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Abstract—Recently, deep learning-based intelligent vehicle
control systems have played an important role in real-time
road conditions assessment applications. It relies primarily on
unmanned aerial vehicles (UAVs) for specific target retrieval,
especially Cloth-Changing Person Re-identification (CC-ReID)
technology, to provide support for road observations and envi-
ronmental monitoring. Existing CC-ReID methods mainly focus
on the invariant features of the front and rear views that are
independent of clothing; among them, global color enhancement
is a commonly used strategy. However, this method usually
reduces the chromatism between the target foreground and
background, which can easily lead to the loss of features
unrelated to clothing and reduce the model’s performance. To
solve this problem, this paper proposes a data augmentation
framework with Local Invariant Feature Transformation and
Clothing Adversarial Parsing (LIFTCAP) for CC-ReID. The
proposed framework is equipped with a Local Invariant Feature
Transition (LIFT) module and a Clothes Adversarial Parsing
(CAP) module. The former aims to extract invariant features for
the same person with different clothes using the local transition
manners. CAP is devoted to finding adversarial associations
and parsing contour differences between clothing styles. Subse-
quently, a feature correlation strategy is alternately implemented
between the two modules to complete the optimization procedure.
Extensive experiments were conducted on the public CC-ReID
datasets (LTCC and PRCC), demonstrating the superiority of
our proposed method over the latest methods. Furthermore,
our method achieved competitive performance, particularly on
a surveillance video dataset (CCVID). In addition, based on
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the LIFTCAP strategy, the proposed algorithm can achieve a
time efficiency as low as O(n) for detecting specific targets
when deployed on a UAV server (Feisi X200) for real-time road
conditions assessment and monitoring applications.

Index Terms—Clothes Change, Person Re-identification, In-
telligent Vehicle Control, Invariant Feature, Data Enhancement,
Unmanned Aerial Vehicles.

I. INTRODUCTION

RECENTLY, connected and autonomous vehicles tech-
nology based on artificial intelligence (AI) and deep

learning has been widely applied in real-time road conditions
monitoring, where intelligent specific target detection system
equipped with the unmanned aerial vehicles (UAVs) has played
a major role [1], [2]. It primarily relies on retrieval technology,
particularly the support of Person Re-identification (ReID)
technology [3], [4]. Most traditional ReID studies assume that
people do not change clothes in a period of time [3], [5].
However, in the real process of target retrieval and criminal
investigation, it is normal for the target objects to change
clothes. The existing ReID methods face significant challenges
and cannot be applied. Therefore, it is necessary to consider
the Cloth-Changing Person Re-identification (CC-ReID) tech-
nology. Different from traditional ReID, the Cloth-Changing
Person Re-identification (CC-ReID) aims to judge the persons
who wear different clothes in varying time-frames, scenes, or
viewpoints belonging to the same identify or not, which fulfills
greater challenges and difficulty [6]. Because of the traits of
CC-ReID, it has been widely used in criminal investigation [4],
[7], target retrieval [3], [8], and complex scenario analysis
tasks [9], which have also attracted widespread attention in
recent years.

It is well known that people can recognize familiar friends
at a glance even if they are wearing clothes that have never
been seen before [6]. This is mainly because the person’s
brain can quickly extract features (parsing contour, grayscale,
etc.) unrelated to clothes on friends’ bodies and recognize
them quickly. Therefore, the extraction of invariant features
that are unrelated to clothing is currently the focus of CC-
ReID research. Existing CC-ReID methods typically attempt to
learn the contours [10], skeletons [11], 3D shape feature [12],
or the multi-modal information fusion for each individual
[13], [14]. Although these methods have achieved impressive
results, there is still room for further improvement, owing
to the unicity of invariant features and the complexity of
model construction. In addition, to increase the diversity of
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training data, data augmentation methods have been proposed
for CC-ReID [6]. These methods mainly focus on the invariant
features of the front and rear views that are independent of
clothing. Among them, global color enhancement methods
are commonly used strategies [6]. However, these methods
usually reduce the chromatism between the target foreground
and background, which can easily lead to the loss of features
unrelated to clothing (parsing contour, grayscale, etc.) and
reduce the performance of the model for ReID.

To solve this problem, we propose a data augmentation
framework with Local Invariant Feature Transformation and
Clothing Adversarial Parsing (LIFTCAP) for CC-ReID. The
proposed framework is equipped with a Local Invariant Fea-
ture Transition (LIFT) module and a Clothes Adversarial Pars-
ing (CAP) module. Specifically, to extract invariant attributes
for the same person with different clothes, the LIFT module is
used to perform the local transition manners (Random Regions
Erasing, Regions Color Changing. etc.) to obtain inherently
invariant features for the same. The robustness of the model
can be improved by incorporating the previous transition
manners. In addition, the CAP is devoted to finding adver-
sarial associations and parsing contour differences between
clothing styles, which attempts to search for the correlation
characteristics among different clothes. Subsequently, a feature
correlation strategy is alternately implemented between the
two modules to complete the optimization procedure.

Our proposed CC-ReID algorithm has a high rate of re-
trieving special targets, which could reach a time efficiency
as low as O(n). It can be applied to mobile devices for
environmentally sustainable monitoring, such as the unmanned
aerial vehicles (UAVs) server (Feisi X200) for real-time road
conditions assessment applications [9], [15]. In addition, our
LIFTCAP CC-ReID algorithm can be deployed in smart
city alarms and connected and autonomous vehicle systems
(http://www.autolabor.cn/pro/detail/4) for urban traffic safety
monitoring. Specifically, in terms of urban traffic management,
autonomous vehicle systems can help urban transportation
departments monitor road conditions in real-time, release road
condition information promptly, remind drivers to choose
suitable routes, and avoid congestion and traffic accidents.

Extensive experiments are conducted to evaluate the per-
formance of the proposed method. The results show that the
proposed method performs better than the existing invariant
features learning and multi-modal fusion methods. In addition,
the local random regions invariant feature learning and Clothes
Adversarial Parsing manner significantly improve the accuracy
of CC-ReID compared with the global color enhancement
operation on the LTCC [11], PRCC [12] and CCVID [16]
datasets, respectively.

The main contributions of this study are as follows:
• This study has proposed a Local Invariant Feature Trans-

formation and Clothing Adversarial Parsing (LIFTCAP)
framework, which includes a Local Invariant Feature
Transition (LIFT) module and a Clothes Adversarial
Parsing (CAP) module for the CC-ReID problem.

• The LIFT module is used to extract the inherent invariant
information to retain the features unrelated to clothing for
the same, and the CAP module is devoted to finding the

adversarial associations between clothing styles. The pro-
posed modules improve the robustness of the framework
and perform well in the CC-ReID task.

• This study also proposed a solution to deploy the CC-
ReID algorithms into practical road conditions assess-
ment applications, bridging the gap between theories and
practice, which is also suitable to the other common
vision tasks.

• Extensive experiments are conducted on the public CC-
ReID datasets (LTCC, PRCC, and CCVID), which are
used to show the competitive performance of the pro-
posed method. It also verifies that the local invariant fea-
ture exploration manner performs better than the global
color enhancement ones.

II. RELATED WORK

A. Cloth-Changing
ReID Methods As described above, the core of CC-ReID is

devoted to extracting features that are not related to clothing,
(such as face, gait, and appearance). In addition to providing
a new dataset, PRCC [12] extracted the contour sketch of
a person image for cross-clothes ReID to moderate clothing
change. LTCC [11] designed a method to extract the soft-
biometrics feature to eliminate clothing appearance features
that focused on body shape information. CCVID [16] proposed
a Clothes-based Adversarial Loss (CAL) to learn the irrelevant
feature for clothes from RGB images, which penalized the
discriminative power of ReID. In addition, AIM [17] was
proposed to alleviate clothing bias using a dual-branch model
to mine discriminative ID cues for CC-ReID.

B. Data Augmentation Methods
Recently, data augmentation-based techniques (such as ran-

dom cropping and flipping) have been employed to address the
CC-ReID issue. The random erase algorithm proposed by [18]
attempts to simulate the occlusion frequently encountered in
reality by randomly erasing a part of the image to solve the
occlusion problems for CC-ReID. Zheng et al. [6] utilized
generative adversarial networks to replace the clothes of one
person with those of other people to generate more diverse data
and improve the generalization ability of the model. Gong et
al. [19] proposed a local transformation attack (LTA) and the
joint adversarial defense (JAD) method to enhance the contour
or color information, which considered the local homomorphic
transformation for the CC-ReID problem. Jia et al. [20] rein-
forced person-unrelated feature learning by designing powerful
complementary data augmentation strategies that included both
positive and negative data augmentation schemes. CCAF [21]
attempted to expand the cloth-changing data via personal
features rather than the original images, which added the
diversity of clothes color and texture variations for feature
distribution.

C. UAVs-based for ReID Methods
With the development of UAV technology, person ReID

technology from its perspective has gradually become a popu-
lar research topic. Zhang et al. [22] proposed an airborne per-
son ReID dataset that covered real UAV surveillance scenarios.
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Fig. 1: The framework of the proposed LIFTCAP method with the LIFT module, CAP module, and for UAVs’ application.

They utilized subspace pooling of convolution operations for
person representation. Zhang et al. [23] utilized an edge-based
Federated Learning Framework for Person Re-identification
in UAV Delivery Service, which efficiently located target
receivers. Wang et al. [24] constructed a dataset for vehicle
re-identification (ReID) that distinguished a particular vehi-
cle from others from a UAV perspective. Dong et al. [25]
presented a method equipped with federated learning for per-
son re-identification using Blockchain-Integrated Smart UAV
Delivery Systems that analyzed the system’s resilience under
various security attacks.

Although existing CC-ReID methods have received exten-
sive research from scholars, our method focuses more on
the local Invariant Feature learning and Clothing Adversarial
Parsing strategy, which is more discriminative and effective
for CC-ReID performance.

III. THE PROPOSED METHOD

A. Local Invariant Feature Transition Module

To increase the diversity and chromatism intensity of the
background and foreground in real surveillance scenes, we
propose a Local Invariant Feature Transition (LIFT) module,
which enhances the generalization ability of the model to mine
features unrelated to clothing. Three strategies are executed
on the original RGB images, as shown in Fig. 1. First, a
random local color generation operation was used to increase
the diversity of different clothing colors. Then, the robust-
ness of the transition module is improved via random local
color erasing, which also improves the chromatism intensity
between the person and the background. Finally, the grayscale
image reconstruction operation ensured the integrity of the
original target. Next, each operation is discussed in detail.

Random Local Color Generation: To extract features un-
related to clothing, we need to adapt to as many different
appearances of clothes as possible. Therefore, a random local
color generation operation is performed on the entire batch
of images with a probability during model training. The
initialization of the Random Local Color Generation operation
is described by Eq. (1):

P 0
c = P, (1)

where P denotes the original image and P 0
c is the image

without any transformation. Setting the probability of random
color generation as Pro, and the remaining probability is
1 − Pro. Then, we set a certain probability for random
sampling. If the sampling result is less than Pro, no random
color generation operation is performed, and the original RGB
image is returned. Otherwise, the operation is performed. The
iterative optimization of Local Color Generation is defined by
Eq. (2) and (3).

Pn
c = ColorGeneration(P ), (2)

Pn+1
c = Ψε

P (P
n
c + α·sign(gradn+1)), (3)

where ColorGeneration(·) denotes the random color genera-
tion. The specific execution operation is expressed by Eq. (3).
Pn
c represents the random color generated in the n-th iteration.

Ψε
P is a random area selection operation that ensures that there

is no noticeable noise during random color generation and that
the noise is maintained within a certain range. α is a weight
parameter that balances the relative gradient and importance
of color generation. sign(·) is used to preserve the directional
information of the gradient, and gradn+1 is the gradient of the
loss function for the random color generation Pn

c parameter,
which shows the direction of the loss function changes for the
color transformation.
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Random Local Color Erasing: Color erasing is a data
augmentation technique, which randomly selects a rectangular
area in a person’s image and sets the pixel values of that area
to random values. In this study, we exploited a random local
color-erasing operation to improve the chromatism intensity
between the s and the background. This causes certain parts
of the image to be erased, thereby simulating occlusion or
damage. The purpose was to encourage the model to learn
more robust features, enabling it to better handle incomplete or
damaged images, thereby improving the generalization ability
and performance of the model. The specific implementation
process is shown in Eq. (4).

Ierased(x, y) = I(x, y) · mask(x, y), (4)

where x and y are the horizontal and vertical coordinates,
respectively, of the pixels in the image. I(x, y) denotes the
pixel value of the original image. Ierased(x, y) represents the
pixel value after the erasing operation, and mask(x, y) is a
binary operation of the same size as that of the original image,
where the pixel values in the erased area are set to 0 and the
other areas are set to 1. Its definition is given by Eq. (5).

mask(x, y) =

{
0 with probability r

1 otherwise
, (5)

where r denotes the probability of being erased. In ReID tasks,
this is usually set to 0.5 [18].

Grayscale Image Reconstruction: To eliminate color inter-
ference while preserving the integrity of the original target,
grayscale image reconstruction is a worthwhile choice. Firstly,
we set a weight pr, which means the probability of converting
the original color image into a grayscale image (pr is set
as 0.05 in this work). Then, the final reconstructed grayscale
image is composed of the original color image and the to-be-
converted grayscale image, which is combined with a certain
probability (pr). This strategy allows us to retain a series of
color features when reconstructing the grayscale image, rather
than choosing whether or not to perform a grayscale transfor-
mation completely at random. This procedure is described as
Eq. (6).

Po = (1− pr) · Pi + pr · Pgray, (6)

where Pi denotes the original color image. Pgray denotes the
to-be-converted grayscale image. Po denotes the reconstructed
grayscale image.

After the above three operations, using ResNet-50 [26] as
the backbone network, we obtained three types of features
(color generation, color erasing, and grayscale image features),
which are denoted as fcc, fer and fgi, respectively. Next,
we fuse these features to obtain a feature fcon that integrates
multiple local transition modalities via the linear combination
manner, which is shown in Eq. (7). The ID loss function was
used to train this process, as shown in Eq. (8) and Eq. (9).

fcon = fcc + fer + fgi, (7)

LID = − 1

N

M∑
i=1

N∑
j=1

yi,j log

(
es·di,j∑N
k=1 e

s·di,k

)
, (8)

di,j = cos(f i
con, f

j
con), (9)

where N is the batch size and M is the total person ID. i
and j represent the indices of the samples. yi,j is an indicator
function that takes the value 1 when the identities of samples
i and j are the same and 0 otherwise. di,j and di,k denote
the cosine similarity between samples i and j (k). s is an
adjustable scale parameter that controls the measurement range
of the feature distance.

B. Clothes Adversarial Parsing Module

Generally, although the styles of popular clothes that we
wear differ, their basic structure and contours remain some-
what similar. If these similar associations are found, identi-
fying cross-clothing associations would be very effective. In
this section, we propose a Clothes Adversarial Parsing (CAP)
module equipped with two branches to determine the adver-
sarial associations and parsing contour differences between
clothes styles. The first branch is used to extract clothing
features with FashionNet [27] from the original RGB image,
represented as fri. It can also be seen as an original person
feature in which clothes and s are integrated. Then, the person
image parsing feature is represented by fpi. Compared with
the fused feature fcon, it is another form of feature expression
for the same. Therefore, a new optimization loss called the
Adversarial Feature Error (AFE) loss Lfet is proposed to train
the procedure and is described by Eq. (10).

Lfet = λ ·Lfeat(fcon, fri)+ (1−λ) ·Lfeat(fcon, fpi), (10)

where Lfeat()̇ is the feature consistency loss for measuring
fcon and fri and is represented by Eq. (11). λ is a hyperpa-
rameter that controls the loss weights of the two components
and is set 0.5 [28].

Lfeat()̇ =
1

N

n∑
i=1

(f i
con − f i

ri)
2, (11)

where N is the batch size, f i
con and f i

ri represent the i-th fea-
ture sample from the fused and clothing features, respectively.

The second branch is used to obtain the corresponding
parsing feature from the person’s body, which also processes
the original RGB image more deeply. This step was used by
the person parsing network [29] to obtain the parsing contour
information for each person, which was fed into RestNet-
50 and predicted by the Clothes ID Classifier for person
classification. The entire process involves two loss functions,
Lclo and Lcla, inspired by [16] and represented by Eqs. (12)
and (13).

Lclo =

N∑
i=1

(fi · φyclo
i

− log

Nclo∑
j=1

efi·φj/τ

 , (12)

where N is the batch size, fi is the i-th feature, and φyclo
i

is
the parameter of the real clothing label. Nclo denotes the total
number of clothing categories. φj denotes the parameter vector
of the j-th clothing category. τ is a temperature parameter
that controls the degree of smoothing of clothing category
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Lcla = −
N∑
i=1

Nclo∑
clo=1

q(clo)(fi · φclo/τ − log(e(fi·φclo/τ) +
∑
j∈S−

i

e(fi·φclo/τ))), (13)

distribution. fi denotes the feature vector of the i-th individual.
φclo is the feature vector and clo is used to refer to the category
of clothing, which is indicated by the category of the first piece
of clothing, S+

i (S−
i ) is the set of clothing classes with the

same identity (different identities) as fi. K is the number of
classes in S+

i , and qclo is the weight function of the cross-
entropy loss, which adjusts the loss contribution according to
whether the classes belong to the set of clothing classes of
the same identity, that is, the positive classes with the same
clothes (clo = ycloi ) and the positive classes with different
clothes (clo ̸= ycloi and clo ∈ S+

i ), that is 1/K. This process
is described by Eq. (14).

q(clo) =


K−ϵ(K−1)

K clo = ycloi
ϵ
K clo ̸= ycloi and clo ∈ S+

i ,

0 clo ∈ S−
i

(14)

where ϵ is the balance weight to adjust the model’s sensitivity
to changes in clothing. In this setup, q(clo) is the loss function.

C. The Optimization and Loss Functions

An end-to-end optimization method is used to train the pro-
posed LIFTCAP framework with four types of loss functions.
Subsequently, the overall loss function L is expressed as Eq.
(15).

L = LID + Lfet + Lcla + Lclo, (15)

where LID, Lfet, Lcla,Lclo represent the person identity loss,
adversarial feature error (AFE) loss, clothes adversarial loss,
and clothes loss, respectively.

D. Discussion with Previous Methods

As mentioned in Section II, to excavate invariant features
unrelated to clothing, existing methods such as CCVID [16]
and FRGS [19] have also proposed related algorithms and
strategies to address this problem. However, there are essential
differences between our method for existing methods, which
are summarized as follows:

• Firstly, CCVID [16] learn the invariant features just with
the RGB modality for clothing change. It can be easily
influenced by the color difference between foreground
and background. In our work, we have extended and
adapted these methods, which obtain inherent invariant
features via the local transition manner for the same
person with different clothes.

• Secondly, FRGS [19] mainly exploited the local color
variation transformation attack and adversarial defense
methods for conventional ReID (Clothing remains un-
changed during a period). We have proposed the Adver-
sarial Feature Error (AFE) for CC-ReID.

• Thirdly, we do not just consider the clothes styles and
categories but try to mine the local invariant features and

their association. In addition, we also propose a solution
to deploy the CC-ReID algorithms into UAV applications,
bridging the gap between theories and practice, which is
also suitable to the other common vision tasks.

In summary, there are essential differences between the
proposed method and existing methods in terms of the problem
object, feature discovery, and optimization procedure.

IV. EXPERIMENTS AND RESULTS

A. Datasets and Evaluation Protocol

Datasets: The PRCC [12] dataset consists of 33,698 images
from 221 identities. Within the PRCC dataset, 17,896 images
of 150 people were designated as the train set, 5,002 images
of 150 s as the validation set, and 3,384 images of 71 persons
as the gallery set. LTCC [11] comprises two subsets: cloth-
change (91 individuals, 14,783 images) and cloth-consistent
(61 individuals, 2,336 images), with 77 identities contribut-
ing to the 9,576-image train set, 75 identities forming the
7,050-image test set, and another 75 identities comprising the
493-image query set. The CCVID [16] dataset contains 226
identities and 2,856 sequences. Among these, 75 identities
and 948 sequences were allocated to the train set and 151
identities were designated for testing. 1,074 sequences formed
the gallery set within the test set, whereas the remaining 834
sequences served as the query set.

Evaluation Protocol and Settings: Like traditional ReID,
the cumulative match curve (CMC) [30] and mean average
precision (mAP) [31] are used to measure the performance for
CC-ReID.To evaluate the model’s performance, the “Normal,
CC, and CU” denoted as the normal, cloth-changing, and
cloth-unchanging settings respectively.

B. Implementation Details

We selected the dual-card RTX 2080 Ti GPU with CUDA
11.1 for PRCC and LTCC datasets, and RTX A5000 GPU for
CCVID datasets, respectively. The programming environment
is based on Python 3.8.10, and it runs on the Ubuntu 18.04 op-
erating system. ResNet-50 was used as the backbone network,
which has been removed from its last down-sampling part to
better meet the needs of this study. During processing, the
input images were resized to 384×192. In the model training
stage, the batch size was set to 64, and each batch contained
8 samples and their corresponding 8 images. We chose the
Adam optimizer [32] to train the model for 60 epochs and
introduced Lcla after the 25th epoch to further optimize the
training process. The initial learning rate was set to 3.5×10−4

and was reduced to one-tenth of the original after every 20
epochs. Following the suggestion of Gu and Gong [16], [19],
the parameter τ was set to 1/16 in our method. In addition, we
stipulate that each input image has a probability of 0.2 (i.e.,
Pro = 0.2) for 2 and 3 specific operations. For the CCVID
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TABLE I: Comparison with state-of-the-art methods on LTCC dataset.

Methods Venue Normal CC
top-1 top-5 top-10 mAP top-1 top-5 top-10 mAP

RestNet-50 [26] CVPR′16 58.82 - - 25.98 20.08 - - 9.02
HACNN [32] CVPR′18 60.24 - - 26.71 21.59 - - 9.25
Face [33] CVPR′18 60.44 - - 25.42 22.10 - - 9.44
PCB [34] ECCV′18 65.11 - - 30.60 23.52 - - 10.03
MGN [35] MM′18 70.59 79.31 82.76 35.10 29.85 45.15 51.02 13.87
OSNet [36] ICCV′19 66.07 - - 31.18 23.43 - - 10.56
MuDeep [37] TPAMI′19 61.86 - - 27.52 23.53 - - 10.23
BOT [38] CVPR′19 72.21 81.74 83.60 34.75 28.82 44.64 52.30 12.67
CESD [11] TPAMI′20 71.39 - - 34.31 26.15 - - 12.40
FSAM [39] CVPR′21 73.20 - - 35.40 38.50 - - 16.20
GI-ReID [13] CVPR′22 73.59 - - 36.07 28.86 - - 14.19
Pos-Neg [20] ACM’22 75.66 83.57 86.41 37.00 36.22 50.77 56.12 14.43
Baseline [16] CVPR′22 73.40 82.60 85.40 39.20 38.00 51.80 56.60 17.10
AIM [17] CVPR′23 76.30 - - 41.10 40.60 - - 19.10
LIFTCAP Ours 74.60 81.30 84.60 39.70 37.00 53.10 58.40 17.90

dataset, each frame was resized to 256 × 128 pixels, batch
size was set to 32, and each batch contained 8 characters and
4 video clips. The model was also trained for 150 epochs using
the Adam optimizer, and Lcla was introduced after the 50th
epoch. The learning rate had an initial value of 3.5 × 10−4,
which was reduced to one-tenth of the original after every 40
epochs.

C. Comparison to the State-of-the-art Methods

The proposed method was compared with the latest algo-
rithms for solving the CC-ReID task. The mAP (%) and Top-1
accuracy of CMC (%) were evaluated over the three public
datasets mentioned previously. The obtained results are listed
in Tables I, II and III, respectively.

Results on LTCC dataset: In Table I, we summarize the per-
formance of the proposed LIFTCAP and that obtained by state-
of- the-art competitors on the LTCC dataset. Fourteen meth-
ods were included in the comparison benchmark: RestNet-
50 [26], HACNN [32], Face [33], PCB [34], MGN [35],
OSNet [36], MuDeep [37], BOT [38], CESD [11], FSAM [39],
GI-ReID [13], Pos-Neg [20], baseline [16], AIM [17]. Table I
shows that the proposed method achieved competitive results.

Results on PRCC dataset: We have compared our method
with the latest alternatives for the CC-ReID task on the
PRCC dataset. The results are show in Table II and the new
methods are included as: HACNN [32], PCB [34], IANet [40],
SPT+ASE [12], GI-ReID [13], RCSANet [41], FSAM [39],
baseline [16], DCR-ReID [42]. The results showed that the
proposed method exhibited a significant improvement relative
to the baseline. Although top-1 and mAP have similar perfor-
mances in the CU setting, there is a significant improvement
in the CC setting. Specifically, top-1 improved from 52.2% to
56.7% and mAP improved from 54.2% to 57.7% under the
CC setting.

TABLE II: Comparison with state-of-the-art methods on
PRCC dataset.

Methods Venue CU CC
top-1 mAP top-1 mAP

HACNN [32] CVPR′18 82.5 - 21.8 -
PCB [34] ECCV′18 99.8 97.0 41.8 38.7
IANet [40] CVPR′19 99.4 98.3 46.3 45.9
SPT+ASE [12] TPAMI′21 64.2 - 34.4 -
GI-ReID [13] CVPR′22 80.0 - 33.3 -
RCSANet [41] ICCV′21 100 97.2 50.2 48.6
FSAM [39] CVPR′21 98.8 - 54.5 -
Baseline [16] CVPR′22 100 99.7 52.2 54.2
DCR-ReID [42] TCSVT′23 100 99.7 57.2 57.4
LIFTCAP Ours 100 99.8 54.3 55.6

Results on CCVID dataset: The CCVID is a video dataset
and we have also listed some previous methods to compare
with our method. The results are listed in Table III. Eight meth-
ods were included in the comparison dataset: I3D [43], Non-
Local [44], GaitNet [45], GaitSet [10], AP3D [3], TCLNet [4],
baseline [16], and DCR-ReID [42]. As shown in Table III,
the proposed method outperformed the baseline in all metrics.
Specifically, under normal settings, our method achieved top-
1 and mAP of 86.3% and 84.1%, respectively, which were
3.3% higher than the baseline. Under the CC setting, the
baseline had top-1 and mAP of 82.6% and 79.6%, respectively,
whereas our method achieved 85.7% and 83%, respectively.
Our method exhibits a significant advantage over image
datasets. In addition, it surpassed the DCR-ReID method by
approximately 2% in each metric. These results indicate that
our method possesses high accuracy and stability in CC-ReID
tasks, suggesting a performance improvement over the baseline
method.

D. Ablation Studies

We conducted ablation experiments to verify the effec-
tiveness of the proposed method. Specifically, for the CC-
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TABLE III: Comparison with state-of-the-art methods on
CCVID dataset.

Methods Venue Normal CC
top-1 mAP top-1 mAP

I3D [43] CVPR′17 79.7 76.9 78.5 75.3
Non-Local [44] CVPR′18 80.7 78.0 79.3 76.2
GaitNet [45] CVPR′19 62.6 56.5 57.7 49.0
GaitSet [10] AAAI′19 81.9 73.2 71.0 62.1
AP3D [3] ECCV′20 80.9 79.2 80.1 77.7
TCLNet [4] ECCV′20 81.4 77.9 80.7 75.9
Baseline [16] CVPR′22 83.0 80.8 82.6 79.6
DCR-ReID [42] TCSVT′23 84.7 82.7 83.6 81.4
LIFTCAP Ours 86.3 84.1 85.7 83.0

TABLE IV: Probability of LIFTCAP on LTCC.

Probability CU CC Normal
top-1 mAP top-1 mAP top-1 mAP

Baseline [16] 80.6 64.4 38.0 17.1 73.4 39.2
Pro=0.2 81.1 64.4 39.3 17.0 74.2 39.3
Pro=0.4 81.3 64.4 37.5 18.0 73.6 39.7
Pro=0.6 80.3 65.3 36.0 17.3 73.4 40.0
Pro=0.8 79.9 63.4 38.5 17.3 73.8 39.1

ReID task, we need to make the model learn to match and
recognize the target person on different datasets. To enhance
the robustness and generalization ability of our framework, the
proposed LIFTCAP framework has set different parameters on
the public datasets, as listed in Table IV. The values of Pro
were set to 0.2, 0.4, 0.6, and 0.8 for the ablation experiments.
The results for the LTCC dataset showed that the evaluation
metrics were relatively better when set to 0.2 and 0.4. The
same strategy was applied to the CCVID and PRCC datasets,
as listed in Table VII.

In addition, based on the results obtained in IV, we set
Pro to 0.2 and conducted ablation experiments on the PRCC
dataset in the 2080 graphics card configuration with the
following settings:

1) Mask: The original RGB image is transformed into a
mask image by the existing body parsing network [29].

2) Mask+Color Generation: Augmentation of the data with
one LIFTCAP on top of 1).

3) RGB+Mask: Multimodal input. The original RGB image
and mask image are input to the backbone network
separately, and the two features obtained are stitched
together before the fully connected layer.

4) RGB+Mask+Color Generation : Use the Color Gener-
ation data augmentation once based on setting 3).

5) RGB+Mask+2D : Using random shift data augmenta-
tion [46] The images based on 3) .

6) RGB+Mask+Color Generation+2D: Apply random 2D
translation data augmentation on top of setting 4).

As shown in Table V, the random color generation operation
with only RGB modality achieved the best performance com-
pared to the multi-modality case, and the random local color
erasing operation was much lower than the previous one. This
demonstrates the superiority of the proposed method for the
color generation operation of a single modality.

Similarly, we also fixed Pro to 0.2 and performed ablation
experiments on the LTCC dataset with 2080 cards. The details

TABLE V: Ablation Studies of LIFTCAP on PRCC. Mask
stands for the image obtained by person body analysis;

RGB+Mask stands for the multi-modal; 2D stands for the
random 2D translation.

Methods CU CC
top-1 mAP top-1 mAP

Baseline [16] 100 99.7 52.2 54.2
Mask [29] 99.9 99.0 46.1 47.6
Mask+Color Generation 99.6 97.4 34.7 35.9
RGB+Mask 63.2 29.0 28.0 11.9
RGB+Mask+Color Generation 64.4 29.6 28.0 12.0
RGB+Mask+Color Generation+2D [46] 56.4 24.8 25.2 11.1
RGB+Mask+2D 56.2 24.6 25.3 11.0
LIFTCAP 100 99.8 54.1 54.8

TABLE VI: Ablation Studies of LIFTCAP on LTCC(A, B)
where A represents the weight of mutual information and B

represents the weight of KL dispersion.

Methods CU CC Normal
top-1 mAp top-1 mAP top-1 mAp

Baseline [16] 80.6 64.4 38.0 17.1 73.4 39.2
Mask [29] 77.5 61.6 27.0 14.1 69.2 36.8
Mask+Color Generation 64.3 47.7 21.9 11.3 58.2 28.8
Mask+Color Generation+(0.5,0.1) 78.9 60.6 30.9 14.9 71.6 37.0
Mask+Color Generation+(1.0,1.0) 69.5 51.4 23.5 11.6 62.1 30.9
FRGS [19]+(0.5,0.1) 75.3 56.1 28.1 12.8 67.1 33.5
Color Generation+FRGS 76.3 57.2 31.4 14.3 69.4 34.7
LIFTCAP+(0.5,0.1) 79.6 63.5 36.2 16.9 72.0 39.0
LIFTCAP 81.1 64.4 39.3 17.0 74.2 39.3

are as follows:
1) Mask+LIFTCAP+(0.5,0.1): The obtained mask images

are augmented with LIFTCAP data once, and in addition,
KL divergence and mutual information [16] are used to
guide the model learning, and their weights are set to
0.5 and 0.1, respectively (these values are determined
using the control variable method, with the KL divergence
weight set to 0.5 by random selection, and then the mutual
information weight is determined to be 0.1 by ablation
experiments. details about the different weights leading to
different ReID effects renderings can be found in Fig. 2
and Fig. 3).

2) FRGS [19]+(0.5,0.1): Employing the data augmentation
approach proposed in [19] (this method combines the
RGB channels of visible images, grayscale images, and
sketch images to form a new image), with KL divergence
and mutual information weights set to 0.5 and 0.1,
respectively.

Table VI lists the effects of using two data augmentation
methods with different KL divergence and mutual information
weights on the LTCC dataset. Specifically, we first replaced
the original RGB images with mask images using an existing
person parsing network. We then randomly initialized the
weight of the mutual information to 0.5 and controlled the
weight of the mutual information to be constant. As shown in
Fig. 2, when the weight of the mutual information is 0.5, the
best person ReID effect on the LTCC dataset is achieved, and
the weight of the KL scatter is 0.1. Then, we set the weight of
the KL divergence to 0.1 and increased the weight of mutual
information from 0 to 1 by 0.1. Finally, as illustrated in Fig. 3,
we can see that the weight of the mutual information should be
taken as 0.1. The best combination of the KL divergence and
mutual information was set as (0.5,0.1). As shown in Table VI,
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TABLE VII: The ablation studies on CCVID, LTCC, and PRCC. LIFTCAP (F/S,a/a+b) represents the method of Local
Invariant Feature Transformation and Clothing Adversarial Parsing. F represents the usage of Random Local Color

Generation once, whereas S represents the usage of Random Local Color Generation twice. In LIFTCA P(F/S,a+b), it
denotes the probability value in the first Random Local Color Generation method, and b denotes the probability value in the

second Random Local Color Generation method.

Methods
CCVID LTCC PRCC

Normal CC Normal CC CU CC
top-1 mAP top-1 mAP top-1 mAP top-1 mAP top-1 mAP top-1 mAP

Baseline [16] 83.0 80.8 82.6 79.6 73.4 39.2 38.0 17.1 100 99.7 52.2 54.2
LIFTCAP(F,0.4) 84.3 82.4 83.2 81.1 73.6 39.7 37.5 18.0 100 99.8 52.3 54.9
LIFTCAP(F,0.2) 85.5 83.5 85.0 82.2 74.2 39.3 39.3 17.0 100 99.8 53.8 56.0
LIFTCAP(S,0.4+0.4) 85.9 84.8 85.1 83.5 72.2 39.3 35.2 17.1 100 99.8 56.7 57.7
LIFTCAP(S,0.2+0.2) 87.2 85.0 86.3 83.8 72.6 40.0 35.7 17.9 100 99.9 53.2 55.0
LIFTCAP(S,0.2+0.4) 86.3 84.1 85.7 83.0 74.6 39.7 37.0 17.9 100 99.8 54.3 55.6
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Fig. 2: Top-1 accuracy variation with different KL Weights.
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Fig. 3: Top-1 accuracy variation with different MI weights.

our method does not require additional losses to constrain the
entire model and is more suitable for the CC-ReID task than
the other data augmentation methods.

According to Table IV, comparing the probabilities of
LIFTCAP, we determined that the probability of 0.2 or 0.4
would yield good results on the LTCC dataset. Therefore, we
conducted comparative experiments on two image datasets and

TABLE VIII: Time efficiency for our algorithm on the public
CC-ReID datasets (LTCC, PRCC, and CCVID).”h:m:s”

denotes the time (hour, minutes, and second)

h:m:s LTCC PRCC CCVID
Baseline Ours Baseline Ours Baseline Ours

Train 1:29:05 1:28:49 2:46:36 2:39:14 1:52:30 1:52:29
Total 1:37:08 1:36:59 2:58:50 2:50:53 3:13:40 3:13:42

one video dataset using these two probabilities, as listed in
Table IV. Based on Table IV, the probability of LIFTCAP
performing well is 0.2 or 0.4. With the LIFTCAP (S, 0.2+0.2)
configuration, the CCVID dataset showed a significant im-
provement compared to the baseline. However, the LTCC
and PRCC datasets exhibited slightly inferior performance
compared to the baseline. This can be attributed to the fact that
the LIFTCAP (S, 0.2+0.2) configuration is more suitable for
video datasets and has less impact on image datasets. There-
fore, the LIFTCAP (S, 0.2+0.4) configuration was applied in
our method. In this setting, all three datasets demonstrate a
noticeable improvement. Moreover, the video dataset exhibited
a higher improvement magnitude, ranging from 3% to 4%,
compared with the image datasets. Consequently, we deter-
mined the optimal probability combination for LIFTCAP to
be (0.2, 0.4).

In addition, we also analyzed the time efficiency of the
proposed algorithm, which can be seen in Tab. VIII. The table
shows that our method achieved considerable time efficiency
compared to the baseline on LTCC, PRCC, and CCVID
datasets. Overall, our LIFTCAP framework reduces the total
training time by introducing a Local Invariant in the feature
extraction phase and fine-tuning the clothing attributes in the
Adversarial Parsing phase. This makes the model focus more
on the inherent features of the person rather than on extrinsic
variations, thus reducing unnecessary computational burdens
and improving the operational efficiency of the algorithm.

E. CC-ReID upon UAVs for Road Conditions Assessment and
Monitoring Applications

Generally, the CC-ReID is applied to retrieve the special
person with different clothes during a period, which can be
used in smart cities for real-time road conditions assessment
applications. Owing to the grayscale image reconstruction and
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Fig. 4: The specific deployment for our proposed CC-ReID algorithm on the Intelligent Vehicles Control System.

parsing operations used in our method, the proposed CC-
ReID algorithm has a high rate of retrieving special targets,
achieving a time efficiency as low as O(n). It can also be
applied to smart terminals for road observations, such as
unmanned aerial vehicles (UAVs) servers (Feisi X200) for
security and risk assessment applications. The application
procedure of the algorithm is illustrated in Fig. 4.

From Fig. 4, the main parts of the proposed algorithm
deployment application are as follows: First, the collabora-
tive labeled samples, public sample sets, and UAV-collected
surveillance data comprised sample libraries that were used for
model training and feature extraction. Subsequently, the opti-
mized network structure is used for intelligent interpretation
and the model recognition procedure based on UAVs, which
is the similarity calculation and clustering evaluation. Finally,
the deployed model is directly applied to connected and au-
tonomous vehicle applications, including ReID output results,
sensing detection, and real-time road conditions assessment.

Specifically, ReID tasks are evaluated by the CMC [30],
which indicates the percentage of the real match in the list.
For each probe, pi ∈ P , all gallery images are ranked based
on the similarity probabilities. In this case, once similarity
probabilities are computed, the time complexity of the ranking
algorithm can be as low as O(n). As we know, this type of
ranking algorithm is widely applied in many mobile surveil-
lance devices [9], [47], which maintain limited computing
ability. The Feisi X200 UAVs series mobile analysis server is
an example of this kind of device, which is made by RflySim
Platform (https://rflysim.com/).

In addition, to further validate the feasibility of deploying
the model proposed in this work on UAVs servers, we have
conducted the simulation experiments on the existing CC-
ReID datasets (e.g., LTCC, PRCC, and CCVID) from the
UAVs’ viewpoints to verify the efficiency of instances match-
ing. We have paid special attention to the efficiency of the
model for instances matching, i.e., the number of instances
matched in unit time. It indicates that the model can suc-

TABLE IX: Simulation results of instances matching
efficiency from the perspective of UAVs.

Datasets Every Minute
LTCC PRCC CCVID

Matched Instances 82371 7300 241109

cessfully match about 82371, 7300, and 241109 instances per
minute on LTCC, PRCC, and CCVID datasets, respectively,
as shown in Table IX. This result also indicates that the model
can process data efficiently and is suitable for deployment on
UAVs platforms, confirming our model’s O(n) efficiency and
deployment potential.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a data enhancement method
called LIFTCAP, which is designed for the CC-ReID task. The
proposed framework is equipped with LIFT and CAP models,
which are used to extract invariant features and determine ad-
versarial parsing contour differences between clothing styles.
The results showed that our algorithm achieved competitive
performance and could be deployed in an intelligent vehicle
control system for real-time road conditions assessment appli-
cations.

Despite the novelty of our work and its superior perfor-
mance, there is still room for improvement. For example, our
algorithm for the fusion strategy of local invariant features
must be further improved. In the future, we will consider im-
age contour segmentation approaches for color transformation
in real-time city road risk assessment.
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