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Abstract—For the future 6G-enabled massive Internet of
Things (mIoT), how to effectively manage spectrum resources
to support huge data traffic under the large-scale overlapping
caused by the dense deployment of massive devices is the imper-
ative challenge. In this paper, a novel hypergraph interference
model is designed, and two reinforcement learning (RL)-based
resource management algorithms in the 6G-enabled mIoT are
proposed to enhance the network throughput and avoid overlap-
ping interference. Then, based on the hypergraph interference
model, the resource management problem of execution network
throughput maximization is theoretically formulated under large-
scale overlapping interference scenarios. To handle this problem,
we convert it into a Markov decision process (MDP) model
and then deal with this MDP model through the advantage
actor-critic (A2C)-based resource management algorithm and
asynchronous advantage actor-critic (A3C)-based resource man-
agement algorithm, which aim to maximize network throughput
of the spectrum resource allocation among massive devices. The
simulation results verify that the proposed algorithms can not
only avoid large-scale overlapping interference but also improve
the network throughput.
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hypergraph, Markov decision process (MDP), reinforcement
Learning (RL).
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I. INTRODUCTION

A. Background and Motivation

MASSIVE Internet of Things (mIoT) is an essential
component of future wireless networks, which has been

envisioned to meet the significant surge in data traffic demand
generated by an enormous amount of IoT devices and support
various innovative applications, such as smart city, smart
household, smart industrial, and vehicular communication [1].
The huge data traffic demand further spurs massive devices
to the data transmission concurrently via the same spectrum
and then makes the spectrum resource become more scarce
[2]. Since this demand for mIoT applications will be beyond
the capability of the five-generation (5G) [3], [4], ensuring
simultaneous access for massive devices and handling the
substantial data traffic they generate is challenging, resulting in
insufficient network performance [5]. Against this backdrop,
it is necessary to develop a six-generation (6G)-enabled mIoT
with the device-to-device (D2D) communication [6]. Specifi-
cally, D2D communications, which enable two proximity IoT
devices to transmit data directly without going through access
points, e.g., remote radio heads (RRHs) [7], have emerged
as a promising technique to facilitate communication among
massive devices in the 6G-enabled mIoT.

The distinctive feature of the 6G-enabled mIoT is its dense
deployment of devices, which poses great challenges for the
traditional resource management method to fulfill the huge
data traffic generated by massive devices [8]. In particular,
the dense deployment of devices will inevitably generate
overlapping coverage areas due to the overlapping coverage
of each device’s communication range [9], [10]. When there
existing massive devices use the same spectrum resource in the
overlapping coverage area, the overlapping interference then
is generated for the 6G-enabled mIoT [11]. As the number
of IoT devices in overlapping coverage areas increases, the
overlapping interference will further deteriorate the network
throughput of the entire 6G-enabled mIoT [12], i.e., the large-
scale overlapping interference that affects the entire network
is formed. For the 6G-enabled mIoT, how to achieve effective
resource management and then enhance the entire network
performance will be an imperative challenge under large-scale
overlapping interference scenarios.
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TABLE I
RELATED WORK

Ref. Scenario Main challenge Resources Optimization Objective Method

[13] IoT Balance the network performance and service cost Spectrum Coverage probability Game

[14] IoT Under channel imperfections to enhance communication and collabora-
tion of IoT devices

Power
Spectrum Energy efficiency RL

[15] IoT Different QoS requirements Power
Spectrum Energy efficiency RL

[16] mIoT Data traffic throughput sharply increases Computation
Spectrum Content retrieval delays RL

Opt.

[17] mIoT Limited computation capabilities and energy Power
Spectrum Energy efficiency Opt.

[18] mIoT Sharp shortage of spectrum resources caused by devices’ dense deploy-
ment

Spectrum Quality of experience RL

[19] IoT Co-channel interference Spectrum Network throughput Opt.

[20] IoT Co-tier interference Power
Spectrum Network throughput Opt.

[21] IoT Cross-tier interference Power
Spectrum Network throughput Opt.

Proposed mIoT Large-scale overlapping interference Spectrum Network throughput RL

B. Related Work

Resource management for IoT networks is investigated as
a practical approach to obtain better network performance in
the existing literature. Table I presents the relative comparison
of the proposed scheme with existing schemes. For example,
to balance the service cost and network performance in IoT
networks, Yan et al. [13] investigated a joint access selection
and resource management scheme, which proposed a hierar-
chical game framework for the access selection and bandwidth
allocation problem, and then solve it though Stackelberg
game theory. An imperfect channel state information (CSI)-
based resource management scheme was developed in [14] to
efficiently allocate spectrum and power resources, which im-
proves the collaboration and communication between devices
in IoT networks under channel imperfections. In an attempt
to boost network performance and fulfill various quality of
service (QoS) demands, Yang et al. [15] developed a resource
management scheme based on reinforcement learning (RL)
that focuses on energy efficiency maximization. This scheme
converts the optimization problem into a Markov decision pro-
cess (MDP) model and subsequently solves it using an actor-
critic method. In addition to traditional IoT networks, due
to the limited resources and huge data traffic characteristics
of the mIoT, the resource management for massive devices
and limited resources network scenario is considered as the
key technology in the mIoT network [16]–[18]. The study
[16] addressed the optimization problem of cooperative edge
caching and spectrum resource management caused by the
increased data traffic throughput resulting from the growing
number of devices. The branch-and-bound methodology was
used to address the cooperative edge caching aspect of this
NP-hard problem, while the RL method was employed to
tackle the spectrum resource management aspect. To boost the
energy efficiency while simultaneously meeting the devices’
maximum tolerable delay constraints, Liu et al. [17] formu-
lated a joint computation and spectrum resource management
problem. The authors decomposed this challenging mixed-
integer non-convex problem into two individual subproblems,

which were addressed individually using sequential convex
programming and matching methods. To enhance the quality
of experience for users under limited spectrum resources, a
joint power and spectrum resource management scheme was
proposed in [18]. This scheme was developed to solve an
optimization problem for resource management and utilized
a neural network-embedded RL algorithm to find the best
solution.

Rarely do the aforementioned works [16]–[18] specifically
address the impact of interference brought on by multiple
devices simultaneously engaging in competition for the same
spectrum resource. To alleviate the interference impact through
proper resource management, the more general and compelling
problem of interference has been attracting increasing research
attention [19]–[21]. An interference avoidance resource man-
agement method was developed in [19] to decrease co-channel
interference power and improve data transmission rates in
IoT networks. The method separated the optimization problem
into three individual subproblems, which can be addressed by
the orthogonal deployment approach, bisection search method,
and Hungarian algorithm, respectively. To minimize co-tier
interference and increase the data rate, Sarma et al. [20]
designed an efficient scheme of resource management. To
maximize network throughput while accounting for the cross-
tier interference that is inevitable in IoT networks, a solution
including two-stage joint power control and hovering altitude
was developed in [21] for the resource management problem,
which mainly utilizes the Lagrange dual decomposition and
concave-convex procedure method. However, most of the
aforementioned works [19]–[21] rarely focus on the dense de-
ployment of devices leading to overlapping interference prob-
lems. Furthermore, the interference avoidance and resource
management schemes are typically for the traditional IoT
network, which may not be suitable for the future 6G-enabled
mIoT under large-scale overlapping interference scenarios.
Therefore, it is an imperative challenge to obtain a resource
management scheme with interference avoidance and then
enhance the entire network performance for the 6G-enabled
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mIoT under large-scale overlapping interference scenarios.

C. Contribution

For the 6G-enabled mIoT, the large-scale overlapping inter-
ference will divide the entire network device set into multiple
device subsets in which individual device interferes with each
other. Specifically, the device subset represents the collective
relationships among devices due to the influence of overlap-
ping interference, which is mathematically a multi-way rela-
tionship. Since hyperedges describe a collective relationship
among a set of vertices in the hypergraph model, we apply
the hypergraph model to represent and analyze overlapping
interference among massive devices. In this paper, to maximize
the entire network throughput, we design a novel hypergraph
interference model and then propose two RL-based resource
management algorithms for 6G-enabled mIoT under large-
scale overlapping interference scenarios. In particular, our
main contribution can be summarized as follows.
1) To handle the large-scale overlapping interference for the

6G-enabled mIoT, a novel hypergraph interference model
was proposed. Then, based on this hypergraph interference
model, we formulate a resource management problem
aimed at maximizing the network throughput within the
constraints of limited resources, while avoiding overlapping
interference among massive devices and ensuring data
transmission.

2) To reduce the solution complexity, the resource manage-
ment problem for the 6G-enabled mIoT is solved through
the RL method. We reformulate the network throughput
maximization problem as an MDP model and propose an
advantage actor-critic (A2C)-based resource management
algorithm to solve it. Specifically, the reward function of
the MDP model is specially designed according to this
optimization objective and constraints.

3) To speed up training and obtain higher throughput resource
allocation results, we proposed an asynchronous advantage
actor-critic (A3C)-based resource management algorithm
combined with an asynchronous multi-threaded architec-
ture. It is capable of avoiding overlapping interference
in corresponding overlapping areas, and also preventing
throughput degradation of massive devices.

The paper’s remainings are organized as below. Section
II presents details of the system model. Section III presents
the RL-based resource management to handle the network
throughput maximization problem. We then investigate the
performance of the proposed two algorithms via simulation
results in Section IV. Finally in Section V, the conclusions
are drawn.

II. SYSTEM MODEL

In this section, we give a concise overview of the communi-
cation model. Then, the relationship between large-scale over-
lapping interference and the hypergraph interference model
is described. Finally, we formulate the resource management
problem as a network throughput maximization optimization
formulation to improve the network performance in 6G-
enabled mIoT.

A. Communication Model

In Fig. 1, this paper considers a 6G-enabled mIoT supported
cloud radio access network (C-RAN) framework [22], which
consists of multiple RRHs, fronthaul links, a baseband unit
(BBU) pool, and massive devices. This C-RAN framework
deploys multiple RRHs as access points around IoT devices
and then is responsible for spectrum resource management
of D2D communication between massive devices [23], i.e.,
D2D receivers (DRs) and D2D transmitters (DTs). Wherein,
we mainly focus on the spectrum resource management among
massive devices in the 6G-enabled mIoT. Due to the ability of
powerful centralized processors, the BBU pool is configured to
optimize resource allocation [22]. The global CSI is assumed
to be available at the BBU pool [24]. There are various
technologies that can be used to build the fronthaul links
that connect multiple RRHs to a BBU pool. Furthermore,
simultaneous transmission is allowed between the BBU pool
and the RRHs, as well as between the RRHs and IoT devices,
and between the IoT devices, without any interference. Note
that the communication range of IoT devices as DTs can
overlap with each other and then form overlapping coverage
areas, as shown in Fig. 1.

Assume NDT and NDR denote the sets of deployed single
antenna IoT devices as DTs and DRs in 6G-enabled mIoT and
denoted as NDT =

{
1̂, 2̂, · · · , N̂

}
and NDR = {1, 2, · · · , N},

respectively. The total spectrum resource is split into K
resource blocks (RBs), which are assumed to be orthogonal
and represented by K = {1, 2, · · · ,K} [25]. Let cn̂,k ∈ {0, 1}
denotes whether the k-th RB is assigned for the n̂-th DT.
The 3GPP outdoor channel model [26] is the primary model
that we utilize for determining the power received from
a desired signal in 6G-enabled mIoT. This channel model
takes into account various path losses and small-scale fading
elements. At time step t, the n-th DR’s received signal-to-
interference-plus-noise ratio (SINR) of the desired signal from
corresponding n̂-th DT over the k-th channel is expressed by
[22]

γt
n [k] =

ctn̂,kp
t
n̂ [k]g

t
n̂,n [k]

σ2
t +

∑
ñ∈NDT

ctñ,kp
t
ñ [k]g

t
ñ,n [k]

, (1)

where ptn̂ [k] represents the n̂-th DT’s transmission power
over the k-th RB. ptñ [k] denotes the ñ-th DT’s transmission
power over the k-th RB. gtn̂,n and gtñ,n are the desired signal
channel gain and interfere signal channel gain, respectively.
σ2
t denotes the variance of the additive white Gaussian noise

(AWGN). Hence, the received achievable data rate of n-th DR
is represented by

Rt
n =

∑
k∈K

W log
(
1 + γt

n [k]
)
, (2)

where W indicates the assigned bandwidth for the k-th RB.
Furthermore, it is necessary to take into account the minimal
data rate Rmin

n for the n-th DR, which means that Rt
n ≥ Rmin

n .
For the entire 6G-enabled mIoT, the network throughput can
be expressed as [27]

Rt =
∑

n∈NDR

Rt
n. (3)
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Fig. 1. Architecture of the considered 6G-enabled mIoT.
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Fig. 2. Communication networks architecture.

B. Hypergraph Interference Model

In the 6G-enabled mIoT, due to the dense deployment of
devices, there is large-scale overlapping coverage of DT’s
communication ranges, which leads to large-scale overlapping
interference among DTs that reuse the same resources. Hence
the SINR of DRs suffers from critical interference signal,
which can cause disruptions like data failing to be received
from DTs. In this context, traditional graphs can only describe
the relationship between two devices and cannot establish this
collective relationship among multiple devices. A hypergraph,
as a promotion of a graph, is a power tool that can model the
relationship among any number of IoT devices.

We denote an hypergraph at time step t by Ht = (Xt, Dt),
where Xt = {xt

1, x
t
2, · · · , xt

n} represents the vertex set and
Dt = {dt1, dt2, · · · , dtm} the hyperedge set. To represent the
hypergraph and operate the hyperedge, the definitions of
incidence matrix and weak deletion of hyperedge are given.

Incidence matrix Ht: It is a matrix with m rows and n
columns, where rows represent hyperedges, columns represent

vertices, and the elements in Ht are taken as follows

(xt
i, d

t
j) =

{
0, xt

i /∈ dtj ,
1, xt

i ∈ dtj ,
(4)

where (xt
i, d

t
j) = 1 represents that vertex xt

i is in the range of
hyperedge dtj at time step t.

Weak deletion of a hyperedge: the weak deletion of a
hyperedge dtj from hypergraph Ht = (Xt, Dt) at time step
t makes the hypergraph H ′t = (X ′t, D′t), where D′t =
Dt\{dtj}. That is, just removing the hyperedge dtj will not
affect the rest of the hypergraph, i.e., incidence matrix Ht

just removes the j-th row. For any subset St of Dt, the
Ht\St represents the hypergraph built by weakly deleting the
hyperedges of St from Ht.

Based on the relationship between vertices and hyperedges,
the method of establishing hyperedge is as follows: we build
the hyperedge centered on the receiver and each hyperedge
contains many covered transmitters. In addition, the receiver,
around which the hyperedge is constructed, falls within the
communication range of all transmitters belonging to the same
hyperedge.

According to the method of establishing hyperedge, Fig. 2
is modeled to the initial hypergraph model, as shown in Fig.
3, where hyperedges are built centered on

{
DRt

1, . . . ,DRt
5

}
.

Based on the meaning of incidence matrix Ht, Fig. 3 can be
represented by the matrix Ht as shown in (5).

Ht =



DTt
1 DTt

2 DTt
3 DTt

4 DTt
5 DTt

6 DTt
7 DTt

8 DTt
9 DTt

10 DTt
11 DTt

12 DTt
13

dt
I1

1 1 0 1 1 0 0 0 0 0 0 0 0

dt
I2

0 1 1 1 0 1 1 1 0 0 0 0 0

dt
I3

0 0 1 0 0 0 0 1 1 1 1 0 0

dt
I4

0 0 0 1 1 0 0 0 0 0 1 1 1

dt
I5

1 0 0 1 1 0 0 0 0 0 0 0 0

,
(5)

where columns and rows of matrix Ht denotes the vertices
and hyperedges, respectively. dtIj represents the hyperedge
established with jth DR as the center.
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Fig. 3. Initial hypergraph interference model.
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Fig. 4. Simplified hypergraph interference model.

Due to the different communication ranges of devices, in
the initial hypergraph model, one hyperedge contains another
hyperedge, which is a sub-hyperedge. Therefore, the initial
hypergraph can be simplified by deleting sub-hyperedges,
which does not change the relationship between vertices. The
sub-hyperedge can be judged by the intersection of the rows.
For example: in (5),

dtI1 = [1 1 0 1 1 0 0 0 0 0 0 0 0 0],

dtI5 = [1 0 0 1 1 0 0 0 0 0 0 0 0 0],

dtI1 ∩ dtI5 = dtI5 ,

(6)

(5) and (6) show that hyperedge dtI5 is a sub-hyperedge of dtI1
at time step t. Therefore, by deleting the rows representing
the sub-hyperedge, (5) is simplified to (7), i.e., Fig. 3 can be
simplified to Fig. 4 through weak deletion of a hyperedge.

For the hypergraph as shown in Fig. 4, the incidence matrix

of the simplified hypergraph model can be formulated as

Ht
s =


DTt

1 DTt
2 DTt

3 DTt
4 DTt

5 DTt
6 DTt

7 DTt
8 DTt

9 DTt
10 DTt

11 DTt
12 DTt

13

dt
I1

1 1 1 1 1 1 0 0 0 0 0 0 0

dt
I2

0 0 0 0 1 1 1 1 1 1 0 0 0

dt
I3

0 0 0 0 0 0 0 0 1 1 1 1 1

dt
I4

0 0 0 1 1 0 0 0 0 0 0 0 1

.
(7)

Due to the spectrum resource not being duplicated in the
same hyperedge for the resource management problem, it is
the same as with the nature of the vertices coloring problem in
the hypergraph. Hence, this resource management problem of
the 6G-enabled mIoT can be transformed into a vertex coloring
problem.

For measuring interference among DTs, we propose an
interference degree matrix Φt based on the simplified hyper-
graph incidence matrix Ht

s at time step t to quantify the overall
interference degree of mIoT, which can be defined as

Φt = log
(
max

(
Ht

sC
t, 1

))
, (8)

where Ct is resource allocation matrix. log (·) denotes that all
elements of the matrix are performed the log operation, e.g.,

log

([
5 3
2 1

])
=

[
log 5 log 3
log 2 0

]
. (9)

max (·, 1) denotes that the maximum value is obtained by
comparing each primitive of the matrix with 1, e.g.,

max

([
5 3
2 0

]
, 1

)
=

[
5 3
2 1

]
. (10)

In the network interference degree matrix Φt ∈ {Id,c}|EH|×Ct

,
where Id,c > 0 denotes that DTs belong to the d-th hyperedge
is allocated the c-th RB leading to interference and Id,c ≤ 0
otherwise. Hence, the overall network interference degree can
be calculated by the following formulation:

φt =
∥∥Φt

∥∥
1
, (11)

where φt = 0 denotes that there is no interference in the mIoT
and φt ̸= 0 otherwise.

C. Problem Formulation

This paper aims to optimize spectrum resource manage-
ment to increase the network throughput of the entire 6G-
enabled mIoT. The presented problem is framed based on the
assumption that the transmission power of IoT devices remains
constant, as stated below.

max
ctn̂,k

Rt (12a)

s.t.φt = 0, (12b)

Rt
n ≥ Rmin

n ,∀n ∈ NDR, (12c)∑
n̂

ctn̂,k ≤ N̂ ,∀k ∈ K, (12d)∑
k

ctn̂,k ≤ 1,∀n̂ ∈ NDT , (12e)

ctn̂,k ∈ {0, 1} . (12f)

In this problem, constraint (12b) guarantees that there is
no overlapping interference in the entire 6G-enabled mIoT.
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Constraint (12c) guarantees the minimum transmission rate
requirement of DRs that receive the desired signal from DT.
Constraint (12d) states that at most N DTs with different
channels gain orthogonally reuse an RB. Constraint (12e)
indicates that each communication link can use at most one
RB. Constraint (12f) states that the DTs and RBs assignment
parameters can only be integer variables 0 or 1.

In this case, the 6G-enabled mIoT can gather extensive
state information. Then, it makes an all-encompassing resource
management decision on all IoT devices after taking into ac-
count the current state of the environment. Nevertheless, as the
network expands in size, the solution to the nonconvex prob-
lem derived from the hypergraph coloring problem becomes a
computationally challenging endeavor known as NP-hard [28].
Since there is an enormous number of resource allocation
results for massive devices, the resolution of this resource
management problem (12) is not mathematically simple and
requires significant computer resources. Consequently, the next
section will focus on the efficient RL-based solution.

III. REINFORCEMENT LEARNING BASED RESOURCE
MANAGEMENT

In this section, an MDP model for 6G-enabled mIoT is
specifically designed. The MDP model is employed to acquire
an effective solution of the formulated optimization prob-
lem (12). Then, we proposed two actor-critic based resource
management algorithms to solve the proposed MDP model
and then maximize network throughput for 6G-enabled mIoT
under large-scale overlapping interference scenarios. Finally,
the proposed algorithms’ complexity is analyzed.

A. MDP model

In this 6G-enabled mIoT environment, it is often for the
state transition probabilities and expected rewards of all states
are frequently unknown. Consequently, we deal with the spec-
trum resource management problem (12) in 6G-enabled mIoT
by employing an RL framework. This requires obtaining a
stochastic optimal policy by interacting with this environment.
The proposed MDP, designed specifically for the 6G-enabled
mIoT, consists of the following essential elements: state space,
action space, reward function, policy and value function.

1) State Space: The proposed MDP model setup involves
an RL agent that observes the 6G-enabled mIoT environment
in discrete time. As for the centralized scheme, the BBU pool
as an RL agent should know all information about whole IoT
devices, e.g., association state, transmit power and overlapping
interference.
(1) Ht: The incidence matrix of the hypergraph interference

model.
(2) φt: The interference degree of the entire 6G-enabled mIoT.
(3) Pt: The set of DTs’ transmission power.
(4) Ct−1: The resource allocation matrix.
(5) Rt: The network throughput of the entire 6G-enabled

mIoT.
Hence, in the 6G-enabled mIoT environment, the state st at
time step t can be formulated as

st =
{
Ht, φt,Pt,Ct−1, Rt

}
(13)

and the state space for the 6G-Enabled mIoT environment can
be formulated as S. The 6G-enabled mIoT environment is
assumed to transition from state st to next state st+1 by the
RL agent taking an action in the MDP model.

2) Action Space: In this 6G-Enabled mIoT environment,
the action space can be denoted as A. During resource
management of the 6G-enabled mIoT, the BBU pool as an RL
agent makes decisions for the communication request from IoT
devices. Hence, the performed action is a resource allocation
matrix defined as at ∈ {0, 1}N̂×K at time step t, which can
be expressed as

at =


ct
1̂,1

· · · ct
N̂,1

...
. . .

...
ct
1̂,K

· · · ct
N̂,K

 . (14)

In addition, the sum of all elements in a matrix column does
not exceed the DTs’ number N̂ to meet the constraint (12d).
The sum of all elements in a resource allocation matrix row
does not exceed 1 to meet the constraint (12e).

3) Reward Function: The design of the reward function is
crucial for resource management with avoidance interference
as it influences the convergence performance and network per-
formance of learning algorithms. The reward function would
be used to evaluate the value of the state space and action
space. As mentioned in Section II-C, the network throughput,
as the agent’s optimal goal, will be maximized in the learning
process. Moreover, for this proposed MDP model, the design
of the reward function must satisfy constraints (12b) and (12c)
to improve the network throughput of the entire 6G-enabled
mIoT. Hence, at time step t, the reward function rt includes
the network throughput Rt and the overlapping interference
penalty, which can be defined as

rt =

{
Rt, if (12b) and (12c) are satisfied,
− φt, otherwise.

(15)

Moreover, by utilizing the proposed MDP model as its
foundation, the RL algorithm can efficiently address sequential
decision problems of resource management, which involve
selecting the maximum cumulative reward through a series
of states. The cumulative discounted reward, denoted as
Gt =

∑T−t
τ=0 λ

τrt+τ , is computed by summing the rewards
rt+τ multiplied by the discount factor λτ for each time step τ
from 0 to T − t, where T represents the total number of time
steps. The reward discount factor, denoted by λ ∈ [0, 1], quan-
tifies the impact of future rewards on their present value [29].
This hyperparameter of the RL algorithm can be modified.

4) Policy: In the proposed MDP model, the policy refers
to a probability for selection actions that aim to optimize
long-term performance. To thoroughly explore the complete
set of possible actions, the proposed MDP model adopts a
stochastic policy π (at| st) = Pr (at| st). The probability of
executing an action at in state st is represented by this policy
π (at| st) [29]. Therefore, the process of choosing an action
can be formulated as

at ∼ π ( ·| st) . (16)
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The above formula represents the action at obtained by
sampling based on all actions’ probability distribution in the
state st.

5) Value Function: The MDP model under consideration
classifies the value functions into two distinct categories: the
state-value function, denoted as V (st), and the action-value
function, also known as the Q-value, denoted as Q (st, at).
V (st) represents the value for the current state st from an
expectation perspective under policy π, and can be represented
as

V (st) = Eat∼π( ·|st)

[
T−t∑
τ=0

λτrt+τ

∣∣∣∣∣ st
]
, (17)

where E [·] denotes the expectation operation. The action-
value function Q (st, at) estimates the expected cumulative
discounted rewards over time when commencing in the current
state st and taking action at while the action selection follows
the policy π. The action-value function Q (st, at) is formulated
as

Q (st, at) = Eat∼π( ·|st)

[
T−t∑
τ=0

λτrt+τ

∣∣∣∣∣ st, at
]
, (18)

where V (st) = Eat∼π( ·|st) [Q (st, at)]. Considering the
Markov property, the action-value function through the
Bellman equation can be rewritten as [30]

Q (st, at) = Eat∼π( ·|st)

[
rt + λγ

∑
a∈A

π (a| st+1)Q (st+1, a)

]
.

(19)

B. Actor-Critic Based Resource Management Method

In this paper, we propose two actor-critic based resource
management algorithms to solve the above MDP model for
6G-enabled mIoT under large-scale overlapping interference
scenarios.

1) Advantage Actor-Critic based Resource Management
Algorithm: Fig. 5 shows the proposed A2C-based resource
management framework. Its critic network can provide a value
function to evaluate resource allocation results generated by
the actor network. We use a parameterized function of θ to
express the actor network, where θ is the stochastic policy’s
parameters πθ (at| st). The parameter of action-value function
Qw (st, at) is denoted by the function parameterized function
w, which defines the critic network. To enhance the accuracy
of the action-value function, the critic network is used to
estimate the long-term reward for the state-action pair. In
the proposed A2C-based resource management algorithm, the
parameter update of the critic network is defined as

w ← w − ηc∇wJQ (w) , (20)

where ηc is the critic network’s learning rate. With the ex-
perience replay mechanism, the critic network’s loss function
JQ (w) can be defined as [31]

JQ (w) = EB[yt −Qw (st, at)]
2, (21)

where yt is the target value, which can be expressed as [32]

yt = rt + γ
∑
a∈A

πθ (a| st+1)Qw (st+1, a). (22)

B is a experience replay buffer. The experience replay mecha-
nism allows the RL agent to update the parameters of the critic
network in an efficient manner. To accomplish this manner, the
agent can make use of a random mini-batch sampling from B,
represented as {st, at, rt, st+1} ∼ B. A discrepancy between
the estimated value Qw (st, at) and target value yt is known to
be the temporal-difference error. Updating the critic network’s
parameters can be accomplished by taking the average value
of a mini-batch of size I that is sampled from the experience
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replay buffer B. Hence, the loss function’s gradient ∇wJQ (w)
is expressed by

∇wJQ (w) =
1

I

I∑
i=1

∇w

(
Qw

(
sit, a

i
t

)) [
yit −Qw

(
sit, a

i
t

)]
,

(23)
where index i referring to the i-th sample.

In the proposed algorithm, the actor part is used to take
charge of policy evaluation. The actor part implements the
policy gradient method to generate the parameterized pol-
icy. The actor–critic method’s goal is to obtain the optimal
policy of action for maximizing the expectation function
Jπ (θ) = Eτ∼πθ

[r (τ)], or long-term reward from the stand-
point of expectations, where r (τ) =

∑T
t=0 λ

trt represents
the cumulative discount reward with restricted step. τ is the
sampling trajectory. Hence, the update of the actor network’s
parameters θ can be defined as

θ ← θ − ηa∇Jπ (θ) , (24)

where ηa is an actor network’s learning rate. For the actor
network, the specific derivation of the policy gradient can be
expressed as

∇θJπ (θ) = Eτ∼πθ

[
T∑

t=0

∇θ (log πθ (at| st))Aw (st, at)

]
,

(25)
where Aw (st, at) denotes the advantage function. The ad-
vantage function Aw (st, at) can significantly decrease the
variance and boost the accuracy of the function approximation
in the critic when utilized in the gradient calculation. The
advantage function Aw (st, at) can be defined as

Aw (st, at) = Qw (st, at)−
∑
a∈A

πθ (a| st)Qw (st, a). (26)

By using the experience replay buffer B, combining (25) and
(26), the gradient of actor network’s parameters ∇θJπ (θ) can
be approximated as

∇θJπ (θ) =
1

I

I∑
i=1

[
∇θ log πθ

(
ait
∣∣ sit)Aω

(
sit, a

i
t

)]
. (27)

The proposed A2C-based resource management algorithm
utilizes two distinct deep neural networks, each with unique
parameters, to depict the actor-critic networks. Concurrently,
we update the parameters of both the actor network and critic
network sequentially and simultaneously. The proposed A2C-
based resource management algorithm, outlined in Algorithm
1, is formed by the combination of the actor network and critic
network. Moreover, actor-critic methods in effectively learn-
ing parameterized stochastic policies and exhibiting favorable
convergence properties have been confirmed in [33].

2) Asynchronous Advantage Actor-Critic based Resource
Management Algorithm: To enhance network performance
and minimize the learning process time, we propose the
A3C-based resource management algorithm. The proposed
A3C-based resource management algorithm employs an asyn-
chronous multi-threaded architecture for improving system
management performance. This A3C-based resource manage-
ment algorithm is composed of a global actor-critic network

Algorithm 1 A2C-based resource management algorithm.
Initialization:

The variables of the environment,
experience replay buffer B,
actor network’s parameters θ,
critic network’s parameters w;

for episode = 1 to Emax do
Reset the 6G-enabled mIoT environment’s state s0;
for time = 1 to T do

Agent executes the action at according to πθ ( ·| st);
Calculate the reward rt and obtain next state st+1;
Put the tuple {st, at, rt, st+1} into replay buffer B;
Random sample a subset of I tuples from B;
Network parameters updating:
θ ← θ − ηa∇θJπ (θ),
w ← w − ηc∇wJQ (w);

end for
end for
return The parameters of actor-critic networks θ and w.

and multiple workers as shown in Fig. 6. Each worker has
its own local actor-critic networks, enabling them to interact
independently with the environment. The parameters of the
global actor-critic networks are shared between all thread-
specific workers that are able to select an action depending on
the current state in order to get a reward and progress to the
next state of the environment. With the asynchronous multi-
threaded architecture, the A3C-based resource management
algorithm can train the actor network and critic network
reliably.

Subsequently, the global actor-critic network parameters are
updated using the accumulated gradient, which are expressed
as

θ ← θ − ηadθ, w ← w − ηcdw, (28)

where dθ is the global actor network’s accumulated gradient.
dw is the global critic network’s accumulated gradient. In
the A3C-based resource management algorithm, the critic
network’s accumulated gradient for each worker is given by

dw ← dw + (yt −Qw′ (st, at))∇w′Qw′ (st, at) , (29)

where w′ denotes the critic network’s parameters of the
thread-specific worker. Moreover, to deal with the challenge
represented by the actor-critic method in achieving a trade-
off between exploration and exploitation, we adopt taking
advantage of the entropy function H (πθ′ (si)) to motivate
exploration during training while avoiding premature conver-
gence. In the A3C-based resource management framework, the
actor network’s parameter update for each worker is given by

dθ ← dθ+∇θ′ log πθ′ (at| st)Aw′ (st, at)+δ∇θ′H (πθ′ (st)) ,
(30)

where θ′ represents the actor network’s parameters of the
specific worker. δ denotes the intensity of the entropy regular-
ization, which can adjust the trade-off between exploration and
exploitation [34]. The proposed A3C-based resource manage-
ment algorithm for the resource management of a 6G-enabled
mIoT is presented in Algorithm 2, which is a centralized
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framework and observations made for the entire 6G-enabled
mIoT.

Algorithm 2 A3C-based resource management algorithm.
Initialization:

The variables of the environment,
the parameters of thread-specific networks θ′ and w′,
the parameters of global actor-critic networks θ and w;

for episode = 1 to Emax do
for each thread-specific worker parallel do

Initialize the accumulated gradients dw and dθ;
Synchronize the parameters of worker’s networks;
Obtain the current environment state st;
for t =1 to T do

Execute action at getting from πθ′ ( ·| st);
Calculate the reward rt and obtain state st+1;

end for
if st is not terminal state then

r =
∑

a∈A πθ′ (a| st)Qw′ (st, a);
else

r = 0;
end if
for i ∈ {t− 1, t− 2, · · · , 1} do

Obtain accumulate gradient for θ′ with (30);
Obtain accumulate gradient for w′ with (29);

end for
Asynchronous update the parameters w and θ;
episode← episode + 1;

end for
end for
return Global networks’ parameters θ and w.

C. Complexity Analysis

Under the assumption that the actor network and critic net-
work individually consist of Na and Nc full connected layers.

In each episode, the neural networks’ computational complex-
ity is formulated as O

(∑Na−1
i=0 Li

aL
i+1
a +

∑Nc−1
j=0 Lj

cL
j+1
c

)
[35], where Lj

c and Li
a indicate the total amount of

neurons at layer j in the critic network and the total
amount of neurons at layer i in the actor network, respec-
tively. Hence, the Algorithm 1 complexity can be formu-
lated by O

(
EmaxT

(∑Na−1
n=0 Ln

aL
n+1
a +

∑Nc−1
n=0 Ln

cL
n+1
c

))
,

where Emax is the number of episode as training steps.
T denotes the total number of times in each episode. In
addition, the Algorithm 2 complexity can be formulated
by O

(
EmaxT

(∑Na−1
n=0 Ln

aL
n+1
a +

∑Nc−1
n=0 Ln

cL
n+1
c

)/
Nu

)
[36], where Nu is the thread-specific workers’ number in this
algorithm.

IV. SIMULATIONS RESULTS

In this section, all simulation experiments were executed
using Python 3.9.13, Pytorch 2.0.1, and NetworkX 3.2 im-
plemented on a Dell Server with two Nvidia GeForce RTX
3080Ti GPUs, an Intel® Xeon® Gold 6242R CPU and 64GB
memory. In our simulations, we assume that each IoT device
experiences independent Rayleigh fast fading, and the noise
variance on each user is the same. We consider the pathloss
model as the model in 3GPP TR 38.901 UMi scenario [26].
The simulation results are presented to validate the network
performance of the 6G-enabled mIoT. The performance of the
proposed two algorithms (labeled as the proposed-A3C-based-
algorithm and proposed-A2C-based-algorithm) is compared
with two other algorithms, i.e., the proximal policy opti-
mization (PPO)-based resource management algorithm [37]
(labeled as the PPO-based-algorithm) and random-based re-
source management algorithm (labeled as the random-based-
algorithm). Furthermore, the simulations contain various other
parameters, which are outlined in Table II.

A. Convergence performance
Fig. 7 displays the summary statistics of the cumulative re-

wards achieved by the proposed-A2C-based-algorithm at four
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TABLE II
SIMULATION PARAMETERS [17]

Parameters Values
Total number of time 10
Transmission power 23 dBm
Time duration 1 s
Antenna height 1.5 m
Number of RBs 40
Antenna gain 3 dBi
RB bandwidth 1 MHz
Receiver noise figure 9 dB
Noise power spectral density −174 dBm/Hz
Pathloss model UMi scenario pathloss model
Discount factor 0.98
Fast fading Rayleigh fading
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Fig. 7. Convergence of the proposed-A2C-based-algorithm under different
learning rates.

different learning rates. The experiment was conducted with
a total of 500 IoT devices and a communication range radius
of 200 m. From this figure, we can see that the cumulative
reward is improving as the number of episodes increases when
the agent learns the 6G-enabled mIoT environment. When
the critic learning rate is fixed as 4e−4, increasing the actor
learning rate can speed up the convergence of the proposed-
A2C-based-algorithm to a certain extent, but the system hardly
continues to explore higher cumulative reward. As shown in
Fig. 7, the convergence performance of the proposed-A2C-
based-algorithm is fastest when its actor learning rate is 8e−5.
It converges when the needed number of episodes is less
than 500, but its convergence result value is less than the
result of the actor learning rate being 4e−5. And when the
learning rate is 1e−5, it cannot converge at the end of the
entire training process. In addition, when the actor learning
rate is fixed as 4e−4, increasing the critic learning rate as
8e−4 does not make it faster convergence, and the obtained
convergence results are reduced. Hence, the proposed-A2C-
based-algorithm’s convergence performance is demonstrated
and has a higher reward when actor learning rate ηa = 4e−5

and critic learning rate ηc = 4e−4.
In Fig. 8, it shows the cumulative reward of different

algorithms as the number of episodes increases where the
number of IoT devices is 500 and the radius of the IoT
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Fig. 8. Convergence performance under different algorithms.

devices’ communication range is 200 m. We set the learn-
ing rates of the PPO-based-algorithm, proposed-A2C-based-
algorithm and proposed-A3C-based-algorithm to be the same,
i.e., their actor learning rate ηa = 4e−5 and critic learning rate
ηc = 4e−4 according to the result of Fig. 8. Since the random-
based-algorithm cannot learn from the environment, it cannot
increase the cumulative reward as the number of episodes
increases. Compared with the PPO-based-algorithm, since the
proposed two algorithms adopt a stochastic policy mechanism
to sample action, they can explore higher reward results and
converge faster in Fig. 8. In addition, the proposed-A3C-based-
algorithm adopts an asynchronous multi-threaded architecture
that can explore more reward results through multiple workers
and the parallel architecture can speed up the convergence
speed than the proposed-A2C-based-algorithm.

B. Network performance

To demonstrate the advantages of the proposed two algo-
rithms, Fig. 9 compares the network throughput of the 6G-
enabled mIoT system employing various algorithms, where the
x-axis indicates the five different numbers of IoT devices and
the radius of IoT devices’ communication range is 200 m. As
shown in Fig. 9, the network throughput of the random-based
algorithm, PPO-based algorithm, and the proposed two algo-
rithms increases as the number of IoT devices increases Since
the presence of overlapping areas in the 6G-enabled mIoT,
the random-based algorithm can not avoid the overlapping
interference generating and then results in reduced network
throughput. The PPO-based-algorithm can effectively manage
resources for the entire 6G-enabled mIoT, which reduces
the overlapping interference when the spectrum resources
are limited and then can enhance the network throughput.
When the interference increases due to the increased num-
ber of IoT devices, the network performance of the PPO-
based-algorithm is gradually better than that of the random-
based-algorithm. Through the incentive feedback mechanism
based on the hypergraph interference model deployed in the
RL, the network throughput of the proposed two algorithms
can be maximized. The proposed-A2C-based-algorithm and
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Fig. 10. Spectral efficiency under different numbers of IoT devices.

proposed-A2C-based-algorithm can allocate RBs dynamically
according to the environment of the 6G-enabled mIoT, whereas
the proposed-A3C-based-algorithm has the highest network
throughput of more than 1000 Mbps when the numbers of
IoT devices is 500.

Fig. 10 illustrates the relation between the spectral efficiency
and the number of IoT devices where the radius of IoT
devices’ communication range is 200 m. Results indicate that
with the increase in the number of IoT devices, the spectral
efficiency of all algorithms is reducing. Due to the large-scale
overlapping area among IoT devices’ communication range
and the overlapping interference caused by massive devices in
the random-based-algorithm, the spectral efficiency is lower
than that of other algorithms. The PPO-based-algorithm has
more effective resource management due to its learning ability,
and so the spectral efficiency of the PPO-based-algorithm
is higher than the random-based-algorithm. Compared with
the PPO-based-algorithm, the proposed-A2C-based-algorithm
and proposed-A3C-based-algorithm can dynamically manage
spectrum resources under limited resources in the 6G-enabled
mIoT, due to their used randomness policy which can explore
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Fig. 11. Network throughput under different communication ranges.
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higher spectral efficiency. In addition, the proposed-A3C-
based-algorithm adopting the asynchronous multi-threaded ar-
chitecture can further explore more resource allocation strate-
gies to obtain higher spectral efficiency than the proposed-
A2C-based-algorithm. Compared with the other algorithms,
when the number of IoT devices is 200, the spectral efficiency
of the proposed-A3C-based-algorithm is achieved by close to
5.0 bit/s/Hz.

As shown in Fig. 11, the x-axis indicates five different
radius of IoT devices’ communication range to the IoT device
in a 6G-enabled mIoT where the number of IoT devices is
500. In Fig. 11, an increase in the radius of IoT devices’
communication range leads to an overall reduction in network
throughput for both the random-based algorithm and PPO-
based algorithm. This is because a gradual expansion in the
communication range will further lead to an increase in the
overlapping area and cause more serious large-scale over-
lapping interference for the 6G-enabled mIoT. The random-
based algorithm is ineffective in managing the growth in
overlapping interference, leading to a progressive drop in net-
work throughput. As a result, its performance has consistently
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been poorer than other algorithms. Compared with the PPO-
based-algorithm, the two proposed algorithms can effectively
avoid the occurrence of overlapping interference and ensure
stable network throughput of the system due to adopting a
hypergraph interference model. As the communication range
expands, the network throughput of the two proposed algo-
rithms is always higher than the PPO-based-algorithm.

Fig. 12 illustrates the radius of IoT devices’ communication
range versus the spectral efficiency where the number of IoT
devices is 500. As the communication range expands, the
spectral efficiency of the random-based-algorithm and PPO-
based-algorithm are on a downward trend. From this figure,
due to PPO-based-algorithm learning the 6G-enabled mIoT
environment, we can see that the spectral efficiency of the
PPO-based-algorithm and the proposed algorithms are im-
proving more than the random-based-algorithm. By adopting
the stochastic policy mechanism, the proposed algorithms’
spectral efficiency can obtain the resource allocation result
with higher spectral efficiency. Compared with the PPO-
based-algorithm, the proposed algorithms can overcome the
impact of overlapping interference caused by the expanded
communication range by adopting a hypergraph interference
model to design a reward function, which more effectively
avoids the occurrence of overlapping interference. Further-
more, compared with the proposed-A2C-based-algorithm, the
proposed-A3C-based-algorithm can further explore more re-
source allocation results by using multiple workers due to
asynchronous multi-threaded architecture and then obtain the
resource allocation result with higher spectral efficiency.

V. CONCLUSION

In this paper, we designed the novel hypergraph interference
model and proposed RL-based resource management algo-
rithms to solve the resource management problem of the 6G-
enabled mIoT under the large-scale overlapping interference
scenario. Considering the characteristics of overlapping inter-
ference, the relationship between overlapping coverage area
and overlapping interference is analyzed, and the interfer-
ence degree of the entire network is calculated through the
hypergraph interference model. Then, to solve the problem,
we build an MDP model based on a hypergraph interference
model for the 6G-enabled mIoT. Finally, we propose the
A2C-based resource management algorithm and A3C-based
resource management algorithm to solve the MDP model,
where the A3C-based resource management algorithm uses an
asynchronous multi-threaded architecture to improve learning
speed and obtain higher network performance. Simulation
results verify the correctness of theoretical results and show
that our proposed algorithms outperform other algorithms. The
work of this paper provides a reference for the study of the
resource management problem with large-scale overlapping
interference.
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