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Abstract:  9 

Background: The role of the innate immune system has long been associated with Alzheimer’s disease 10 

(AD).  There is now accumulating evidence that the soluble Urokinase Plasminogen Activator Receptor 11 

pathway, and its genes, PLAU and PLAUR may be important in AD, and yet there have been few genetic 12 

association studies to explore this.   13 

Objectives: This study utilises the DNA bank of the Brains for Dementia Research cohort to investigate 14 

the genetic association of common polymorphisms across the PLAU and PLAUR genes with AD.   15 

Methods: TaqMan genotyping assays were used with standard procedures followed by association 16 

analysis in PLINK.   17 

Results: No association was observed between the PLAU gene and AD, however two SNPs located in 18 

the PLAUR gene were indicative of a trend towards association but did not surpass multiple testing 19 

significance thresholds.   20 

Conclusions: Further genotyping studies and exploration of the consequences of these SNPs on gene 21 

expression and alternative splicing are warranted to fully uncover the role this system may have in AD. 22 
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Introduction: 24 

Neuroinflammation is now established as one of the key hallmarks and possible contributors of 25 

Alzheimer's Disease (AD) [1], with both the role of inflammation and gene associated with the innate 26 

immune system providing key evidence, which is extensively reviewed in the literature [2–5]. The 27 

accumulation of AD hallmarks (amyloid-β plaques and tau tangles) in the brain are thought to invoke 28 

the central nervous systems innate immune system via microglial activation [6].  Microglia are the resident 29 

immune cells of the human brain.  Under normal conditions, microglia act to help clear amyloid-β and 30 

regulate inflammatory processes; however, over-activation is suspected to be key in the neuropathology 31 

of AD.  These microglia release pro-inflammatory markers creating chronic neuroinflammation in the 32 

brain, with this neuroinflammation hypothesised to be the cause of neuronal cell death and cognitive 33 

decline [1,7].   34 

Similarly, systemic inflammation has consistently been associated with AD [8].  Some evidence suggests 35 

that the presence of persistent systemic inflammation can lead to neuroinflammation [9] and could be 36 

mediated by increased permeability of the blood-brain barrier [10].  The elevation of systemic 37 

inflammation could be seen as an early marker of an overactive immune system which could also serve 38 

as a biomarker for individuals at high risk from AD. 39 

Multiple studies demonstrate that C-reactive protein (CRP), a non-specific marker of inflammation, is 40 

elevated with age, and is associated with age-related comorbidities [11], with meta-analyses indicating 41 

an increased level for CRP and other inflammatory markers in AD and dementia [8,12].  Systemic 42 

inflammation can be caused by several lifestyle factors including smoking, poor diet, and lack of exercise; 43 

these same lifestyle factors have been associated with AD and are seen as modifiable risk factors which 44 
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could account for around a third of dementia cases [13].  However, evidence for the efficacy in using 45 

anti-inflammatory drugs to prevent dementia is conflicting with multiple confounders to consider [14,15]. 46 

Genetic associations have been made between AD and genes (e.g., CR1, CLU, TREM2) with roles within 47 

the innate immune system that function both in the brain and systemically [16–19], and could perhaps 48 

reflect variations in the immune system activation status, with those associated with increased risk leading 49 

to an immune system that is more likely to over activate.  50 

 51 

suPAR: A Biomarker for Immune System Activation  52 

Although CRP is seen as the “gold-standard” for measuring levels of inflammation, it has recently been 53 

proposed that these measurements are of acute inflammation rather than a measurement of immune 54 

system activation [20].  The presence of soluble Urokinase Plasminogen Activator Receptor (suPAR) is 55 

triggered by pro-inflammatory markers leading to the “shedding” of the membrane-bound receptor to 56 

its soluble form [21] and has been suggested to provide a general measurement of persistent, low grade 57 

immune system activation rather than being an inflammatory marker itself [20,22,23].   58 

The membrane-bound urokinase Plasminogen Activator Receptor (uPAR) is mainly expressed on 59 

immunological cells.  It is a receptor for urokinase Plasminogen Activator (uPA), which when bound 60 

catalyses the conversion of inactive plasminogen to active plasmin [24], playing a role in extracellular 61 

matrix degradation.  In addition, the receptor has also been shown to interact with multiple molecules, 62 

including Vitronectin and be involved in several processes including cell adhesion, migration, 63 

proliferation, survival, coagulation and homeostasis [25,26].   64 

In relevance to AD, uPA expression is observed to be upregulated by the presence of aggregated 65 

amyloid-β.  This induced expression could lead to higher levels of plasminogen being activated to 66 

plasmin, which has been found to degrade amyloid-β fibrils [27].   67 
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The cleavage of uPAR is governed by several enzymes including uPA; cleavage of the membrane-bound 68 

receptor occurs at its Glycosylphosphatidylinositol (GPI)-anchor connecting it to the cell membrane but 69 

also in the linker region found between domains I and II [28,29] 70 

Soluble Urokinase Plasminogen Activator Receptor is found in plasma, serum, and various other bodily 71 

fluids, including cerebrospinal fluid (CSF), and is highly correlated with inflammatory biomarkers, such as 72 

TNF-α, IL-1β and IL-6 [20].  In addition, suPAR levels have been found to be impacted by several of the 73 

lifestyle factors associated with AD [30] and has been observed to be elevated (>4ng/ml) in several 74 

inflammatory disorders, predicting mortality [21].  Measuring suPAR is already being used in emergency 75 

rooms in Europe to aid triage of patients for adverse outcomes [31,32] and so could easily become part 76 

of an early-warning mid-life health screen. 77 

Previous investigations have observed higher levels of suPAR in the CSF of those individuals with HIV-78 

dementia and are correlated with cognitive deficits in HIV patients [33–36] .  Further to this a recent 79 

investigation measuring plasma levels of suPAR in a longitudinal population study identified that 80 

participants who displayed the greatest increases in suPAR levels between the ages of 39 and 45 years, 81 

also displayed signs of accelerated aging and cognitive decline [37].  Most recently, uPA levels in CSF of 82 

patients with cerebral amyloid angiopathy were significantly higher than controls and is a suggested 83 

biomarker for this disease [38]   84 

Emerging evidence suggest that suPAR could be used as a biomarker for those at risk from dementia, 85 

but is there an underlying genetic predisposition of the uPA/uPAR genes to lead to alteration in suPAR 86 

levels and therefore with AD?  Therefore, this is a small exploratory investigation of genetic variation 87 

within the genes encoding for uPA (PLAU; chr10q22) and its receptor (PLAUR; chr19q13,) with AD using 88 

pathologically confirmed AD samples from the Brains for Dementia Research cohort. 89 

 90 
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Methods: 91 

Samples: The Brains for Dementia Research (BDR) project is an established semi-longitudinal programme 92 

to provide a wealth of information for researchers investigating dementia, which includes post-mortem 93 

brain tissue donations [39].  Alongside the cognitive, lifestyle and neuropathological detail obtained 94 

during life and upon death, DNA has been extracted from samples of post-mortem brain tissue to create 95 

a DNA bank for research purposes and freely available whole genome data for scientific exploration [40]. 96 

The DNA bank currently stands at 1078 samples from deceased participants for whom a diagnosis has 97 

been made based on clinical and neuropathological features for genetic analyses.  This cohort contains 98 

a mix of different dementias including AD, Vascular Dementia, Dementia with Lewy Bodies and Frontal 99 

Temporal Lobe Dementia alongside mixed pathologies, those with Mild Cognitive Impairment and 100 

cognitively normal controls.  For this study only participants with neuropathologically confirmed AD 101 

(Clinical diagnosed with dementia with AD relevant pathology) (n=434) and controls without cognitive 102 

deficits, or neurodegenerative comorbidities/pathology (n=349) were analysed.  Details on the 103 

demographics for key AD covariates can be found in Table 1, with all covariates suggesting a significant 104 

difference between the groups on ratio of females, age at death and presence of the APOE ε4 isoform.  105 

SNP Selection & Genotyping:  SNPs were selected from across the gene loci to capture genetic variation 106 

within individual linkage disequilibrium blocks (r
2
>0.8) using Haploview software [41], and 1000 Genomes 107 

European genotype data with minor allele frequencies above 1%.  Four SNPs were selected across the 108 

PLAU locus (rs2227580; rs2227562; rs2227564; rs2227571) and four across the PLAUR locus (rs4251909; 109 

rs4251876; rs397374; rs4251854). 110 

In-house genotyping of the polymorphisms was conducted using TaqMan assays for these SNPs 111 

following standard protocols (Applied Biosystems/ThermoFisher Scientific).  Reactions were run on the 112 

Aria Mx real-time PCR machine (Agilent Technologies). 113 
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Analysis: Association analysis was carried out in PLINKv1.9 [42].  Individual SNP association analysis was 114 

carried out using a logistic regression test correcting for the covariates biological sex, age at death and 115 

APOE ε4 allele count.    116 

 117 

Results: 118 

The entire BDR cohort was genotyped for eight SNPs across the PLAU and PLAUR loci. Sample duplicates 119 

for positive genotyping controls were 100% concordant.  The genetic analysis presented here consists of 120 

the current neuropathology-confirmed diagnosed samples of AD (n=434) and controls (n=349) with an 121 

overall genotyping call rate of 99.1%.   122 

Demographics of the analysis sample (Table 1) were similar to those previously reported for the BDR 123 

cohort [40], with a significant increase for age at death (p=0.0004) and a higher proportion of females 124 

in the control group (p=0.018).  As expected there was a highly significant increase in the proportion of 125 

APOE ε4 positive participants in the AD group compared to the controls (p<0.00001).   126 

 127 

  Controls (n=349) AD (n=434) P value 

% Females 57.6% 49.1% 0.018 

Average Age at Death 85.9 years (SD=10.1) 83.4 years (SD=8.6) 0.0004 

Presence APOE ε4 26.6% 69.6% <0.00001 

Table 1: Demographics of the Alzheimer’s disease (n=434) and control (n=349) samples explored for association in this study.  Known 128 

covariates with the phenotype, biological sex, age at death and presence of the APOE ε4 isoform were all significantly different between 129 

the AD and control groups. 130 

 131 
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Quality control revealed no significant deviation from Hardy-Weinberg equilibrium (p<0.0001) nor 132 

‘missingness” between phenotype groups (p>0.05).  Minor allele frequencies in the control group were 133 

similar to population estimates (Table 2). 134 

Logistic regression analysis controlling for covariates revealed no association between the PLAU gene 135 

SNPs and AD phenotype, however three of the four SNPs investigated in the PLAUR gene demonstrated 136 

suggestive association with the AD phenotype.  One SNP, rs4251854, demonstrated a significant 137 

association (p<0.05) with rs4251909 and rs4251876 showing a trend towards significance, however none 138 

survived Bonferroni correction at the study-wide level (p<0.00625). 139 

Interestingly the effect size of the SNPs suggestive of association were in opposite directions with the 140 

minor allele (A) for rs4251876 showing a protective effect, and minor alleles for rs4251909 & rs4251854 141 

(T and C respectively) demonstrating a risk effect. 142 

SNP Chr (hg38) Minor 

Allele 

1000G 

Frequency 

Genotyping 

Rate (%) 

MAF 

Controls 

MAF 

AD 

OR 

(95% CI) 

p value 

PLAU:         

rs2227580 10:73911598 T 0.011 98.5 0.007 0.001 0.497  
(0.08-3.1) 

0.455 

rs2227562 10:73913203 A 0.158 99.4 0.170 0.150 0.911 
(0.67-1.24) 

0.549 

rs2227564 10:73913343 T 0.208 99.6 0.239 0.270 1.135 
(0.88-1.47) 

0.340 

rs2227571 10:73914982 C 0.427 98.9 0.446 0.456 1.031 
(0.82-1.30) 

0.796 

PLAUR:         

rs4251909 19:43652589 T 0.048 98.9 0.042 0.062 1.634 
(0.96-2.77) 

0.068 

rs4251876 19:43656898 A 0.067 99.0 0.069 0.043 0.624 
(0.39-1.00) 

0.053 

rs397374 19:43659629 T 0.241 98.7 0.220 0.244 1.165 
(0.89-1.52) 

0.258 

rs4251854 19:43659842 C 0.127 99.5 0.097 0.140 1.448 
(1.02-2.08) 

0.035 

 143 

Table 2: Association results and genomic location of SNPs mapped on gene schematics from UCSC genome browser (GRCh38/hg38).  None of 144 

the SNPs investigated in the PLAU gene demonstrated association with the AD phenotype.  Conversely SNPs located within the PLAUR locus were 145 

suggestive of association with a mix of risk and protective alleles (p≤0.05).     MAF = Minor Allele Frequency; OR = Odds Ratio146 
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Discussion: 147 

This investigation sought to find an association between polymorphisms located within the PLAU and 148 

PLAUR genes and AD, highlighting a potential genetic predisposition to an elevated innate immune 149 

system.  No association was found between PLAU polymorphisms and AD, whereas three out of four 150 

SNPs investigated across the PLAUR gene were suggested of association, one was significant at the alpha 151 

level of significance but did not withstanding multiple-testing corrections. 152 

PLAU: Despite the absence of association in the BDR cohort, previous studies have observed associations 153 

of PLAU polymorphisms with AD [43–46].  The PLAU gene lies within a replicated linkage peak for AD 154 

under chr10q21-24 [47], and observations of a potential role of plasmin (activated by uPA) to degrade 155 

amyloid-β deposits [27] have led to this gene being seen as a potential candidate for dementia. 156 

This prompted Riemenscheider et al [46] to fine map the gene, genotyping 56 SNPs across the loci.  The 157 

study identified two key blocks of linkage disequilibrium, one at the 5’ end of the gene and one at the 158 

3’end of the gene, with a significant break between to the blocks surrounding the rs2227564 SNP located 159 

in exon 6, a mis-sense variation changing a proline to lysine amino acid.  Riemenscheider and colleagues 160 

observed the minor T-allele to be associated with increased risk for AD (p=0.02) in a much larger dataset 161 

(n=2359) but consisted of a similar number of AD cases as the BDR (n=422).  However, a significant 162 

proportion of the cases had an onset of symptoms prior to 65 years old.  When the sample was divided 163 

by age of onset the association was only seen in those with early-onset dementia. This study supported 164 

the earlier association finding for the Exon 6 rs2227564 (P141L) SNP; however, the observation was in 165 

the opposite direction with the original studies observing the major C-allele conferring risk for AD [45].  166 

More recently a further association study in a Han Chinese population [48] also looked at this SNP in 167 

relation to AD, again findings an association but with the C-allele similar to Finckh et al study [45]. 168 
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In addition to rs2227564 that Reimenscheider (2006) investigated the SNP rs2227562 was also in 169 

common with the polymorphisms genotyped in this study.  Again, in the Reimenscheider study this SNP 170 

was found to be significantly associated (p=0.019) however it was found that the major G-allele increased 171 

risk for AD, whereas in the current study it was observed that the minor A-allele was more frequent in 172 

cases though not significantly different.  In total the Reimenscheider study found nine SNPs to be 173 

significantly associated with AD at p<0.05 significance level with a further three SNPs downstream to the 174 

gene indicating suggestive association.  However, this is likely due to the large haplotype blocks observed 175 

in this gene. 176 

In addition, quantitative trait analyses have also yielded some interesting results for the PLAU gene 177 

[43,44].  The T-allele of the rs2227564 has been associated with AD, and age-dependent amyloid-β 178 

load in plasma [44].  Whilst the study conducted by Ozturk and colleagues [43] found evidence of a 179 

modest association with AD, as well as quantitative traits for age of onset, and disease duration, the 180 

association was found with a SNP located in the 3’UTR of PLAU (rs4065), but not with the rs2227564 181 

SNP. 182 

In contrast to the above and in-line with this study’s observations, other studies have failed to find an 183 

association of these SNPs with AD [49–51].  Furthermore, sequencing of the exons of the PLAU gene in 184 

96 cases, and 96 ethnicity and age-matched controls did not find any novel polymorphisms within the 185 

coding sequence.  Additional case-control analysis in a larger independent dataset (cases n=652, 186 

controls n=824) did not find an association with the rs2227564, nor with two rarer coding SNPs in exon 187 

2 and 8 [49].  A later study using a much smaller cohort also did not find any association with rs2227564 188 

nor an association with age of onset [50].  Finally, a study of two small independent European cohorts 189 

also did not find an association with this SNP, nor with an effect on cognitive abilities [51].  Interestingly 190 

this study noted significant differences in genotype and allele frequencies between its European cohorts 191 

(Swiss and Greek) and therefore admixture may be biasing the results for this SNP [51].   192 
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Recently a meta-analysis has been conducted on the rs2227564 PLAU SNP to assess the inconsistencies 193 

observed in previous investigations.  A total of 27 cohorts, analysing 6100 AD cases, and 5718 controls, 194 

demonstrated that there was a significant effect of the T-allele conferring risk for AD using a dominant 195 

model (OR 1.123, 95% CI 1.025-1.231) with only low and moderate heterogeneity between the studies 196 

using a “leave-one-out” approach [52]. 197 

The rs2227564 SNP lies in the kringle domain of the serine protease, which has been shown to be 198 

important for uPA binding to its receptor, uPAR [53].  Further to this, the SNP itself has been shown to 199 

affect the activity of uPA with the minor allele (T-allele) resulting in a lower affinity for fibrin clots [54], 200 

which may also translate to a lower affinity for plasminogen resulting in lower break up of amyloid-β 201 

plaques.  Conversely it may also have a lower affinity for its receptor resulting in lower suPAR levels; this 202 

is supported by an investigation on the heritability of suPAR levels.   203 

PLAUR: In this study we found two out of the four SNPs investigated to be suggestive of an association 204 

with AD.  There has been little in the literature to suggest any previous genetic associations, however 205 

exploration of large GWAS summary statistics [17,55–57], found no association for the PLAU SNPs, 206 

whereas PLAUR SNPs rs4251909 and rs4251876 were suggestive of association in the Jansen [55] dataset 207 

(p=0.049 and p=0.057 respectively, Table 3).   208 

Interestingly though, the PLAUR gene has been identified with AD through other various avenues.  The 209 

expression of PLAUR, also known as CD87, is induced by several stimuli and is a marker of immune 210 

system activation, therefore a study incubating post-mortem brain derived microglia cells with amyloid-211 

β peptides observed that both mRNA and protein expression of the PLAUR gene was increased in 212 

comparison to other pro-inflammatory agents.  This increase in uPAR protein expression was also found 213 

in several AD brain tissues compared to controls [58].  The PLAUR gene has also been identified indirectly 214 

with network analyses from transcriptome investigations in mouse model microglial in relation to AD 215 

[59,60].  Intriguingly, in a study looking at the beneficial effect of music on AD, PLAUR was identified as 216 
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a gene of interest as having previously been associated with musical aptitude and consistently appearing 217 

in the AD literature [61].  This is accompanied with in silico analyses suggesting PLAUR expression is one 218 

of 25 genes that could be used as a biomarker for AD [62]. 219 

 220 

SNP Lambert et al [17] Jansen et al [55] Bellenguez et al [57] Dowsett et al [63] 

rs2227580 Not present 0.934 0.665 0.606 

rs2227562 0.720 0.502 0.384 0.001 

rs2227564 0.487 0.857 0.801 1.57 x 10-62 

rs2227571 0.652 0.764 0.422 5.63 x 10-69 

rs4251909 0.519 0.049 0.671 8.6 x 10-09 

rs4251876 0.422 0.057 0.364 5.7 x 10-06 

rs397374 0.924 0.804 0.089 0.047 

rs4251854 0.612 0.308 0.337 0.074 

Table 3: Summary table of GWAS findings for the PLAU and PLAUR SNPs investigated in this study.  Columns 1-3 show results of GWAS 221 

studies for Alzheimer’s disease, where the 4th column presents data for these SNPs in association with measured suPAR levels in plasma.  222 

Where there is minimal evidence for an association with AD in the large heterogenous GWAS studies, a strong association of the SNPs 223 

with suPAR levels is shown. 224 

 225 

Univariate twin analyses conducted suggested that additive genetics contributed to as much as 60% of 226 

the variation in suPAR levels, and estimated heritability to be around 12.5% [63].  Their GWAS study 227 

conducted on almost 48,000 participants with plasma measurements of suPAR, suggested that genetic 228 

variation in the PLAU and PLAUR genes along with others was associated with suPAR levels (Table 3), 229 

including SNPs investigated here.[63].  230 

 231 
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Interestingly two alternative transcripts for PLAUR have been observed.   These transcripts utilise two 232 

mutually exclusive 3’exons, with the 7
th
 exon (7b) producing a shorter product lacking the GPI-anchor 233 

leading to a secreted soluble receptor product [64].  Therefore, it is feasible that variation in suPAR levels 234 

may also be influenced by alternative transcription rather than cleavage of the GPI-anchor.  Further to 235 

this several alternative splicing events associated with exons 3,4,5 and 6 have been observed and 236 

identified with various disorders or uPAR functions [65–68], however none have been investigated in 237 

relation to DNA variants and inspection of the Genotype-Tissue Expression [GTEx; 69] database does 238 

not have data for polymorphisms associated with expression or splicing of the PLAUR gene. 239 

The BDR is currently limited in sample size but is a growing cohort (estimated n=3200), and therefore in 240 

subsequent analyses the original observations of SNPs displaying a trend towards significance may in 241 

time surpass the threshold required.  As discussed in a recent publication [70], cohorts such as the BDR 242 

which hold detailed neuropathological data for diagnosis may afford a more homogenous sample for 243 

study when complete.  The larger GWAS studies are subject to greater levels of heterogeneity in disease 244 

aetiology and may mask more subtle but key gene associations, especially those that may be subject to 245 

environmental exposures.  The number of SNPs investigated in this study is limited but served as an 246 

exploratory examination of these genes to guide future research. 247 

Future work exploring SNP influence on alternative splicing and whether increases in suPAR are driven 248 

by the expression of the 7b exon transcript is warranted, this may require additional fine mapping of 249 

SNPs that were not captured in the linkage blocks formed from the 1000G dataset.  This, alongside 250 

measurements of suPAR levels and lifestyle information may yet support a role for these genes in 251 

dementia aetiology [71,72]. 252 

This study provides additional data to the accumulating evidence on genes involved in the innate 253 

immune system with AD, whether in a causal role or modifying role it is clear more investigations are 254 

required.  Alongside the wealth of information suggesting a role of suPAR and its genes in neuronal 255 
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survival and development in the brain [71,72], this study supports continued investigation into this system 256 

in relation to AD.   257 

Genetic data for the BDR cohort is freely available via the Dementias Platform UK server, combined with 258 

the extensive neuropathological, cognitive and lifestyle data available for this cohort, it provides a 259 

powerful resource for more complex analyses to uncover genetic associations and their pathway to 260 

disease. 261 
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