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Abstract—Advanced metering infrastructure like smart meter
technology has enabled the collection of high-resolution data
on voltage, active, and reactive power consumption from end-
users in real-time. This paper introduces a new machine learning
model, named Single Candidate Optimizer (SCO) – Multi-layer
perceptron (MLP), for accurate node voltage forecasting in low
voltage (LV) distribution networks with high penetrations of low-
carbon technologies. The proposed model utilizes historical active
and reactive power measurements in one-minute resolution from
smart meters to predict node voltage time series values without
requiring the network’s electrical model topology and parame-
ters. The computational performance of the MLP framework is
improved with the SCO algorithm, which reduces the number
of required iterations while maintaining accuracy. The model’s
performance is evaluated with numerical metrics and compared
against Particle Swarm Optimization (PSO) and Differential
Evolution (DE)-based models, revealing that the proposed model
outperforms both, exhibiting a promising voltage forecasting
capability with an average deviation of 1.296 volts relative to the
measured values. Overall, this study demonstrates the potential
of machine learning and smart meter data for enhancing the
stability and efficiency of LV distribution networks.

Index Terms—low carbon loads, low distribution network,
smart meter, meta-heuristic, single candidate optimizer, voltage
regulation,

I. INTRODUCTION

The modern electric power grid is undergoing a transfor-
mation from a centralized generation and distribution system
to a more decentralized and dynamic network [1]. This
transition towards a more sustainable and resilient grid brings
new challenges for utilities and grid operators to maintain a

The work of I. Sengor was supported by Science Foundation Ireland (SFI)
under grant no. 12/RC/2302 P2.

reliable and efficient system operation. Ever-increasing low-
carbon technologies in the low voltage (LV) network, such
as rooftop solar panels, energy storage systems, electric vehi-
cles (EVs), and heat pumps, require the distribution network
operators to take on an active management role. This is due
to the emergence of power quality issues, such as over- or
undervoltage, spikes, etc., which are becoming more common
and challenging to control [2]. Several factors, including load
demand size, weather conditions, and fluctuations in renewable
energy generation, can affect voltage regulation [3]. Due
to the dynamic nature of these reasons, active distribution
management is increasingly focusing on fast voltage regulation
[4]. This requires an accurate prediction of near-future node
voltages.

Voltage predictions can be used for both operational pur-
poses to control node voltages within the statutory limits and
planning phases, such as the calculation of the hosting capacity
of low-carbon loads [5]. The necessity of real-time decisions
for fast voltage fluctuations makes the conventional power flow
approach impractical [4]. With the deployment of advanced
metering infrastructure (AMI) like smart meter technology,
machine learning (ML) based voltage regulation is becoming
an emerging research focus [2]. Smart meter technology
enables the collection of high-resolution data on voltage and
real and reactive power consumption from the end-user in
real-time. This data can provide valuable insights into the
current state of the distribution system and help improve the
maintenance of voltage stability with forecasting methods. The
work in [6] examined the forecasting capability of short-term
load forecasting approaches for local demand, highlighting
their limitations and suggesting simple load models from smart
meter data may provide similar prediction accuracies. Hayes
et al. in [7] developed three services for distribution network

979-8-3503-9678-2/23/.00 ©2023 IEEE



energy management systems using AMI data. The authors
in [8] proposed a new data-driven method to determine the
network topology and load phase connectivity of low-voltage
distribution networks using smart meter measurements. The
proposed method utilized principal component analysis and
graph theory to infer the steady-state network topology. Wang
et al. in [9] developed a method using historical smart meter
data from the head of the feeder to assess the impact of
distributed energy resources on voltage behavior. Similarly, in
[10], a method was propounded to estimate network topology,
line parameters, and phasing connections in LV distribution
systems using smart meter measurements. In mining the smart
meter data in these studies, the use of ML techniques such
as neural networks (NNs) has shown promise in improving
voltage forecasting accuracy using smart meter data [11].

The ML-based prediction relies solely on smart meter data
without knowledge of the network topology or parameters,
in which a learning model (e.g., a multi-layer perceptron
model, MLP) is developed to relate active and reactive power
measurements to voltage counterparts for each node in a distri-
bution network. The choice of a suitable ML method is critical
from several perspectives, including accuracy, scalability, and
fast computation. As such, the established relationship for a
studied network can be extrapolated to other LV networks.
In [4], a deep reinforcement learning model is proposed to
control fast voltage fluctuations in real-time in PV-dominated
distribution networks. In [5], a deep NN model is proposed to
calculate node voltages in PV-rich LV networks. The authors
improved their work in [5] with a new methodology to account
for upstream MV network effects and tested its effectiveness
on multiple LV feeders simultaneously [12]. These services
included demand forecasting, constraint management, and
voltage profile forecasting. The study utilized recorded super-
visory control and data acquisition (SCADA) and smart meter
data from an existing medium voltage distribution network
to demonstrate the applicability of their methodology. To
achieve fast response, the voltage regulation is formulated
as a convex optimization problem and solved by designing
a convex NN model in [13]. In these approaches, the learning
model aims to minimize the forecasting voltage error by
optimizing the model parameters. To tune the parameters,
various meta-heuristic algorithms, such as particle swarm
optimization (PSO), gray-wolf optimization algorithms [14],
or stochastic optimization algorithms, like ADAM [15] have
been predominantly used in various ML-based forecasting
applications. Among those, Single Candidate Optimizer (SCO)
has recently gained considerable attention due to its innovative
approach and promising results with significantly reduced
computation cost and memory requirements [16]. It is shown
that SCO can converge to the optimal solution faster compared
to the other algorithms in [17]. However, the performance
of SCO depends on the problem type and still needs to be
explored, in particular for quasi-real-time applications. This
algorithm has also shown the potential to be hybridized with
other meta-heuristic algorithms in [17].

The aim of this study is to propose a new ML model to

forecast node voltages in LV distribution networks with high
penetration of low-carbon loads such as PVs, heat pumps,
and EVs, leading to real-time voltage control. The model
builds upon an MLP framework that utilizes the SCO al-
gorithm to enhance convergence efficiency by reducing the
number of iterations required while maintaining accuracy.
As such, the computational performance is improved. The
model solely uses smart meter active and reactive powers and
voltage measurements in one-minute resolution collected for
a real distribution network and does not need to know its
electrical model topology and parameters. The model accuracy
performance is shown through several numerical metrics and
compared with that of well-known optimizer-based models,
including PSO and differential evolution (DE).

II. METHODOLOGY

A. Single Candidate Optimizer and Multi-Layer Perceptron
(SCO-MLP)

The SCO is a new metaheuristic optimization algorithm
that belongs to the class of single-solution-based methods
proposed by Shami et al. in [16]. It is designed to search
for the optimal solution to a given problem by iteratively
improving a single-candidate solution. The main advantage
of SCO is its simplicity and ease of implementation. The
algorithm does not require a population of candidate solutions
or complex operators such as selection, crossover, or mutation.
Instead, it focuses on improving a single solution, which
can be particularly useful for problems where the search
space is small, or the evaluation of each candidate solution
is computationally expensive.

The algorithm divides the optimization process into two
phases, with different ways of updating the position of the
candidate solution in each phase. While single-solution-based
algorithms and two-phase approaches are established optimiza-
tion methods, they have been used separately. However, the
proposed approach combines the single-candidate approach
with the two-phase strategy to create a strong algorithm.
The crucial feature of this algorithm is that it uses a unique
set of equations to update the candidate solution’s position
based solely on its current location. The aim of the two-
phase strategy is to achieve diversity and balance between
exploration and exploitation. During the first phase of SCO,
the candidate solution modifies its position according to the
following process [16]:

xj =

{
gbestj + (w |gbestj |) if r1 < 0.5
gbestj − (w |gbestj |) , else

}
, (1)

where r1 is a random number in the interval [0, 1]. The
mathematical definition of w is described as:

w(t) = e−(
bt
T )

b

, (2)

where the variables b, t, and T represent a constant value,
the current iteration or function evaluation number, and the
maximum number of function evaluations, respectively. As



the second phase of SCO, the candidate solution changes its
position as seen below:

xj =

{
gbestj + ((r2w (ubj − lbj)) if r2 < 0.5
gbestj − ((r2w (ubj − lbj)) else, (3)

where the variable r2 represents a random value between
0 and 1. Additionally, ubj and lbj represent the upper and
lower bounds of a boundary, respectively. The parameter w is
critical in SCO, as it controls the balance between exploring
new solutions and exploiting the current best solution. SCO
generates a single candidate solution, x, randomly at the outset
of the optimization process. This solution is then updated
through a series of iterations to improve its performance. The
following is the generation of the initial potential solution:

xj = lbj + r3(ubj − lbj). (4)

Detailed information about the SCO process including the
candidate solution switch from exploitation to exploration can
be obtained from [16].

The MLP model is a type of artificial NN that consists
of multiple layers of interconnected nodes, or neurons. The
neurons are organized into input, hidden, and output layers.
The input layer receives the input data, and the output layer
produces the output values. Each neuron in MLP is associated
with a weight vector, which determines the strength of the
connection between the neuron and its inputs. Each input vk
to a neuron, m, is multiplied by an adaptive coefficient, wmk,
called weight, and then the weighted sum of the inputs is
calculated using a nonlinear activation function (φ) such as a
sigmoid, hyperbolic tangent, etc. as follows:

ym = φ(

n∑
k=1

wmk.vk + bm), (5)

where n and ym represent the number of inputs and the
symbolic function of the predicted results, respectively.

During the training process, the weights are adjusted to
minimize the error between the predicted output and the actual
output. The SCO is adapted to tune the weight and bias values
of the MLP parameters in this paper. This hybrid model is
called SCO-MLP.

In this study, the SCO-MLP relates active power (P) and
reactive power (Q) measurements from smart meter data
in the input layer to voltage measurements in the output
layer. Our focus is to forecast voltage deviations for each
node in a real LV network. Active and reactive powers and
voltage measurements in one-minute resolution for each node
collected for a rural LV network with heavily low-carbon
loads are used. The choice of input is of crucial importance
for the accuracy of the model. By utilizing historical time
series measurements of active power Pi = [Pi,1, Pi,2, ...Pi,T ],
reactive power Qi = [Qi,1, Qi,2, ...Qi,T ], and voltage, Vi =
[Vi,1, Vi,2, ...Vi,T ]), the SCO-MLP model is first trained to
capture the nonlinear relationships between the inputs (Pi

and Qi) and the corresponding outputs (Vi) for the ith node,

Fig. 1. Reactive Power vs. Active Power measurements for a single customer
for one month.

given by 6. Both wmk and bm are tuned to enhance the
performance of the model. The voltage forecasting for each
node is represented as follow:

Vi = fSCO−MLP (Pi, Qi, wmk,i, bm,i) (6)

B. Overview of Smart Meter Data

Smart meters have revolutionized the energy sector by
enabling the collection of detailed energy consumption data
at a high temporal resolution. This data can be used to
provide valuable insights into energy consumption patterns and
inform decisions related to energy infrastructure planning and
management. The historical smart meter data belonging to a
distribution network where a number of customers have low-
carbon technologies in Ireland has been used in this study.
The customers in the network may have one or all of the low-
carbon technologies, such as heat pumps, electric vehicles,
rooftop PVs, and battery energy storage units. It is worth
noting that the used smart meter data has a one-minute time
resolution.

The scatter plot displayed in Fig. 1 illustrates the rela-
tionship between the active power and reactive power of
a customer. The plot indicates whether power is absorbed
or imported from the grid (positive values) or injected or
exported into the grid (negative values). It should be noted
that this customer has a rooftop PV generation unit together
with its residential loads. In this figure, blue dots represent
the net active-reactive power profile, and green dots stand
for PV’s active-reactive power profile. While the maximum
active power consumption of the customer is 13.83 kW, the
maximum power generated by its PV unit is 1.13 kW. Figure
2 shows the time-series voltage values of a single customer for
a given period with a one-minute resolution. As seen in the
figure, the customer’s voltage level varies in a voltage range
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Fig. 2. Time-series voltage for a customer.
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Fig. 3. Forecasting node voltage test results of the proposed model.

of 207 V to 253 V, which conforms to European Standard
EN50160.

III. RESULTS AND DISCUSSION

In this section, forecasting results of SCO-MLP is discussed
in detail. Moreover, the SCO-MLP results are compared with
well-known metaheuristic algoritms-MLP such as Particle
Swarm Optimization (PSO-MLP) and Differential Evolution
(DE-MLP). Herein, the purpose of the first experiment is to
demonstrate the performance of the SCO-MLP data algorithm
over in detail its fit with the target data. Secondly, the voltage
forecasting results are to be compared with time series graphs,
and performance metrics.

The collected time series data for one month, comprising
43,200 points, is divided into 70 and 30 percents to train
and test the model, respectively. The data is first normalized
according to their maximum and minimum values. Fig. 3
displays the forecasting normalized voltage results for a single
node. As can be seen in Fig. 3, the error values are also
gathered on the zero axis. It is an acceptable indicator of the
reliability of the model. It is seen that the SCO-MLP model
mostly captured the trend of voltage behaviors, whereas un-
dervoltage values are better captured than overvoltage values.

The SCO-MLP algorithm was run for 3000 iterations, and
Fig. 4 shows the variation of the root mean square error
(RMSE) with respect to the number of iterations. It is shown
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Fig. 4. RMSE deviation with respect to the number of iterations.

Fig. 5. Voltage forecasting results of a single node.

that the global convergence point has been reached rapidly, as
seen from the 100th and 1500th iterations. It is evident that the
SCO algorithm can minimize error rapidly due to its simple
structure, which does not rely on a population of candidate
solutions or complex operators such as selection, crossover,
and mutation.

This performance of the proposed SCO-MLP is assessed
against well-known meta-heuristic-based forecasting models,
namely PSO-MLP and DE-MLP. The time series voltage
forecasting results for a single node are shown in Fig. 5 for
all implemented models. It is seen that the trend of voltage
at the time of forecasting was captured by all the models.
To quantify the performance, some metrics, such as RMSE,
mean square error (MSE), and mean absolute error (MAE),
have been employed. The numerical results are summarized in
Table I. The proposed model outperforms for all the metrics
considered with RMSE, MSE, and MAE values of 1.7595
V, 3.0958 V 2, and 1.4282 V respectively. Since the analysis
is conducted at minute resolution and the results have been
denormalized, the voltage error ranges obtained from all three
models can be considered acceptable.

Fig. 6 shows the Taylor diagrams for the results of the



TABLE I
COMPARISON OF ERROR PERFORMANCE METRICS VALUES OF THE

IMPLEMENTED MODELS.

Models RMSE MSE MAE

PSO-MLP 1.8476 3.4137 1.4782

DE-MLP 2.1689 4.7040 1.7086

SCO-MLP 1.7595 3.0958 1.4282
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Fig. 6. Comparative results using Taylor diagram.

implemented models. The diagram presents how the corre-
lation coefficient, root mean square deviation (RMSD), and
standard deviation are interrelated, enabling a straightforward
comparison of forecasting accuracy. The closer the correlation
coefficient value to 1, the more linear the relationship between
the original and predicted data is. A correlation coefficient
value closer to 1 indicates a stronger linear association be-
tween the forecasted and original data. The green square
represents the results for the proposed SCO-MLP method,
which has lower RMSD and standard deviation values and a
correlation coefficient closer to 1. Based on these findings, the
SCO-MLP model is deemed reliable and effective for voltage
forecasting in the studied distribution network.

IV. CONCLUSIONS

In this study, a voltage forecasting model has been proposed
for LV distribution networks with low carbon loads where fast
voltage deviations occur due to the nature of the loads. The
proposed MLP model incorporates SCO to take advantage
of its fast convergence rate to global optimum points while
minimizing the forecasting error. The proposed model has
been tested for the calculation of node voltage time series
values for a real LV distribution network. The model can
demonstrate promising voltage forecasting with an average
voltage deviation of 1.296 volts relative to the measured

values. The model’s performance has also been shown superior
as compared to two well-known meta-heuristic optimization
algorithms. Future research will focus on adapting the model
to representative LV distribution networks (e.g., urban, sub-
urban, rural, etc.) and improving the model’s performance to
further predict overvoltage values.
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