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SPORTS PERFORMANCE

Bayesian analysis of changes in standing horizontal and vertical jump after different 
modes of resistance training
Matthew T Wilsona, Lewis J Macgregora, Jackson Fyfeb, Angus M Huntera, D Lee Hamiltona,b* and Iain J Gallagher a*
aPhysiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, UK; bInstitute for Physical Activity and Nutrition, School of Exercise 
and Nutrition Sciences, Deakin University, Geelong, Australia

ABSTRACT
Training interventions often have small effects and are tested in small samples. We used a Bayesian 
approach to examine the change in jump distance after different resistance training programmes. Thirty- 
three 18- to 45-year-old males completed one of three lower limb resistance training programmes: 
deadlift (DL), hip thrust (HT) or back squat (BS). Horizontal and vertical jump performance was assessed 
over the training intervention. Examination of Bayesian posterior distributions for jump distance esti-
mated that the probability of a change above a horizontal jump smallest worthwhile change (SWC) of 
4.7 cm for the DL group was ~12%. For the HT and BS groups, the probability of a change above the SWC 
was ~87%. The probability of a change above a vertical jump SWC of 1.3 cm for the DL group was ~31%. 
For the HT and BS groups, the probability of a change above the vertical jump SWC was ~62% and ~67%, 
respectively. Our study illustrates that a Bayesian approach provides a rich inferential interpretation for 
small sample training studies with small effects. The extra information from such a Bayesian approach is 
useful to practitioners in Sport and Exercise Science where small effects are expected and sample size is 
often constrained.
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Introduction

Resistance training is often used to increase performance in 
power-based sports disciplines. The principle of specificity is criti-
cal to informing training regimes for achieving targeted perfor-
mance improvements (Burnie et al., 2018; Seitz et al., 2014; Young, 
2006). One approach to optimising performance is to consider the 
directional component of forces acting on the body during 
a specific exercise. Two theories – dynamic correspondence (DC) 
and force vector (FV) – underpin our understanding of how forces 
generated during exercise transfer to performance changes. 
Neither DC nor FV suggests that training effects are exclusive to 
the plane of training; rather, the theories each take different view 
on that plane of training. DC theory suggests that forces acting on 
the body during exercise are in relation to the body frame of 
reference (Goodwin & Cleather, 2016). FV theory considers the 
effect of forces in a global frame of reference (Zweifel, 2017), 
whereby exercises in a specific plane (horizontal or vertical) act 
to improve skill performance to a greater extent in that plane. For 
example, both the back squat (BS) and deadlift (DL) are performed 
in the vertical vector and share similarities with common athletic 
movements such as sprinting and jumping with regards to bio-
mechanical movement and lower limb muscle recruitment pat-
terns (Brughelli et al., 2011; Cormie, McGuigan, and Newton 2011; 
Buchheit et al., 2014; MacKenzie et al., 2014). These exercises are 
commonly included in resistance training programmess aimed at 
increasing sprint or jump performance for these reasons. However, 
debate around the use of the BS and DL for transfer of strength 

and power across to athletic performance has led to an increase in 
the use of the barbell hip thrust (HT) for improving sprint and/or 
jump performance (Neto, Vieira, and Gama 2019). The unique 
loading pattern of the HT has been suggested to enhance hor-
izontal force production in sporting performance (Contreras et al., 
2015; Loturco et al., 2018). A recent training study (Fitzpatrick et al., 
2019), however, demonstrated that the question of optimal trans-
fer from the gym to sporting performance is still unresolved.

The usual approach to statistically assessing an effect is to 
perform null-hypothesis significance testing (NHST). NHST pro-
cedures are based on frequentist principles, and proper inter-
pretation requires assumptions based on a large number of 
exact study repeats with different samples. By definition, NHST 
also posits exactly one hypothesis to test – the null hypothesis – 
which is almost universally framed as exactly no effect (i.e. zero 
difference). Implicit in this process is the requirement for 
a power calculation such that a pre-determined effect size on 
a background of pre-determined variability will produce 
a p-value considered statistically significant (usually p < 0.05), 
e.g., 80% of the time. This leads to another challenge with 
exercise training studies; effect sizes are typically small and 
sample sizes are often limited; small effects estimated from 
small samples yield unreliable effect estimates (IntHout et al., 
2015; Pereira et al., 2012), irrespective of the significance of the 
final p-value. There is now increasing awareness that NHST 
approaches do not offer as rich an inferential context as many 
scientists would like (Aarts et al., 2011; Wasserstein et al., 2019), 
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and results are frequently misinterpreted (Amrhein et al., 2019; 
Greenland et al., 2016; Hoekstra et al., 2014; Pernet, 2017). 
Rather than comparing collected data to an assumed “no 
effect” null, the questions of interest for most scientists and 
practitioners are usually whether there is an effect, how big the 
effect might be and what is the uncertainty around that effect. 
Some authors have therefore advocated moving from NHST to 
estimation of effect sizes and uncertainty around those esti-
mates. This idea is central to the “new statistics” (Cumming, 
2011, 2014) and the magnitude-based inference (MBI) 
approach (Batterham & Hopkins, 2006). These approaches 
both focus on interpretation of frequentist-based confidence 
intervals. The MBI approach (Batterham & Hopkins, 2006) raised 
the conversation around estimate-based thinking in sport 
science but was shown to have sub-optimal properties for its 
proposed purpose (Barker & Schofield, 2008; Butson, 2017; 
Sainani, 2018; Welsh & Knight, 2015).

An alternative to frequentist statistical approaches are those 
based on Bayesian principles. While a thorough description of 
Bayesian methods is beyond the scope of this report, accessible 
introductions are provided by Kruschke and Liddell (John 
K. Kruschke & Liddell, 2017; J K. Kruschke & Liddell, 2018). 
Briefly, in the Bayesian approach, one first decides on 
a probabilistic model of the process under study, giving rise to 
a prior probability distribution that represents knowledge about 
the phenomena before incorporating any new data. This prior 
distribution is then combined, via Bayes theorem with the like-
lihood of gathered data – the probability of the data collected 
given specific parameters earlier (Etz, 2018) – to generate 
a posterior distribution (Gelman & Rohilla Shalizi, 2013). The 
entire posterior distribution is the target of inference in the 
Bayesian approach. Borg et al. recently suggested Bayesian 
methods could provide an informative approach to estimating 
small effect sizes in small samples indicating Bayesian methods 
would be useful for sport science investigators (Borg et al., 2018).

The availability of an entire posterior distribution rather than 
point estimates makes the Bayesian approach a useful methodol-
ogy for quantifying the effects of training interventions on athletic 
performance. Practitioners often aim to quantify the effect of 
training programmes on physical performance outcomes such as 
muscular strength and power and the translation of these out-
comes to athletic performance (Lockie et al., 2016; Paul & Nassis, 
2015; Sperlich et al., 2016). Horizontal (broad) jumping ability is 
commonly used to assess the transfer of strength and power gains 
from training across to athletic performance and has been corre-
lated with 10 m sprint velocity (Maćkała et al., 2015) and 100 m 
sprint times (Loturco et al., 2015). Similarly, vertical jump scores 
have been positively correlated with measures of sprint speed 
(Shalfawi et al., 2011) and increased lower body strength in team 
sports (Boraczyński et al., 2020) and used to distinguish between 
performance levels (Masaru et al., 2016). Thus, horizontal and 
vertical jump are often used as performance outcomes, and resis-
tance training programmes are often targeted at improving hor-
izontal and/or vertical jump performance, making exercise 
selection of key importance.

Restricting exercise training to a specific plane would allow 
for the testing of both DC and FV theory. In particular, FV theory 
would classify the HT as a horizontal exercise and the squat and 

DL as vertical exercises. A testable hypothesis based on FV 
theory is that the HT should increase horizontal jump perfor-
mance to a greater extent than DL and squat and that BS and/ 
or DL training should increase vertical jump performance to 
a greater extent than the HT. Notably, others have found that 
both squat and HT result in similar positive changes in horizon-
tal jump performance (Fitzpatrick et al., 2019; Zweifel, 2017). In 
this study, we examined the effect of resistance training incor-
porating either a DL, HT, or BS on both horizontal and vertical 
jump performance. Faced with a small sample size and a desire 
to directly quantify the probability of an effect, we used 
Bayesian methods to answer the three questions posited 
above: is there an effect, how big is the effect and what is the 
uncertainty around the effect?

Methods

Using a parallel, repeated-measures design,we investigated 
changes in horizontal and vertical jump distance following 6 
weeks of lower body resistance training incorporating 
a single exercise (either DL, HT or BS). Recreationally active 
participants were recruited and then randomised to one of 
the three lower limb resistance training regimes. After study 
enrolment, participants were familiarised with the jump 
protocols and then performed each jump for baseline mea-
surements in an identical session 1 week later. Each partici-
pant then completed a 6-week resistance training 
intervention consisting of their assigned training exercise 
(either DL, HT or BS) only in addition to their usual activities 
of daily living. Following completion of the training pro-
gramme, participants underwent post-intervention assess-
ments in an identical manner to baseline.

Participants

Eligible participants were physically active males aged 18– 
45 years old (recreational sports participants with >3 hr/week 
of self-reported physical activity) but not resistance trained (no 
resistance training 6 months prior to study commencement). All 
participants were required to maintain their normal exercise/ 
physical activity/sporting routines throughout the study to be 
free of musculoskeletal injury in the previous two years and had 
to complete a physical activity readiness questionnaire prior to 
beginning the study. A convenience sample of 48 participants 
(16 per group) was recruited. These are the same participants 
examined in Wilson et al. who examined the relationship 
between muscle adaptations to RT and tensiomyography 
(TMG) outcomes (Wilson et al., 2019). Participants were assigned 
to one of three training groups matched on height, mass and 
baseline horizontal jump distance. Of the 48 recruited partici-
pants, 10 withdrew from the study due to injuries sustained in 
team sports, 3 were excluded for failing to complete the training 
intervention (<90% attendance) and 2 were unable to complete 
post-intervention assessments, leaving a sample of 33 partici-
pants: BS group (n = 11): 179.3 ± 6.0 cm, 79.0 ± 17.9 kg; DL group 
(n = 11): 180.2 ± 6.7 cm, 78.3 ± 7.0 kg; HT group (n = 11): 
182.8 ± 5.8 cm, 81.0 ± 11.5 kg.
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Horizontal and vertical jump testing

Prior to both vertical and horizontal jump testing, participants 
completed a standardized familiarization session.

Participants received a visual demonstration of each jump 
technique from a qualified strength and conditioning practi-
tioner, according to the described technique. Participants 
were then allowed five practice attempts, per test, which 
were observed by practitioners, and feedback was given to 
ensure correct technique. Participants completed 
a standardised warm-up protocol consisting of low- 
intensity cycling and dynamic stretches followed by assess-
ments of horizontal and vertical jump displacement. The 
order of jump testing was randomised for each session. For 
each jump test, participants undertook three practice jumps, 
with 1 minute of rest between each. Following this, partici-
pants completed three maximal effort jumps, with the best 
score subsequently recorded. In the case of any jump 
attempt that was failed due to improper technique, partici-
pants were allowed one additional attempt to ensure three 
valid jumps.

Horizontal jump displacement was measured using a fixed 
tape measure and straight ruler. Participants were positioned 
on the start line, lining the front of their shoes with the 0 cm 
mark. Participants were instructed to jump horizontally as far as 
possible whilst maintaining their hands on their hips. 
Participants were not permitted to swing their arms during 
the jump. Participants had to land on both feet, with no sec-
ondary motions of correction, for the jump to be counted 
successful. A failed jump was determined if the participant 
moved their feet forward after the initial landing and/or the 
participant lost their balance upon take-off or landing. The 
horizontal jump distance was taken as the distance from the 
0 cm mark to the back of the participant’s heel closest to the 
0 cm mark.

Vertical Jump displacement was recorded using a linear 
transducer (Celesco, Toronto, ON, Canada), connected to 
a BioPacMP100 data capture system (BioPac Systems, Inc.). 
The transducer was fixed, directly above the participant’s 
head to the top of a FT700 Power cage (Fitness-technology, 
Melbourne, Australia). The end of the transducer cable was 
fixed to the centre of a dowel rod by Velcro strap. Participants 
stood directly underneath the transducer, placing the dowel 
road across their back and rested on their shoulders and main-
taining its position with their hands on either side (this also 
acted to prevent arm swinging during jump attempts). 
Participants were instructed to take a pre-jump stance with 
their feet pointing forward and positioned 1.5x shoulder 
width apart. Each participant’s pre-jump position was marked 
and recorded using tape for replication on each jump attempt 
and across testing sessions. Participants were instructed to 
squat down to a comfortable level and then jump up as high 
and as fast as possible with the dowel rod maintaining contact 
with the upper back. A failed jump was determined if partici-
pants lost their balance upon take-off or landing and/or the 
dowel rod was removed from the upper back. Each jump 
attempt was inspected by two investigators on either side of 
the participant. All displacement data was recorded by 
Acqknowledge software (BioPac Systems, Inc.) and saved for 

offline analysis. Vertical jump displacement was calculated as 
the displacement from a participant’s standing start position 
and the highest point recorded at the top of each jump by the 
linear transducer.

Training intervention

Participants attended two supervised training sessions per 
week (~72 hours apart) for 6 weeks. Each group used only 
their respective exercise as the method of lower body train-
ing, while the rest of the programme remained consistent 
for all groups (Table 1). Resistance training loads were 
determined based on the 1RM values of each participant. 
Full details can be found in Wilson et al. (2019). All addi-
tional exercise loads were calculated according to 
a combination of estimated 1RM scores and the RPE scale 
(scaled from 1 to 10). The programme followed a linearized 
progression model to ensure a gradual load progression 
(Fleck, 1999). At the end of the first session of each week, 
participants performed a set with as many repetitions as 
possible for each exercise to ensure maximum intensity of 
effort which may confer a training benefit (Morton et al., 
2016). Coaches present at each session ensured that parti-
cipants maintained correct exercise form and provided assis-
tance when required. Following completion of each training 
session (and all 1RM testing sessions), participants were 
provided with 40 g of whey protein (unflavoured whey 
protein concentrate, Arla Food Ingredients, Netherlands) in 
a drink to maximise post-training anabolism.

Statistical analysis

We used Bayesian regression modelling with Stan (Carpenter 
et al., 2017) via the rstanarm package (https://mc-stan.org/rsta 
narm/) in R (R Core Team, 2021) to analyse the differences in 
horizontal and vertical jump performance after the different RT 
programmes. Stan is a probabilistic programming language 
which uses Hamiltonian Markov Chain Monte Carlo (MCMC) 

Table 1. Linearized training protocol used for the 6-week intervention (weeks X: 
number of sets x number of reps). Participants had a 72-hour break between 
training sessions. AMRAP – as many reps as possible before failure or form was 
compromised. RPE scale used during sessions as a training intensity guide.

Day One Day Two

Main Lift (Back squat, deadlift, or 
hip thrust) 
Weeks 1 & 2: 3 x 8* – 75% 1RM 
Weeks 3 & 4: 4 x 6* – 80% 1RM 
Weeks 5 & 6: 5 x 4* – 85% 1RM 
* Last set is AMRAP

Main Lift (Back squat, deadlift, or 
hip thrust) 

Weeks 1–6: 3 × 10–70% 1RM

Bench Press 
Weeks 1 & 2: 3 × 10 – RPE 7 
Weeks 3 & 4: 3 × 8 – RPE 7.5 
Weeks 5 & 6: 3 × 6 – RPE 8

Dumbbell Chest supported Row 
Weeks 1 & 2: 3 × 10 – RPE 7 
Weeks 3 & 4: 3 × 8 – RPE 7.5 
Weeks 5 & 6: 3 × 6 – RPE 8

Underhand-grip Lat-pulldown 
Weeks 1 & 2: 3 × 10 – RPE 7 
Weeks 3 & 4: 3 × 8 – RPE 7.5 
Weeks 5 & 6: 3 × 6 – RPE 8

Incline Press 
Weeks 1 & 2: 3 × 10 – RPE 7 
Weeks 3 & 4: 3 × 8 – RPE 7.5 
Weeks 5 & 6: 3 × 6 – RPE 8

Military Press 
Weeks 1 & 2: 3 × 10 – RPE 7 
Weeks 3 & 4: 3 × 8 – RPE 7.5 
Weeks 5 & 6: 3 × 6 – RPE 8

Seated Row 
Weeks 1 & 2: 3 × 10 – RPE 7 
Weeks 3 & 4: 3 × 8 – RPE 7.5 
Weeks 5 & 6: 3 × 6 – RPE 8
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with the No U-Turn sampler (NUTS) algorithm to generate 
posterior distributions (Hoffman & Gelman, 2014). Specifically, 
rstanarm makes it easy to write Stan statistical models using 
base R syntax.

Defining the model and priors

We assumed that the difference in both horizontal and vertical 
jump pre-to-post training intervention was (approximately) 
normally distributed (Lyon, 2014; McElreath, 2016): 

diffij,N μj; σ
� �

(1) 

Where diffij is the pre-to-post difference for individual i in train-
ing group j. The model shown in (1) describes the generative 
process for the data. Based on previous data showing statisti-
cally similar changes in jump distance following BS and HT 
training (Fitzpatrick et al., 2019; Zweifel, 2017), the DL group 
was set as the reference group. We modelled the mean differ-
ence for each group using a linear model: 

μj ¼ β0 þ β1j þ εij (2) 

Here μj is the exercise group-specific mean difference, β0 is the 
intercept term (here the mean for the reference group), β1j 

represents the difference in means between group j and the 
reference group and εij is the residual for each individual. The 
residuals were assumed to be normally distributed with a mean 
of zero and an unknown standard deviation (σ) to be estimated 
from the data, a standard assumption in linear modelling. The 
Bayesian approach requires setting prior probability distribu-
tions over each parameter to be estimated. In the model above, 
we are estimating three parameters – β0,β1j and σ. The prior 
distributions set over these parameters should, to some extent, 
reflect our expectation about the change in jump performance.

The β0 term, the mean of the reference group, was given 
a normally distributed prior with a mean set at the mean value 
of the pooled pre-to-post differences data and a standard 
deviation equal to the standard deviation of the pooled differ-
ences multiplied by 3. We chose the value of 3 reflecting the 
recommendation from Rhea (2004) that a large effect size in 
untrained individuals over a strength training intervention was 
>2. This prior implies a plausible change in horizontal jump 
distance within 50 cm in either direction with 95% probability 
and a change in vertical jump within 25 cm in either direction 
with 95% probability (Supplementary figure 1).

The β1j term, representing the group offsets from the refer-
ence mean, was given a normally distributed prior with a mean 
of zero and a standard deviation as above for β0. For the 
horizontal jump, this again implies that the difference from 
change in the DL group will be within 50 cm in either direction 
with 95% probability, whilst for vertical jump, the difference 
from change in the DL group will be within 25 cm in either 
direction with 95% probability (Supplementary Figure 1). The 
priors on both the intercept and slope terms support either 
decrements or improvements in jump performance compared 
to the DL group. These priors allow the data to inform the 
posterior distribution, allow a physiologically credible probabil-
ity space for changes in jump performance and are wide 
enough to limit overfitting to the data at hand.

The unknown residual standard deviation term, σ, was given 
a half-t prior, constraining the values of σ to be positive as 
standard deviation cannot be negative. The shape parameter 
(degrees of freedom) was 4, the mean was 0 and the scale 
parameter equal to the standard deviation of the pooled 
jump difference multiplied by 10. This large-scale parameter 
was chosen to reflect our uncertainty about the value of the 
standard deviation of the residuals. Thus, the model and priors 
used were (Figure 1 & Supplementary Figure 1) as follows: 

diffij,N β0 þ β1j; σ
� �

(3) 

β0,N μdiff ; σdiff � 3ð Þ (4) 

β1j,N 0; σdiff � 3ð Þ (5) 

σ ,thalf 4; 0; σdiff � 10ð Þ (6) 

In summary, these priors reflect our expectation that there 
would not be large effects between the training groups, nor 
effects in a particular direction (i.e., any group could experience 
an increase or decrease in jump performance following the 
intervention). They also allow probability over physiologically 
plausible values but are wide enough to prevent overfitting or 
overly constraining the model. Details and code are available in 
the supplementary material hosted on Figshare (doi:10.6084/ 
m9.figshare.16566474).

Calculation of typical error and smallest worthwhile 
change

In line with the recommendation from Swinton et al. (Swinton 
et al., 2018), we chose to examine the proportion of response 
above a smallest worthwhile change (SWC). A useful choice for 
SWC in the current context is the typical error (TE; Hopkins, 
2000). We did not have test–retest data available to calculate 
a study-specific TE. Swinton et al. provide an equation for 
estimated TE ( bTE) from a mean and coefficient of variation 
(CV; Swinton et al., 2018). Markovic et al. (Markovic et al., 
2004) used data from 93 college-age male physical education 
students (i.e. a similar sample to ours) to calculate a CV of 
2.4 cm for the horizontal jump and 3.3 cm for the vertical 
jump. Using these CV values and our pre-training mean for 
each jump, we calculated a horizontal jump bTE value of 
4.7 cm and a vertical jump bTE value of 1.3 cm. We used these 
bTE values to set the SWC at the estimated technical measure-
ment variation for each jump assessment and used the poster-
ior distribution to examine the probability of the training effect 
exceeding this technical “noise” in measurement (i.e. the bTE).

Frequentist statistical modelling

We also used frequentist linear modelling via the R lm() func-
tion to compare our Bayesian analysis. Specifically, we used this 
frequentist analysis to demonstrate agreement in parameter 
estimates rather than as a mechanism to generate p-values. 
However, for the frequentist analysis, statistical significance 
was set at the conventional p ≤ 0.05. As noted by a reviewer, 
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our sample size is very likely too small to detect a significant 
effect of RT on jump distance using frequentist methods, and 
previous power analysis on the same cohort was not directed at 
detecting significant changes in jump distance (Wilson et al., 
2019). Bayesian analyses do not require frequentists power 
estimates. Data are presented as mean ± SD. Effect sizes are 
reported as Hedge’s g rather than Cohen’s d. Hedges g is pre-
ferred for small samples due to upward bias in Cohen’s 
d (Nakagawa & Cuthill, 2007). Further details and code for the 
statistical analyses are available in the supplementary materials 
hosted on Figshare (doi:10.6084/m9.figshare.16566474).

Results

Data for jump performance before and after the three resistance 
training programmes are displayed in Figure 2 (A & C) and 
Table 2. The changes in horizontal jump performance for each 
training group were as follows: DL 1.45 cm ± 8.61 cm (Hedges 
g 0.06 (95% CI −0.75, 0.86); 6/11 participants increased jump 
distance), HT 8 cm ± 5.41 cm (Hedges g 0.42 (95% CI −0.48, 
1.31); 11/11 participants increased jump distance) and BS 
7.67 cm ± 10.4 (Hedges g 0.37 (95% CI −0.42, 1.14); 10/11 parti-
cipants increased jump distance). The changes in vertical jump 
performance for each training group were as follows: DL 0.645 cm 
� 308 cm (Hedge’s g 0.15 (95% CI −0.66, 0.95); 5/11 participants 

increased jump distance), HT 1.79 cm ± 4.17 cm (Hedge’s g 0.34 
(95% CI −0.55, 1.22); 7/11 participants increased jump distance) 
and BS 1.88 cm ± 4.91 cm (Hedge’s g 0.27 (95% CI −0.51, 1.04); 9/ 
11 participants increased jump distance; Figure 2 B & D).

The Bayesian modelling estimates for change in jump dis-
tance are shown in Table 3. For comparative purposes, esti-
mates from the standard linear modelling procedure 
implemented in R are shown in Table 4. The estimated para-
meters are practically identical in both approaches. The 
Bayesian estimate of the mean change in horizontal jump for 
the DL group was 1.58 cm (95% HDI: −3.65, 6.82). The HT group 
jump distance increased by 6.32 cm (95% HDI: −1.57, 14.27, 
over the DL group, whilst the BS group jump distance increased 
by 6.01 cm (95% HDI: −1.41, 13.22) over the DL group. The 
estimate for the common standard deviation was 9.01 cm (95% 
HDI: 6.98, 11.84). The Bayesian estimate of the mean change in 
vertical jump for the DL group was 0.67 cm (95% HDI: −1.89, 
3.24). The HT group jump distance increased by 1.10 cm (95% 
HDI: −2.72, 4.88) over the DL group, whilst the BS group jump 
distance increased by 1.18 cm (95% HDI: −2.43, 4.71) over the 
DL group. The estimate for the common standard deviation 
was 4.33 cm (95% HDI: 3.34, 5.69).

The results of using standard frequentist NHST to assess 
changes in jump distance are shown in Table 4. The frequentist 
estimate of the mean change in horizontal jump for the DL 
group was 1.45 cm (95% CI: −3.86, 6.77; p: 0.58). The HT group 
jump distance increased by 6.55 cm (95% CI: −1.38, 14.47; p: 
0.10); Hedges g: 0.85 (95% CI: −0.05, 1.73) over the DL group. 
The SQ group jump distance increased horizontal jump by 
6.21 cm (95% CI: −1.14, 13.57; p: 0.095); Hedges g: 0.63 (95% 
CI: −0.19, 1.43) over the DL group. The frequentist estimate of 
the mean change in vertical jump for the DL group was 0.65 cm 
(95% CI: −1.80, 3.10; p: 0.61). The HT group jump distance 

Figure 1. Graphical representation of the Bayesian model used in this study. The differences are modelled by a Normal distribution with a mean for each group 
composed of the intercept and slope coefficient from a linear model (β0 + β1). β0 and β1 have Normal priors parameterized as in the figure. The prior for β0 is wide on 
the scale of the data. The prior for β1 allows for increments or decrements in performance. The residuals of the linear model are assumed normally distributed with 
a mean of zero and and standard deviation (σ) to be estimated from the data. The σ term is modelled by a half-t distribution. Note these distributions are not to scale. 
The representation follows the style of Kruschke (https://doingbayesiandataanalysis.blogspot.com/2018/02/make-model-diagrams-for-human.html) and were made 
available by R. Bååth (http://www.sumsar.net/blog/2013/10/diy-kruschke-style-diagrams/).
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increased horizontal jump by 1.14 cm (95% CI: −2.51, 4.80; p: 
0.54); Hedges g: 0.3 (95% CI: −1.15, 0.55) over the DL group. The 
SQ group jump distance increased horizontal jump by 1.23 cm 
(95% CI: −2.16, 4.62; p: 0.48); Hedges g: 0.29 (95% CI: −1.08, 
0.51) over the DL group.

The posterior distributions for the total estimated jump 
distance after training for each group are shown in Figure 3, 
with the accompanying 95% HDIs in Table 3. The probability of 
a change above the SWC is indicated by the proportion of each 
posterior distribution to the right of the dashed line in Figure 3. 
The probability of a change above the horizontal jump SWC for 

the DL group was ~12%. For the HT and BS groups, the prob-
ability of a change above the horizontal jump SWC was ~87%. 
The probability of a change above the vertical jump SWC for 
the DL group was ~31%. For the HT and BS groups, the prob-
ability of a change above the vertical jump SWC was ~62% and 
~67%, respectively. This analysis of the posterior distribution 
directly informs us about the probability of an effect above 
SWC in this study.

a b

c d

Figure 2. Jump distance (m) and differences in jump distance before (blue) and after (red) a 6-week resistance training programme. The horizontal bars show the mean 
for each data set, and the grey lines connect individual participant values. (A) Horizontal jump distance (m) before (blue) and after (red) a 6-week resistance training 
programme. (B) Groupwise differences in horizontal jump (m) for the deadlift (green), hip thrust (blue) and squat (red) groups. (C) Vertical jump distance (m) before 
(blue) and after (red) a 6-week resistance training programme. (D) Groupwise differences in vertical jump (m) for the deadlift (green), hip thrust (blue) and Squat (red) 
groups.

Table 2. Pre- and post-training results for horizontal and vertical jump. Jump 
distances are in centimetres. Data are presented as mean (sd).

Horizontal Jump

Baseline Post-training
Deadlift 196.6 (24.9) 198.1 (24.4)
Hip thrust 192.4 (17.4) 200.4 (18.8)
Squat 198.2 (19.9) 205.8 (20.1)
Vertical Jump

Baseline Post-training
Deadlift 38.9 (4.0) 39.6 (4.2)
Hip thrust 39.5 (3.9) 41.2 (5.9)
Squat 41.1 (7.1) 43.0 (6.2)

Table 3. Bayesian estimates of effects for each training modality with 95% 
highest density estimates (HDIs). For the deadlift group, the estimate is the 
mean change in horizontal jump in centimetres over the training intervention. 
For the other two groups, the estimate represents the difference in centimetres 
from the change for deadlift. HDI (95%) (Highest Density Estimate – 95%) is the 
interval encompassing the highest 95% of the posterior probability. Prop > SWC 
is the proportion of the posterior probability distribution greater than the SWC 
(see main text).

Horizontal Jump Estimates HDI (95%) Prop > SWC

Intercept (Deadlift) 1.58 −3.65–6.82 12.1
Hip thrust 6.34 −1.57–14.27 86.6
Squat 6.01 −1.41–13.22 86.8
Vertical Jump Estimates HDI (95%) Prop > SWC
Intercept (Deadlift) 0.67 −1.89–3.24 30.6
Hip thrust 1.10 −2.72–4.88 62.0
Squat 1.18 −2.43–4.71 67.2
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Model checking is an important part of the analysis. The 
standard assumptions for residuals in linear modelling apply 
to our data analysis. In Figure 3 B and D, we show that residuals 
are approximately normally distributed around zero and that 

residual variance for each group is approximately the same. 
There are also diagnostic checks for the Bayesian procedures 
we used. Supplementary Figures 2A and C illustrate that the 
MCMC chains used to sample from the posterior for each 
estimated parameter converged. The Gelman-Rubin statistic 
(R̂ for all parameters) was also 1 (not shown) as recommended 
(Gelman & Rohilla Shalizi, 2013). Supplementary Figures 2B and 
D demonstrate that autocorrelation amongst samples from the 
posterior distribution was minimal, suggesting that the MCMC 
samples we used to characterise each posterior distribution can 
be considered independent.

A gold standard check for any model is to compare 
model performance to a separate, independent dataset,but 
we did not have such a dataset available. However, the 
posterior distribution can be used to generate simulated 
datasets, and these simulations can be used to check 
model fit. Notably, the posterior distribution incorporates 
both parameter estimate uncertainty and sampling uncer-
tainty. We sample values from the posterior distribution (i.e., 
mean changes and standard deviations according to our 
model), simulate study data from these samples and exam-
ine how well these simulated datasets match the observed 

Table 4. Frequentist estimates of effects for each training modality from the 
linear model with 95% confidence intervals (95% CI), p-values and effect sizes 
(Hedge’s g) for the differences from the deadlift group. For the deadlift group, the 
estimate is the mean change in horizontal jump in centimetres over the training 
intervention. For the other two groups, the estimate represents the difference in 
centimetres from the change for deadlift.

Horizontal 
Jump Estimates 95% CI p-value ES (Hedge’s g)

ES 
95% CI

Intercept 
(Deadlift)

1.45 −3.86– 
6.77

0.58

Hip thrust 6.55 −1.38 
– 

14.47

0.10 0.85 −0.05– 
1.73

Squat 6.21 −1.14– 
13.57

0.095 0.63 −0.19– 
1.43

Vertical 
Jump

Estimates 95% CI p-value ES (Hedge’s g) ES 95% 
CI

Intercept 
(Deadlift)

0.65 −2.51– 
3.10

0.61

Hip thrust 1.14 −2.51– 
4.80

0.54 0.30 −0.55– 
1.15

Squat 1.23 −2.16– 
4.62

0.48 0.29 −0.51– 
1.08

a b

c d

Figure 3. Posterior densities for change in jump distance for (A) horizontal and (C) vertical jump over the training intervention. Each posterior density is shown with the 
modal value (black point) and a 95% highest density interval (HDI) shown as black lines extending from mode. The vertical dashed lines show the smallest worthwhile 
change (SWC) value calculated using the bTE for each jump. See main text for details. Fitted versus residual values for the model (horizontal jump (B) and vertical jump 
(D)) demonstrating that the model meets the assumption of normally distributed residuals around zero. The variance across the residuals is also similar for each group 
meeting the homogeneity assumption.
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dataset. This process is termed posterior predictive check-
ing. If the model is a reasonable reflection of the data 
generating process, then the distribution of calculated sta-
tistics (termed T(yrep) by Gelman & Carlin (2014)) from the 
simulated data should be centred around the observed data 
statistics (T(y)). In particular, the tail probabilities calculated 
from simulated samples, termed posterior predictive (or 
Bayesian) p-values, should be close to 50% (Gelman & 
Rohilla Shalizi, 2013). Specifically, we use the posterior pre-
dictive check as a goodness-of-fit measure for the model 
(Gelman & Rohilla Shalizi, 2013). We generated 5000 repli-
cated datasets (yrep) from our posterior distributions, and for 
each of these datasets, we calculated the mean in each 
training group as a test statistic, T(yrep). As seen in 
Figure 4, the T(yrep) values distribute evenly around the 
actual values from the study (black vertical lines in 
Figure 4) for each group. For the horizontal jump, the 
proportion of the distribution above the black vertical 
lines in Figure 4 is 50%, 50% and 48.5% for DL, HT, and 
BS, respectively; for the vertical jump, the same proportions 
are 49%, 51% and 50%. These values suggest a model that 
reflects the data well.

It would be useful to have some idea of the results of 
a future study and an indication of the uncertainty around 
effect size estimates in future studies. The posterior predictive 
distributions can also be used to estimate the proportion of 
means we would expect above the chosen SWC in repeat 
studies. Our SWC value for horizontal jump of 4.7 cm is shown 
in Figure 4 by the dashed vertical line on each histogram. The 
proportion of horizontal jump means for each training group 
exceeding this threshold were 19.8%, 78.8% and 77.9% for DL, 
HT and BS, respectively. The proportion of values exceeding the 
SWC for vertical jump were 44%, 53.8% and 54.4% for DL, HT 
and BS, respectively. These figures have direct probabilistic 
interpretations. Plausibly, future studies would demonstrate 

improvements in horizontal jump performance exceeding the 
stated bTE for both the HT and BS but not for the DL; 40–50% of 
studies would be expected to show an improvement for ver-
tical jump performance irrespective of lower limb resistance 
exercise.

Discussion

Using a Bayesian approach, we examined the effectiveness of 
three different strength training exercises for improving hori-
zontal and vertical jump performance. Taken together, our 
findings address whether we are seeing an effect, the size of 
that effect and our uncertainty around the effect size. Bayesian 
analysis also gives us directly interpretable probabilities for 
changes in jump performance. The graphical examination of 
the data (Figures 2 and 3), together with the Bayesian estimates 
of sizes (Tables 1 and 3), suggest there was an effect of training 
programme on jump performance. The Bayesian estimates of 
changes in jump distance (Table 3 and Figure 3) provide an 
indication of how large the effect is, and examination of the 
posterior distributions (Table 3 and Figure 3) allows estimation 
of the probability we are seeing an effect of training above 
a chosen SWC for each jump modality. In addition, posterior 
predictive checking suggests we have modelled our data well 
and that HT and BS training are especially likely to produce 
detectable performance increases in horizontal jump perfor-
mance over DL training in study replications. Notably, 
a conventional NHST approach (Table 2) demonstrated the 
same changes in jump distance but failed to reject the null 
hypothesis, leading to a situation whereby neither the null or 
alternative hypotheses are supported, and consequently no 
useful conclusions can be drawn (Greenland et al., 2016; 
Pernet, 2017).

The HT and BS training groups showed improvements in 
horizontal jump distance and vertical jump height beyond the 
estimated TE for each exercise (Figure 3 A and C). This suggests 

a b

Figure 4. Posterior predictive data for horizontal (A) and vertical jump (B) change (m) under three resistance training modalities. The histograms show the change in 
jump distance from 5000 datasets replicated from the model. The dark vertical line shows the change in jump distance from our study. The area to the right of the 
dashed line is the predicted proportion of response (>SWC) in study replications. See main text for further detail.
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an effective, positive transfer of strength gains resulting from 
HT and BS training to both vertical and horizontal jump perfor-
mance. Previously, increases in horizontal and vertical jump 
performance have been seen following HT and BS training 
(Contreras et al., 2017; Fitzpatrick et al., 2019; Zweifel, 2017), 
supporting our observations. Extensive knee and hip extension 
muscle activation whilst training the BS (Contreras et al., 2015; 
Delgado et al., 2019) may account for the effectiveness of BS in 
improving jump performance. Recently, Yokozawa et al. (2019) 
demonstrated that knee extensor force production during the 
propulsive phase of a horizontal jump was positively correlated 
with jump distance. This suggests improved knee extensor 
force production following BS training (Aagaard et al. 2002; 
Chelly et al., 2009) may have contributed to the observed 
improvement in horizontal jump distance. Vertical jumping is 
also associated with substantial muscle activity of the knee and 
hip extensors (Falch et al., 2020; Kopper et al., 2013), which are 
heavily activated by the BS exercise, likely explaining the 
observed improvements in vertical jump task performance 
following BS training. Furthermore, the BS exercise may be 
considered biomechanically similar to both horizontal and ver-
tical jumping activities according to DC theory since both 
involve similar directions of ground reaction forces relative to 
the athlete (Fitzpatrick et al., 2019; Goodwin & Cleather, 2016; 
Siff, 2000). Thus, DC provides theoretical support for the task- 
specific transfer of strength gains from BS training to both 
horizontal and vertical jumping performance.

The principles of DC theory may also explain why HT training 
was effective at increasing horizontal and vertical jump perfor-
mance. According to DC theory, an exercise can be considered 
more mechanically specific to a task if increased force produc-
tion occurs within similar ranges of movement as in the task 
(Goodwin & Cleather, 2016). In contrast to the BS, the HT has 
been shown to elicit greater hip extensor activation and force 
production as the hip approaches full extension (Contreras 
et al., 2013, 2015; Neto, Vieira, and Gama 2019). Indeed, similar 
improvements in horizontal jump distance have been observed 
following HT and front squat training (Contreras et al., 2017), 
supporting their inclusion in strength training programmes and 
supporting the inclusion of a range of appropriate exercises 
when seeking performance adaptation. More recently, 
Fitzpatrick et al. (2019) demonstrated similar improvements in 
both vertical and horizontal jumping performance following HT 
training, which the authors suggested may also be explained 
by the principles of the DC theory. Our observations support 
the points made by Fitzpatrick et al. (2019) regarding force 
generation relative to the global, fixed axis (i.e. FV theory) 
having limited transference to practice or performance 
outcomes.

In the present study, DL training was less effective compared 
to BS or HT training for improving horizontal or vertical jump 
performance. There is limited available data on the effects of DL 
training upon horizontal jump performance; however, the prin-
ciples of DC theory may provide some explanation for our 
findings. Compared to the BS, the DL has been shown to elicit 
lower levels of knee extensor activation during the concentric 
phase (Ebben et al., 2009; Garceau et al., 2010) whereby knee 
extensor force production is required during horizontal 
(Yokozawa et al., 2019) and vertical (Maćkała et al., 2013) 

jumping. Hip extensor muscle activation has been shown to 
be lower during the DL compared to both the HT and BS 
(Andersen et al., 2018; McCurdy et al., 2018) and to progres-
sively decrease throughout the concentric phase of the DL 
towards full hip extension (Nijem et al., 2016). Whilst the DL 
involves coordinated hip and knee extension during the con-
centric phase (Nijem et al., 2016), the progressive decrease in 
hip and knee extensor activation may limit the transfer of 
strength gains to horizontal and vertical jumping performance 
compared to the BS and HT exercises. It should be acknowl-
edged, however, that this mechanism remains speculative 
without examination of the kinematic and muscle activation 
profile of the DL.

As with many studies in sport and exercise science, the 
sample size in the present study (11 per group) was small. 
Small sample sizes lead to unreliable point estimates, and 
effects from such studies are notoriously hard to reproduce 
(IntHout et al., 2015; Pereira et al., 2012). Using a Bayesian 
data analysis approach allowed us to directly visualise and 
estimate uncertainty relating to parameter estimates and 
the sampling procedure. We suggest this provides a much 
richer inferential approach than NHST and frequentist-based 
confidence intervals in this context. Specifically, the 
Bayesian approach allows us to directly address whether 
there is an effect, how big the effect might be and how 
sure we should be that we are seeing the effect without 
recourse to an assumed large number of exact study replica-
tions and accounting for the lower level of evidence in 
a small study.

A longstanding criticism of Bayesian approaches is the 
incorporation of subjective knowledge when parameterising 
the prior(s). Choosing values to parameterise the prior(s) may 
seem challenging and subjective, but some knowledge of the 
phenomena under study, and in the current case pragmatic 
physiological constraints on jump improvement after train-
ing, should lead to sensible values. In a truly Bayesian 
approach, priors should be constructed before any data is 
collected. In the current study, we took a pragmatic, empiri-
cal approach and centred the prior for the reference group 
(β0) on the mean of the all data we observed and at zero for 
the offsets (β1j) for the other two groups. This approach 
reflected our best estimate of an average change across 
training and the fact that we considered group differences 
could be positive or negative. Estimates from Rhea (2004) of 
effect sizes in resistance training interventions informed the 
width (i.e., the standard deviation) of the β coefficient prior 
distributions. We used our observed standard deviation mul-
tiplied by 3 to deliberately exceed Rhea’s estimate of a large 
effect size for untrained individuals (Rhea, 2004), keeping the 
priors somewhat uninformative. These decisions may be con-
sidered subjective, but they explicitly incorporate prior 
knowledge about the expected responses to training. 
Where we lack context knowledge or are very uncertain, we 
can invoke e.g., physiological constraints and be liberal whilst 
remaining grounded in terms of plausible effects. Notably no 
scientific study is carried out without subjective decisions 
(Jahn & Dunne, 2007; Kochan, 2013). The Bayesian approach 
simply makes some of those decisions explicit rather than 
implicit.
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Several authors have advocated for a shift away from 
inferences based on NHST statistics such as p-values towards 
estimation of effects sizes and plausibility of observed effect 
sizes (Cumming, 2014; Swinton et al., 2018). Bayesian meth-
ods are naturally suited to the purpose of estimation 
(J K. Kruschke & Liddell, 2018), and several authors have 
illustrated or suggested Bayesian approaches to small sample 
parameter estimation in sport science (Borg et al., 2018; 
Mengersen et al., 2016; Welsh & Knight, 2015). Whilst we 
have concrete sample statistics, we also entertain uncertainty 
about these estimates in a whole population. As we illustrate, 
the posterior distribution can be used to generate probability 
intervals for parameters of interest. These Bayesian probabil-
ity intervals are directly interpretable. Notably, frequentist 
95% confidence intervals are often misinterpreted in 
a Bayesian manner (Greenland et al., 2016); frequentist 95% 
confidence intervals actually reflect the proportion (e.g., 95%) 
of such intervals containing the true parameter based on 
hypothesized exact repeats of the study (Greenland et al., 
2016). The posterior distribution can also be summarised 
using point estimates (e.g., mean or median), but this 
detracts from the richer inference available in the Bayesian 
approach and from the recognition of uncertainty around 
estimates.

Although not a limitation per se, both Bayesian and fre-
quentist-based approaches to effect size estimates and uncer-
tainty may require a paradigm shift on the part of the 
investigator. For Bayesian analysis, a stumbling block can be 
the definition of the prior distribution. We hope that the 
process we followed in this study helps to provide clarity to 
this process. Moving away from considering probability in 
frequentist terms, to considering probability as reflecting 
plausibility of effect sizes, may be difficult. However, evidence 
indicates that many people misinterpret frequentist estimates 
as if they were Bayesian (Dienes, 2011) and so changing out-
look on probability is less likely to be a problem. The Bayesian 
process explicitly gives many people what they thought they 
were getting anyway. When making inferences on the impor-
tance of an observed effect, investigators may need to loosen 
their preconceptions around the p-value as an arbiter and 
instead look to correctly interpret interval estimates (frequen-
tist or Bayesian) and the direction of the effect to inform their 
conclusions.

Conclusions

We have demonstrated how a Bayesian statistical approach can 
be effectively applied to provide meaningful inferences in small- 
scale studies in sport and exercise science. The Bayesian approach 
described here produces inferentially rich intervals which allow us 
to quantify if an effect is happening; how big that effect may be; 
and the degree of certainty for the effect. The present findings 
add to the evidence that HT and BS training can elicit greater 
improvements and greater probability of improvement in hori-
zontal and vertical jump performance compared to DL training. 
Potential reasons for the disparity in jump performance enhance-
ment following the three training interventions include differ-
ences in training-test specificity, with regard to muscle 
recruitment and active range of motion. The present data provide 

justification for the inclusion of both the BS and HT, rather than 
the DL, in resistance training programmes aimed at improving 
lower-limb power production and jumping performance. These 
findings can inform practitioner decisions regarding the selection 
of lower-limb resistance exercises selection for optimising 
improvements in sport-specific outcomes such as jumping per-
formance. Whilst it was not the main aim of this study, our 
findings also suggest DC theory may be more representative of 
the transference between strength training and jumping perfor-
mance when compared to the FV theory. Practitioners should 
consider the methodological approach we have outlined here 
when looking to make practical decisions on their data.
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