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Respiratory illness diagnosis and continuous monitoring are becoming popular as sensitive markers of 

chronic diseases. This interest has motivated the increased development of respiratory illness diagnosis by 

exploiting wireless communication as a sensing system. Several methods for diagnosing a respiratory ill- 

ness are based on multiple sensors and techniques. Depending on whether the device embeds the sensor 

in contact with the body or not, these techniques are commonly categorized as contact based or contactless. 

Contactless methods have gained increasing popularity due to their ubiquitous nature, non-intrusiveness, and 

low cost. However, contactless methods are difficult to implement, with several challenges such as dynamic 

wireless communication environments. This article comprehensively reviews all contactless respiratory ill- 

nesses using wireless communication sensing methods, their associated challenges, and issues. In addition, 
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applications of respiratory illness diagnosis methods using wireless communication are provided to investi- 

gate each method’s potential development and applicability. Continuous and accurate diagnosis of respiratory 

illness using wireless communication sensing systems can assist caregivers in enhancing the care quality and 

bestowing patients with more freedom for both inpatients and outpatients. Furthermore, wireless communi- 

cation monitoring systems could lead to treatment plans remotely more effectively, decrease the duration of 

patient stays in medical facilities, and reduce overall treatment costs. 

CCS Concepts: • Hardware → Wireless integrated network sensors; • Social and professional topics 

→ Remote medicine; • Human-centered computing → Ubiquitous and mobile computing design and 

evaluation methods ; 

Additional Key Words and Phrases: RF sensing, Wi-Fi-based, camera based, software-defined radio based, 

radar based 

ACM Reference Format: 

Najah Abed Abu Ali, Mubashir Rehman, Shahid Mumtaz, Muhammad Bilal Khan, Mohammad Hayajneh, 

Farman Ullah, and Raza Ali Shah. 2024. Contactless Diseases Diagnoses Using Wireless Communication 

Sensing: Methods and Challenges Sur vey. ACM Comput. Sur v. 56, 9, Article 226 (April 2024), 29 pages. 

https://doi.org/10.1145/3648352 

1

T  

s  

i  

p  

m  

s  

t  

r  

b  

a  

a  

b  

f  

t  

r  

s  

s
 

v  

p  

m  

l  

a  

c  

c  

t  

o  

l  

e  

A

 INTRODUCTION 

he process of exchanging air for gas is the respiratory system’s primary function. The blood-
tream absorbs oxygen (O 2 ) from the surrounding air, whereas carbon dioxide (CO 2 ) is exhaled
nto the atmosphere [ 1 ]. The respiratory rate, also known as breaths per minute (bpm), is a clinical
arameter representing ventilation, or airflow, into and out of the lungs. As the body attempts to
aintain O 2 delivery to the tissues, a change in respiratory rate is frequently considered the first

ign of respiratory illness [ 2 , 3 ]. Respiratory illness can occur when the rate or pattern of respira-
ion is abnormal. The standard respiratory rate differs from person to person, but it lies within the
ange of 12 to 20 bpm when the person is resting [ 4 ]. Respiratory illnesses can cause slow or fast
reaths per minute. These illnesses include tachypnea, bradypnea, Biot, sighing, Kussmaul, sleep
pnea, and Cheyne-Stokes [ 5 ]. Bradypnea is characterized by slow and shallow breathing having
 consistent pattern, whereas tachypnea has a rapid respiratory rate. Biot illness is characterized
y deep breaths with periodic episodes of apneas, whereas Kussmaul is characterized by deep and
ast breathing, usually seen in diabetic ketoacidosis. Sighing is a normal respiratory process punc-
uated with deep sighs. In addition, Cheyne-Stokes is defined by a gradual decrease and increase in
espiratory rate. In contrast, sleep apnea is characterized by respiration that repeatedly stops and
tarts during sleep and is frequently classified as central if caused by deficiencies in respiratory
ystem development or obstructive if caused by airway obstruction [ 6 ]. 

Providing continuous and long-term care to at-risk patients has been a motivating factor in de-
eloping state-of-the-art technologies. Patients would have more freedom and comfort if medical
rofessionals could safely monitor vital signs without examining a patient in a hospital environ-
ent [ 7 , 8 ]. Vital signs include heart/respiration rate, temperature, and blood pressure. Intelligent

ong-term care at home could reduce the burden on the healthcare system and the likelihood of re-
dmission [ 9 ]. The contact methods require physical contact with the subject’s body. Conversely,
ontactless monitoring techniques measure the subject’s respiratory illnesses without physical
ontact with the subject’s body. Depending on the sensor employed or the respiratory parame-
er intended to be measured, the contact and the contactless methods have their unique Region

f Interest (ROI) . Contact-based methods have been presented in the literature [ 10 –12 ]. Simi-
arly, other works [ 13 –16 ] have investigated methods that do not require physical contact. How-
ver, the authors skipped the descriptions of contactless techniques using wireless communication,
CM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Fig. 1. Summary of contactless methods for diagnosis of respiratory illnesses. 

s  

(  

i  

i  

t  

a  

c  

a  

c  

i  

e  

v
 

d  

t  

i

2

T  

i  

o  

v  

n

uch as Radio Frequency (RF) sensors, camera-based methods, and Software-Defined Radio

SDR) . This would be possible if reliable wireless communication sensing based healthcare mon-
toring devices were available in the market. The contactless methods for detecting respiratory
llnesses are shown in Figure 1 . This survey article aims to provide a comprehensive overview of
he contactless methods using wireless communication sensing currently available for diagnosis
nd continuous monitoring of respiratory illness. This review work is broadly divided into four
ontactless methods: chest movement sensing, respiratory air sensing, respiratory sound sensing,
nd face/forehead sensing. Most of these methods are further split into subclasses, providing a
omprehensive overview of the field. Each technique’s working principle and primary character-
stics are presented (cost, susceptibility, real-time monitoring of the human body, motion artifacts,
tc.). Furthermore, the application of each method is also provided to anticipate the potential de-
elopment and applicability of each method. 

The rest of the survey is organized as follows. Section 2 covers the significant applications for
iagnosis and continuous monitoring of respiratory illness. Section 3 discusses all existing con-
actless methods and technologies using wireless communication sensing for diagnosing and mon-
toring respiratory illness. Finally, conclusions from this survey are drawn in Section 4 . 

 APPLICATIONS FOR DIAGNOSING RESPIRATORY ILLNESS 

his section covers significant applications for the diagnosis of respiratory illness. The objective
s to educate people about monitoring respiration’s critical importance. Respiration has long been
verlooked in the clinical setting and other fields, despite substantial evidence indicating that this
ital sign responds to various stressors. The following application fields in which respiratory ill-
esses can be fully applied. 
ACM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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.1 Occupational Settings 

ncreasing industrial development demands monitoring workers’ activities to improve their
ealth, well-being, and safety. For example, numerous wearable devices for assessing respiratory

llness have been proposed to monitor workers experiencing high psychophysiological stress
n the working environment [ 17 , 18 ]. The continuous monitoring of respiration during work
ctivities is essential due to the sensitivity of respiration to emotional stress, mental workload
ain, environmental risks, and discomfort [ 19 ]. Remarkably, respiration has been suggested as
 sensitive indicator of mental workload, with crucial implications for workers subjected to
igh-demand tasks, such as surgeons, soldiers, and pilots [ 20 , 21 ]. Moreover, because it is strongly
ffected by body temperature, respiration can be seen as a marker of thermal stress [ 22 ]. It is
ssential in hot environments for workers and those carrying protective clothing that may inhibit
hermoregulation, like firefighters [ 23 ]. 

.2 Clinical Settings 

umerous pieces of evidence indicate that respiration is a highly useful vital sign. It is a predictor
f potentially severe adverse events and a clear early indication of physiological decline [ 24 , 25 ].
espiratory illness is one of the indicators of cardiac arrest. Doctors recommend intensive care
nit admission and a significant predictor marker for risk evaluation following a myocardial in-

ury [ 26 , 27 ]. In addition, it is essential to sense the threat of unhealthy conditions, including sleep
pnea [ 28 ], respiratory stress in postoperative patients, and perinatal death [ 29 ]. Moreover, respi-
atory parameters are sensitive to numerous pathological conditions, including toxicology issues,
iabetic ketoacidosis, dehydration, shock, sepsis, severe pain, and allergic reactions [ 30 ]. Nonethe-
ess, respiratory illness diagnosis is underappreciated and under-recorded. Regardless of whether
espiration is one of the four vital signs, it is measured clinically instead of objectively [ 26 ]. 

 CONTACTLESS METHODS AND TECHNOLOGIES 

ontactless measurement of respiratory illness is possible using a variety of methods such as chest
ovement detection, respiratory sound detection, respiratory air temperature detection, and face

nd forehead tracking. 

.1 Chest Movement Detection 

uring respiration, the diaphragm expands and contracts while intercostal muscles move the
ibcage. Due to this, the chest cavity swells. Expiration relaxes the diaphragm and intercostal mus-
les, restoring chest volume. These movements cause 7-cm circumference variations of the chest
all [ 31 ]. Respiratory movements of the chest can be used to obtain respiratory parameters. Five

ensor-based communication sensing technologies used for diagnosis of respiratory illness using
hest movements detection method in include those that are radar based, SDR based, Wi-Fi based,
amera based, and visible light sensor based. 

3.1.1 Radar Based. Radar operates on a simple principle where it transmits bursts of pulses,
eflects them off a target, and receives them as echoes. The signal x(t) indicates a change in chest
isplacement, as depicted in Figure 2 . Radar makes use of an echo principle. Different types of radar
echnologies are used in the literature, including Ultra-Wideband (UWB) radar, Continuous-

ave (CW) radar, Frequency-Modulated Continuous-Wave (FMCW) radar, ultrasonic radar,
aser radar, and microwave radar. The performance summary of radar-based wireless communi-
ation sensing methods is provided in Table 1 . 

U WB Radar . U WB radar operates by sending periodic short pulses. The short pulses are reflected
ack with an extensive large bandwidth and provide several benefits, including high throughput,
CM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Fig. 2. Radar-based chest movement sensing. 

Table 1. Summary of Radar-Based Sensing Methods 

Technology 

Motion 

artifacts 
Environmental 
effects Sensor size Cost Accuracy LOS/NLOS 

UWB radar Medium Medium Large High Medium NLOS 

CW radar Medium Medium Large High Medium NLOS 

FMCW radar Low High Large Medium High NLOS 

Ultrasonic radar High High Large High Low NLOS 

Laser radar High High Large Low Low LOS 

Microwave radar High High Large Medium Medium NLOS 
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ower power resistance to jamming, and coexistence with radio services [ 32 ]. UWB radar not only
an transmit a large amount of information with very little power over a short distance but also
an move through objects that reflect narrow-bandwidth signals. However, due to expensive hard-
are, UWB radar applications are typically restricted [ 33 ]. Except for Wi-Fi at 5 GHz, the UWB

adar frequency range (3.1–10.6 GHz) is interference free. UWB radar systems have low complex-
ty, lower power consumption, noise resistance, and good integration with narrowband links [ 34 ].
ue to its low radiated power, it has no adverse impacts on the human body. The UWB link’s lim-

ted coverage is its primary drawback. However, UWB pulsed radars that transmit narrow pulses
ith a broad instantaneous bandwidth have been developed. Yet, narrowband receiver architec-

ures can be utilized with this wide bandwidth. The correlation receiver is one of the optimal
olutions [ 35 –38 ], which uses a pulse generator to generate short pulses that are then transmitted
o the target. Unlike CW radars, UWB radars require no frequency conversions, resulting in less
omputational complexity and reduced power consumption. The phase and time delay between
cho and transmitted pulse can be processed to assess respiratory illnesses. Unfortunately, the sys-
em only encodes phase information and cannot discriminate between different respiratory rates.
urthermore, higher frequency exposure is a problem for infants. Ferrigno et al. [ 39 ] reported on a
WB radar system to extract respiratory parameters using a peak detection algorithm. The study’s
ndings are consistent with commercial ECG-based sensors. 

CW Radar . CW radars have a less complex structure than UWB radars. A known stable fre-
uency of CW radio energy is transmitted, and an echo is received after reflection from objects.
nlike UWB radar, CW radar cannot measure the delay time, making distance estimation difficult.
urthermore, the transmitter and receiver are coupled in a CW radar, generating low-frequency
oise and direct current bias. This strongly affects respiratory illness estimation results. Folke
ACM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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t al. [ 40 ] and Grassmann et al. [ 41 ] demonstrated the use of CW radar for recording the respira-
ory illness of elderly patients suffering from pneumonia. 

FMCW Radar . FMCW radar has been used in previous studies to detect respiratory illnesses and
btain promising results. The transmitted radar signals show frequency variations, which helps
nd the distance between the FMCW radar sensor and the patient [ 42 ]. The amplitude variations in
he reflected signals change when the patient breathes, which helps measure the distance between
he transceiver device and the chest wall. FMCW radar necessitates a large frequency bandwidth
ecause chest movements can be subtle, even on a scale of millimeters [ 43 , 44 ]. Hassan et al. [ 45 ]
mplement a 24-GHz FMCW radar system for measuring the vital signs of multiple people in the
ame environment. Grassman et al. [ 42 ] developed an FMCW radar system for real-time detection
f respiratory illness on multiple actual patients in the clinical scenario. FMCW radar performed
ell when compared to a reference instrument (capnography). FMCW radar radiates signals after

inear frequency modulation covering a broad frequency bandwidth [ 46 ]. Helfenbein et al. [ 47 ] use
MCW radar to extract reflected signals from multiple persons depending on propagation time.
owever, this system fails when multiple persons are present nearby. Holt et al. [ 48 ] demonstrated

hat this problem can be solved using an independent component analysis method. 

Ultrasonic Radar . Contactless monitoring of respiratory illnesses can be accomplished using ul-
rasound waves. The working principle is that an ultrasound transmitter is exploited for radiating
ltrasound waves toward the patient or subject, and the reflected waves are used to measure res-
iratory illnesses. As demonstrated in some works [ 49 –52 ], an ultrasonic radar can be used to
easure respiratory illnesses. The space between the subject and the radar sensor is calculated

sing the sensor’s attenuation characteristics. Janssen et al. [ 51 ] used phase detection to differ-
ntiate movement artifacts due to non-respiratory activities. This developed system employs a
hase-canceling technique to extract the subject’s respiratory motions allowing for the detection
f large body activities while retaining respiration signals. The prototype was designed to sense
hest motions and from which respiratory parameters can be measured. 

Laser Radar . Laser radar is a contactless optical technique that utilizes the Doppler shift for mea-
uring displacement and surface velocity. Laser radar, as opposed to RF radar, is used to obtain the
hift in laser frequency. This frequency shift, in turn, helps monitor chest movement by providing
dditional information. Laser radar is a technique that detects the Doppler shift in scattered light
y directing a laser beam at a moving chest wall surface, which is caused by respiratory activity
 53 ]. This shift can be seen when the laser beam is scattered. This method exploited chest wall
ovements for estimating respiratory information [ 54 –57 ]. Kempfle and van Laerhoven [ 56 ] im-

lemented laser radar based contactless respiratory illness sensing, and the system was installed
t a distance of a few meters from the subject. Similarly, Khan et al. [ 57 ] proposed a system for
onitoring the respiratory activity of infants. Laser radar based systems have high sensitivity and

equire low power density, implying no harmful effects on humans. However, the equipment is
ostly. The high cost of equipment and the substantial influence of motion artifacts on results
ave been emphasized in a recent review of laser radar applications in clinical and occupational
ettings [ 58 –60 ]. Several authors investigated this technique for real-time respiratory illness sens-
ng of infants and the elderly. Respiratory and heartbeat signals can be concurrently extracted from
bdominal or chest movements, facilitated by the high sensitivity of laser radars [ 61 , 62 ]. This sen-
itivity was demonstrated in the extraction of respiratory parameters for multiple healthy subjects
n a resting position. The main limitation of using laser radar sensing is the back-reflected signal’s
eliance on the nature of the surface. The problem is usually solved by applying a reflective layer
r a small amount of oil drops on the chest wall [ 63 ]. In addition, a laser radar sensor can only
easure the signal at a single point of focus, which is usually strongly affected by non-respiratory
CM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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hysical movements. Consequently, this method cannot be exploited to monitor respiration dur-
ng athletic activity. As well, this method is discouraged for real-time respiration monitoring in
omestic and clinical settings. 

Microwave Radar . A vital sign monitoring system that does not require direct patient contact
as discussed in the work of Levai et al. [ 64 ]. The microwave radar sensor system was developed

o restrict the patient’s contact with toxic environments in the event of a biochemical hazard. The
ystem includes a 10-GHz respiratory radar and a 24-GHz cardiac radar. The isolator (10 GHz)
athers chest wall modulated reflected microwaves, whereas the 24-GHz radar monitors cardiac
otions. The simultaneous extraction of respiratory and heart values can be accomplished with

he help of microwave radar. 

Summary . The transmitted signal is sent in a radar system, and the range can be obtained by
easuring the returned signal’s frequency [ 65 ]. The respiratory-induced ribcage movement mod-

lates the returned signal. This permits the measuring of respiratory illness detection based on
hest movement. CW and FMCW Doppler radar transmit a signal with a uniform frequency and
mplitude and process the reflected echo signal from a moving target [ 66 ]. The design of CW radar
s a relatively simple process. 

Nevertheless, multipath reflections and environmental noise significantly hinder performance
 32 ]. Compared to CW Doppler radar, FMCW radar’s bandwidth of 1 to 2 GHz makes it possible to
void noise and interference effects [ 67 ]. However, wide bandwidth requires precise peak signal
trength and pulse width [ 68 ]. Due to the extreme sensitivity of laser radar, it is possible to obtain
he heart and respiratory signals simultaneously. However, like ultrasonic radar recording, laser
adar recording is prone to be heavily impacted by motion artifacts. In addition, laser radar needs
o be directed at a particular measurement point to obtain high-quality recordings of the received
ignals. 

3.1.2 SDR-Based Sensing. Diverse SDR sensor-based systems for respiratory illness diagnosis
nd continuous monitoring have been explored in the literature. Loo et al. [ 69 ] propose contact-
ess sensing using an SDR-based system for accurate measurement of breathing rate and heart rate
ased on minute movement of the chest. The system used directional antennas and RF component
nalysis by a vector network analyzer (VNA). Additionally, the proposed system is investigated by
hanging the distance between the subject and the directional antennas. Moreover, experiments
hrough wall monitoring are conducted, and performance is evaluated. In the work of Lovett et al.
 70 ], a multi-frequency band CW radar system is implemented using the SDR-based sensor to di-
gnose and monitor breathing at pre-determined distances. In the work of Lucas and Kanade [ 71 ],
he channel response is analyzed in the frequency domain to identify small-scale variations in
ulti-carrier orthogonal frequency division multiplexing (OFDM) subcarriers due to the human

ody’s movements over wireless communication channels. As depicted in Figure 3 , the developed
DR-based platform accurately detected and identified waving hand movement, abnormal cough-
ng, and numerous respiratory illnesses. In the work of Luck [ 72 ], a contactless respiratory illness
ensing system is developed using SDR sensing. This platform used Channel State Information

CSI) to record the time history of minute movements caused by breathing and diagnose three
istinct breathing abnormalities. In the work of Lv et al. [ 73 ], the design of a system is evalu-
ted by first investigating the coefficient of channel frequency response (CFR) for three simulated
hannels. Machine learning algorithms were used in research to classify respiratory illnesses suc-
essfully. In the work of Marcel-Millet et al. [ 74 ], SDR-based breathing pattern sensing detects and
lassifies six abnormal breathing patterns. That work is further extended by Lucas and Kanade [ 71 ]
y classifying up to eight breathing patterns. SDR-based sensing in healthcare holds promising
ACM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Fig. 3. SDR-based chest movement sensing. 

Table 2. Summary of SDR-Based 

Sensing Technology 

Motion artifacts Medium 

Environmental effects Medium 

Sensor size Medium 

Cost Medium 

Accuracy High 

LOS/NLOS Both 
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evelopments. The Internet of Medical Things (IoMT) is expected to expand, allowing for inter-
onnected networks that communicate through SDR-based sensing. Telemedicine will take advan-
age of reliable wireless communication between patients and healthcare providers. The generated
ealth data can be integrated with artificial intelligence developed models to extract meaningful

nsights from large datasets. This can lead to better predictive analytics, early disease detection,
nd personalized treatments. As 5G networks become more widespread, SDR-based devices can
everage high-speed and low-latency communication, enhancing real-time remote diagnostics and
ealthcare services. SDR-based sensing can lead to improvements in non-invasive imaging tech-
iques, such as using wireless signals for imaging and monitoring internal body structures. With
dvancements in SDR technology, there is potential for doctors to perform remote monitoring us-
ng tactile feedback and real-time imaging. SDR-enabled devices can support bridging the health-
are access gap in remote or rural areas, where traditional infrastructure is lacking. SDR-based
ensing has the potential to revolutionize healthcare applications by enabling flexible, portable,
daptable, and remote sensing capabilities. Its future implications could lead to more advanced and
ccessible healthcare services, improved diagnostics, and personalized treatments. A summary of
DR-based sensing technology is provided in Table 2 . 

3.1.3 Wi-Fi-Based Sensing. Contactless Wi-Fi-based sensing for respiratory illness diagnosis
nd monitoring has grown in popularity in recent years. Due to the widespread implementation
CM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Fig. 4. Wi-Fi-based sensing using the chest movement method. 

Table 3. Summary of Wi-Fi-Based Sensing Methods 

Approach CSI based RSS based 

Motion artifacts Medium High 

Environmental effects Medium High 

Sensor size Medium Medium 

Cost Low Low 

Accuracy High Medium 

LOS/NLOS NLOS NLOS 
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f readily available wireless devices, Wi-Fi-based sensing has received increased attention. Wi-
i waveforms are generally gathered from the Wi-Fi devices using application program interface
oftware. Wi-Fi sensing techniques, as shown in Figure 4 , typically use two approaches: CSI and
adio Signal Strength (RSS) . A summary of Wi-Fi-based sensing is provided in Table 3 . 

CSI Based . Specific indicators in CSI include carrier signal strength, amplitude, phase, and signal
elay. Because of its high-dimension structure, CSI contains useful information and supports fine-
rained respiratory data for classification applications [ 75 ]. CSI has emerged as a viable option
or improving Wi-Fi-based sensing accuracy. Each entry of the CSI matrix represents the phase
nd amplitude information of the wireless channel. Consequently, the CSI’s amplitude information
epresents signal dissipation due to the multipath fading. RSS-based sensing is only helpful when
he Wi-Fi access points and subject are in the Line of Sight (LOS) and close to each other. How-
ver, CSI-based approaches can extract respiratory information even from a distance. In general,
SI-based sensing can be explored by two methods: CSI phase based and CSI amplitude based. 
The CSI phase-based method extracts the phase information from the wireless channel. A con-

actless approach for diagnosing and monitoring respiratory illnesses utilized a CSI phase-based
ethod [ 76 ]. The phase distortion and low-frequency noise are eliminated using a Hampel and

igh pass filter. Massaroni et al. [ 77 ] presented a model design for sleep study monitoring that
ses ambient radio signals to identify sleep stages and examine sleep quality, including respiration
ates. The authors used a statistical analysis approach to investigate the autocorrelation of the CSI-
ased response, which significantly decreases the time delay and yields quick estimation. Due to
nsufficient spatial resolution, CSI phase-based methods evaluate only one person in the observa-
ion area. The extended CSI phase-based method [ 78 ] uses the phase difference between antennas
o eliminate phase distortions introduced in the internal circuit of the system. The minor displace-
ent produced by respiration affects the CSI phase-based measurement on all antennas. The phase
ACM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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ifference between antennas is the subtraction of two periodic signals rather than the actual res-
iratory movement. 
The CSI amplitude-based methods are used for extracting respiration signals by exploiting Wi-Fi

evices. In 2017, Massaroni et al. [ 79 ] introduced a contactless respiratory illness sensing plat-
orm system by applying the time-reversal technique on CSI acquired from Wi-Fi devices. The
uthors captured the small-scale periodic variations in CSI patterns caused by respiration activity.
n another work, Massaroni et al. [ 80 ] applied the Root-Music algorithm to attain highly accurate
espiratory parameter extraction. In a later work [ 81 ], high-frequency noises and outliers are re-
oved by using Hampel and wavelet filters on the CSI time series data. Then, respiratory rates

re measured by applying FFT on all CSI amplitude-based data. Finally, this technique helps to
olve the multi-person respiration rate measurement problem in the same environment. Massa-
oni et al. [ 82 ] also proposed a continuous respiratory illness system for multiple persons using the
SI amplitude-based method with a pair of Wi-Fi devices. The authors eliminated the limitation
f a single person in the area of interest. Later, the authors also demonstrated a calibration-free
espiratory illness diagnosis system for multiple persons using Wi-Fi access points. However, the
SI amplitude-based spectrum sensing methods require a significant delay to achieve better fre-
uency resolution, and they cannot detect sudden variations in respiratory rate. In 2018, Massaroni
t al. [ 83 ] proposed one of the first respiratory monitoring systems for measuring respiratory in-
ormation for a single person in the environment. The results were improved in another work [ 84 ]
y extracting respiratory information during sleep. These systems are based on the idea that CSI
mplitude exhibits a sinusoidal-like pattern in the time domain due to a person’s respiration move-
ent. Mei and Ling [ 85 ] elaborated on the blind spot problem by applying the Fresnel zone theory

n single-person respiration sensing. Min et al. [ 86 ] show the amplitude information for respiration
etection to eliminate blind spots. Min et al. [ 86 ] and Mohammed et al. [ 87 ] proposed solutions to
he blind spot problem. Unfortunately, the proposed methodology cannot be applied directly to a
ultiple-person scenario, as the theoretical basis for eliminating blind spots emphasizes that only

ne living person is breathing. 
Based on the analysis, two persons’ respiration frequency can still be well preserved if the CSI

mplitude is converted to the frequency domain. Moll and Wright [ 85 ] and Mei and Ling [ 85 ]
ighlighted that the proposed system performance can be highly affected due to the blind spots
roblem. Moll and Wright [ 88 ] and Mutlu et al. [ 89 ] demonstrated that the CSI phase difference be-
ween two antennas can be used to estimate multi-person respiratory rates using the Root-Music
lgorithm. Nakajima et al. [ 90 ] utilize tensor decomposition to retrieve respiration information
rom CSI phase difference, supposing that the difference is the sum of sinusoidal respiration pat-
erns [ 79 ]. Initially, Wi-Fi-based CSI is projected into the time-reversal resonant strength feature
pace before the Root-Music algorithm is utilized to assess the breathing rates of numerous targets.
hese methods presume that the respiration rates of different individuals are unique, and their per-

ormance accuracy declines when these respiration rates are in close range. Massaroni et al. [ 81 ]
onitored the breathing of various persons by optimizing the placement of Wi-Fi transceivers so

hat a single target only influenced the transmission of each transceiver pair. However, this strat-
gy needs to know each individual’s location in advance; if one individual’s location changes, the
ystem may fail. 

RSS Based . The RSS-based sensing approach offers coarse-grained information about communi-
ation channels and can be easily measured using wireless devices [ 91 ]. The RSS-based approach
s a measurement of the received radio signal power at the receiver. RSS-based techniques have
pplications in different fields, including driving behavior [ 92 ], crowd counting [ 93 ], and hand
esture recognition [ 94 ]. However, RSS can easily be corrupted by channel parameters such as the
CM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Table 4. Summary of Camera-Based Sensing Methods 

Technology 

Motion 

artifacts 
Environmental 
effects Sensor size Cost Accuracy LOS/NLOS 

RGB camera High High Low Low Medium LOS 

Depth camera High Low Low High Medium LOS 

Body marker based Low Low Medium Medium Medium LOS 
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ultipath effect and channel noise. The RSS-based approach is only used for LOS transmission,
esulting in indoor respiration detection, and limiting the application services [ 75 , 95 ]. The use
f RSS-based measurements method identifies the person’s respiration rate to diagnose respira-
ory illnesses in a home environment. This method addresses the challenge of subject movement
uring respiratory activity. They have presented a method used in their previous work [ 96 ] to es-
imate respiratory illnesses. This technique computes the power spectral density for each channel
sing the most recent data, averages the power spectral density across all channels, and calculates
espiratory information. 

The key challenge was that the channel that effectively measured chest movement was also
he channel that effectively measured other body movements. The RSS-based approach has high
usceptibility noise that makes it inappropriate for assessing respiratory parameters, although it
dentifies minor human body movements. The respiration measurement used RF transceivers to
xtract respiratory rates, which was enhanced by Poh et al. [ 97 ], where the RSS-based method from
 single antenna pair can measure respiratory rates. Comparatively, the RSS-based approach is not
 sensitive indicator for accurate measurement of minute movement of the chest. As a result, envi-
onmental noise can affect the exhaling and inhaling phenomena causing minimal changes in RSS.
raktika and Pramudita [ 98 ] proposed a comprehensive examination system for extracting respi-
atory signals from noisy Wi-Fi-based RSS. Several challenges were addressed, including channel
oise reduction, interference with other humans, unexpected user body movements, and detection
f various respiratory parameters. 

Summary . Wi-Fi-based sensing has received substantial attention in the field of respiratory ill-
ess sensing. CSI and RSS are two ways of acquiring respiration information from the channel.
SI is a signal characterization index that gives a more satisfactory resolution than RSS, offering
ne-grained information. In addition, by examining the properties of multi-channel subcarriers,
SI can prevent the impacts of multipath and noise. Unlike CSI, which is easily distorted by the
ultipath effect, modern RSS methods usually need LOS transmission. 

3.1.4 Camera Based. Camera-based technology is used for detecting respiratory illnesses in a
ontactless manner. Many different camera technologies can be utilized, including RGB cameras,
epth cameras, and marker-based motion-sensing cameras. A summary of camera-based sensing
ethods is provided in Table 4 . 

RGB Camera Sensor . Cameras with RGB (red, green, and blue) channels have been tested in
ecent years to extract respiratory illness data from chest movements [ 99 –105 ]. Furthermore, all of
hese devices operate with visible-spectrum signals. As shown in Figure 5 , RGB cameras integrated
nto webcams can record video frames at a high enough sample to allow for the extraction of data
egarding respiratory illnesses. Three different methods can be utilized for the sensing of RGB
ameras: analyzing the intensity variations of pixels [ 106 –108 ], computing the optical flow signal
 109 –112 ], and video magnification [ 113 ]. 

Intensity variations measurement can determine respiratory parameters by detecting chest move-
ent associated with respiration. Procházka et al. [ 99 ] described a method for detecting ROI in
ACM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 



226:12 N. A. Abu Ali et al. 

Fig. 5. RGB camera based chest movement sensing. 
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he neck pit and analyzing changes in intensity. Compared to an airflow sensor as a reference, this
ethod estimates the respiration parameters by post-processing video frames [ 99 ]. Respiratory

llness is measured through intensity variation in videos recorded by a smartphone camera [ 114 ,
15 ], and a portable and low-cost respiratory smartphone-based system is demonstrated. 

Extracting information about respiration could be accomplished by analyzing the optical flow of
urface human body motions due to respiration [ 116 ]. Using two RGB cameras, two fiber grating
ensors, and two 3D vision sensors, Schmidt [ 117 ] obtained the respiratory parameters. Sanyal
nd Nundy [ 109 ] used the optical flow method to extract respiratory information by extracting
ptical flow at every pixel along the image gradient. This provides a computationally efficient
olution. Once tested on healthy volunteers, the results were promising compared to impedance
neumography values [ 109 ]. Shan et al. [ 118 ] investigated the performance of the Kanade-Lucas
lgorithm in detecting optical flow derived from respiratory activity. 

Sirevaag et al. [ 119 ] demonstrated video magnification of chest movement to detect respiratory
arameters. Using video imaging, the researchers extracted the timing parameters of a sleeping
espiratory cycle. However, the respiratory movements were impossible to observe with the naked
ye. Hence, video magnification was performed using an elliptic filter and wavelet decomposition.
espite the body’s movements, the technique successfully measured the respiratory parameters.
et, the method yielded no real-time measurements. Scalise et al. [ 113 ] magnified tiny respira-
ory movements by applying post-processing techniques. Furthermore, Smith et al. [ 120 ] applied
he Hermite magnification technique to estimate respiratory illness in healthy subjects in various
ositions. 

Summary . The use of RGB cameras is currently confined to structured and static environments.
he most significant shortcoming of these sensors is their susceptibility to motions not associated
ith respiration, which severely limits the technique’s applicability in a broader range of appli-

ations, including sports activities. Furthermore, environmental light changes must be avoided
uring data collection to ensure accurate respiratory data collection. Moreover, this approach can-
ot be used at night without a continuous light source. Camera-based sensing systems encounter
cclusion issues, such as tracking individuals in crowded environments or monitoring moving
CM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Fig. 6. Depth camera based chest movement sensing. Adapted from Smith et al. [ 121 ]. 
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bjects behind obstacles. Lighting variations can affect the performance of camera-based tech-
iques in industrial settings. Adaptive exposure control algorithms, dynamic range expansion, or
he use of additional lighting sources can address these challenges. Optimal camera positioning
lays a critical role, involving the placement of cameras to ensure optimal perception, accounting
or factors like blind spots, field of view, and perspective distortion. The application of camera-
ased techniques in medical imaging, with its stringent image processing demands, is an area of
xploration. Real-time imaging proves essential, particularly in procedures like minimally invasive
urgeries or endoscopy. Employing real-time image enhancement algorithms, such as noise reduc-
ion techniques and efficient compression methods, facilitates precise visualization and diagnosis.

Depth Camera Sensor . Depth camera sensors can obtain depth information by reconstructing the
hest wall surface [ 121 ], as shown in Figure 6 . In the literature, three approaches for depth camera
ensors are used: stereoscopic depth cameras, structured light based depth cameras, and Time of

light (ToF) -based depth cameras. 
Stereoscopic depth camera sensors , also known as RGB depth cameras, estimate depth by ob-

erving a distant target while it is illuminated from various angles by a projector. Stereoscopic
epth cameras find depth by viewing the same scene from two slightly different perspectives. This
s how frontal-vision animals see depth. Depth is calculated from two viewpoints by comparing
mage features. 

A pattern is projected onto a scene by structured light based depth cameras . Patterns, such as
tripes, are identified, and depth is determined by examining distortion in the scene. The sensors
f structured light cameras are composed of one camera and capture the pattern formed by a pro-
ector on the subject. Therefore, these cameras are referred to as single-camera structured light
ameras. This approach requires a projected laser source or light pattern and a camera detector.
he light source displays a structured pattern for camera triangulation. In the work of Soleimani
t al. [ 122 ], Kinect V1 (a structured light sensor) extracted respiratory data from camera depth in-
ormation. Furthermore, an ROI detection algorithm was demonstrated for automatic chest depth
easurement. The respiratory information obtained from a Kinect depth sensor was in good agree-
ent when compared with the spirometer, as in another work by Soleimani et al. [ 123 ]. Stove [ 124 ]

sed electrocardiographic impedance pneumography as a point of reference while collecting res-
iratory data from infants. 
ACM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Fig. 7. Marker-based chest movement sensing. Figure adapted from Wang et al. [ 135 ]. 
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ToF-based depth cameras measure the time required by a signal to return after reflection from
he subject. This demands continuous illumination of the scene by the emitter’s camera, which is
sually an infrared laser. The light detection and ranging principle is the core component of the
peration of depth camera sensors based on ToF [ 122 ]. This particular kind of depth sensor has
een extensive use for monitoring data related to respiration [ 123 –130 ]. There are widespread ToF
ensors as well, such as the Microsoft Kinect v2. A light emitter and a light detector comprise the
oundation of a ToF system. The emitter sends a modulated signal reflected by scene objects and
etected by the receiver upon its return. The round trip time between the transmitter and receiver
ndicates the object’s distance from which the signal was reflected [ 131 ]. Van Gastel et al. [ 132 ]
roposed a remote contactless approach to respiratory illness sensing in clinical settings using
 Microsoft Kinect V2 to re-create the chest wall capacity. This work was expanded by Vanegas
t al. [ 133 ], highlighting the advantages of using two ToF systems instead of a single Kinect. Fur-
hermore, the experimental tests demonstrated the method’s robustness when different types of
lothing were worn. Viola and Jones [ 134 ] presented a demonstration of a respiratory information
ystem for infants, during which they found that the ToF-based depth system and a Piezo belt
eference system had an excellent level of agreement with one another. 

Summary . Whenever a patient’s skin is not exposed, or the ROI is hard to trace or identify,
epth sensors could be chosen over an alternative approach. Furthermore, unlike other optical
ensor based approaches, changes in environmental illumination do not affect distance sensors.
owever, movements unrelated to respiration that can occur during data extraction significantly

mpact accuracy. 

Body Marker Based Motion Sensing Camera . During respiration, the chest wall rises and the
nterior volume increases. To capture these motions, photo-reflective markers can be placed on the
ubject’s chest, as shown in Figure 7 , and their movements are monitored by specialized cameras
nd software [ 135 , 136 ]. Despite the placement of markers on the subject, this technique is deemed
ontactless since the camera does not make a physical connection with the subject. Marker-based
ystems operate by detecting markers to determine 2D or 3D motions. At least two cameras are
equired to apply the triangulation principle. Triangulation methods permit the estimation of the
D coordinates of a marker by analyzing the target from multiple angles. Technically, two markers
aptured by a single camera are sufficient to estimate the respiratory parameters when the person
ests [ 137 ]. Additional markers and cameras are required to replicate the chest cavity and retrieve
CM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Fig. 8. Visible light sensor based chest movement sensing. Figure adapted from Yang et al. [ 146 ]. 

Table 5. Summary of the Visible Light 

Sensor Based Sensing Method 

Motion artifacts High 

Environmental effects High 

Sensor size Low 

Cost Low 

Accuracy Low 

LOS/NLOS LOS 
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sable respiratory data when body movements are unassociated with respiration, such as during
ports. Wang et al. [ 138 ] were the first to employ marker-based systems for respiratory illness
etection. At the same time, this work is expanded by using technological breakthroughs in video
echnologies and processing capacity [ 139 ]. In this study of Wei et al. [ 139 ], four cameras followed
2 photo-reflective markers placed on 32 bodily landmarks. This method is also recognized as
ptoelectronic plethysmography [ 140 ]. 

Summary . The main advantage of marker-based motion capture systems is the ability to ex-
ract respiratory parameters in various scenarios, mainly when motion artifacts are present due
o unrelated respiratory movements. When other contact-based or contactless techniques fail, this
echnique may be effective. This is why marker-based systems are widely exploited in outdoor
ports activities. These systems are also widely deployed in clinical settings, especially for new-
orns [ 141 –145 ]. However, this sensing method has a few limitations, including the need for pre-
etermined working space calibration, the high expense of specialized devices (including camera
ystems and markers), and the time and processing cost required to interpret the 3D trajectories.
his technique is extensively used in studies to obtain respiratory data and monitor athletes. In
onclusion, marker-based systems are not optimal for detecting respiratory disease in household
nd clinical environments. 

3.1.5 Visible Light Sensor. Visible light sensors, such as photodetectors, can be used for respira-
ory illness sensing. Yang et al. [ 146 ] proposed a contactless respiratory system based on a visible
ight sensor and a data processing unit. Figure 8 presents a respiratory illness diagnosis system,
nd results with accuracy up to 5 bpm are observed. Various postures of subjects are considered
uring the experimentation with a day and night scenario. A summary of the visible light detector
ased sensing method is provided in Table 5 . 

Summary . Visible light sensors are still used, but only in extremely controlled environments
nd for monitoring resting subjects. The key restriction is the susceptibility of these sensors to
otions unrelated to respiration, which severely restricts the technique’s applicability to a wide
ACM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Fig. 9. Microphone sensor based respiratory sound sensing. Figure adapted from Yue et al. [ 151 ]. 
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ariety of fields. Changes in illumination must be avoided during data collection to ensure proper
ata recording and extraction of respiratory parameters. Furthermore, this approach cannot be
sed at night since no continuous illumination sources are available. 

.2 Respiratory Sound Detection 

he respiratory sound detection method uses a microphone sensor to diagnose respiratory illness.
he changes in air pressure caused by sound waves can be converted into an electrical signal us-

ng a transducer such as a microphone. Transducers are devices that allow for the conversion of
ne physical quantity into another. A contactless recording of respiratory sounds can be success-
ully carried out using home assistants and smartphones in various settings [ 147 –150 ], as shown
n Figure 9 . Every microphone used in this environment must have a sampling rate greater than
he usual sound frequency of human respiration. An acoustic approach to measuring respiratory
arameters has recently gained popularity, particularly in home settings. A method for recording
espiratory sound signals from the head using a microphone and extracting respiratory features
rom the sound was developed and implemented by Yang et al. [ 147 ]. Utilizing feature extraction
nd classification algorithms, the scientists identified inhaling and exhaling events, distinguished
oise frequencies, and detected snoring occurrences in sleeping individuals. These algorithms were
pplied to filtered respiratory sounds with a frequency range of 0 Hz to 5 kHz. In contrast, Yu and
orng [ 148 ] used the smartphone microphone to approximate the volume and airflow of breath
ased on respiratory sounds. The user was a few feet away from the phone microphone when
he study was conducted. Experiments conducted on healthy subjects in an environment with a
ow background noise level demonstrated good performance for respiratory illness sensing [ 149 ].
o record the patient’s respiratory patterns, Yuan et al. [ 150 ] used a smartphone with a built-in
icrophone and placed it a few centimeters away from the subject’s mouth. Lately, a home en-

ironment equipped with an Amazon Echo (an intelligent speaker) was exploited to differentiate
etween several respiratory illness patterns in a continuous real-time manner [ 151 ]. A support vec-
or machine was used to distinguish between different respiratory illnesses based on the sounds
f respiration that were recorded at a frequency of 8 kHz, with the provision that various respi-
atory illnesses have distinct frequency compositions. Zeng et al. [ 152 ] developed a smartphone
pplication that analyzes acoustic samples taken from the user’s Bluetooth to detect respiration
sing an innovative method based on accelerometer and microphone data. 
The results of this study indicate that respiratory illness sensing values perform well in indoor

ettings. A summary of respiratory sound based sensing methods is provided in Table 6 . 

Summary . Compared to other techniques, acoustic approaches have certain advantages. Many
eople have access to commercially available technologies (e.g., smartphones and home assistants)
CM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Table 6. Summary of Respiratory Sound 

Based Sensing Methods 

Motion artifacts High 

Environmental effects High 

Sensor size Low 

Cost Low 

Accuracy Low 

LOS/NLOS NLOS 

Fig. 10. Thermal camera based respiratory air temperature sensing. Figure adapted from Ali et al. [ 14 ]. 
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hat can extract respiratory parameters. However, no studies concentrate on continuously moni-
oring respiratory parameters using solutions tested against a standard system. Most studies pro-
ide technology solutions without validating them on clinical patients, limiting their relevance
n the real world. Due to the inherent vulnerability of respiratory sounds to numerous environ-

ental interferences, obtaining robust respiratory sounds in particular settings (e.g., traffic and
ym) might be challenging. Moreover, other authors’ methods use ML algorithms to process data,
lthough they still cannot extract real-time respiratory parameters [ 153 , 154 ]. The robustness of
hese approaches for real-time tracking of respiratory parameters requires further research. 

.3 Respiratory Air Temperature Detection 

f an object’s temperature is above zero Kelvin, it will emit radiation at a specified rate and with a
ide range of wavelengths. The temperature of the object has a relationship that is proportional to

he wavelength distribution. The creation of a contactless respiratory illness system could benefit
rom the utilization of thermal imaging cameras. Due to the fluctuating temperature surrounding
he nose during respiration [ 155 ], respiratory air temperature can be used to diagnose respiratory
llnesses. 

The temperature of the exhaled air can be measured with a thermal or infrared camera, which
an be used to diagnose respiratory illnesses. Thermal camera based respiration sensing [ 14 ], as
hown in Figure 10 , involves three steps: identifying the ROI (the nose), sensing it, and processing
he data. ROI can be identified using segmentation [ 156 –158 ], classification [ 159 ], or depth maps
 160 , 161 ] utilized a thermal camera with infrared sensors. Procházka, Aleš, et al. measured the
ariations in temperature around the neck and nasal region. To extract the parameters of respira-
ion, a wavelet analysis method was devised. In a different study, Schleicher et al. [ 162 ] utilized a
hermal camera to record respiratory data related to variations in skin surface temperature around
he nose. The camera was positioned on a tripod 1 m away from the person. After recording and
mage segmentation, an algorithm was utilized to detect and track ROI around the nose. The se-
ected ROI was subdivided into eight equal-sized concentric segments. The method was performed
ACM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Table 7. Summary of Respiratory 

Temperature Based Sensing Methods 

Motion artifacts High 

Environmental effects High 

Sensor size Low 

Cost Low 

Accuracy Low 

LOS/NLOS NLOS 
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or each image. The average temperature was plotted against time for each segment. These graphs
epicted the respiratory signal linked with each segment. During inhalation, the respiratory sig-
al’s amplitude reduces, whereas during exhalation, it increases. Finally, an algorithm was created
o extract respiratory characteristics from the recorded signal automatically. 

Zhu et al. [ 157 ] and Zito et al. [ 159 ] used an algorithm, whereas in the work of Yang et al. [ 163 ],
 camera equipped with an infrared sensor was installed on a tilting platform, to reduce the com-
utational resources required for tracking and segmentation. After a signal has moved through a

ow-pass filter to eliminate noise, it is often subjected to processing. The most common techniques
or processing the filtered signal are autocorrelation and curve fitting [ 164 –166 ] describes an algo-
ithm for extracting respiration signals from pixel time series that does not require nose-tracking
r image segmentation. Lee et al. [ 167 ] extracted respiratory information from a thermal camera
ideo and used a deep neural network to differentiate between different respiratory rates. Li et al.
 168 ] described a clinical study that developed a thermal imaging technique that automatically
racks respiratory rate. The technology sensed and monitored variations in the nose tip’s skin
urface temperature. Thermal images were post-processed, filtered, and segmented to identify the
asal region accurately. In addition, Fang Zhao et al. developed a tracking and identification al-
orithm for the nose region. This technique attained respiration rate estimates highly associated
ith those acquired using traditional contact-based approaches. By detecting temperature varia-

ions induced by respiration, a thermal sensor can be employed to track a patient’s respiratory rate
 169 ]. Khanam et al. [ 170 ] coupled thermal camera based respiratory illness sensing with feature
xtraction to develop a robust contactless system. The drawback of this contactless sensing is that
he positioning of thermal sensors must be close to the patient’s head, whereby rotating the lead
n a different direction may decrease the accuracy. In addition, feature selection is manual and
eeds individual calibration. The summary of the respiratory temperature based sensing method

s provided in Table 7 . 

Summary . Fields of sleep disorder research and medical robotics could benefit substantially from
hermal camera based respiratory illness sensing. However, it is computationally costly due to the
ime it takes for each subject’s images to be processed. Furthermore, tracking inaccuracies for
oving subjects make it susceptible to error [ 50 ]. This method can extract the respiratory rate

uring head motion, but if the mouth is not segmented, breathing through both the mouth and the
ose can be a source of error. 

.4 Face and Forehead Tracking 

he face and forehead tracking method used RGB cameras for diagnosing respiratory illness as
hown in Figure 11 , RGB cameras can be used to remotely monitor respiration by recording the
ser’s face or forehead. [ 171 ]. To record respiratory data from a video of the face, each proposed
echnique must follow the procedures presented next: 
CM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 



Contactless Diseases Diagnoses Using Wireless Communication Sensing 226:19 

Fig. 11. RGB camera based face and forehead tracking. Figure adapted from Selvaraju et al. [ 178 ]. 

Table 8. Summary of Face and Forehead 

Tracking Based Sensing Methods 

Motion artifacts High 

Environmental effects High 

Sensor size Low 

Cost Low 

Accuracy Low 

LOS/NLOS NLOS 
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(1) ROI selection : The entire face should be selected automatically. The Viola-Jones method is
often employed as a face detector [ 172 ]. 

(2) ROI tracking : The ROI should be tracked automatically in the video. For this purpose, the
Kanade-Lucas-Tomasi algorithm is often employed [ 173 , 174 ]. 

(3) Color domain and channel selection : Since oxygenated hemoglobin absorbs light differently
than surrounding tissue in the green channel, the green channel’s information is utilized
[ 175 ]. 

Wang et al. [ 175 ] determined the author’s respiratory parameters by watching a video recording
f the author’s forehead, and the results were encouraging. Facial video images of 8 subjects were
aptured through a 6-channel camera, and Rodrigues et al. [ 176 ] used a method based on blind
ource separation to analyze the images. When data was collected, the participants were asked to
emain seated and calm while their faces and necks were carefully monitored. A camera recorded
0 adult subjects’ facial expressions while standing still or moving quickly. Experiments were car-
ied out on newborns being cared for in a neonatal intensive care unit so that they could assess
he efficacy of methods based on RGB signals. Maurya et al. [ 177 ] investigated the use of a black-
nd-white camera to continuously monitor the subject’s respiration rate from the face while they
ere cycling. The extraction of a reliable signal for reconstructing respiratory waveforms can be

ccomplished by using data obtained from the intensity of the light on the forehead, which was ob-
ained through blind source separation techniques. A summary of the face and forehead tracking
ased sensing method is provided in Table 8 . 

Summary . Despite their widespread availability and low cost, RGB cameras used for forehead
ensing have some limitations regarding respiration measurement. Only controlled validation was
eported in most of the studies. Primarily, the drawbacks of this technique in respiratory illness
ACM Comput. Surv., Vol. 56, No. 9, Article 226. Publication date: April 2024. 
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Table 9. Comparison of Various Contactless Methods 

Sensing method ROI Environment Comfort Application 

Chest movement sensing Chest/Abdomen Static High Domestic 

Respiratory sound Mouth Dynamic Medium Domestic 

Respiratory air temperature sensing Mouth/Nostrils Dynamic High Clinical 

Face and forehead tracking Face/Forehead Dynamic High Domestic 
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ome from the following three requirements: continuous illumination of the face, the need to
educe the influence of skin color on raw data, and the necessity to restrict unrelated body move-
ents to respiration. The requirement is to track the face to decrease breathing-unrelated body
otions continuously. In conclusion, using a continuous illumination source is necessary to lighten

he face when employing this method. This means that the distance between the user and the cam-
ra must be managed. This method cannot be utilized at night or in conditions with low levels of
vailable temperature and light, resulting in higher accuracy. A comparison of various contactless
ensing methods is provided in Table 9 . 

 CONCLUSION 

his study investigated contactless methods by exploiting wireless communication sensing for di-
gnosing and monitoring respiratory illness. Contactless methods have several advantages over
ontact-based methods, including accuracy and improved patient comfort, which is especially im-
ortant for long-term monitoring. Contactless methods are less sensitive to environmental factors

ike temperature and light, resulting in higher accuracy. However, contactless technologies may
lso have drawbacks and limitations. The impact of ambient influences on raw data varies greatly
mong contactless approaches, particularly for sensors not explicitly designed for respiratory mon-
toring (RF, smartphones, camera sensors, etc.). In addition, most contactless systems are hampered
y body artifacts, particularly when ROI is required for assessment; however, ROI sensing us-
ng advanced signal processing can potentially improve the overall efficiency of the approaches.
his study examined four contactless methods for detecting respiratory diseases. Each technique’s
perating principle and primary characteristics were presented (e.g., real-time monitoring, cost,
usceptibility to body motion artifacts). The article also presented open research challenges for
iagnosing and monitoring respiratory illnesses using wireless communication sensing. 
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