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Abstract—With recent advents of industrial Internet of Things
(IIoT), the connectivity and data collection capabilities of indus-
trial equipment have be significantly enhanced, yet bringing new
challenges for the remaining useful life (RUL) prediction. To
fulfill the RUL predicting demand in multivariate time series,
this work proposes an encoder-decoder model termed as dual-
scale transformer model (DSFormer), built upon the Transformer
architecture. First, in the encoder part, a dual-attention module is
designed for the weight feature extraction from both dimensions
of the sensor and time series, aiming to compensate for the diverse
impacts of different sensors on the prediction. Next, a temporal
convolutional network (TCN) module is introduced to capture
sequence features and alleviate the loss of positional information
incurred by stacking blocks. Then, the feature decomposition
module is integrated into the decoder for trend feature extraction
from sequences, providing the model with additional sequence
information. Finally, compared to existing models, the proposed
method can obtain the superior performance in terms of the
root mean square error (RMSE) and Score metrics on the
FD001, FD002 and FD003 subsets of the C-MAPSS dataset,
with an average improvement of 3.2% and 2.5% respectively.
In particular, the ablation experiment further validates the
effectiveness of proposed modules in handling multivariate time
series and extracting features.

Index Terms—Industrial Internet of Things (IIoT), multi-
sensor data, remaining useful life (RUL), attention mechanism,
Transformer.
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INDUSTRIAL Internet of Things (IIoTs) and digital twins
(DTs) have emerged as two significant driving forces

leading the industrial revolution [1], [2]. IIoTs enable the intel-
ligent manufacturing, intellectual management, and production
optimization in the factory, by connecting sensors, devices,
and production lines to the Internet, and thereby facilitating
the real-time data collection and exchange [3]–[6]. Besides,
the DT, as the crucial component of the IIoT, utilizes digital
technologies and data models to connect physical entities
with their virtual counterparts, promoting the instantaneous
monitoring, simulation and prediction on physical entities.
Thus, the production efficiency, cost reduction and product
quality are further improved. In particular, DTs have been
extensively applied in various fields [7]–[10]. In the urban
planning, by establishing a digital model of the city, DTs
can simulate urban traffic flow, energy consumption and envi-
ronmental pollution, contributing to the optimization of urban
infrastructure layout and resource allocation [11]. Further, in
the agriculture, crop growth environments and requirements
can be simulated, rendering wiser decisions [12]. Besides, by
leveraging DTs in the industrial manufacturing sector, one
can promote the monitoring and optimization of production
line operations, the prediction of maintenance needs, the
improvement of equipment utilization, and the reduction of
failure rates [13], [14].

The remaining useful life (RUL) prediction becomes at-
tractive in the predictive maintenance (PDM) field [7] when
DTs are brought into the IIoT and manufacturing, ensuring
the reliability and safety of systems during the production
[15]. The RUL prediction approaches could be categorized
into model-based as well as data-driven ones [16], [17]. First,
in the former, the physical degradation pattern is designed
built on equipment failure mechanisms; the obscure failure
of complicated equipment, nevertheless, render the model-
based ones challenging [18], [19]. Second, as monitoring
technologies rapidly evolve, a large amount of operational
data can be obtained from the electromechanical equipment,
making the data-driven RUL prediction more promising [17].
Particularly in the industrial big data domain, machine learning
as well deep learning-based methods are rapidly advancing.
More precisely, in the data-driven RUL prediction, results are
obtained through the data preprocessing and model training.
Preprocessing typically involves the data normalization, noise
filtering, and feature extraction, while traditional learning
methods for the RUL prediction usually involve separate fea-
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ture extraction and model training steps. For instance, Loutas
et al. in [20] combined Bayesian analysis with support vector
regression to predict the RUL of rolling bearings, while Liu
et al. in [21] used extreme learning machine in the crystal
oscillator, both of which heavily rely on the manual feature
engineering and the expertise.

To enable the automatic feature learning and model train-
ing, deep learning has been employed using an end-to-end
approach for the automatic valuable feature extraction, lead-
ing to better predictive performance in the RUL domain.
Convolutional neural networks (CNNs) as well as recurrent
neural networks (RNNs) have been extensively utilized to
capture spatial and temporal correlations. For instance, Babu
et al. in [22] used deep CNNs for adaptive feature learning
on each sensor’s time series. Various improved RNN-based
models, e.g., gated recurrent unit (GRU) and long short-term
memory (LSTM), are also broadly utilized. Zheng et al. in [23]
validated the capability of LSTM on the RUL prediction with
three datasets, Wang et al. in [24] designed a bidirectional
LSTM (BiLSTM) method to analyze the health information
from two temporal directions, and Behera et al. [25] proposed
a bidirectional GRU for the RUL prediction.

Yet, for long time series, CNN requires larger convolutional
kernels to get the greater receptive field [26], [27], resulting
in a weaker ability to capture long-term dependencies. In
addition, RNN-based methods might unavoidably drop impor-
tant message due to the feature extraction through recurrent
processing units [28]. Particularly in the RUL prediction, tradi-
tional methods typically assume that all input data contributes
equally to the output without differentiating ones containing
more degradation information [29], [30]. Thus, existing works
in either CNN or RNN are typically with the low training
efficiency and accuracy in practical industrial applications.

Built on the self-attention mechanism, Transformer has been
broadly utilized for processing the sequence, prevailing in
the natural language processing and other sequence modeling
tasks [31]–[33]. Different from CNN or RNN methods in
[29], [30], Transformer can focus on features with the greater
impact on prediction results and capture long-term correlations
between different moments in time series, thereby enhancing
the RUL prediction performance [34], [35]. Nevertheless,
using Transformer for the RUL prediction still poses some
challenges: 1) Transformer-based time series prediction mod-
els only use self-attention to focus on time step weights,
neglecting the sensor weight information present in the RUL
prediction. 2) Transformer lacks a network structure that is
sensitive to the positional information in the sequence. Al-
though introducing positional encoding layers can embed the
positional information, it gradually diminishes as the encoder-
decoder blocks are stacked [36]. Moreover, Transformer-based
approach still lags behind time serial feature extractors like
RNNs [37]. Thus, while Transformer has shown promising
results in various sequence modeling tasks, its direct appli-
cation to the RUL prediction still requires addressing the
aforementioned two issues to fully leverage its potential.

Further, with the real-time monitoring and data sharing
enabled by IIoT technologies, the RUL prediction can enhance
the production efficiency, production quality, and equipment

reliability. Motivated by the possible advantage of Trans-
former, we propose a dual-scale Transformer model, named as
DSFormer, to address the limitations of existing methods in
capturing time series information and long-term dependencies
between moments in the RUL prediction in IIoTs. The main
contributions are list as follows:

• A dual-scale attention module that simultaneously ex-
tracts weight features from both dimensions of sensor
and time series is designed, which replaces the multi-
head self-attention module in the Transformer encoder to
better capture the importance of different sensors.

• In the encoder, a temporal convolutional network (TCN)
module is introduced to capture positional relationships in
time series, enabling the learning of more local informa-
tion and slowing down the loss of positional information
between multiple encoder blocks.

• In the decoder, a feature decomposition module is de-
signed to extract more abstract representations, by inte-
grating the decomposed features of time series with those
automatically learned by the model.

By integrating these improvements, DSFormer aims to
enhance the RUL prediction by effectively handling sensor
weights, capturing spatial relationships and utilizing feature
decomposition, and thereby achieving the smart resilience in
the IIoT.

The rest is organized as follows. Section II reviews the prin-
ciples of Transformer model. Section III provides the structure
of proposed model and principles behind each module. Section
IV presents the comparison and ablation experiments on public
datasets with analyses. Lastly, the work is concluded in Section
V.

II. PRELIMINARIES

As one sequence modeling another one, Transformer does
not rely on traditional RNN/CNN structures for the feature
extraction, but fully utilizes the attention mechanism and
feed-forward neural networks. Different from the RNN weak
in processing long sequences, Transformer can efficiently
capture long-term correlations between entries in sequences,
demonstrating its superior performance in the natural language
processing and time series prediction.

A. Positional Encoding

Like most models analyzing the sequence data, Transformer
first uses the input embedding layer to map the dimensions
of input vectors to the predefined model dimension dmodel,
enabling the subsequent feature extraction. Besides, since
Transformer does not include sequential structures like RNNs
and relies solely on attention mechanisms to analyze sequence
data, it is unable to capture the temporal information of
sequence. Therefore, apart from the input embedding layer, the
positional encoder is typically appended to offer the relative
positional information of sequences, using both sine and cosine
functions at different frequencies as follows:

pt (2i) = sin

(
t

100002i/dmodel

)
, (1)
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and

pt (2i + 1) = cos

(
t

100002i/dmodel

)
, (2)

where t is the position of entry in the sequence, and 2i and
2i+1 are the odd and even numbered dimension, respectively.
For any distance l , there exists a linear dependency between
pt and pt+l, which enables the model to learn the positional
information of sequence.

B. Attention Mechanism

After obtaining outputs from input and positional embed-
ding layers, Transformer feeds them into stacked encoder and
decoder blocks for feature extraction. Each block respectively
consists of a multi-head attention mechanism followed by one
feed-forward network.

First, given an initial vector X ∈ RN×dmodel with the
sequence length as N , the following operations are performed
through multiplying X by different weight matrices WQ ∈
Rdmodel×dmodel , WK ∈ Rdmodel×dmodel and WV ∈ Rdmodel×dmodel to
obtain three matrices, i.e., query, key and value, as follows:

Q = XWQ, (3)

K = XWK , (4)

and

V = XWV , (5)

where Q ∈ RN×dmodel , K ∈ RN×dmodel and V ∈ RN×dmodel

hold. Therefore, we have the following as

Attention (Q,K,V) = Softmax
(

QKT

√
dmodel

)
V, (6)

in which the Softmax function processes the dot product of
Q and K to obtain the weight matrix by rows, and dmodel is
used to scale the dot product results to prevent the gradient
vanishing.

Then, the multi-head attention is achieved by employing
multiple self-attention mechanisms to learn multiple sub-
matrices, enabling the model to attend various aspects of
information, formulated as

MultiheadAtt (Q,K,V)

= Concat (head1, · · · , headh, · · · headH )Wo,
(7)

and

headh = Attentionh (Q,K,V) . (8)

That is, the input data X concurrently enters all attention heads
to obtain overall H weighted feature matrices headh , 1 ≤
h ≤ H . Next, these H attention heads are concatenated and
multiplied by matrix Wo for a linear transformation to yield
the final attention mechanism output.

III. METHODOLOGY

First, we introduce the RUL predicting model DSFormer
built on the Transformer architecture, as illustrated in Fig. 1.
The upper and lower parts of Fig. 1 represent the encoder
and decoder blocks, respectively, composed of attention mod-
ules and feed-forward neural networks. By stacking multiple
blocks, the encoder and decoder structures are realized, built
on the Transformer.

In particular, the dual-scale attention module is used to
replace the multi-head self-attention module in the traditional
Transformer encoder, thereby capturing weighted feature ma-
trices from both dimensions of sensor and time series. Ad-
ditionally, the model is equipped with a TCN module and a
feature decomposition module to provide additional sequential
features, such as trend terms, enabling better capturing of tem-
poral patterns in the sequence. The model’s training procedure
can be summarized as below:

1) Input encoder: Feature extraction is performed sepa-
rately through the dual-scale attention module and the
TCN module.

2) Fusion of different features: The weighted features from
both sensor and time step dimensions, along with the
positional features of the sequence, are fused to obtain
a new feature matrix containing features from different
dimensions.

3) Input decoder: The new feature matrix is fed into the
decoder, allowing both attentions to the current feature
information and that from the encoder. Lastly, the RUL
prediction is carried out through a feed-forward neural
network, which incorporates the decomposed sequential
features.

A. Designing of Dual-Scale Attention Module

Device RUL values primarily hinge on the signal from mul-
tiple sensors scattering among different time series. To fully
leverage both sensor and temporal information, and analyze
the different device degradation patterns contained in various
data, we present the dual-scale attention module integrating
both sensor and time series information, as illustrated in Fig.
2.

Specifically, the module performs weighted attention from
both dimensions of the sensor and time series to obtain the
output matrices Ft and Fs . Subsequently, the information
from both aspects is fused to obtain a new feature matrix,
defined as

Fd = Concat (Fs ,Ft)W (9)

where Concat (·) represents the concatenation operation, and
W is the trainable parameterized matrix, respectively. More
precisely, the dual-scale module is completely based on at-
tention mechanisms to handle the long-term dependency in-
formation, and employs a parallel strategy to prevent mutual
interference between the two weighted modules. Note that,
the dual-scale attention over both dimensions can help the
model to better understand and utilize the relationship between
sensors and time series, and improves the ability to model the
evolution of device states.
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Fig. 1. The architecture of proposed dual-scale Transformer for RUL prediction. For clarity, only one encoder and one decoder, rather than blocks, are
presented herein.

Parallel input

Time series 

weights

Sensor 

weights

Feature 

fusion

Sensor dimension

Time dimension

Feature matrix

Input 

Fig. 2. Dual-scale attention module. Both the temporal and sensor information
are fused to build the feature matrix.

Afterwards, regarding the time series attention module and
compared to time-domain analysis, running various neural
network structures in the frequency domain not only reduces
the impact of noise on results, but also provides stronger
representational capabilities. Particularly in the Transformer
model, its further development is constrained by high com-
putational complexity. However, most signals exhibit sparsity
in the frequency domain. By sampling fewer frequency do-
main information, it is possible to minimize the length of
analyzed sequence, thus reducing the model’s computational
complexity. Herein, the Fourier transform works to map the
time series as frequency spectrum for analysis. Both Fig. 3
and Fig. 4 illustrate the attention mechanism of time series
attention module.

In Fig. 3, F and F -1 separately denote the Fourier and
its inverse transform. When an input sequence {st}Nt=1 is
predefined, the discrete Fourier transform becomes as Sm =∑N−1

t=0 ste
−jwmt, in which j2 = −1 and {Sm}Mm=1 is the

complex frequency domain series. Likewise, its inverse trans-
form can be defined as st =

∑M−1
m=0 Smejwmt . Since the

model performs random sampling in the frequency domain,
subsequent calculations require padding to ensure that the

t1 t2 t3 · · ·   tN t1 t2 t3 · · ·  tN

K

V

QQ

KK

VV

T
QKQK

T
QKQ

Fig. 3. Frequency attention mechanism. Q, K and V are Fourier transformed
into and then sampled as Q̃, K̃ and Ṽ. Then, the frequency-domain attention
mechanism is used on Q̃, K̃ and Ṽ, by incorporating the padding operation.
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Fig. 4. Multi-head attention mechanism in the frequency domain. By
concatenating the outputs from multiple heads and multiplying them by a
weight matrix for linear transformation, the final output is obtained.

dimensions of output sequence remain consistent with the
input sequence. For the input matrix X ∈ RN×dmodel of the
module, we first apply the attention mechanism to obtain
Q ∈ RN×Dmodel , K ∈ RN×Dmodel and V ∈ RN×Dmodel . Next, the
Fourier is used to transform Q, K and V into Q̄, K̄ and V̄.
Finally, M frequency domain points are selected (M ≪ N ), to
reduce the computational complexity. Zhou et al. in [38] have
also shown that discarding some high-frequency information
in the frequency domain has minimal impact on the model’s
performance when extracting time series features. Therefore,
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Fig. 5. Scaled dot-product self-attention mechanism in the sensor dimension,
which emphasizes more on sensor features with higher weights.

the Q, K, and V are transformed into Q̃ ∈ CM×Dmodel ,
K̃ ∈ CM×Dmodel and Ṽ ∈ CM×Dmodel , defined as follows:

Q̃ = Select
(
K̄
)
= Select (F(Q)) , (10)

K̃ = Select
(
V̄
)
= Select (F(K)) , (11)

and
Ṽ = Select

(
Q̄
)
= Select (F(V)) , (12)

where Select (·) represents the random sampling in the fre-
quency domain. The frequency-domain attention mechanism
is written using Q̃, K̃ and Ṽ as follows:

Attentionfreq (Q,K,V) = F−1
(

Padding(Softmax(Q̃K̃T)Ṽ)
)
,

(13)
where Padding (·) represents the padding operation. To ensure
the consistency between dimensions of the input and output, it
is obligatory to perform Padding (·) before the inverse Fourier
transform, extending it to CN×dmodel .

Besides, as shown in Fig. 4 to learn multiple feature sub-
matrices, similar to the Transformer in Section II, we use
the multi-head attention mechanism to integrate H frequency
domain attentions. By concatenating the outputs from these
H heads and multiplying them by a weight matrix for linear
transformation, we obtain the final output of the time series
attention module. Next, for the sensor one, the multi-head
self-attention mechanism [26] is employed to analyze the
significance among diverse sensors in the sensor dimension.
Therefore, during the training, there is no need for manual
intervention, as the model automatically focuses on sensor
features with higher weights. The self-attention mechanism
is depicted in Fig. 5.

Finally, from (3), (4) and (5), Qs, Ks and Vs are obtained
based on the sensor dimension for the input data. More
precisely, the self-attention mechanism is used to weight them,
i.e.,

Attentionsensor (Qs,Ks,Vs) = Softmax
(

QsK
T
s√

dmodel

)
Vs.

(14)
Likewise, the multi-head attention mechanism is proposed
in the sensor attention module, allowing the model to learn
information from different positions and representation spaces.
As such, the final output of the sensor attention module can
be expressed as

MultiheadAttsensor (Qs,Ks,Vs) = Concat
(
{headh}Hh=1

)
Ws,

(15)
where Ws is the parameterized matrix.

Output layer

Dilation=8

Hidden layer

Dilation=4

Hidden layer

Dilation=2

Hidden layer

Dilation=1

Input data

Fig. 6. An illustration of dilated convolution with three hidden layers. The
dilation rates of hidden layers are 1, 2, and 4, respectively.

B. Designing of Encoder-Decoder

To improve the performance of Transformer in extracting
positional features and sequence patterns, feature extraction
structures are designed in both the encoder and decoder. On
one hand, the positional features are extracted using the TCN
module in the encoder, operating in parallel with the dual-scale
attention module and mitigating the vanishing of positional in-
formation between encoder blocks. Note that, during stacking
of blocks, the original positional encoding maybe insufficient
to capture the long-range dependencies of the entire sequence,
as each block only focuses on information within a specific
range. To overcome the positional information loss, the TCN
is introduced to capture long-term dependencies in sequences.
On the other hand, the sequence patterns are extracted using
the feature decomposition module in the decoder, in which the
trending term indicates the changes in the sequence, while the
residual term serves as the input for next module.

First, the encoder primarily includes one input embedding
layer, one positional encoding layer, one TCN module, one
dual-scale attention module, and one feed-forward neural
network layer. The first two layers, i.e., input embedding and
positional encoding layers remain consistent with the original
Transformer. However, to address the limitation of positional
encoding layer in capturing positional information, the encoder
in parallel utilizes the TCN module and the dual-scale attention
module as a new feature extraction structure. On one hand,
the TCN module provides additional sequence positional in-
formation to the model, thereby mitigating the vanishing of
positional information between multiple encoder blocks. On
the other hand, the parallel usage of both feature extraction
modules also enriches the sequence features available to the
model.

Compared to the widely used RNN models, Bai et al. in
[39] introduced the TCN model in 2018 to address issues
like gradient vanishing and the inability to perform parallel
computation in RNNs. Particularly for time series data, TCN
considers the causal relationship in sequences, adapting it to
capture positional dependencies over time. Besides, due to
the presence of convolutional operations, TCN can learn more
local information from the data. As shown in Fig. 6, the causal
convolution and dilated convolution structures are illustrated.
In the causal convolution, the data collected at moment t in
the focused layer hinges only on the data from previous layer
at time t and before, represented as

yn+1
t = f (xn

1 , x
n
2 , · · · , xn

t ) , t = 1, 2, · · · ,T , (16)
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Raw data

Trend

Residual

Fig. 7. An illustration of trend feature decomposition. The left sub-figure
shows the raw data and its associated trend term, and the right sub-figure
represents the residual term.

in which n, T and f (·) are the layer index, time window
length and convolution operation, separately. Unlike traditional
convolutions, dilated convolutions increase their receptive field
through the dilation factor. The model’s receptive field be-
comes wider, as the network depth increases. Note that, the
input data consists of multiple sensor time series data. Thus,
the TCN module uses one-dimensional convolution kernels to
process the data from each sensor separately. After the outputs
from the TCN module and the dual-scale attention module are
fused, they are passed through the feed-forward network for
the ultimate outcome.

Then, it is designed that the decoder is composed of four
layers, i.e., an input embedding layer, a multi-head self-
attention module, a feature decomposition module, and a feed-
forward neural network. Unlike the original Transformer, an
additional feature decomposition module is introduced herein.
By combining the dis-aggregated features from time series
with the ones learned by the model, a more abstract represen-
tation of features can be obtained. It has been demonstrated
in [40] that incorporating these additional features in various
time series prediction models can better reflect the original
data and effectively improve the model’s performance. Fig. 7
illustrates the feature decomposition for the original data.

In particular, to extract the trend term, it is common to use a
fixed window for average pooling. However, in the presence of
complicated periodic patterns in real data, this method faces
difficulties. It is intuitive that a smaller window length can
be more sensitive to details and abrupt features in time series.
Thus, we next adopt a set of filters with varying sizes to extract
multiple trend terms and then combine them into the final trend
using data correlation weights, i.e.,

F (X) = Concat
(
{AvgPoold(Paddingd(X))}dmodel

d=1

)
, (17)

and
Xtrend = Softmax (L(X))F (X) , (18)

in which AvgPoold(·) denotes the average pooling operation
along the d-th sensor dimension, and F (·) refers to an internal
block containing dmodel average pooling filters. Padding is
used to make the sequence’s length stay the same during
the process, Xtrend represents the extracted trend components,
L (·) stands for the fully connected layer, and Softmax (L(X))
represents the weights used to blend the outputs of multiple
filters. Meanwhile, the residual term is obtained as

Xresidual = X−Xtrend, (19)

where Xresidual continues to serve as the input for subsequent
modules.

TABLE I
STATISTICS FOR DATASETS

Dataset FD001 FD002 FD003 FD004
Training engines 100 260 100 249
Testing engines 100 259 100 248

Operating conditions 1 6 1 6
Fault modes 1 6 2 2

Training set size 20631 53759 24720 61249
Test set size 100 259 100 248

Finally, the workflow of decoder is partitioned into the
following four procedures:

1) Masked multi-head self-attention module. It ensures that
the model’s predicted results at a given moment only
depend on the data before it. In other words, the RUL
prediction at moment t is conditioned only on the data
from moments 1, 2, · · · , t−1. This is because that in the
sequence-to-sequence task, the model needs to generate
outputs sequentially and gradually, and therefore should
not rely on the future information. Thus, masking en-
sures that the model follows the causality in both training
and prediction, thereby improving the model’s ability to
generalize sequences.

2) Feature decomposition module. Inspired by [41], the
original sequence is divided into the trend term and
the residual term. After the division, the residual term
continues to be fed into the next module for learning,
while the trend term participates in the subsequent fusion
process.

3) Encoder-decoder multi-head attention module. It re-
ceives the output from the encoder as V and K, and the
residual term from the feature decomposition module as
Q, to perform multi-head attention computation.

4) Feature fusion. After passing through the feature decom-
position module and the feed-forward neural network
again, the output is fused with the trend term feature.
The final RUL prediction is then obtained through a
flatten layer followed by a fully connected layer.

Note that, when training, we optimize the predicted RUL
value {r̂t}Nt=1 with the ground truth {rt}Nt=1 by minimizing
the mean square error (MSE) loss function as

Loss =
1

N

N∑
t=1

(r̂t − rt)
2
. (20)

IV. EXPERIMENT COMPARISON AND ANALYSIS

A. Experimental Environment and Parameters

1) Dataset: Experiments are carried out on the extensively
utilized RUL prediction dataset C-MAPSS [42], which is
actually derived from the system-level engine simulation to
simulate normal and fault events over time series of flights. In
particular, the data set consists of four subsets, as exhibited in
Table I. To evaluate the engines’ performance worsening and
damage spreading under certain flight conditions and failure
modes, FD001-FD004 subsets take effect. Due to the more
complicated operational model in FD002 and FD004, it is
more tough to evaluate them than FD001 and FD003.
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In FD001, there are 21 time series data collected from 21
sensors. However, it is observed that sensors 1, 5, 6, 10, 16, 18
and 19 have constant data throughout the monitoring process
and hardly encapsulate any valuable information to predict
the RUL. Therefore, the residual 14 sensors (namely, sensors
excluding 1, 5, 6, 10, 16, 18 and 19) are selected for prediction.
The visualization of sensor data is shown in Fig. 8.

Fig. 8. Multivariate time series data of sensors from FD001. 21 time series,
each of which is collected by one sensor, are plotted to shown the fluctuation.

Considering the practical application, the initial degradation
process of engine can be neglected. Therefore, the initial RUL
of the engine will remain constant until a certain moment
when a failure occurs, and then the engine’s performance
starts to gradually decline. Following [43], the initial RUL is
constrained between 120 and 130, thus setting as 125 herein.
After the fault happens, the linear diminishing occurs for the
RUL value.

2) Evaluation Metrics: Score and root mean square error
(RMSE) are taken as verification metrics. Lower RMSE and
Score values indicate higher prediction accuracy of neural
networks. First, the root mean square of differences between
label and evaluated values is defined as RMSE as follows:

RMSE =

√√√√ 1

N

N∑
t=1

(r̂t − rt)
2 (21)

where rt and r̂t respectively represent the label and evaluated
values of samples, the number of which is N . RMSE can
quantify the accuracy of the model in numerical prediction
and reflect the average error of the model over the entire time
series. Second, Score is a scoring function used by Heimes et
al. in [44], defined as

Score =


N∑
t=1

[exp(−(r̂t − tt)/13)− 1] , rt > r̂t ,

N∑
t=1

[exp((r̂t − rt)/10)− 1] , rt ≤ r̂t .
(22)

Score focuses more on the consistency of model’s prediction,
rather than simply on the overall fit of values. Predictions that
exceed the true RUL will result in higher score values, mainly
due to the optimistic estimation of RUL.

3) Parameter Settings: The dual-scale attention module
consists of 8 frequency domain attention heads for time-step
weighting and 4 self-attention heads for sensor weighting.
The encoder comprises 2 identical sub-layers, each containing
a parallel dual-scale attention module and a TCN module,
followed by a fully connected ReLU activating layer. Further,
the decoder includes 1 sub-layer with 2 multi-head self-
attention modules, 2 feature decomposition modules and 1
fully connected ReLU activating layer. The final output is
generated through 1 fully connected layer, 1 flatten layer
and 1 output layer. Other hyperparameters used include the
batch size as 32, the step size as 0.0001, the dropout rate as
0.05, and dmodel as 128, respectively. Grid search is conducted
for hyperparameter tuning, but no significant differences are
observed among different parameter combinations.

4) Experimental Environment: Experiments are conducted
on a system running a 64-bit Windows 10 22H2 operating
system with Python 3.9 and PyTorch 1.11.0, and the hardware
setup contains an AMD Ryzen 5 3600 6-Core Processor, an
NVIDIA GeForce GTX 1650 graphics card, and a RAM of
16GB.

B. Analysis of Impact of Sliding Window Length on Prediction
Results

The varying operational situations and modes in four differ-
ent datasets would affect the correlation between time series
length and its associated RUL values. Therefore, for each
operational situation of the equipment, the sliding window
length is set as Tw to get the best prediction results. Models
are tested under conditions with different values of Tw ∈
{20, 30, 40, 50, 60, 70} on all four datasets, with evaluation
metrics presented in Fig. 9. The analysis shows that differ-
ent values of window length would influence the prediction
considerably.

More precisely, the best scores are achieved with Tw = 40
in the FD003 and FD001 datasets, while the best scores are
reached with Tw = 60 in the FD004 and FD002 datasets.
This is because that the latter two have more complicated
operational situations, and longer input sequences can provide
the model with more device degradation information, thereby
improving the prediction performance.

C. Comparison and Analysis of Evaluation Metrics Results

As described in Subsection IV-A, our proposed DSFormer
model is compared with other benchmark models on all four
datasets of C-MAPSS. Both Tables II and III display the
experimental effects of various approaches on all four datasets.

The benchmark models are categorized into three groups:
1) models based on RNN/CNN: LSTM [23], BiLSTM [24],
DCNN [43], ELSTMNN [45]; 2) models that integrate
RNN/CNN with attention mechanisms: Chen et al. [40],
AGCNN [50], DATCN [48], DACNN [48], DARNN [49],
BiGRU-AS [46], Deep&Attention [47]; 3) models based on
the Transformer: DAST [51], DSFormer. In both tables, bold
numbers represent the best results achieved on each associated
dataset, underlined numbers indicate the second best results,
“/” denotes missing results, and “*” signifies the best results
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(a) RMSE versus the window length

(b) Score versus window length

Fig. 9. Evaluation metrics versus the window length. Different values of
window length affect the prediction accuracy.

TABLE II
RMSE RESULTS

Metrics RMSE
Dataset FD001 FD002 FD003 FD004

LSTM+Attention (2020) [40] 14.53 / / 27.08
ELSTMNN (2021) [45] 18.22 / 23.21 /
BiGRU-AS (2021) [46] 13.68 20.81 15.53 27.31

Deep&Attention (2021) [47] 12.98 17.04 11.88 19.54
DCNN (2018) [43] 12.61 22.36 12.64 23.31
LSTM (2017) [23] 16.14 24.49 16.18 28.17

BiLSTM (2018) [24] 13.65 23.18 13.74 24.86
DACNN (2020) [48] 12.01 17.21 11.95 18.24
DATCN (2020) [48] 11.78* 16.95* 11.56 18.23
DARNN (2021) [49] 12.04 19.24 10.18* 18.02*
AGCNN (2020) [50] 12.42 19.43 13.39 21.50
DAST (2022) [51] 11.43 15.25 11.32 18.36

DSFormer (proposed) 10.77 14.82 10.12 18.17
Vanilla 17.92 17.86 27.48 26.56

among the second category of models. Besides, the vanilla
Transformer version is also listed, by incorporating only the
encoder blocks and waiving decoder ones. More precisely, for
the vanilla Transformer, the embedding size of feed-forward
network is 128, with two encoder blocks and batchsize of 64.
Due to the different values of dataset dimension, the head
number for FD001 to FD004 is set as 16, 23, 18 and 23,
respectively. Following conclusion are drawn as

1) Proposed DSFormer model gets the best performance in
both metrics on the FD001, FD002 and FD003 datasets,
but not on FD004, in which it performs second best,

TABLE III
SCORE RESULTS

Metrics Score_
Dataset FD001 FD002 FD003 FD004

LSTM+Attention (2020) [40] 322.44 / / 5649.14
ELSTMNN (2021) [45] 571 / 839 /
BiGRU-AS (2021) [46] 284 2454 428 4708

Deep&Attention (2021) [47] 282 1386 222* 2472
DCNN (2018) [43] 273.7 10412 284.1 12466
LSTM (2017) [23] 338 4450 852 5550

BiLSTM (2018) [24] 295 4130 317 5430
DACNN (2020) [48] 238.51 1621.50 316.65 2253.51*
DATCN (2020) [48] 229.48 1842.38 257.11 2317.32
DARNN (2021) [49] 261.95 933.58* 247.85 2587.44
AGCNN (2020) [50] 225.51* 1492 227.09 3392
DAST (2022) [51] 203.15 924.96 154.92 1490.72

DSFormer (proposed) 199.82 916.72 147.38 1570.20
Vanilla 406.71 112.84 4595.14 7316.10

trailing only behind DARNN and DAST. Compared to
existing models, DSFormer shows an average perfor-
mance improvement of 3.2% and 2.5% in RMSE and
Score metrics, respectively, on the first three datasets.
This demonstrates that DSFormer effectively adapts to
RUL prediction tasks under different conditions, by
attending information weights and extracting more se-
quence features.

2) Among various models, those incorporating attention
mechanisms perform better in both metrics compared
to the models based solely on RNN/CNN. It suggests
that by applying attention mechanisms to focus on key
features in multivariate time series, additional weighted
information is provided, thus improving the prediction
performance of baseline models. Furthermore, the mod-
els involving both RNN/CNN and attention mechanisms
can be categorized into two groups: (1) those considering
both sensor and time series weights, including DATCN,
AGCNN, DACNN and DARNN, and (2) those only
considering time series weights, such as BiGRU-AS,
and Deep&Attention. It is evident that except for the
Score metric on FD003, models marked with “*” in the
tables belong to the former group, which indicates that
considering the contribution levels of variables across
multiple dimensions can improve the model’s overall
performance. It is worth noting that DARNN achieves
its weighted attention by employing the widely used
channel attention mechanism in convolutional networks,
focusing on different channels in the feature maps rather
than directly weighting sensors. Although it outperforms
other models in some metrics, its overall performance is
less stable, which might be attributed to the information
loss caused by global average pooling operations.

3) Transformer-based models outperform most models
combining RNN/CNN with attention mechanisms, at-
tributed to the fact that in traditional models involving at-
tention mechanisms, the time series are fed sequentially
into attention blocks and RNN/CNN blocks, incurring
interference between the extracted feature information
and hindering further improvement in model accuracy.
Meanwhile, the Transformer-based models performs
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best on the Score, compared to traditional models. It
indicates that when dealing with long time series, the
Transformer model, which fully utilizes attention mod-
ules to seize the long-range correlation in time series,
can achieve superior prediction performance compared
to RNN/CNN structures.

4) In the FD004 dataset, DSFormer does not perform as
well as DAST (in Score) and DARNN (in RMSE).
We must note that there are 6 operating conditions
and 2 failure modes in FD002 and FD004, which are
more complicated and thus more difficult to predict than
FD001 and FD003. From Tables II and III, in FD001,
FD002 and FD003, DSFormer always performs best in
both metrics. Meanwhile, in the Score, DSFormer is
close to DAST and far better than DARNN (and other
baselines); and in the RMSE, DSFormer is close to
DARNN and far better than DAST (and other baselines).
It concludes that our proposed method still achieves
competitive results in the complicated operating condi-
tions.

5) DSFormer is far better than the vanilla version in both
metrices on all four datasets, since only the encoder but
without decoder blocks is built in the vanilla version.

D. Attention Weight Analysis

The dual-scale attention module is a key component, which
effectively combines the weights from both sensor and time
series dimensions through parallel learning. The experiments
above have demonstrated the performance improvement, and
weight analysis can help maintainer identify the most impor-
tant sensors and time moments, thereby improving the fault
detection. To demonstrate the model’s capability to train sensor
and time series weights, the attention weights are visualized
for a selected sliding window in the FD001 dataset, shown in
Fig. 10.

The sliding window contains 14 sensors and 40 time series
on monitoring data. Since the model’s training dimension is
set to be 560, Fig. 10(b), Fig. 10(c), and Fig. 10(d) identically
contain 560 data samples on the horizontal axis. Specifically,
both Fig. 10(b) and Fig. 10(c) display the weighted outputs for
different time series/sensors, showing significant differences in
distribution compared to the original inputs after weightings.
In particular, in Fig. 10(b), the initial stages of time series
includes key information and trends that would affect the
future data, and thus the model tends to focus more on these
initial stages to capture the essential features. By integrating
the weight information from both dimensions, Fig. 10(d)
illustrates the final output of the dual-scale attention module.
More especially, the proposed dual-scale module is dedicated
to assessing the significance of varying sensors and time
series, actively focusing on more crucial information, thereby
enhancing the prediction performance.

E. Prediction Results Comparison and Analysis

To provide a more intuitive comparison of prediction results
among different models, we further run BiLSTM, DAST and

DSFormer on the same engine data from four datasets, generat-
ing RUL prediction curves. BiLSTM is an RNN-based model,
while DAST and our proposed model are both Transformer-
based ones. The predicted results from three models are
exhibited in Fig. 11. Among both figures, the true RUL values
along the time dimension are selected as the prediction targets.
From the results, we can observe the following:

1) Compared to the BiLSTM model, both DAST and
DSFormer achieve results closer to the true RUL. In
the latter part of the plot, the Transformer-based models
show smaller prediction errors. This is because that after
the engine enters the degrading phase, the data encapsu-
lates more fault and degrading information; the Trans-
former model, which integrates sensor with time series
weights, can better capture these fault features. Besides,
in the FD002 dataset with more complicated operating
conditions and longer input sequences, Transformer-
based models also obtain better prediction results, fur-
ther demonstrating its advantage in capturing long-term
dependencies between moments.

2) From both Transformer-based models, we can see that
DSFormer outperforms DAST in terms of prediction
results. It is possible that although DAST also con-
siders both sensor and time series weights, stacking
the encoder-decoder blocks means that the deepened
network depth would drop the positional information.
Especially for the FD002 dataset with longer input
sequences, the larger prediction errors might occur. On
the other hand, DSFormer utilizes the TCN module to
learn implicit positional information and enables the
transmission of positional information between encoder
and decoder modules. Besides, the trend decomposition
can preferably seize the long-term correlation in the
sequence, thereby improving the prediction accuracy.

F. Ablation Experiments

To analyze the effectiveness of various modules in the
proposed DSFormer, ablation experiments are conducted. The
key modules of model include the dual-scale attention, the
TCN and the feature decomposition modules. For the dual-
scale attention module, separate investigations are done using
three different configurations: (1) replacing it with a self-
attention module, (2) using only the time series attention
module, and (3) using a serial combination of time series
attention and sensor attention modules. As such, 5 model
variants are generated as

1) without the TCN module (abbreviated as “w/o TCN”).
2) without the feature decomposition module (abbreviated

as “w/o Decomp.”).
3) using the self-attention module (referred to as “with

Self-Atten.”).
4) using only the time series attention module (abbreviated

as “with Only-Time”).
5) using a serial combination of time series attention and

sensor attention modules (abbreviated as “with Serial-
Attention”).
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(a) Sliding window visualization in FD001 (b) Output of time series weighting module

(c) Output of sensor weighting module (d) Output of dual-scale attention weighting module

Fig. 10. Attention weights visualization. The sliding window contains 14 sensors and 40 time series on monitoring data, and the model’s training dimension
is set to be 560.

TABLE IV
COMPARISON OF ABLATION EXPERIMENTS

Metrics RMSE_ Score_
w/o TCN 16.02 1645.25

w/o Decomp. 15.43 1276.22
with Self-Atten. 16.11 1697.90
with Only-Time 15.81 1523.76

with Serial-Attention 14.96 962.57
DSFormer (Proposed) 14.82 916.72

These model variants are evaluated on the FD002 dataset using
the aforementioned methods, and their respective evaluation
metrics are compared with the original DSFormer model.
Results are presented in Table IV, where bold numbers indicate
the best-performing variant.

Comparison on the FD002 dataset demonstrates that the
original DSFormer model performs best in both RMSE and
Score metrics. Particularly, for the dual-scale attention module,
using either a serial combination or individual weighted mod-
ules leads to a reduction in model performance, verifying the
effectiveness of three key modules (i.e., dual-scale attention,

TCN and feature decomposition) in the multivariate time series
prediction.

V. CONCLUSION AND FUTURE WORKS

The RUL enables IIoT enterprises to implement highly ef-
fective maintenance by accurately predicting industrial equip-
ment lifespan, thereby optimizing production and operational
efficiency, establishing a more robust interconnected system,
and enhancing the reliability and availability of IIoT systems.
To meet the demand for the RUL prediction on multivariate
time series, this work designs a novel encoder-decoder model
built on the Transformer architecture. First, the joint attention
between sensor and time steps was implemented to obtain
weights from both aspects. In particular, the TCN module,
parallel to the dual attention module and together forms the
encoder part, was introduced to capture position features,
avoiding the loss of location information incurred by the block
stacking. Second, a feature decomposition module was added
to the original Transformer structure to extract trend features
from the sequence, providing additional sequence information
for the model and forming the decoder part. Finally, by
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(a) Engine 24 prediction plot in FD001

(b) Engine 80 prediction plot in FD002

Fig. 11. Prediction plots in engine 24 and 80 on FD002. In the latter part of
plots, the Transformer-based models show smaller prediction errors.

comparing proposed model with other benchmarks and variant
models, experiments on the C-MAPSS dataset could verify
its validity. In the future, we will further consider the model
compression and model partitioning to lower the computing
resource demand by the Transformer, adapting it to deployed
in the edge.
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