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Abstract—The low-carbon and efficient operation of smart
parks requires high-precision and real-time energy management
model training. Multi-mode power internet of things (PIoT)
consisting of open radio access networks (O-RAN) and power
line communications (PLC) can effectively improve the model
training performance. However, the negative effects of network
threats, such as model inversion attacks, cannot be neglected.
To solve this problem, we propose a diFferential pRivacy-aware
gEnErative aDversarial netwOrk-assisted resource scheduling al-
gorithM (FREEDOM). Firstly, we integrate a differential privacy
mechanism with the energy management model training process
and the related system model. Then, a joint resource scheduling
optimization problem is constructed, the goal of which is to min-
imize the weighted sum of the global loss function, total energy
consumption, and differential privacy cost under the long-term
differential privacy constraint. The original problem is converted
based on virtual queue theory and addressed by the FREEDOM.
FREEDOM leverages a deep Q-learning network (DQN) to learn
the resource scheduling strategy via differential privacy aware-
ness. It improves optimization and convergence performances
with the assistance of generative adversarial network (GAN).
Simulation results show that FREEDOM can achieve excellent
performances of global loss function, total energy consumption,
differential privacy cost, and privacy preservation.

Index Terms—Power internet of things (PIoT), green multi-
mode network, energy management, model inversion attacks,
resource scheduling, generative adversarial network (GAN), dif-
ferential privacy awareness

I. INTRODUCTION

Smart parks serve as the fundamental units of the new-
generation power systems, integrating large-scale electrical
equipment including distributed photovoltaics, load demands,
and energy storage units [1]. These parks minimize carbon
emissions and achieve energy demand-supply balance through
advanced and real-time green energy management [2], [3]. The
key to energy management is to unearth and configure the
intricate relationships among data such as renewable energy
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production, load demands, and energy storage status based
on federated learning (FL)-enabled model training, thereby
learning the optimal energy management policy [4]. Power
internet of things (PIoT) exemplifies a particular utilization of
IoT technology in power systems, aimed at realizing intelligent
acquisition, transmission, and control of data within power
systems. By deploying PIoT devices within smart parks, it is
possible to acquire real-time operational data from the power
system, thereby facilitating the optimization of scheduling
strategies. Therefore, the process begins by deploying large-
scale PIoT devices on distributed electrical equipment to
continuously collect data for model training. These data are
then fed into local models, which are uploaded to a controller
for global aggregation [5]. As a critical interface between
devices and core networks, open radio access networks (O-
RAN) provide real-time, efficient, and flexible communi-
cations for model interactions between PIoT devices and
controllers in smart parks [6], [7]. It facilitates interaction
across diverse devices and controllers through standardized
interfaces, enabling data-driven optimization and automated
control. On the other hand, power line communication (PLC)
technology, as a cost-effective and convenient wired solution,
compensates for the interference and attenuation caused by
building obstructions of O-RAN, enhancing the coverage and
scalability of communication networks in smart parks [8], [9].
Therefore, the integration of O-RAN with PLC forms a multi-
mode PIoT to further improve model training performance.

In order to further enhance the precision of model training
while ensuring the low-carbon operation of smart parks, net-
work resources, e.g., training batch size, require to be sched-
uled in a flexible manner [10]. Unlike resource scheduling
in other systems, the energy management of smart parks in
multi-mode PIoT imposes stringent security demands. Due
to the involvement of diverse devices and complex network
components in O-RAN, malicious software and hardware
could be introduced, elevating energy management risks.
Furthermore, the open interfaces of O-RAN mean increased
exposure to malicious attacks. Conversely, power lines are
not designed specifically for data transmission, making the
data conveyed through PLC susceptible to interception by
attackers. The potential negative influence of malicious attack-
ers on resource scheduling is a factor that warrants careful
consideration. Although FL isolates global aggregation from
raw data uploading to solve privacy disclosure, network threats
such as model inversion attacks, can still recover private data
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by inferring model parameters, seriously affecting the low-
carbon operation of smart parks [11], [12]. For instance,
attackers could infer the energy management patterns, peak
power consumption periods, and long-term output regulations
of distributed electrical equipment in smart parks. This inferred
knowledge could enable targeted attacks on specific power grid
service components, leading to security issues such as grid
infrastructure damage and widespread power outages.

Differential privacy technology can prevent privacy leakage
through adding suitable artificial noise to model training. In
[13], Yan et al. designed a differential privacy-driven privacy-
preservation asynchronous FL mechanism to improve the
security and robustness of model aggregation. A coordinated
differential privacy-enabled FL method was designed in [14]
to increase the security level of client training. In [15], Yang
et al. investigated a differential privacy policy based on the
randomized response mechanism to effectively improve the
security of IoT data collection. In [16], Iqbal et al. proposed
an optimal differential privacy method to guarantee the privacy
of personal data elements while permitting the retrieval of
insightful information. However, adding substantial differential
privacy noise may negatively affect the precision of model
training. Incorporating less noise increases the risk of privacy
leaks, which leads to extra compensation costs for privacy
loss [17]. Therefore, the optimization of differential privacy
scheduling is also crucial. The coordinated resource scheduling
optimization for multi-mode PIoT under model inversion at-
tacks faces several technical challenges, which are summarized
in the following.

• Differentiated Performance Metrics Guarantee: Low-
carbon energy management requires resource scheduling
optimization, which calls for distinct performance metric
demands. The optimization of training batch size schedul-
ing can enhance the overall model accuracy to some
extent, but it also increases the energy consumption gen-
erated during model training. Incorporating substantial
differential privacy noise can ensure a degree of privacy
preservation, albeit at the expense of achievable model
accuracy. Conversely, minimal noise preserves model
accuracy but may result in increased privacy breaches
and higher privacy loss compensation.

• The Coupling between Resource Scheduling Optimization
and Differential Privacy Constraint: Privacy loss is an
accumulative process where minimal privacy breaches
in the short term may result in excessive long-term
privacy loss [18]. It is crucial to establish a long-term
differential privacy constraint. However, the short-term
resource scheduling strategy may not align with the long-
term constraint. In other words, resource scheduling need
to be optimized without considering future differential
privacy information.

• Poor and Slow Convergence of Resource Scheduling
Optimization: Traditional optimization methods such as
stochastic programming and robust optimization are lim-
ited by accurate optimization modeling, making it chal-
lenging to guide resource scheduling optimization under
uncertain information. Resource scheduling approaches

based on traditional machine learning, while able to
optimize resources with uncertain information, still face
issues with slow convergence and unstable optimiza-
tion performance, particularly when addressing resource
scheduling problems with a large optimization space.

Deep reinforcement learning (DRL) is extensively used for
optimizing resource scheduling with uncertain information.
In [19], Kwon et al. designed a DRL-empowered coordi-
nated cell sharing and resource scheduling mechanism for
FL computation in the internet of underwater things under
uncertain cell states and transmission gain, whose goal is to
maximize the transmission rate. However, it neglects the joint
guarantee of differentiated performance metrics. In [20], Zhao
et al. proposed a resource allocation and device management
method based on DRL with incompleted network information
in industrial IoT, the goal of which is to jointly improve the
delay, energy cost, and model precision. In [21], Zheng et
al. investigated a resource scheduling optimization approach
for the edge IoT based on DRL, which realizes the tradeoff
between FL accuracy and energy cost. Although these works
consider multi-objective optimization, the adverse impact on
model training caused by malicious attacks is ignored. In
[22], Okegbile et al. integrated DRL, differential privacy, and
blockchain to design a resource scheduling mechanism for
human digital twin model updating. The goal is to enhance
precision and privacy while reducing communication over-
heads in the situation of unknown communication environ-
ments of base stations. However, this work does not consider
the optimization of differential privacy budget, and cannot
achieve fast convergence speed and stable optimization when
facing a large optimization space.

Motivated by these challenges, we first establish the energy
management model training and differential privacy model in
multi-mode PIoT. Then, we formulate the coordinated resource
scheduling optimization problem to minimize the weighted
sum of the global loss function, total energy consumption
of all devices, and differential privacy cost under a long-
term differential privacy constraint. Next, by leveraging a
virtual queue, the original problem is transformed into a
sequence of optimization problems in short term. Finally, we
design a diFferential pRivacy-aware gEnErative aDversarial
netwOrk-assisted resource scheduling algorithM (FREEDOM)
to address the converted problem. The main contributions are
summarized below.

• Joint Guarantee of High Precision, Low Energy Con-
sumption, and Privacy Preservation: FREEDOM re-
alizes the joint guarantee of model precision, energy
consumption, and privacy preservation through the joint
optimization of training batch size and privacy budget
scheduling. The balance among the global loss function,
total energy consumption, and differential privacy cost
of PIoT devices is realized by dynamically adjusting
the weights of differentiated performance metrics and
learning the optimal resource scheduling strategies.

• Differential Privacy Awareness: To tackle the long-term
differential privacy constraint, we transform it into the
stability guarantee of a virtual queue. This is done by
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Fig. 1. The resource scheduling framework for green multi-mode PIoT.

redefining the optimization goal to include the virtual
queue deficit fluctuation. Differential privacy awareness
is realized by actively adjusting the resource scheduling
strategy based on the dynamic changes of differential
privacy queue deficit.

• Intelligent Resource Scheduling with the Assistance of
Generative Adversarial Network (GAN): FREEDOM
combines the deep Q-learning network (DQN) with GAN
to enhance the optimization and convergence perfor-
mance. The DQN-based generator provides a model-
free mechanism to continuously adapt to the nonlinear
relationship between the state and action space, learn-
ing the resource scheduling strategy despite uncertain
information. The discriminator guides the training of the
DQN-based generator by differentiating the expert policy
from the generating strategy, supporting more accurate
optimization and faster convergence speed.

The remainder of the structure of the paper is below. Section
II introduces the system model. The problem formulation and
transformation are introduced in Section III. FREEDOM is
proposed in Section IV. Section V elaborates on the perfor-
mance analysis and simulations. Section VI concludes this
paper.

II. SYSTEM MODEL

The proposed resource scheduling framework for green
multi-mode PIoT is shown in Fig. 1. The goal is to train
an energy management model based on FL. The considered
framework includes a device layer, a multi-mode network
layer, and a control layer [23]. In the device layer, PIoT devices
are deployed on electrical equipment, e.g., distributed photo-
voltaic, wind turbines, and electric vehicle charging stations, to
carry out local model training. Denote the number of devices
as I , the set of which is M = {m1, · · · ,mi, · · · ,mI}. The
multi-mode network layer contains O-RAN and PLC networks
to provide local model uploading for devices. During this
process, there is a risk of malicious attackers initiating model

Fig. 2. The principle of model inversion attacks.

inversion attacks. They try to recover sensitive feature informa-
tion of private data associated with energy management from
the model. The control layer optimizes resource scheduling
strategies and coordinates the global aggregation of the energy
management model for devices through a controller [24], [25].

The total period of resource scheduling optimization is
segmented into T iterations, collectively represented by the
set T = {1, · · · , t, · · · , T}. At the start of each iteration, the
controller devises a resource scheduling strategy of training
batch size and privacy budget for each device. Then, the
controller utilizes O-RAN and PLC to distribute the resource
scheduling strategy and the latest global model to each device.
Subsequently, devices engage in local training of their models
based on the scheduled batch size and preserve the privacy of
model based on the scheduled privacy budget. Next, devices
relay their local models back to the controller via multi-mode
networks. Upon reception, the controller aggregates these local
models to update the global model.

A. Model Inversion Attacks

The principle of model inversion attacks is shown in Fig.
2. Malicious attackers aim to recover the sensitive features of
private energy management data from the uploaded models.
Specifically, assume the attacked model is trained based on
the data distribution (X ,Y), where X is the input dataset and
Y is the corresponding target output dataset. The adversarial
objective of malicious attackers is to obtain data feature
Z (X|f(X ) = y), where y is the specific data label [26].

Model inversion attacks can be categorized into two kinds,
namely, white box and black box. White-box attacks have un-
limited access to the attacked model and its parameters, while
black-box attacks require limited observations and interactions
with data inputs and outputs to construct a similar model by in-
ferring the attacked model behavior [27]. Obviously, defending
against white-box attacks is more challenging. Therefore, this
paper assumes that malicious attackers have unlimited access
to the attacked model.

B. Local Model Training

Each device downloads the global model from the controller
to update its local model, i.e., ωi(t− 1) = ωg (t− 1), where
ωi(t− 1) is the local parameter of device mi in the (t− 1)-th
iteration and ωg (t− 1) is the global model parameter. Then,
mi adopts partial data samples from its dataset Di to train the
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local model. Define αi(t) as the batch size of mi for local
model training and αi(t) ∈ Ai(t) = {1, 2, · · · , |Di|}, where
Ai(t) is the set of training batch size and |Di| is the size of
local dataset Di. The loss function is leveraged to measure
the bias between the real output and the target output of a
model. Define xl and yl as the input and target output of the
l-th sample. The loss function of mi is represented as

Fi(ωi(t− 1), αi(t), t) =
1

αi(t)

αi(t)∑
l=1

f(ωi(t− 1), xl, yl, t),

(1)

where f(ωi(t− 1), xl, yl, t) is the single-sample loss function
in the t-th iteration, representing the deviation of the real
output from the target output. The local model parameter of mi

is updated by adopting the loss function based on the gradient
descent approach, i.e.,

ωi(t) = ωi(t− 1)− λ∇Fi(ωi(t− 1), αi(t), t), (2)

where λ is the updating step.
Define ζi as the CPU cycles needed for executing a single

data sample and ξi(t) as the CPU frequency options accessible
for local model training. The energy consumption of local
model training is calculated as

ELi (t) = eiζiαi(t)ξ
2
i (t), (3)

where ei is the energy consumption coefficient.

C. Privacy Preservation Mechanism

To preserve the private data of the energy management
model from model inversion attacks, the differential pri-
vacy framework is adopted. Malicious attackers are defended
against by the differential privacy framework via adding a
suitable level of randomness into the protected model [28].

Definition 1. A randomized mechanism Ψ with the output
range Range(Ψ) has the differential privacy if for any two
datasets Di and D′i differing on at most one sample, and for
any output datasets O ⊆ Range(Ψ), we have the following
relationship

Pr {Ψ(Di) ∈ O} ≤ exp (εi(t)) Pr {Ψ(D′i) ∈ O} , (4)

where Pr{.} is the probability function. εi(t) is the privacy
budget of mi.

In Definition 1, εi(t) is used to measure the privacy loss,
representing the identifiable limit of all outputs between Di
and D′i [29]. Since the distribution of differential privacy
budget introduced in [18] meets a fixed gradient, we define
εi(t) ∈ E(t) = {ε1, · · · , εk, · · · , εK}, where E(t) is the set of
privacy budgets, ε1 and εK are the minimum and maximum
privacy budgets, and εk = (k−1)(εK−ε1)

K−1 is the k-th privacy
budget. The randomized mechanism Ψ represents the strategy
of introducing randomness into the model training process to
preserve privacy. Thus, we adopt the Laplace mechanism on
the local models of each device by adding Laplace noise to
perturb the parameters. In addition to Laplace noise, there
are several other types of noise commonly used for differ-
ential privacy, such as exponential and Gaussian mechanisms.

Compared to other noises, Laplace noise allows for lower tail
sensitivity and helps maintain the overall quality of the model
[30]–[32]. The updating of the local model parameter of mi

is rewritten as

ω̃i(t) = ωi(t− 1)

− λ∇
[
Fi(ωi(t− 1), αi(t), t) + Lap(

δFi (t)

εi(t)
)

]
, (5)

where ω̃i(t) is the protected model parameter of mi.
Lap(δFi (t)/εi(t)) is the Laplace noise drawn from a Laplace
distribution with mean 0 and scale δFi (t)/εi(t). The probability
density function of the added Laplace noise is f(x) =(
εi(t)/2δ

F
i (t)

)
exp

((
−εi(t)/δFi (t)

)
|x|
)
. δFi (t) is the sensi-

tivity of Fi(ωi(t− 1), αi(t), t).

Definition 2. Define F ′i (ωi(t−1), αi(t), t) as the loss function
trained by D′i. For any two datasets Di and D′i differing on
at most one sample, the sensitivity of Fi(ωi(t − 1), αi(t), t)
satisfies

δFi (t)

= max
{Di,D′

i}
‖Fi(ωi(t− 1), αi(t), t)− F ′i (ωi(t− 1), αi(t), t)‖.

(6)

In Definition 2, the sensitivity value δFi (t) relies on the loss
function. Based on [33], δFi (t) is obtained through the Stone-
Weierstrass theorem when the loss function is known. Based
on (5), we can obtain the theorem below.

Theorem 1. For ∀mi ∈M, the Laplace mechanism adopted
in (5) meets the relationship defined in Definition 1.

Proof. A similar proof is available in [30].

According to [34], the privacy budget can be regarded
as the remuneration requested by each device for assuming
the risk associated with privacy exposure. For simplicity, this
compensation can be treated as a special cost, which is related
to εi(t). The differential privacy cost of mi is calculated as

CPi (t) = µPi εi(t), (7)

where µPi is the unit differential privacy cost related to how
much the device cares about its privacy compensation.

D. Local Model Uploading

After local model training and adding differential privacy,
each device uploads its local model parameter through multi-
mode networks to the controller. The uploading rate of mi is
given by

Ri(t) = Bi(t) log2

(
1 +

Pi(t)gi(t)

σ0 + Vi(t)

)
, (8)

where Bi(t) is the uploading bandwidth of mi. Pi(t) is the
uploading power of mi. gi(t) is the channel gain. σ0 is
Gaussian white noise. Vi(t) is electromagnetic interference
power.
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Define |ω̃i(t)| as the size of the local model parameter
of mi. The uploading delay and energy consumption are
calculated as

τUi (t) =
|ω̃i(t)|
Ri(t)

, (9)

EUi (t) = Pi(t)τ
U
i (t). (10)

Define the total energy consumption of each device as the
sum of energy consumption of local model training and energy
consumption of model uploading, which is represented as

Ei (t) = ELi (t) + EUi (t) . (11)

E. Global Aggregation

The controller carries out global aggregation to update the
global model after receiving the uploaded local model param-
eter from each device. The global aggregation is represented
as

ωg (t) =

I∑
i=1

αi(t)ω̃i(t)∑I
i=1 αi(t)

. (12)

Define Fg (ωg (t) , t) as the global loss function, which
is utilized to measure the accuracy of the global model.
Fg (ωg (t) , t) is updated as

Fg (ωg (t) , t) =

I∑
i=1

αi(t)∑I
i=1 αi(t)

Fi (ω̃i (t) , αi(t), t). (13)

III. PROBLEM FORMULATION AND TRANSFORMATION

In this section, we first elaborate on the long-term differen-
tial privacy constraint. Then, the joint optimization problem
of resource scheduling is formulated. Finally, the problem
transformation is introduced.

A. Differential Privacy Constraint

The differential privacy mechanism measures the value of
privacy loss through the privacy budget. However, in each
iteration, the model interaction between the device and the
controller results in a certain degree of privacy loss. The
privacy loss accumulates with the number of iterations [14],
[18]. A small privacy loss in the short term can accumulate
into a significant privacy loss in the long term. Therefore, a
long-term differential privacy constraint is defined as

T∑
t=1

εi(t) ≤ εi,max, (14)

where εi,max is the upper threshold of privacy budget.

B. Problem Formulation

Regarding the relationship among the global loss function,
total energy consumption, and differential privacy cost, we
give two remarks as follows.

Remark 1. When the batch size αi(t) is large adequately,
the difference between the protected model parameter ω̃i(t)
and the actual model parameter ωi(t) is infinitely close to 0,

which ensures the convergence performance of Fg(ωg(T ), T ).
However, the total energy consumption of each device will
increase as well.

Proof. According to (3) and (11), the increase of the total
energy consumption is obvious, while a similar proof of
the convergence performance guarantee of Fg(ωg(T ), T ) is
available in [30].

Remark 2. Increasing the privacy budget εi(t) will improve
the convergence performance of Fg(ωg(T ), T ), ensuring the
precision of the global model, but will reduce the level of
privacy preservation and increase the differential privacy cost
as well.

Proof. According to (7), the increase of the differential privacy
cost is obvious, while a similar proof of the relationship among
εi(t), the convergence performance of Fg(ωg(T ), T ), and the
level of privacy preservation is available in [35].

We construct a joint resource scheduling optimization prob-
lem for green multi-mode PIoT under the model inversion
attacks. The goal is to minimize the weighted sum of the
global loss function, total energy consumption, and differential
privacy cost by jointly optimizing the scheduling of training
batch size and privacy budget under the long-term constraint of
differential privacy. The formulation of optimization problem
is represented as

P1 : min
{αi(t),εi(t)}

Fg(ωg(T ), T ) +WE

T∑
t=1

I∑
i=1

Ei(t)

+WC

T∑
t=1

I∑
i=1

CPi (t),

s.t. C1 : αi(t) ∈ Ai(t), ∀mi ∈M, ∀t ∈ T ,
C2 : εi(t) ∈ E(t), ∀mi ∈M, ∀t ∈ T ,

C3 :

T∑
t=1

εi(t) ≤ εi,max, ∀mi ∈M, (15)

where WE and WC are the weights of total energy consump-
tion and differential privacy cost. C1 is the training batch
size scheduling constraint. C2 is the privacy budget scheduling
constraint. C3 is the long-term differential privacy constraint.

C. Problem Transformation

Since the resource scheduling strategy of each iteration is
coupled with Fg(ωg(T ), T ) as well as the long-term constraint
of differential privacy, P1 is hard to be solved directly.
Therefore, we first convert the long-term optimization goal to
a series of short-term goals addressed in each iteration through
the telescoping sum theory. Fg(ωg(T ), T ) is decoupled as

Fg(ωg(T ), T )

=
1

T

[
T∑
t=1

Fg(ωg(t), t)−
T∑
t=1

Fg(ωg(t− 1), t− 1)

]
, (16)

where Fg(ωg(t − 1), t − 1) is known in the t-th iteration.
Therefore, the optimization of Fg(ωg(T ), T ) can be converted
to that of Fg(ωg(t), t) in the t-th iteration.
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For the coupling between the resource scheduling strategy
and the long-term constraint, a virtual differential privacy
deficit queue Hε

i (t) corresponding to C3 is introduced. The
queue evolution is represented as

Hε
i (t+ 1) = max

{
Hε
i (t) + εi(t)−

εi,max

T
, 0
}
. (17)

Based on the virtual queue theory [36], C3 holds auto-
matically when Hε

i (t) is mean rate stable. To minimize the
weighted sum while guaranteeing the long-term constraint
of differential privacy to the maximum extent, P1 can be
transformed into

P2 : min
{αi(t),εi(t)}

1

T
Fg(ωg(t), t) +WE

I∑
i=1

Ei(t)

+WC

I∑
i=1

CPi (t) +WH

I∑
i=1

Hε
i (t)εi(t),

s.t. C1, C2,

C4 : Hε
i (t) is mean rate stable, (18)

where WH is the corresponding weight of the differential
privacy deficit queue.

IV. FREEDOM: DIFFERENTIAL PRIVACY-AWARE
GAN-ASSISTED RESOURCE SCHEDULING ALGORITHM

In this section, we propose FREEDOM to address P2 and
realize coordinated resource scheduling under model inversion
attacks for green multi-mode PIoT.

A. MDP Model

P2 is formulated as a Markov decision process (MDP). The
specific introduction is below.

1) State Space: Define Hε(t) =
{Hε

1(t), · · · , Hε
i (t), · · · , Hε

I(t)} as the set of differential pri-
vacy deficit queues and ε = {ε1,max, · · · , εi,max, · · · , εI,max}
as the set of the upper thresholds of privacy budget. The state
space is represented as S(t) = Hε(t) ⊗ ε, where ⊗ is the
Cartesian product.

2) Action Space: The action space of mi is defined as
ai(t) = Ai(t)⊗ E(t).

3) Reward Function: The reward function is defined as the
negative value of P2’s optimization goal, i.e.,

Ω(t) = − 1

T
Fg(ωg(t), t)−WE

I∑
i=1

Ei(t)

−WC

I∑
i=1

CPi (t)−WH

I∑
i=1

Hε
i (t)εi(t). (19)

B. FREEDOM

DQN provides a model-free solution to the above MDP
problem. However, traditional DQN-based approaches have a
long process of decision-making exploration and optimization
when facing high-dimensional state and action spaces, leading
to slow convergence. Meanwhile, they do not consider the dif-
ferential privacy awareness, resulting in poor resource schedul-
ing performance. GAN continuously optimizes the relationship

Algorithm 1 FREEDOM
1: Input: {M, N , T , S(t), ε}.
2: Output: {αi(t), εi(t)}.
3: # Initialization:
4: Initialize ϑGi (0), ϑtarGi (0), and ϑDi (0), ∀mi ∈ M.

Set αi(0) = 0, εi(0) = 0, Ω(0) = 0, and Hε
i (0) = 0,

∀mi ∈M.
5: For t = 1, · · · , T do
6: # Differential Privacy-aware DQN-based Generator

Training:
7: The controller draws an action of resource scheduling

based on the ε-greedy approach.
8: Each device executes αi(t) and εi(t).
9: The controller observes the global loss function, total

energy consumption, differential privacy cost, and deficit
queue performances, and calculates reward Ω(t) as (19).

10: Update Hε
i (t+ 1) as (17).

11: Transfer S(t) to S(t + 1), and update the experience
replay pool Ui(t).

12: Randomly sample Ũi(t) and calculate ηGi (t) as (20).
13: The controller updates ϑGi (t+ 1) as (22).
14: Update ϑtarGi (t) = ϑGi (t) every T0 iterations.
15: # Discriminator Training:
16: The controller calculates ηDi (t) as (23).
17: The controller updates ϑDi (t+ 1) as (24).
18: end for

between a generator network and a discriminator network
through adversarial learning, which is conducive to stable
exploration and optimization as well as efficient convergence
of DQN. Thus, we propose FREEDOM to sense the impact of
differential privacy on resource scheduling, and improve the
training and convergence performances with the assistance of
GAN.

The framework of FREEDOM is shown in Fig. 3. The
controller acts as an agent to execute FREEDOM, which
maintains a generator based on differential privacy-aware
DQN and a discriminator for each device. The generator Gi
consists of a main network with parameter ϑGi (t) and a target
network with parameter ϑtarGi (t). The discriminator Di main-
tains a discriminator network with ϑDi (t). The principle of
differential privacy awareness is to incorporate the differential
privacy queue deficit into the calculation of reward function
and state-action value. FREEDOM can continuously fit the
complex mapping between states and actions based on the
dynamic changes of differential privacy queue deficit. Hence,
the controller can actively learn the resource scheduling strat-
egy to improve the global loss function, energy consumption,
and differential privacy cost. The implementation procedures
of FREEDOM are summarized in Algorithm 1.

1) Initialization: Initialize generator network parameters
ϑGi (0) and ϑtarGi (0), and discriminator network parameter
ϑDi (0). Set αi(0) = 0, εi(0) = 0, Ω(0) = 0, and Hε

i (0) = 0.
2) Differential Privacy-aware DQN-based Generator Train-

ing: The training purpose of the generator is to improve
its ability to generate the resource scheduling strategy that
confuses discriminator Di in a best-effort way. The training
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Fig. 3. The framework of FREEDOM.

process of the generator is introduced as follows.
Action Drawing and Reward Calculation: In each itera-

tion, the controller utilizes the ε-greedy approach to draw the
action of resource scheduling. Each device performs the drawn
action. Then, the controller observes multiple performances
such as global loss function, total energy consumption, differ-
ential privacy cost, and differential privacy queue deficit, and
calculates Ω(t) based on (19).

Differential Privacy Deficit Queue Updating and State
Transition: Then, the controller updates Hε

i (t + 1) as (17),
transfers the state S(t) to the next state S(t + 1), generates
experience information ui(t) = {S(t),ai(t),Ω(t),S(t+ 1)},
and updates an experience replay pool Ui(t).

Learning and Network Training: The controller randomly
samples a set Ũi(t) from Ui(t), and calculates the loss function
of the main network. The loss function of the main network
includes two parts, where the first part reflects the degree
of confusion discrimination, and the second part reflects the
training accuracy of the main network. The loss function of
the main network is represented as

ηGi (t) = −EŨi(t)
{

lnDϑD
i (t)

(
GϑG

i (t) (S(t),ai(t))
)}

+$iEŨi(t)
{
χi(t)

2
}
, (20)

where $i is the adjusting weight. DϑD
i (t)(.) is the function

of discrimination network with parameter ϑDi (t). GϑG
i (t)(.)

is the function of main network with parameter ϑGi (t). χi(t)
is the temporal difference (TD) error, which is calculated as

χi(t) = Ω(t) + κ max
ai(t+1)

GϑtarG
i (t) (S(t+ 1),ai(t+ 1))

−GϑG
i (t) (S(t),ai(t)) , (21)

where κ is the discount factor. GϑtarG
i (t)(.) is the function of

target network with parameter ϑtarGi (t).

Finally, the main network parameter ϑGi (t) is updated based
on the gradient descent approach, i.e.,

ϑGi (t+ 1) = ϑGi (t)− ιG∇ϑG
i (t)η

G
i (t)2, (22)

where ιG is the learning step of the generator. The target
network is updated as ϑtarGi (t) = ϑGi (t) every T0 iterations.

3) Discriminator Training: The training purpose of the
discriminator is to improve its ability to distinguish the ex-
pert resource scheduling policy from the resource scheduling
strategy generated by the generator. Thus, the loss function of
the discriminator network is defined as

ηDi (t) = EŨi(t)
{

lnDϑD
i (t) (S(t),π∗i (t))

}
− EŨi(t)

{
lnDϑD

i (t)

(
GϑG

i (t) (S(t),ai(t))
)}

, (23)

where π∗i (t) is the expert resource scheduling policy of mi

from the expert memory database.
The first term in (23) represents the output of the dis-

criminator network with the input of the resource scheduling
strategy generated by the generator, while the second term
represents the output of the discriminator network with the
input of the corresponding expert policy. The larger ηDi (t) is,
the stronger the discriminator is at distinguishing between the
expert policy and the strategy generated by the generator. Thus,
the discriminator network parameter ϑDi (t + 1) is updated
based on the gradient ascent approach, i.e.,

ϑDi (t+ 1) = ϑDi (t) + ιD∇ϑD
i (t)η

D
i (t)2, (24)

where ιD is the learning step of the discriminator.
FREEDOM, through the dynamic adjustment of the re-

source scheduling strategy based on the differential privacy
queue deficit information, ensures differential privacy aware-
ness. In particular, when the differential privacy deficit es-
calates significantly and the privacy budget deviates from
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TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value

T 100 I 10

Bi(t) 0.1 MHz Pi(t) 0.1 W

ζi 106 cycles ei 10−27 Watt · s3/cycle3

WE [0.01, 0.06] WC [1, 6]× 10−4

WH [1, 2]× 10−4 ε1, εK 1, 30

ξi(t) 1.5 GHz |Di| [100, 500]

εi,max [2200, 2600] K 10

µPi [0.5, 2] σ0 −114 dBm

λ 0.01 κ 0.99

ιG 0.02 ιD 0.02

the corresponding constraint, the reward decreases while the
TD error increases. This encourages the controller to train
the generator and discriminator, and draw another resource
scheduling action, thus enabling differential privacy aware-
ness. The assistance of GAN enables FREEDOM to achieve
more accurate optimization and rapid convergence speed.
When the discriminator can easily distinguish the generated
strategy and expert policy, the controller adjusts the training
direction of the generator to confuse the discriminator better,
and vice versa. When the game between the generator and
discriminator reaches the Nash equilibrium, the generator can
be utilized to make the actual resource scheduling strategy
without relying on expert experience.

V. PERFORMANCE ANALYSIS AND SIMULATIONS

We consider an energy management scenario featuring 10
PIoT devices to evaluate resource scheduling and privacy
preservation performances. The training data of each device
are randomly sampled from a distribution station area dataset
including sample data such as renewable energy production,
load demands, and energy storage status. An α-stable sym-
metric (SαS) distribution is utilized to model the power of
electromagnetic interference. The specific simulation parame-
ters are delineated in Table I [29], [35], [37]–[39]. To verify
the effectiveness of differential privacy against attacks, we
compare the real data with the data recovered by attackers.
Define the normalized error between the real data and the data
recovered by the attacker as Error(Datt), which is given by

Error(Datt) =
Dreal −Datt

Dreal
, (25)

where Dreal are the real data and Datt are the data recovered
by attackers.

A comparative analysis of two cutting-edge algorithms is
conducted. The first one, federated multi-agent reinforcement
learning (FMARL)-based resource allocation algorithm [40],
aims to optimize the FL loss function by employing the largest
differential privacy budget to guarantee model accuracy. The
long-term differential privacy constraint is not considered.
The second one is the resource scheduling algorithm based

on local differential privacy-empowered concurrent federated
reinforcement learning (LDP-CFRL) [41], the objective of
which is to optimize the loss function of FL, taking into
account the long-term differential privacy constraint. Neither
algorithm incorporates energy consumption optimization.

Fig. 4 shows the global loss function versus iterations. The
loss function optimized by FREEDOM converges at the 20-
th iteration, which is much faster than those of FMARL and
LDF-CFRL. When t = 100, FREEDOM achieves a reduction
of 14.4% and 22.9% in the global loss function compared
with LDP-CFRL and FMARL, respectively. The light-colored
part represents the global loss function of each algorithm
has some fluctuations under multiple repeated experiments.
FREEDOM achieves the best loss function performance by
jointly optimizing the scheduling of training batch size and
privacy budgets. Through the integration of DQN with GAN,
FREEDOM can fit the complex relationship between state
and action spaces and capitalize on the generative adversarial
mechanism of GAN to attain more precise optimization and
expedite convergence.

Fig. 5 shows the total energy consumption versus iterations.
The total energy consumption gradually increases with the
iterations. When t = 100, the total energy consumption of
FREEDOM is reduced by 10.9% and 11.5% compared with
LDP-CFRL and FMARL. The reason is that FREEDOM
implements the joint optimization of global loss function
and total energy consumption. Through reasonable scheduling
of training batch size, the global loss function and total
energy consumption performances are ensured simultaneously.
FREEDOM learns the optimal resource scheduling strategy
with the assistance of GAN. Both LDP-CFRL and FMARL
only consider the minimization of the loss function, leading
to larger total energy consumption.

Fig. 6 shows the global loss function versus average batch
size and εi,max. As the average batch size and εi,max increases,
the global loss function decreases. This phenomenon can be
attributed to the fact that the larger the average batch size
is, the smaller the difference between the protected model
parameters and the actual model parameters is, thus reducing
the global loss function. Moreover, with εi,max increasing,
FREEDOM can schedule more privacy budgets to guarantee
the precision of the global model.

Fig. 7 shows the differential privacy cost versus iterations.
The differential privacy cost of FREEDOM decreases with
the increase of iterations. Compared with LDP-CFRL and
FMARL, the average differential privacy cost of the algorithm
is reduced by 22.1% and 36.3%, respectively. FREEDOM
needs to reasonably arrange its privacy budget to meet long-
term differential privacy constraints. Specifically, the global
loss function decreases faster at the start of optimization. To
ensure the convergence of the loss function, more privacy
budgets need to be arranged, resulting in greater differential
privacy costs. With the continuous improvement of the con-
vergence of loss function, the demand for privacy preservation
increases, thus reducing the differential privacy cost. FREE-
DOM integrates GAN to develop optimal scheduling policies
and achieve better cost performance.

Fig. 8 shows total energy consumption and global loss
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Fig. 4. Global loss function versus iterations.

Fig. 5. Total energy consumption versus iterations.

Fig. 6. Global loss function versus average batch size and
εi,max.

Fig. 7. Differential privacy cost versus iterations.
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Fig. 12. Attack resistance performance of FREEDOM with differential privacy.

function versus WE . As WE increases from 0.01 to 0.06,
the total energy consumption decreases by 55.4%, and the
global loss function increases by 25.0%. The reason is that
as WE increases, FREEDOM focuses more on minimizing
total energy consumption, thereby reducing the batch size used
for model training, leading to an increase in the global loss
function.

Fig. 9 shows the total differential privacy cost and global
loss function versus WC . As WC increases from 1 × 10−4

to 6 × 10−4, the total differential privacy cost decreases by
30.2% and the global loss function increases by 40.3%. The
reason is that as WC increases, FREEDOM focuses more on
minimizing the differential privacy cost of all devices, which
results in the introduction of substantial disturbance noise
during model training, contributing to the increase in the global
loss function.

Fig. 10 shows the accumulated privacy budget versus itera-
tions. The accumulated privacy budget of FREEDOM satisfies
the differential privacy constraint, while that of FMARL
and LDP-CFRL do not. When t = 100, the accumulated
privacy budget of FREEDOM is reduced by 16.5% and 36.2%
compared with LDP-CFRL and FMARL. FREEDOM can
realize the dynamic adjustment of the privacy budget with the
assistance of GAN to better meet the long-term differential
privacy constraint.

Fig. 11 shows the distribution of differential privacy queue
deficit. It can be seen that FREEDOM has the lowest average
differential privacy queue deficit. Compared with LDP-CFRL
and FMARL, the average differential privacy queue deficit of
FREEDOM is reduced by 70.4% and 98.2%. The reason is
that FREEDOM can achieve differential privacy awareness
through the dynamical learning of resource scheduling strategy
to effectively reduce the differential privacy deficit.

Fig. 12 shows the attack resistance performance of FREE-
DOM with differential privacy. When there is no differential

privacy, the attacker can recover the real data more accu-
rately with less normalization error. When differential privacy
exists, the normalization error between the data recovered
by the attacker and the real data is larger. Compared with
FREEDOM without differential privacy, the normalized error
of FREEDOM with differential privacy improves by 74.3%.
The differential privacy mechanism can defend against model
inversion attacks by adding differential privacy noise into the
protected model.

VI. CONCLUSION

In this paper, we addressed the joint resource scheduling
optimization problem for green multi-mode PIoT under the
model inversion attacks. We designed FREEDOM to dy-
namically learn the scheduling of training batch sizes and
privacy budgets with differential privacy awareness and the
assistance of GAN. Compared with LDP-CFRL and FMARL,
FREEDOM improves the global loss function by 14.4% and
22.9%, total energy consumption by 10.9% and 11.5%, and
differential privacy cost by 22.1% and 36.3%. FREEDOM
also achieves the least differential privacy queue deficit and
excellent privacy preservation performance due to differential
privacy awareness. Future work will focus on the optimization
of authentication and isolation for raw data and model param-
eters in industrial and smart park scenarios to further improve
the robustness of model training. Besides, the integration
of other communication modes such as wireless local area
network (WLAN) and ZigBee will also be considered.

REFERENCES

[1] W. Lu, P. Si, Y. Gao, H. Han, Z. Liu, Y. Wu, and Y. Gong, “Trajectory
and resource optimization in OFDM-based UAV-powered IoT network,”
IEEE Trans. Green Commun. Networking, vol. 5, no. 3, pp. 1259–1270,
Sept. 2021.



11

[2] X. Wang, M. Umehira, M. Akimoto, B. Han, and H. Zhou, “Green
spectrum sharing framework in B5G era by exploiting crowdsensing,”
IEEE Trans. Green Commun. Networking, vol. 7, no. 2, pp. 916–927,
Jun. 2023.

[3] H. Al Haj Hassan, D. Renga, M. Meo, and L. Nuaymi, “A novel
energy model for renewable energy-enabled cellular networks providing
ancillary services to the smart grid,” IEEE Trans. Green Commun.
Networking, vol. 3, no. 2, pp. 381–396, Jun. 2019.

[4] S. Zhang, Z. Wang, Z. Zhou, Y. Wang, H. Zhang, G. Zhang, H. Ding,
S. Mumtaz, and M. Guizani, “Blockchain and federated deep reinforce-
ment learning based secure cloud-edge-end collaboration in power IoT,”
IEEE Wireless Commun., vol. 29, no. 2, pp. 84–91, Apr. 2022.

[5] H. Zhou, X. Wang, M. Umehira, B. Han, and H. Zhou, “Energy efficient
beamforming for small cell systems: A distributed learning and multicell
coordination approach,” ACM Trans. Sen. Netw., vol. pp, no. 99, pp. 1–
21, Sept. 2023.

[6] S. F. Abedin, A. Mahmood, N. H. Tran, Z. Han, and M. Gidlund, “Elastic
O-RAN slicing for industrial monitoring and control: A distributed
matching game and deep reinforcement learning approach,” IEEE Trans.
Veh. Technol., vol. 71, no. 10, pp. 10 808–10 822, Oct. 2022.

[7] A. Ndikumana, K. K. Nguyen, and M. Cheriet, “Federated learning
assisted deep Q-learning for joint task offloading and fronthaul segment
routing in open RAN,” IEEE Trans. Netw. Serv. Manage., vol. 20, no. 3,
pp. 3261–3273, Sept. 2023.

[8] Y. Qian, L. Shi, L. Shi, K. Cai, J. Li, and F. Shu, “Cache-enabled power
line communication networks: Caching node selection and backhaul
energy optimization,” IEEE Trans. Green Commun. Networking, vol. 4,
no. 2, pp. 606–615, Jun. 2020.

[9] Z. Zhou, X. Chen, H. Liao et al., “Collaborative learning-based network
resource scheduling and route management for multi-mode green IoT,”
IEEE Trans. Green Commun. Networking, vol. 7, no. 2, pp. 928–939,
Jun. 2023.

[10] J. Liu, X. Zhao, P. Qin, S. Geng, and S. Meng, “Joint dynamic task
offloading and resource scheduling for WPT enabled space-air-ground
power internet of things,” IEEE Trans. Network Sci. Eng., vol. 9, no. 2,
pp. 660–677, Mar. 2022.

[11] H. Liao, Z. Zhou, N. Liu, Y. Zhang, G. Xu, Z. Wang, and S. Mumtaz,
“Cloud-edge-device collaborative reliable and communication-efficient
digital twin for low-carbon electrical equipment management,” IEEE
Trans. Ind. Inf., vol. 19, no. 2, pp. 1715–1724, Feb. 2023.

[12] C.-Y. Chen, C.-A. Sung, and H.-H. Chen, “Capacity maximization
based on optimal mode selection in multi-mode and multi-pair D2D
communications,” IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6524–
6534, Jul. 2019.

[13] X. Yan, Y. Miao, X. Li, K. K. R. Choo, X. Meng, and R. H.
Deng, “Privacy-preserving asynchronous federated learning framework
in distributed IoT,” IEEE Internet Things J., vol. 10, no. 15, pp. 13 281–
13 291, Aug. 2023.

[14] L. Zhang, T. Zhu, P. Xiong, W. Zhou, and P. S. Yu, “A robust game-
theoretical federated learning framework with joint differential privacy,”
IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3333–3346, Apr.
2023.

[15] M. Yang, I. Tjuawinata, K. Y. Lam, J. Zhao, and L. Sun, “Secure hot
path crowdsourcing with local differential privacy under fog computing
architecture,” IEEE Trans. Serv. Comput., vol. 15, no. 4, pp. 2188–2201,
Aug. 2022.

[16] M. Iqbal, A. Tariq, M. Adnan, I. Ud Din, and T. Qayyum, “FL-ODP:
An optimized differential privacy enabled privacy preserving federated
learning,” IEEE Access, vol. 11, no. 99, pp. 116 674–116 683, Oct. 2023.

[17] B. Wang, Y. Chen, H. Jiang, and Z. Zhao, “PPeFL: privacy-preserving
edge federated learning with local differential privacy,” IEEE Internet
Things J., vol. 10, no. 17, pp. 15 488–15 500, Sept. 2023.

[18] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Differentially
private asynchronous federated learning for mobile edge computing in
urban informatics,” IEEE Trans. Ind. Inf., vol. 16, no. 3, pp. 2134–2143,
Mar. 2020.

[19] D. Kwon, J. Jeon, S. Park, J. Kim, and S. Cho, “Multiagent DDPG-
based deep learning for smart ocean federated learning IoT networks,”
IEEE Internet Things J., vol. 7, no. 10, pp. 9895–9903, Oct. 2020.

[20] T. Zhao, F. Li, and L. He, “DRL-based joint resource allocation and
device orchestration for hierarchical federated learning in NOMA-
enabled industrial IoT,” IEEE Trans. Ind. Inf., vol. 19, no. 6, pp. 7468–
7479, Jun. 2023.

[21] J. Zheng, K. Li, N. Mhaisen, W. Ni, E. Tovar, and M. Guizani,
“Exploring deep-reinforcement-learning-assisted federated learning for
online resource allocation in privacy-preserving EdgeIoT,” IEEE Internet
Things J., vol. 9, no. 21, pp. 21 099–21 110, Nov. 2022.

[22] S. D. Okegbile, J. Cai, H. Zheng, J. Chen, and C. Yi, “Differentially
private federated multi-task learning framework for enhancing human-to-
virtual connectivity in human digital twin,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 11, pp. 3533–3547, Nov. 2023.

[23] B. Ghimire and D. B. Rawat, “Recent advances on federated learning
for cybersecurity and cybersecurity for federated learning for internet
of things,” IEEE Internet Things J., vol. 9, no. 11, pp. 8229–8249, Jun.
2022.

[24] P. Qin, Y. Fu, Y. Xie, K. Wu, X. Zhang, and X. Zhao, “Multi-agent
learning-based optimal task offloading and UAV trajectory planning for
AGIN-power IoT,” IEEE Trans. Commun, vol. 71, no. 7, pp. 4005–4017,
Jul. 2023.

[25] H. Liao, Z. Zhou, X. Zhao, and Y. Wang, “Learning-based queue-aware
task offloading and resource allocation for space–air–ground-integrated
power IoT,” IEEE Internet Things J., vol. 8, no. 7, pp. 5250–5263, Apr.
2021.

[26] Z. Zhang, Q. Liu, Z. Huang, H. Wang, C.-K. Lee, and E. Chen, “Model
inversion attacks against graph neural networks,” IEEE Trans. Knowl.
Data Eng., vol. 35, no. 9, pp. 8729–8741, Sept. 2023.

[27] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, USA, 2019, pp. 739–
753.

[28] X. Shen, Y. Liu, and Z. Zhang, “Performance-enhanced federated
learning with differential privacy for internet of things,” IEEE Internet
Things J., vol. 9, no. 23, pp. 24 079–24 094, Dec. 2022.

[29] S. A. Alvi, Y. Hong, and S. Durrani, “Utility fairness for the differ-
entially private federated-learning-based wireless IoT networks,” IEEE
Internet Things J., vol. 9, no. 19, pp. 19 398–19 413, Oct. 2022.

[30] Y. Xu, M. Xiao, H. Tan, A. Liu, G. Gao, and Z. Yan, “Incentive
mechanism for differentially private federated learning in industrial
internet of things,” IEEE Trans. Ind. Inf., vol. 18, no. 10, pp. 6927–
6939, Oct. 2022.

[31] G. Muthukrishnan and S. Kalyani, “Grafting Laplace and Gaussian
distributions: A new noise mechanism for differential privacy,” IEEE
Trans. Inf. Forensics Secur., vol. 18, no. 99, pp. 5359–5374, Aug. 2023.

[32] Y.-T. Tsou, H.-L. Chen, and J.-Y. Chen, “RoD: Evaluating the risk of
data disclosure using noise estimation for differential privacy,” IEEE
TBD, vol. 7, no. 1, pp. 214–226, Mar. 2021.

[33] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett, “Functional
mechanism: Regression analysis under differential privacy,” Proc. VLDB
Endow., vol. 5, no. 11, pp. 1364–1375, Jul. 2012.

[34] A. Ghosh and A. Roth, “Selling privacy at auction,” Games Econ.
Behav., vol. 91, no. 99, pp. 334–346, May 2015.

[35] K. Wei, J. Li, M. Ding et al., “Federated learning with differential pri-
vacy: Algorithms and performance analysis,” IEEE Trans. Inf. Forensics
Secur., vol. 15, no. 99, pp. 3454–3469, Apr. 2020.

[36] H. Liao, Z. Zhou, Z. Jia et al., “Ultra-low AoI digital twin-assisted
resource allocation for multi-mode power IoT in distribution grid energy
management,” IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 3122–
3132, Oct. 2023.

[37] Z. Zhou, Z. Jia, H. Liao, W. Lu, S. Mumtaz, M. Guizani, and M. Tariq,
“Secure and latency-aware digital twin assisted resource scheduling for
5G edge computing-empowered distribution grids,” IEEE Trans. Ind.
Inf., vol. 18, no. 7, pp. 4933–4943, Jul. 2022.

[38] H. Chen, S. Huang, D. Zhang, M. Xiao, M. Skoglund, and H. V.
Poor, “Federated learning over wireless IoT networks with optimized
communication and resources,” IEEE Internet Things J., vol. 9, no. 17,
pp. 16 592–16 605, Sept. 2022.

[39] S. Zhang, Z. Yao, H. Liao, Z. Zhou, Y. Chen, and Z. You, “Endogenous
security-aware resource management for digital twin and 6G edge
intelligence integrated smart park,” China Commun., vol. 20, no. 2, pp.
46–60, Feb. 2023.

[40] Y. Cui, K. Cao, and T. Wei, “Reinforcement learning-based device
scheduling for renewable energy-powered federated learning,” IEEE
Trans. Ind. Inf., vol. 19, no. 5, pp. 6264–6274, May 2023.

[41] W. Zhou, T. Zhu, D. Ye, W. Ren, and K.-K. R. Choo, “A concurrent
federated reinforcement learning for IoT resources allocation with local
differential privacy,” IEEE Internet Things J., vol. PP, no. 99, pp. 1–14,
Sept. 2023.



12

Sunxuan Zhang is currently working toward the
Ph.D degree in electrical engineering with North
China Electric Power University, Beijing, China. His
research interests include resource allocation and
network security in smart grid communication and
PIoT.

Jiapeng Xue is currently working toward the M.E.
degree in information and communication engineer-
ing at North China Electric Power University. His
research interests include smart grid communication
and PIoT.

Jiayi Liu is currently working toward the B.S.
degree in communication engineering at North China
Electric Power University, Beijing, China. Her re-
search interests include resource allocation in smart
grid communication and PIoT.

Zhenyu Zhou (Senior Member, IEEE) received the
M.E. and Ph.D. degrees in international information
and communication studies from Waseda University,
Tokyo, Japan, in 2008 and 2011, respectively. From
2012 to 2019, he was an Associate Professor with
the School of Electrical and Electronic Engineer-
ing, North China Electric Power University, Beijing,
China, where he has been a Full Professor since
2019. His research interests include PIoT, smart grid
information and communication, communication-
sensing-computing integration, and smart grid en-

ergy management. He was the recipient of the IET Premium Award in
2017, IEEE Globecom 2018 Best Paper Award, IEEE International Wireless
Communications and Mobile Computing Conference 2019 Best Paper Award,
and IEEE Communications Society Asia-Pacific Board Outstanding Young
Researcher. He was an Associate Editor for IEEE Internet of Things Journal,
IET Quantum Communication, IEEE Access, and EURASIP Journal on
Wireless Communications and Networking, and the Guest Editor of IEEE
Communications Magazine, IEEE Transactions on Industrial Informatics, and
Transactions on Emerging Telecommunications Technologies. He is an IET
Fellow and a Senior Member of the Chinese Institute of Electronics and the
China Institute of Communications.

Xiaomei Chen received the PhD degree in in-
strument science and technology from the School
of Instrumentation and Optoelectronic Engineering,
Beihang University, Beijing, China, in 2010. She is
currently working in Department of Electrical and
Electronic Engineering, North China Electric Power
University, Beijing, China. Her research activities
focus on artificial intelligence and data science, reli-
ability analysis of complex systems, communication
system design, and medical audio signal processing.

Shahid Mumtaz (Senior Member, IEEE) received
the master’s and Ph.D. degrees in electrical and
electronic engineering from the Blekinge Institute of
Technology, Karlskrona, Sweden, and University of
Aveiro, Aveiro, Portugal, in 2006 and 2011, respec-
tively. He has more than 12 years of wireless indus-
try/academic experience. Since 2011, he has been
with the Instituto de Telecomunicac¸ ˜oes, Aveiro,
Portugal, where he currently holds the position of
Auxiliary Researcher and adjunct positions with
several universities across the Europe-Asian Region.

He is currently also a Visiting Researcher with Nokia Bell Labs, Murray Hill,
NJ, USA. He is the author of 4 technical books, 12 book chapters, and more
than 150 technical papers in the area of mobile communications. Dr. Mumtaz
is an ACM Distinguished Speaker, Editor-in-Chief for IET Journal of Quantum
Communication, Vice Chair of Europe/Africa Region IEEE ComSoc: Green
Communications and Computing society, and Vice Chair for IEEE standard
on P1932.1, Standard for Licensed/Unlicensed Spectrum Interoperability in
Wireless Mobile Networks.


