 2&3 dots, 2&4 dots, 3&4 dots). On the x-axis is the 
number of repetitions of item or in other words exposure to that specific sequence (how many times that stimulus 
has been shown) and on the y- axis is the mean rate of from (0-1) for the target –location area during the blank 
period of (750ms). Any target with greater or equal 25 eye-samples on it is considered as learned (1), while any 
target with less than 25 eye-samples on it is considered not learned (0). 
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Appendix N – R scripts Analysis for Chapter 5 section B 

N.1 R scripts for data visualisation and Shape of curve modelling. 

##### 1st transition vs insequence 1 
#create variable for type of transition 2 
 3 
df2<-df2 %>%  4 
  mutate(transition_type = ifelse(target_position %in% c("position1"), 5 
"transition_between_sequence", 6 
                       ifelse(target_position %in% 7 
c("position2","position3","position4"), "transition_within_sequence", NA))) 8 
 9 
#visualise 10 
df2%>%  11 
  ggplot(aes(x=occurrence, y=on_target_pre_total, 12 
colour=transition_type),group=subno) + 13 
  geom_smooth(method = "lm", formula = y ~ poly(x,3))+ 14 
  theme_classic(base_size = 8)+ 15 
  coord_cartesian(ylim = c(0, 250))+ 16 
  labs(title ="Learning rate for between-sequence vs. within-sequence 17 
transitions \n during the 750ms blank period")+ 18 
  xlab("Number of repetition of item - exposure")+ 19 
  ylab("Number of eye-samples on  target position \n during  blank period 20 
of 750ms") 21 
  ggsave('./new_plots/5Bvisual.png', height = 8,width = 13, units = 'cm') 22 
 23 
df2<-df2 %>%  24 
  mutate(transition = ifelse(target_position %in% c("position_1"), "1st", 25 
                       ifelse(target_position %in% c("position2"), "2nd", 26 
                        ifelse(target_position %in% c("position3"), "3rd", 27 
                               ifelse(target_position %in% 28 
c("position4"),"4th",NA))))) 29 
 30 
 31 
 32 
df2%>%  33 
  ggplot(aes(x=occurrence, y=on_target_pre_total, colour= 34 
target_position),group=subno) + 35 
  geom_smooth(method = "lm", formula = y ~ poly(x,3))+ 36 
  theme_classic(base_size = 8)+ 37 
  facet_grid(~condition)+ 38 
  coord_cartesian(ylim = c(0, 250))+ 39 
  labs(title ="Learning rate across tasks for each target position during 40 
the 750ms blank period")+ 41 
  xlab("Number of repetition of item - exposure")+ 42 
  ylab("Number of eye-samples on  target position \n during  blank period 43 
of 750ms")+ 44 
  ggsave('./new_plots/5Bvisual3.png', height = 8,width = 17, units = 'cm') 45 
 46 
 47 
 48 
########### 49 
####### shape of curve fitting 1st transition in#### 50 
m0<-glmer(on_target_pre_total ~ 1 + (1|subno) + (1|seq:subno), data=df2, 51 
family = poisson()) 52 
m1<-glmer(on_target_pre_total ~ poly(occurrence,1) + (1|subno) + 53 
(1|seq:subno), data=df2, family = poisson()) 54 
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m2<-glmer(on_target_pre_total ~ poly(occurrence,2) + (1|subno) + 55 
(1|seq:subno), data=df2 , family = poisson()) 56 
m3<-glmer(on_target_pre_total ~ poly(occurrence,3) + (1|subno) + 57 
(1|seq:subno), data=df2 , family = poisson()) 58 
 59 
 60 
anova(m0, m1) 61 
anova(m1, m2) 62 
anova(m2, m3) 63 
 
N.2 R script for models:  1st transitions vs. in-sequence transitions.  
m0<-glmer(on_target_pre_total ~ poly(occurrence,3) + (1|subno) + 1 
(1|sequence:subno), data=df2, family = poisson()) 2 
m1<-glmer(on_target_pre_total ~ poly(occurrence,3)+transition_type + 3 
(1|subno) + (1|sequence:subno), data=df2, family = poisson()) 4 
m2<-glmer(on_target_pre_total ~ poly(occurrence,3)*transition_type + 5 
(1|subno) + (1|sequence:subno), data=df2, family = poisson()) 6 
anova(m0,m1) 7 
anova(m1,m2) 8 
tab_model(m2,p.style = c( "both")) 9 
 10 
 11 
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N.3 Residual for models: 1st transitions vs. in-sequence transitions.  

 
Table N.1 This table shows the residuals of the model of hypothesis model 3, in Chapter 5, Section B.3 
describing transition type effects in learning across all tasks (fixed effects). 

 


