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Security Communication based on Multi-Agent

Reinforcement Learning
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Abstract—In order to address the data security and commu-
nication efficiency of vehicles during high-speed mobile com-
munication, this paper investigates the problem of secure in-
vehicle communication resource allocation based on slow-variable
large-scale fading channel information, to meet the quality of
service requirements of vehicular communication, i.e., to ensure
the reliability of V2V communication and the time delay while
maximizing the transmission rate of the cellular link. And an
eavesdropping model is introduced to ensure the secure delivery
of link information. Considering that the high mobility of vehicles
causes rapid channel changes, we model the problem as a Markov
decision process and propose a resource allocation optimization
framework based on the Multi-Agent Reinforcement Learning
Algorithm (MARL-DDQN), in which a large-scale neural net-
work model is built to train vehicular intelligences to learn the
optimal resource allocation strategy for optimal communication
performance and security performance. Simulation results show
that the load successful delivery rate and confidentiality perfor-
mance of the vehicular communication network are effectively
improved compared to the baseline and MADDPG strategies
while ensuring link security. This study provides useful references
and practical value for the optimization of secure communication
resource allocation in vehicular networking.

Index Terms—V2X, resource allocation, multi-agent reinforce-
ment learning, MARL-DDQN

I. INTRODUCTION

THE vehicle-to-everything (V2X) paradigm, as an exten-

sion of the internet of things (IoT) concept, can assist

in the development of smart cities [1]. Due to the growing

popularity of Internet of Things (IoT) user devices, researchers

have been working on network optimization challenges to

improve the energy or spectrum efficiency (EE/SE) of wireless

networks to satisfy the users’ demanding data rates and

varied quality of service (QoS) requirements, e.g. [2] and [3].

These studies combine vehicle-to-vehicle (V2V) and vehicle-

to-infrastructure (V2I) communication in vehicular networking

to improve the performance of intelligent transport systems

(ITS). The full use of resource allocation and frequency

sharing through the convergence of networks between V2V

and V2I will determine the effectiveness and efficiency of

future ITS.

In the cellular V2X [4] paradigm, have completed the

standardization of LTE-V2X in 3GPP Release 14 and intro-

duced two new communication modes especially designed for

V2V communication, Centralized Resource Scheduling (Mode
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3) and Distributed Resource Scheduling (Mode 4). And the

architecture of V2X service is further enhaned in Release 15.

By using two radio interfaces, Uu and PC5, the architecture

supports V2I and V2V connectivity, realizing the need for

reliable communication over long distances and greater ranges,

as well as direct communication over short distances. This

provides low-latency, high-capacity, and high-reliability com-

munication capabilities for V2X communications, providing

technical support for application areas such as intelligent

transportation systems and vehicle safety. Specifically, the Uu

interface is used to link communications between vehicles and

base stations to achieve reliable communications over long

distances and greater ranges, while the PC5 interface is used to

link communications between vehicles, people and road infras-

tructure to achieve direct communications with low-latency,

high-capacity and high-reliability communications through

direct connection, broadcasting, and network scheduling. In

3GPP Release 16 [5], a number of new use cases and require-

ments are proposed and analyzed with the aim of enhancing

5G V2X technology. These include in-vehicle entertainment

services, which require high-rate connectivity to base stations

(BS) for high-rate data transfer, such as dynamic digital map

updates. V2I and V2V communications coexist to achieve

smarter, efficient transportation systems and vehicle safety. In

this paradigm, V2V and V2I communications need to fulfill

a number of QoS requirements, including low transmission

latency, high reliability, higher data transfer capability, high

bandwidth efficiency, and security and privacy protection. In

recent years, the development of vehicular communication has

attracted attention to physical layer security in the V2X [6].

Traditional communication security primarily relies on higher-

layer cryptographic encryption [7]. However, cryptographic

algorithms heavily depend on the secrecy of encryption keys.

Once the encryption keys are compromised, the information

security becomes vulnerable. In the vehicular communication

environment, low latency, highly reliable connections, and

a massive number of connected devices are required. The

large number of encryption keys, along with the cost of key

distribution and management, does not align well with the

practicality of daily vehicular communication environments. In

contrast to cryptographic encryption techniques, physical layer

security offers new opportunities for wireless network security.

It leverages the inherent randomness of wireless channels

and utilizes techniques such as channel coding [8] and signal

processing [9] to increase the difficulty for eavesdroppers to

obtain information, thereby achieving secure transmission over
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wireless channels. Physical layer security provides additional

protection for vehicular communication security with lower

complexity and overhead.

Moreover, vehicles are interconnected with hundreds of mil-

lions of devices, which generate huge data sets and model pa-

rameters that grow exponentially. Nowadays, machine learning

models, neural networks, and other computational models have

a large number of parameters and computational power. These

large models(LMs) are used in collaborative and cooperative

systems between vehicles and road infrastructure, and can

provide a deeper understanding of complex traffic data in

dealing with a variety of complex data and tasks, allowing their

models to more accurately capture patterns and associations in

the data, thus improving the quality of data understanding and

the performance of subsequent tasks.

A. Related work

In V2V communication scenarios, various challenges such

as mobility [10], ultra-dense networks [11], and non-line-

of-sight (NLOS) situations [12] significantly contribute to

the complexity of the problem. The dynamic nature of the

system, coupled with the difficulty in establishing a fixed

mathematical model, And many optimizing algorithms are

difficult to achieve the optimal solution, which adds to the

complexity of the problem. Reinforcement learning demon-

strates excellent performance in terms of its ability to solve

uncertain decision problems. For instance, in [13], the authors

consider the joint optimization of networking, caching, and

computation to enhance Telematics performance. Due to its

computational complexity, an advanced reinforcement learning

algorithm that approximates the Q-value-action function using

a deep Q-network is employed for automatic resource alloca-

tion. Reinforcement learning effectively reduces computational

complexity by iteratively interacting with the uncertain envi-

ronment, enabling robust handling of environmental dynamics

and sequential decision-making. Moreover, hard-to-optimize

objective problems can be effectively solved within the rein-

forcement learning framework by designing training rewards

that align with the ultimate objective. In [14], the authors

address channel uncertainty caused by the channel state infor-

mation (CSI) fed back to the base station (BS) and analyze the

correlation of rapidly changing channels. They propose a joint

channel assignment and power control algorithm to satisfy

individual V2V link delay and reliability requirements while

maximizing system throughput. A dual time-scale resource

allocation scheme is proposed in [15], aiming to minimize

the worst-case delay of V2V transmissions based on extensive

road traffic information. Subsequently, the transmit power of

each V2V link is optimized based on the small time-scale

CSI. However, this scheme primarily focuses on worst-case

delay minimization, and its performance in other scenarios

needs further investigation. To address modeling accuracy

concerns, [16] [17] model resource sharing as a multi-agent

reinforcement learning problem and employ deep Q-learning

algorithms for joint channel assignment and power allocation

design. It is worth noting that the aforementioned works

primarily concentrate on minimizing delay and maximizing

throughput, No concern for link security on in-vehicle net-

works. Aiming at the decentralized joint optimization problem

of channel selection and power control in V2V communica-

tion, a new federated multi-agent deep reinforcement learning

(FedMARL) approach is proposed in [18] to simultaneously

exploit the advantages of deep reinforcement learning (DRL)

and federated learning (FL) to maximize the transmission rate

of the cellular link. while meeting the reliability and delay

requirements of V2V communication. In [19], a dual time-

scale federated DRL algorithm is proposed to address the

local limitations of DRL model training and improve model

robustness. It leverages a graph-theoretic vehicle clustering

algorithm to capture global information on longer time scales

and combines it with a federated learning algorithm to enhance

training efficiency on shorter time scales. Although federated

learning itself can enhance data confidentiality, it is crucial to

exercise caution in practice and implement additional privacy

protection measures. Moreover, establishing robust security

mechanisms is essential to ensure the confidentiality of data

and models.

However, the aforementioned research work does not ad-

dress the practical challenge of eavesdropping resistance. In

real-world environments, where network resources such as

bandwidth and energy are often limited, the primary objec-

tive of security resource allocation is to utilize these scarce

resources efficiently to satisfy security performance metrics,

including secrecy rate, secrecy outage probability, and power

consumption. Most of the existing research focuses on funda-

mental aspects of security resource allocation, such as subcar-

rier selection and power control. Subcarrier allocation aims to

identify the optimal choice that improves spectrum utilization

efficiency and enhances security performance. Additionally,

adaptive power allocation is another crucial approach to en-

hance secrecy performance. For instance, in [20], a Q-learning-

based secure power allocation strategy is proposed, which

mitigates the eavesdropper’s ability to decode the transmit-

ted signal while ensuring the desired signal-to-noise ratio.

In the context of device-to-device (D2D) communications,

[21] presents a physical layer security optimization model

to address the security concerns associated with multiple

eavesdroppers. The proposed model employs a novel access

algorithm to manage the interference caused by D2D users,

thus enhancing the confidentiality performance of cellular

users and aiming to improve the security and confidential-

ity of D2D communications. Similarly, [22] discusses the

security of D2D spectrum sharing networks, utilizing the

interference generated by D2D users to enhance the security

performance of cellular users. To ensure secure access to

cellular spectrum, [23] proposes a secure and efficient Priority-

based Power and Resource Management (PPRM) scheme.

This scheme grants the Vehicle User Equipment (VUE) the

same priority as the Cellular User Equipment (CUE), and the

mixed integer nonconvex PPRM problem is efficiently solved

by transforming it into power allocation and resource block

allocation sub-problems. Moreover, in [24], Reconfigurable

Intelligent Surfaces (RIS) are employed to ensure secure in-

vehicle communications in the presence of eavesdroppers,

demonstrating the potential improvement in confidentiality
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under V2V and V2I communications with the utilization of

RIS. It should be noted that all the aforementioned works

primarily focus on addressing security requirements and do

not explicitly consider the QoS requirements of vehicles in

Vehicular Networking, including reliability and latency issues.

B. Motivations and Contribution

Although the spectrum sharing problem has been studied

extensively, the comprehensive literature review reveals that

only a limited number of studies have effectively integrated the

physical layer security of V2X with the spectrum sharing prob-

lem in highly mobile vehicular networks. Recently multi-agent

algorithm research has made significant progress in areas such

as robot collaboration, UAV teams, self-driving vehicles, and

resource allocation. However, the issues of spectrum sharing,

physical layer security, distributed deep reinforcement learning

algorithms require full knowledge of channel gain information,

interference information from other vehicles, and remaining

time to meet delay constraints, among others. However, very

little research has been done on how to simultaneously address

the QoS requirements of spectrum sharing, physical layer

security, and high mobility in such complex environments.

This vehicle network scenario optimization problems are

widely considered to be instantaneous optimization type of

problems considering the high mobility of vehicles, the ran-

dom variation of vehicular channel conditions, and the high

computational complexity. However, this type of problem

is very difficult to solve. To overcome this challenge, the

instantaneous optimization problem can be transformed into

a long-term reward accumulation optimization problem and

modeled using the framework of Markov Decision Process

(MDP). In which each vehicle as an agent that selects the best

action at each time step based on the current environmental

state, such as spectral subband selection and power control, to

optimize the long-term reward accumulation. This transforma-

tion into an MDP problem allows the application of algorithms

such as reinforcement learning to solve the vehicular channel

optimization problem, thus adapting to the changing channel

environment and vehicle mobility. Moreover, the use of pre-

trained models improves the efficiency of the reinforcement

learning system, reduces the complexity of the samples, and

also improves the generalization ability of the intelligences.

Especially this approach has potential when facing large-scale

scenarios and complex tasks, and provides new possibilities for

the optimization of V2X Communication Systems. The main

points of our contribution can be summarized as follows:

1) We propose a novel communication architecture for vehicu-

lar networks that incorporates an eavesdropping model into the

existing cooperative communication scenario between V2V

links and V2I links. This architecture takes into account the

spectrum sharing problem, eavesdropping resistance of links,

and the QoS requirements of vehicles to enhance the overall

performance of V2X.

2) To ensure the QoS of both V2V and V2I communica-

tion while meeting the security requirements, we introduce

security outage probability constraints that characterize the

reliability requirements of vehicular networking. Additionally,

we present a secure resource allocation framework based on a

multi-agent reinforcement learning algorithm. This framework

models the problem as a Markov process, reducing computa-

tional complexity while maintaining performance.

3)The spectrum access problem for multiple V2V links is

formulated as a multi-agent problem, where each V2V link

transmitter acts as an agent aiming to maximize the secrecy

rate of V2I links. This is achieved through appropriate reward

design and training mechanisms. By adopting a distributed ap-

proach to resource allocation, we mitigate centralized latency

and overhead. The optimization objectives and constraints are

designed to enhance V2V confidential transmission delay and

V2I system confidentiality performance.

The proposed scheme enables secure resource allocation

in complex vehicular communication environments. By con-

structing Markov models and employing reinforcement learn-

ing algorithms, we analyze and optimize the reliability, low

latency, and total rate of cellular users for V2V links. Si-

multaneously, the multi-agent framework and distributed re-

source allocation algorithms enhance the confidentiality rate

of V2I links and address security concerns in dynamic V2X

environments. These approaches hold significant academic

and practical importance in improving the performance and

security of V2X communications.

II. SYSTEM MODEL

With the rapid development of the Internet of Things

(IoT) and the Internet of Vehicles (IoV), the widespread use

of numerous terminal devices has placed significant strain

on existing spectrum resources. Consequently, spectrum re-

source sharing has become a crucial approach to alleviate

this problem and improve spectrum utilization efficiency. In

this context, this paper considers a scenario where V2I com-

munication and V2V communication coexist within cellular

vehicular networking. The objective is to explore methods that

maximize the transmission rate of cellular links by leveraging

the multiplexing of spectrum resources through the V2V

link, while ensuring the reliability and confidentiality of V2V

communication. In this scenario, the V2I link utilizes the Uu

interface to establish communication between vehicles and

the base station (BS), facilitating the provision of high data

rate services. On the other hand, the V2V link periodically

propagates security messages through the PC5 interface. In the

considered vehicular network, we make the assumption that all

transceivers utilize a single antenna. The set of V2I links and

V2V links in this network are denoted as m ∈ {1, 2, · · · ,M}
and k ∈ {1, 2, · · · ,K}, respectively.

The system model is shown in Fig 1, V2V links are vehicle-

to-vehicle communications and each V2I link connects to a BS

for communication purposes and there exists an eavesdropper,

Eve, that passively eavesdrops on both V2I links and V2V

links. Frequency selective wireless channels are converted

into multiple parallel flat channels on different subcarriers

using orthogonal frequency division multiplexing (OFDM).

Several consecutive subcarriers are grouped together to form

a spectral sub-band, assuming that the V2I link uploading

data has been pre-assigned orthogonal spectral sub-bands, i.e.,

Page 3 of 14 IEEE Transactions on Vehicular Technology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



4

Fig. 1. System model

the mth V2I link occupies the mth sub-band. In order to

achieve the goals of V2V links and V2I links with mini-

mum signaling overhead in high-speed mobile environments

and to improve spectrum utilization, we have designed an

efficient spectrum sharing scheme. This scheme works by

grouping consecutive subcarriers into spectral sub-bands and

pre-allocating orthogonal spectral sub-bands for V2I links. In

this scheme, the V2V link can share part of the spectrum

resources occupied by the V2I link when transmitting packets.

To ensure physical layer security. we introduce eavesdropping

vehicles. consider calculating the confidentiality capacity to

measure the maximum rate of confidential information that

can be transmitted in the presence of an eavesdropping threat.

Through this spectrum sharing scheme. We achieve effective

utilization of spectrum resources and meet the communication

requirements of V2V links and V2I links in high-speed mobile

environments.

It is assumed that the channel fading within each sub-band

is the same and is independent across channels. The channel

power gain gk [m] of the kth V2V link on the mth sub-band

in one unit of coherence time can be expressed as:

gk[m] = αkhk[m], (1)

where hk [m] is the power small-scale fading component,

band dependent, varying between successive time slots, and

assumed to follow a unit mean exponential distribution [25].

And αk captures the large-scale fading effect, including path

loss and shadowing, assumed to be frequency independent.

The fading model of the article is modeled as Rayleigh fading

according to the urban scenario in 3GPP Technical Report TR

36.885[26], The V2I link fading model is based on the path

loss model defined in 3GPP TR 36.885 as 128.1+37.6log10d,

where d denotes the distance between the vehicle and the BS.

The shadowing due to obstacle effects obeys independent log-

normal shadowing with standard deviation of 8 dB. And the

V2V link road loss model is referenced from IST-4-027756

WINNER II D1.1.2 V1.2 WINNER II, and the shadow fading

model is referenced from the ”A-1.4 Channel model” in [26].

The interference channel from the transmitter vehicle of the

k′th V2V link to the receiving vehicle of the kth V2V link

on the mth sub-band is denoted as gk′
k [m]; the channel gain

from the transmitter vehicle of the mth V2I link to the BS

in the mth sub-band is denoted as ĝm,B [m]; the interference

channel from the transmitter vehicle of the mth V2I link to

the kth V2V receiver vehicle on the mth sub-band is denoted

as ĝm,k [m]; the interference channel from the transmitter

vehicle of the kth V2V link to the Eve in the mth sub-band

is denoted by as gk,e [m]; the interference channel from the

sending vehicle of the mth V2I link to the Eve in the mth
sub-band is denoted as ĝm,e [m].

Then the signal-to-noise ratio of the mth V2I link at the

base station γI
m [m] is:

γI
m [m] =

P I
mĝm,B [m]

σ2
B + IIm

, (2)

where P I
m is the transmit power of the mth V2I transmitter;

σ2
B is the noise power at the BS; and the power IIm of the

mth V2I transmitter subject to interference is:

IIm =
∑

k

ρk [m] gk,B [m], (3)

where ρk [m] is the spectrum allocation factor. ρk [m] = 1
denotes that the mth sub-band is occupied by the mth V2V

link, and conversely ρk [m] = 0, denotes that the mth sub-

band is not occupied. Assuming that each V2V link occupies

only one sub-band, i.e.,
∑

m

ρk [m] ≤ 1.

The signal-to-noise ratio of the kth V2V link receiving

vehicle γV
k [m] is:

γV
k [m] =

PV
k gk [m]

σ2
v + IVk

, (4)

where PV
k is the transmit power of the kth V2V transmitter,

σ2
v is the noise power at the V2V link receiver, and the kth

V2V transmitter is interfered with by the power IVk is:

tIVk = P I
mĝm,k [m] +

∑

k′ ̸=k

ρk′ [m] gk′k [m], (5)

The signal-to-noise ratio γI
m,e [m] when Eve eavesdrops on

the mth V2I link and the signal-to-noise ratio γV
k,e[m] when

Eve eavesdrops on the kth V2V link, can be expressed as:

γI
m,e [m] =

P I
mĝm,e [m]

σ2
e +

∑

k

ρk [m]PV
k [m] gk,e [m]

, (6)

γV
k,e[m] =

PV
k gk,e[m]

σ2
e +

∑

k′ ̸=k

ρk′ [m]PV
k′ gk′,e[m]

, (7)

where σ2
e are the noise power at Eve. Then the secrecy capacity

CI
m [m] of the mth V2I link and the secrecy capacity CV

k [m]
of the kth V2V link can be expressed as:

C
I
m [m] = W

[

log2

(

1 + γ
I
m[m]

)

− log2

(

1 + γ
I
m,e [m]

)]+

, (8)

C
V
k [m] = W

[

log2

(

1 + γ
V
k [m]

)

− log2

(

1 + γ
V
k,e [m]

)]+

. (9)

where [x]+ = max{0, x}, W denotes the channel bandwidth.
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In the cellular V2X, V2V and V2I communicate together

and need to fulfill a set of QoS requirements. These re-

quirements aim to ensure communication performance and

reliability. The main QoS requirements considered in this

paper:

1) Data rate: The latency issue has been one of the most

critical requirements in the case of cooperative communication

between V2V and V2I links. Every packet generated by a

vehicle should be transmitted within a limited time. So the

issue of packet rate is crucial. Vehicles need to ensure that

the QoS meets certain standards when using network services,

which can be parameterized as the minimum data transfer rate

(in Mbps) to ensure a smooth service experience for the users.

The achievable secrecy rate can be described as the difference

between the data rate achievable by the legitimate channel and

the eavesdropping channel. Let Rt
m be the achievable secrecy

rate of the mth cellular link, i.e.

Rt
m = [Rm −Re]

+ = CI
m, (10)

where [x]+ = max{0, x}, Rm represents the data rate of

the legitimate channel from the sender to the legitimate

receiver, and Re represents the data rate of the eavesdropping

channel between the transmitter and the receiver. Satisfying

Rt
m ≥ Rmin

m . We assume that each cellular link has the same

minimum data rate requirement.

2) Secure outage probability: The reliable transmission of

V2V communication can be measured by the outage prob-

ability in SINR [25]. The outage probability is considered

an important indicator for evaluating the reliability of V2V

transmission. The security outage probability refers to the

probability that eavesdroppers can successfully intercept data

during the data transmission process. The lower the security

outage probability, the safer and more reliable the data trans-

mission, and the less likely eavesdroppers are to intercept the

data. Then the security outage probability P out
k of the kth

V2V link is:

P out
k = 1− Pr{γV

k,e ≤ 2−µ(1 + γV
k )− 1}, (11)

where Pr{·} denotes the probability of the event occurring,

µ denotes the difference between the secrecy rate and the

channel capacity. The security outage probability can be de-

termined by whether the signal-to-noise ratio of the interfering

signal injected by the eavesdropping is less than or equal to

2−µ(1 + γV
k ) − 1. If this condition is satisfied, it means that

the eavesdropper successfully steals the data. By calculating

the complement of this probability, the probability that the

eavesdropper fails to successfully steal the data, i.e., the

security outage probability, can be obtained.

The security outage probability is regarded as an important

metric for assessing the reliability of V2V transmission. If the

outage probability of a V2V link is below a certain threshold

ξ, the reliability constraint can be expressed as:

Pr{γV
k,e ≤ 2−µ(1 + γV

k )− 1} ≤ ξ, (12)

This constraint means that both the probability of outage

of the legitimate channel and the probability of outage of the

eavesdropping link should be less than or equal to a given

threshold to ensure the reliability of the link. If both are greater

than the given threshold, the link is unreliable and appropriate

measures need to be taken to improve the reliability, such

as increasing the signal transmission power, improving the

modulation scheme, enhancing encryption, etc.

Let γ0 = 2−µ(1+γV
k )−1, the constraint (12) can be written

as:

Pr{γV
k,e ≤ γ0} = Pr{P d

k gk,e[m] ≤ γ0σ
2
e+

γ0
∑

k′ ̸=k

ρk′ [m]P d
k′gk′,e[m]} ≤ ξ, (13)

Lemma 1, according to the literature [26], if z1, · · · , zn are

all independently exponentially distributed random variables,

then E[zi] =
1
λi
, i = 1, · · · , n ,then

Pr

{

z1 ≤
n
∑

i=2

zi + c

}

= 1− e−λ1c

n
∏

i=2

1

1 + λ1

λi

, (14)

where c is a constant, λ denotes the parameter of the ran-

dom variable zi, which controls the scale and distributional

properties of the exponential distribution.

In the time slot, the path loss and transmit power remain

constant and only the fast fading has a unit-mean exponen-

tial distribution in the time slot. This gives the exponential

distribution at time slot t:

E[P d
k gk,e[m]] = P d

kα
t
k =

1

λ1
, (15)

E[γ0P
d
k′gk′,e[m]] = γ0P

d
k′αt

k′,e =
1

λi

, i ̸= 1 , (16)

According to Lemma 1, we can express the outage con-

straint (13) as follows:

Pr{P d
k gk,e[m] ≤ γ0σ

2
e + γ0

∑

k′ ̸=k

ρk′ [m]P d
k′gk′,e[m]}

= 1− exp(−
γ0σ

2

e

Pd
k
αt

k

)
∏

k′ ̸=k

ρk′

1+
γ0Pd

k′α
t
k′,e

Pd
k

αt
k

≤ ξ, (17)

Further applying the inequality of [27]: ek
∏

n
i (1 + zi) ≤ ek+

∑

n
i zi, the constraint(16) is then expressed as[17]:

1− exp(−
γ0σ

2

e

Pd
k
αt

k

)
∏

k′ ̸=k

ρk′

1+
γ0Pd

k′α
t
k′,e

Pd
k

αt
k

≤

1− exp(−
γ0σ

2

e

Pd
k
αt

k

)
∏

k′ ̸=k

ρk′(1 +
γ0P

d
k′α

t
k′,e

Pd
k
αt

k

)

≤ 1− exp(−
γ0σ

2

e

Pd
k
αt

k

−
∑

k′ ̸=k

ρk′

γ0P
d
k′α

t
k′,e

Pd
k
αt

k

)

= 1− exp(−
γ0σ

2

e+
∑

k′ ̸=k

ρk′γ0P
d
k′α

t
k′,e

Pd
k
αt

k

) ≤ ξ,

(18)

The reliable confidentiality constraint for the kth V2V pair

can be written as:

P d
kα

t
k

σ2
e +

∑

k′ ̸=k

ρk′P d
k′αt

k′,e

≥
γ0

ln( 1
1−ξ

)
. (19)
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6

III. PROBLEM FORMULATION

Our goal is to maximize the time-averaged confidential

transmission rate of V2I links while ensuring the reliability

and latency requirements of V2V links, with a maximum

V2V transmission delay of T=100ms as defined in 3GPP TR

36.885. Our main scenario is decentralized channel access and

power control for V2V pairs in the case of V2I, a centrally

allocated orthogonal OFDM sub-channel at the base station.

Since priority is usually given to V2I links, it can be assumed

that V2I channel assignment is a known parameter in the

considered model and is not part of the optimization variables.

Therefore the problem under consideration can be formulated

as:

max
ρk[m],Pd

k
[m]

1

T

1

M

T
∑

t=1

M
∑

m=1

CI
m, (20)

s.t.
∑

m

CI
m > C0, (21a)

Rt
m ≥ Rmin

m , (21b)

P d
kα

t
k

σ2
e +

∑

k′ ̸=k

ρk′P d
k′αt

k′,e

≥
γ0

ln( 1
1−ξ

)
, (21c)

0 ≤ P d
k [m] ≤ Pmax, (21d)

∑

m∈M

ρtk ≤ 1 , ρtk ∈ {0, 1}. (21e)

The problem is a time-rate combinatorial optimization prob-

lem, which is more challenging to compute and solve due

to the mathematical model being idealized in relation to

the subsequent states, plus the typical centralized solution is

inadequate due to the high mobility of the vehicles. To address

these issues, we solve the problem through reinforcement

learning. In the paper we transform the joint channel selection

and power allocation problem into a multi-agent problem,

where the transmitter vehicle of each V2V link is an agent

that executes independently and updates its resource policy.

Constraint (21a) represents the minimum channel capacity

requirement for the reliability of a V2I link, constraint (21b)

represents the minimum rate requirement for a V2V link,

constraint (21c) represents the secrecy outage constraint, con-

straint (21d) represents the maximum range of transmit power

that should not be exceeded, and constraint (21e) represents

that each V2V link can only occupy one RB.

IV. RESOURCE ALLOCATION FOR BASED MULTI-AGENT

REINFORCEMENT LEARNING

In resource allocation problems, the optimization problem

is often NP-hard and has high computational complexity. In

addition, obtaining the global optimal solution becomes more

difficult due to the stochastic variation of vehicle channel

conditions. To solve this problem, it can be transformed into

a common Markov decision process with appropriate deep

reinforcement learning algorithms.

At time step t, the agent observes its surroundings and

obtains observations, i.e. states Then, the action s ∈ S takes

the action a ∈ A is determined by the policy π(a|s):

π(a|s) = Pr(At = a|St = s), (22)

After the environment is evolve to the next state s′ ∈ S,

while receives the immediate reward that evaluates the effect

of its action, which can then be used to adjust the individual

strategy. This interaction with the environment at time step

t forms an experience described by the tuple (s, a, r, s′).
Through the utilization of prior experiences, an agent can

acquire a strategy that enables it to select the optimal action

within a given state, leading to the maximization of the long-

term cumulative reward. Furthermore, deep reinforcement

learning algorithms have the capacity to explore and exploit

trade-offs, resulting in a reduction of risk and uncertainty

during decision making processes, and enhancing adaptability

to varying environmental conditions.

Through the utilization of prior experiences, an agent can

acquire a strategy that enables it to select the optimal action

within a given state, leading to the maximization of the long-

term cumulative reward. Furthermore, deep reinforcement

learning algorithms have the capacity to explore and exploit

trade-offs, resulting in a reduction of risk and uncertainty

during decision-making processes, and enhancing adaptability

to varying environmental conditions.

A. State space

Under distributed resource allocation conditions, the trans-

mitting vehicle of each V2V link can be considered as an

agent that needs to perform resource allocation, including

spectrum selection and power control. This problem can be

solved by modeling it as a Markov process. Each intelligence

can only observe local information and take actions based on

the observation space. The actions of all agents constitute joint

actions, and the agent adjusts their strategies based on rewards.

The true environmental state contains all channel conditions

and all actions of all agents, but is unknown to each agent.

Local observations of each agent include information such as

channel gain and interference. At each time slot, the state space

includes various channel conditions and temporal information.

Assuming that the location of the eavesdropper is known and

the distribution of the Eve channel is known, the state space

S in time slot t is:

Sk
t = {Bk, T, Ik[m], Gk[m]} , (23)

where Ik[m] denotes full-band interference, Bk denotes the

remaining V2V load that should be transmitted by the V2V

link, T denotes the remaining time to satisfy the delay, and

Gk[m] denotes the channel conditions for all links, and:

Gk[m] = {gk [m] , gk′,k [m] , gk,B [m] ,
ĝm,k [m] , gk,e[m], ĝm,e[m]}.

(24)

B. Action space

In the distributed resource allocation in Mode 4, each agent

selects an action based on the local observation to form a set
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7

Fig. 2. Agorithm model

a, and the actions adopted by all agents form a joint action

At. The set of actions is the set of actions that each agent

selects based on the local observation to form a joint action.

Assuming that there are M resource blocks in total, the V2V

transmit power can be discretized and set to four levels such

as [5,15,23,-100]dBm, so that each agent has 4×M actions,

i.e., the dimension of the action space is 4×M . At the same

time the output layer of each neural network can be viewed

as 4 ×M . In the later simulation tests, the dimension of the

actions of each DDQN itself in the multi-agent is drastically

reduced compared to that of the single-agent strategy.

C. Reward function

In V2X communication, a reasonable reward function de-

sign can effectively optimize the performance and efficiency

of the V2X communication system and guarantee the security

and timeliness of data transmission. To ensure the quality

and confidentiality of the communication, it is necessary to

consider the interference between the frequency band and

messages selected by each vehicle on other V2I links and

other vehicles, and it is necessary to satisfy the time delay

constraint. In order to maximize the total rate of all cellular

links while guaranteeing the QoS requirements of V2V pairs.

Therefore the reward function Rt can be defined as:

Rt = λ1

∑

m∈M

U(Rt
m −Rmin

m )

+λ2

∑

k∈K

U(
Pd

kαt
k

σ2
e+

∑

k ̸=k

ρk′Pd
k′α

t
k

− γ0

ln( 1

1−ξ
)
),

(25)

where U(x) provides a penalty if the reward function is not

satisfied, as follows:

U(x) =

{

x, if x ≥ 0;
β, if x < 0.

(26)

whereβ < 0, λ1, λ2 are the weight coefficients of the rewards,

respectively. At the time slot t, all the agents act independently,

the global reward is evaluated at the BS, and each intelligence

receives an evaluation of the global reward at the end of the

task, which is broadcast by the BS with a smaller signaling.

V. MULTI-AGENT REINFORCEMENT LEARNING

ALGORITHMS

In the scenario in this paper, as shown in Figure 2, each V2V

link sending vehicle is used as an agent to construct a deep Q

network to simulate the action value function. In the starting

phase, the environment is initialized, vehicles and channels

are randomly generated, and two neural networks are built for

each agent, one for the main network and one for the target

network, with the starting parameters set randomly and the

same parameters for both neural networks. At the beginning

of each episode, the vehicle position and large-scale fading are

updated, and the vehicle position is updated every Tms. Each

agent has an independent DDQN network, the input to the

neural network is immediate local observations, and the output

of the neural network is the Q-value of all actions. After all

the agent have performed their actions, the system environment

changes, generating a global reward while updating the state

of all the agent, allowing the observation of the next state to

be obtained. We follow a DDQN with a replay buffer, where

the generated data is stored in memory. Each sample includes

the(sj , aj , rj , sj+1). Small batches of data used to update the

main network are sampled from memory in each iteration.

During the learning process, the target values are obtained

from the target network, and it is worth noting here that instead

of finding the Q values of individual actions directly in the

target network as in DQN, the actions corresponding to the

maximum Q values are first found inside the main network,

i.e.

amax(sj , w) = argmax
a′

Q(φ(sj), a, w), (27)

Using this selected action amax(sj , w) in the target network

to calculate the target Q value, i.e.

yj = Rj + γQ′(φ(sj), a
max(sj , w), w

′), (28)

where w′ denotes the parameters of the target network, w
denotes the parameters of the main network. During the

training process, the parameters of the main network are

updated by minimizing the loss function, which is calculated

as the mean square error between the target Q value and the Q

value obtained from the main network. To update the network

parameters, small batches of data samples are uniformly sam-

pled from the buffer in each training session. The stochastic

gradient descent (SGD) method is then employed to iteratively

minimize the loss function:

loss(w) = [yj −Q(sj , aj , w)]
2/H. (29)

where H is the size of the mini-batch.The network parameters

are continuously updated, aiming to decrease the value of the

loss function. As the loss function approaches a global min-

imum, the corresponding optimal policy for selecting modes

and power levels in each V2V link can be derived. Initially,

the strategy for mode and power level selection is random,

but it gradually improves as the state-action value model is

updated through training iterations. After completing a certain

number of training iterations, the parameters of the behavioral

network model are synchronized with the target network for

the next learning phase. The training procedure is summarized

in Algorithm 1.

And the algorithm can be trained offline, using stored

historical data to simulate the behavior and environmental

situations of multiple V2V links. And a training set is gener-

ated for training the transmitter-side intelligences of each V2V

link, including combinations of states, actions, rewards, etc.,

for reinforcement learning training. This approach avoids the
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8

Algorithm 1 MARL-DDQN-based training algorithm for se-

curity resource allocation

1: Initialize the environment

2: Initialize Replay Buffer Memory D

3: Initialize parameters of the main network and target net-

work w = w′

4: for each episode do

5: Reset the environment to obtain the initial state S
6: for each step t do

7: for each agent k do

8: if In the current state s then

9: Selecting actions with probability ε Randomness

10: else

use Eq.(27) Choose action

11: end if

12: Take an action in the current state s, receive a

reward r and obtain

13: Add (s, a, r, st+1) to the replay buffer memory D
14: end for

15: end for

16: for each agent k do

17: Randomly sample a batch of size batch size from

D(sj , aj , rj , sj+1)
18: Calculate the target Q value

19: Calculate the loss function according to the Eq.(29)

20: Update the weights using gradient descent to mini-

mize its loss function.

21: end for

22: Update the target network every C step.

23: end for

need for real-time training in real applications, thus reducing

computational cost and latency.

VI. SIMULATION RESULTS

A. Simulation environment

In this section, the proposed scenario optimization is sim-

ulated and validated for analysis. The design is based on the

urban scenario specified in 3GPP TR 36.885. The MARL-

DDQN for each agent consists of three fully connected hidden

layers containing 500, 250 and 120 neurons respectively. The

rectified linear unit Relu was used as the activation function

and the RMSprop algorithm optimizer was used to update the

training parameters. The remaining simulation parameters are

shown Table I and Table II, and the channel mode are shown

Table III and Table IV.

TABLE I
SIMULATION PARAMETERS

Parameters Value

V2I transmit power P I
m 0.2W

V2V transmit power PV
k

[5,15,23,-100]dBm

Carrier frequency 2GHz

Bandwidth 4MHz

Noise power σ2 -114dBm

BS antenna gain 8dBi

Vehicle antenna gain 3dBi

Time constraint 100ms

TABLE II
NEURAL NETWORK PARAMETERS

Parameters Value

Replay Buffer size 200,000

Minni-batch size 2000

Start exploration rate 1

Final exploration rate 0.02

Initial learning rate 0.001

momentum 0.95

Active function Relu

Optimizer RMSprop

TABLE III
CHANNEL MODEL FOR V2V LINK

Parameters V2V link

Path loss model
LOS in WINNER

+B1 Manhattan[29]

Shadowing distribution Log-narmal

Shadowing standard deviationψ 3dB

Decorrelation distance 10m

Path loss and shadowing update A.1.4 in [26] every 100ms

Fast fading Rayleigh fading

Fast fading update Every 1 ms

TABLE IV
CHANNEL MODE FOR V2I LINK

Parameters V2I Link

Path loss model 128.1+37.6log10d

Shadowing distribution Log-narmal

Shadowing standard deviationψ 8dB

Decorrelation distance 50m

Path loss and shadowing update A.1.4 in [26] every 100ms

Fast fading Rayleigh fading

Fast fading update Every 1 ms

B. Baseline Algorithm

We iterated each agent’s Q-network 1000 times, with an

exploration rate linearly annealed from 1 to 0.02 over the first

800 iterations. Throughout this process, we fixed large-scale

decay during iteration to make the algorithm more stable.

To verify the effectiveness of our proposed algorithm, we

compared it with different strategies:

1) Upper: maximizes communication efficiency between

vehicles within a time limit without considering communica-

tion between vehicles and infrastructure. This means that the

V2V link does not consider communication needs between

vehicles and infrastructure when transmitting, but rather treats

the problem as transferring B bytes of data through multiple

steps within a given time frame, which can be regarded as the

upper limit of performance achieved.

2) SARL-DDQN: It is indicated that the base station acts

as a computational center and allocates resources based on the

location of vehicles in the environment, channel, eavesdropper

information, and traffic conditions. In this case, only the base

station acts as an agent with the ability to make intelligent

decisions. The base station gets the current moment state st,
selects the action at, selects the resource block and transmit
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9

power for all the transmitting vehicles of the V2V link based

on the environment.There are four power levels for each V2V

link, then there are 4K actions for k V2V links, and the agent

has K!× 4K actions.

3) MADDPG: This algorithm uses the same centralized

training and distributed execution scheme as MADDQN in the

same scenario and has the same hyperparameters and discount

factors. However, the difference between them lies in the

neural network structure.The neural network of MARL-DDQN

consists of a policy-based Actor network and a value-based

Critic network.The Actor network evaluates the goodness of

the Actor network’s choice of action according to the state-

action value function by means of the collected environment

states.Since MADDPG applies to continuous action space and

MARL-DDQN applies to discrete action space, we determine

the range of values for continuous actions after mapping based

on the discrete action space in MARL-DDQN. For discrete

actions, the mapping is used to map them into a set of

continuous actions to ensure that the action space variables

are consistent, making the optimization objectives of the two

algorithms consistent.

C. Simulation Results

Fig. 3. The training loss of the MARL-DDQN algorithm

Fig 3 represents the change process of the loss function

of each agent as the number of iterations increases under

the simulation conditions of both the V2V link and the V2I

link being 4, transmission payload B=3180bytes, and time

delay T=100ms. From the Fig 3, we can see that the loss

function gradually approaches 0 as the number of rounds

increases, indicating that our proposed algorithm is convergent.

And the loss function of each agent is different, indicating

that the decision-making strategies of the agent are different,

and each agent can pick different strategies according to its

observations, trying to avoid vicious competition and make its

overall performance develop towards optimization. When the

network starts training, the loss gradually rises because the

learning samples are relatively small, the neural network is

updating, and less effective experience can be obtained. As the

number of training sessions increases, the loss value gradually

rises and then rapidly decreases, after which the training loss

tends to stabilize, indicating that our proposed algorithm is

capable of automatically updating the decision strategy and

converging to the optimal solution according to the dynamics

of the network.

Fig. 4. Variation of transmission Security Rate with transmission payload
within a Limited Time.

Fig. 5. Variation of V2I link occupancy with transmission payload for a
limited period of time

The variation of the number of transmission payloads and

the amount of completed transmission payloads under different

time delay conditions of our proposed multi-agent training

optimization algorithm can be seen in Fig 4. The success

rate of the transmission payloads of the V2V link is the

highest when T=100ms. so the time delay constraint set by this

algorithm is 100ms. This is because as the number of payloads

increases, the transmission success rate decreases due to the

large number of tasks transmitted and the limited resources

occupied by the spectrum under the constraint of limited time.

In particular, at T=20ms, the payload transmission completions

are below 15%.

Fig 5 again shows the best performance of the secrecy rate

with a delay constraint of T=100ms. The Fig 5 shows that

as the payload increases, the system needs to allocate more

resources to ensure the reliable transmission of the V2V link,

reducing the performance of the V2I system. As the delay

constraint is reduced from 100ms to 40ms, the system secrecy

rate of V2I gradually decreases, indicating that the system

needs more resources for the V2V link to ensure that it can

complete the transmission of the payload within the constraint,

sacrificing some of the performance of the V2I link for this

purpose. From the above analysis, it can be seen that the delay

constraint has an important impact on the performance of
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10

V2V and V2I links, and the appropriate selection of delay

constraints can balance the performance of V2V and V2I

systems while ensuring the success rate of load transfer.

Fig. 6. Relationship between transmission success rate and transmission
payload

Fig 6 shows the relationship between the transmission

payload and the transmission success rate of the V2V link.

In order to accurately demonstrate the better of the proposed

algorithm, the baseline Random, representing the lower bound

of algorithm performance. The experimental results show

that the transmission success rate of the three optimization

strategies will decrease as the payload increases, which is

consistent with the trend expressed by the baseline, verifying

the correctness of our algorithm. The overall downward trend

indicates that the more data the V2V link transmits, the

more likely the transmission failure will occur, resulting in

a decline in the transmission success rate. The experimental

results demonstrate that our proposed MARL-DDQN algo-

rithm outperforms the single-agent SARL-DDQN strategy and

MADDPG strategy under different payload sizes.

Fig. 7. Security rate in relation to transmitted payload

Fig 7 represents the differences between different algorithms

in optimizing the rate and performance of V2I links under

different V2V link payload sizes. The experimental results

show that the trend of our proposed method and the baseline

direction are the same, which in turn proves the effectiveness

of our proposed method. As the V2V link payload increases,

all optimized V2I secrecy rates are trending downwards. The

reason for the decrease is that as more payloads are required

to be transmitted, a longer transmission time is needed, which

may cause an increase in V2V to transmit power to optimize

the performance of the V2V link, so the agent needs to make

an optimal choice of resource blocks and power and to improve

the transmission success of the V2V payload, the increase in

V2V payload leads to stronger interference with the V2I link

for a longer period of time, affecting communication capacity

to become smaller, making the communication rate decrease.

Among the three compared algorithms, it can be seen that

our proposed algorithm has certain superiority. And it can

be seen from the Fig 7 that the proposed algorithm slows

down the drop rate when the payload reaches B=3180bytes.

Combined with the analysis in Fig 6, it can be seen that

the V2V transmission payload increases, the average V2V

link’s payload transmission success rate decreases to less than

50% when the payload reaches B=3180bytes, and the V2V

link do not produce interference to the V2I link after its

payload transmission is completed interference, so the secrecy

performance of the V2I link is buffered, resulting in a slower

decline.

Fig. 8. Power selected for each step for each agent

Fig 8 shows the action (V2V transmit power) selected at

each step for each link instantaneous rate. From this Fig 8,

it can be seen that each link as an agent selects the transmit

power in real-time at each step in the episode according to

the Markov process training, and in this experiment four power

levels of [5,15,23,-100] dBm were set. It can be seen from that

each agent can choose the appropriate transmit power level

for itself at each step according to the current state, further

demonstrating the effectiveness of the distributed collaboration

of multiple intelligences in this paper’s algorithm.

In Fig 9, we further demonstrate the average V2I sub-band

rate occupied by each vehicle and its neighbors at each step

for the instantaneous rates of the four links. The resource

allocation strategies of MARL-DDQN and the random policy

are shown in Fig 9 and Fig 10, respectively. From Fig 9, it

can be observed that by adopting the approach proposed in this

study, Agent 1 and Agent 4 achieve high transmission rates,

fully utilizing the good channel conditions of the channel,

while Agent 2 and Agent 4 maintain lower rates. When

the transmission payload of Agent 2 increases, its rate also

increases accordingly. Each link has an agent strategy that

adapts to the current state and flexibly occupies the V2I

link bandwidth. The comparison between the two Figs shows

that the overall rate of our proposed method is superior to
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Fig. 9. MARL-DDQN

Fig. 10. Random

that of the random policy. In contrast, Fig 10 illustrates

that when each vehicle needs data transmission upon arrival

at the intersection, the random policy equally occupies the

frequency sub-bands of the V2I link. This situation may result

in a sudden change as shown in Fig 9 when the amount of

transmitted data is particularly large, which would lead to an

increase in both the rate and bandwidth utilization. From the

above analysis, it can be seen that the method proposed in this

paper is able to flexibly and adaptively occupy the frequency

band of the V2I link according to the current state in terms

of resource allocation, which enables each vehicle to obtain a

higher rate when transmitting. In contrast, the random strategy

leads to poor resource utilization.

VII. CONCLUSION

In this paper, we have investigated the resource allocation

problem in vehicular communications. Considering the differ-

ent QoS requirements of V2X communication, our objective

is to maximize the sum rate of V2I link occupancy while

ensuring the maximum transmission rate of cellular links

and meeting the reliability and delay requirements of V2V

communication. We also introduced an eavesdropping model

to ensure secure communication between links, modeled it

using the Markov decision process, and proposed a resource

allocation algorithm based on multi-agent reinforcement learn-

ing (MARL-DDQN) to address continuous action and power

control issues. This work has important implications for im-

proving the QoS of vehicular communications, particularly in

enhancing the anti-eavesdropping ability in complex environ-

ments.

We believe that the application of IRS technology in Telem-

atics has great potential in future research. Intelligent Reflec-

tive Surface (IRS), as an intelligent reflective technology, will

become one of the important trends in the field of intelli-

gent transportation and wireless communication in the future

joint research with Telematics. By intelligently reflecting and

controlling the propagation path of electromagnetic waves,

IRS can improve the utilization efficiency of the spectrum,

thus achieving higher data rate and capacity and meeting the

demand for high rate communication for future 6G communi-

cation. Specifically, we can explore how to combine IRS with

V2V and V2I communications to improve communication

quality, data rate, and network capacity. In addition, we can

also investigate how to optimize the deployment strategy of

IRS to achieve the best signal coverage and link performance.

However, the current research faces some challenging issues.

First, how to effectively design and deploy IRS networks

is an important issue that needs to take into account the

dynamic changes in vehicle motion, channel characteristics,

and network topology. Second, how to optimize the resource

allocation and power control strategies of IRS to maximize

the communication performance is also a challenging issue. In

addition, issues such as signal interference and privacy security

associated with IRSs need to be addressed. By addressing

the challenging issues currently faced, the field of intelligent

transportation and wireless communication can be further

advanced.
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