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Abstract: Community-acquired pneumonia is one of the most lethal infectious diseases, especially 
for infants and the elderly. Given the variety of causative agents, the accurate early detection of 
pneumonia is an active research area. To the best of our knowledge, scoping reviews on diagnostic 
techniques for pneumonia are lacking. In this scoping review, three major electronic databases were 
searched and the resulting research was screened. We categorized these diagnostic techniques into 
four classes (i.e., lab-based methods, imaging-based techniques, acoustic-based techniques, and 
physiological-measurement-based techniques) and summarized their recent applications. Major re-
search has been skewed towards imaging-based techniques, especially after COVID-19. Currently, 
chest X-rays and blood tests are the most common tools in the clinical setting to establish a diagnosis; 
however, there is a need to look for safe, non-invasive, and more rapid techniques for diagnosis. 
Recently, some non-invasive techniques based on wearable sensors achieved reasonable diagnostic 
accuracy that could open a new chapter for future applications. Consequently, further research and 
technology development are still needed for pneumonia diagnosis using non-invasive physiological 
parameters to attain a better point of care for pneumonia patients. 
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1. Introduction 
Pneumonia is the leading cause of mortality among infectious diseases. Despite 

thriving healthcare systems, pneumonia remains a serious health problem, causing 3.2 
million of the 56.4 million deaths globally in 2015 [1]. Between 2000 and 2015, global hos-
pital admissions for child pneumonia increased by 2.9 times, with a more rapid increase 
observed by the WHO in South East Asia than in African regions [2]. Pneumonia, though 
both preventable and manageable, is still a serious concern, especially for children under 
five years of age, and according to an estimate, 20% of pediatric deaths are caused by this 
vicious disease [3]. The early diagnosis and treatment of the disease should be considered 
a topmost priority, because pneumonia in children and elderly patients may lead to long-
lasting effects on the lungs and the development of restrictive and obstructive lung func-
tion deficiencies [4]. 
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Pneumonia is an infection of the lower respiratory tract. Mackenzie and Chang de-
fined pneumonia as an acute infection of the lung parenchyma by various pathogens, ex-
cluding the condition of bronchiolitis [5]. Pneumonia can be classified according to the 
severity of the disease, as well as the site where the infection was caught, as shown in 
Figure 1. Community-acquired pneumonia is defined as pneumonia caught outside the 
hospital [6]. Nosocomial infection refers to infection contracted in hospital settings; hence, 
nosocomial pneumonia is further divided into hospital-acquired pneumonia (HAP) and 
ventilator-acquired pneumonia (VAP). Pneumonia that develops 48 h after a patient has 
been hospitalized is HAP, whereas VAP is defined as pneumonia that develops 48 h after 
intubation [7]. 

 
Figure 1. Classification of pneumonia according to the site of infection contraction. 

Various pathogens, including viruses, bacteria, and fungi, are known to cause pneu-
monia. The etiology of pneumonia is classified usually into typical bacteria, atypical bac-
teria, or respiratory viruses [6]. Atypical bacteria include Chlamydia pneumoniae, Myco-
plasma pneumoniae, and Legionella species. Typical bacteria include S. pneumoniae, H. 
influenzae, C. pneumoniae, and M. Pneumoniae. Respiratory viruses include coronaviruses, 
respiratory syncytial viruses (RSVs), adenoviruses, influenza viruses, metapneumovirus, 
and parainfluenza viruses. Other causes include fungi, such as Histoplasma capsulatum. 

Common clinical features according to age and severity of pneumonia are summa-
rized in Table 1. The most common clinical symptoms of pneumonia include fever, dysp-
nea, fatigue, chills, cough, nausea, vomiting, diarrhea, and chest pain. Pneumonia is par-
ticularly risky for infants, children under the age of five, elderly over the age of 65, im-
munocompromised individuals, and patients with comorbidities. V. Averjanovaitė et al. 
found that COPD, comorbidities, and multilobar bilateral involvement are independent 
risk factors for severe early CAP complications [8]. Complications in CAP are common, 
and usually associated with delayed diagnosis of disease, misdiagnosis, or being given 
the wrong initial medication [9]. Accurately diagnosing pneumonia and differentiating it 
from upper respiratory tract infection and cardiovascular problems are important to rule 
out the unnecessary prescription of antibiotics. Antibiotic resistance has been observed in 
all pathogens associated with CAP. T. Welte et al. reported an increase in antibiotic-re-
sistant strains; however, resistance was not related to mortality [10]. They found CAP to 
be associated with high hospitalization rates and length of hospital stay. They showed 
that the clinical and economic burden of CAP in Europe is high, that CAP has considerable 
long-term effects on quality of life, and that long-term prognosis is worse in patients with 
pneumococcal pneumonia. 
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Table 1. Clinical features of CAP summarized from [11,12]. 

Degree of Illness Age Group 
 Infants Older Children Adults 

Mild/Moderate 

1 Temp: <38.5 °C 
2 RR: <50 bpm 
Mild recession 

Normal feeding 

1 Temp: <38.5 °C 
2 RR: <50 bpm 
Mild dyspnea 
No vomiting 

1 Temp > 39 °C 
2 RR > 30 bpm 

Dyspnea 
Mild cough 

Severe 

1 Temp: >38.5 °C 
2 RR: >70 bpm 

Mild-to-severe recession 
Respiratory distress 

Tachycardia 
Intermittent apnea 
Decreased feeding 

Capillary refill time > 2 s 

1 Temp: >38.5 °C 
2 RR: >50 bpm 

Mild-to-severe recession 
Respiratory distress 

Tachycardia 
Intermittent apnea 
Decreased feeding 

1 Temp > 39 °C 
Respiratory distress 

Cough 
Low systolic blood pressure 

Very severe 

Cough or difficulty in breathing 
Oxygen saturation <90% or central cyanosis 

Severe respiratory distress (e.g., grunting, very severe chest indraw-
ing) 

Signs of pneumonia with a general danger sign (inability to breast-
feed or drink, lethargy or reduced level of consciousness, convul-

sions) 

Temp > 40 °C 
RR > 30 bpm 

SpO2 < 92 
Arterial pH < 7.5 

Multiple organ dysfunctions 
Altered mental state 
Pleuritic chest pain 

Adventitious breath sounds 
1: Temperature. 2: Respiratory rate. 

Arthur. R. Reynolds published an article in 1903 that predicted pneumonia’s in-
creased prevalence and pointed towards the need to restrict its spread [13]. He quoted 
Prof. William Osier, who termed pneumonia as the most widespread and fatal of all acute 
infectious diseases, stating that pneumonia is the “Captain of the Men of Death”. The 
statement still holds correct today, and the need to accurately and quickly diagnose pneu-
monia became even more evident with the recent outbreak of COVID-19 (SARS-CoV-2), 
which turned into a global pandemic. SARS-CoV-2 causes respiratory tract infection that 
progresses into systemic organ failure if not controlled [14]. We now have a few effective 
vaccines for COVID-19, and a reasonable portion of the world population has been vac-
cinated; however, humankind will keep encountering new strains of viruses that will 
make them vulnerable to respiratory infections. Hence, active research in diagnostic med-
icine into respiratory infections that cause pneumonia is highly needed. 

In this paper, various current pneumonia diagnosis techniques in clinical settingsare 
reviewed. We undertook a scoping review to answer the following research objectives: 
• RQ1: How many major categories are there for pneumonia diagnostic techniques?  
• RQ2: What samples (body fluids or signals) have been used for each category and 

what techniques have been explored so far? 
• RQ3: What is the possible course of action for enhancing the current state of the art 

for pneumonia diagnosis?  
The rest of the paper is organized as follows: Section 2 discusses the methodology 

employed to select the research to answer the above-stated questions. Section 3 presents 
the results, and in Section 4, we briefly discuss them. Finally, in Section 5, we conclude the 
paper. 
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2. Materials and Methods 
2.1. Study Design 

The framework employed for the research design was that of a scoping review, as 
described by [15–17]. Two investigators independently performed the database search 
and screened the articles for relevance and whether they should be included. Any conflict 
was resolved by consensus.  

2.2. Identification of Relevant Studies 
Three electronic databases, namely IEEE Xplore, PubMed, and Science Direct, were 

searched using the keywords of “Pneumonia” AND (diagnosis OR detection OR screen-
ing) for the given scoping review, and a filter was applied to narrow the search to the 
years 2011 to August 2023. The initial search resulted in 773, 69,669, and 113,906 articles 
from the e-databases, respectively. 

Later, the search was limited to only journal articles, and 119, 66,430, and 57,068 pa-
pers were found, respectively. Only two very relevant conference papers were included 
after careful consideration by the authors. The year-wise distribution of the research arti-
cle is shown in Figure 2. The first 1000 and 10,000 articles could not be accessed via Science 
Direct and PubMed only, as per database restrictions. Nine hundred and fifty-two (952) 
duplicates were removed using EndNote Web 20 

 
Figure 2. Number of journal publications in the major databases for the selected keywords for the 
defined time range. 

2.3. Selection of Articles 
2.3.1. Data Screening 

The articles were then shortlisted by manual scrutiny using an inclusion criterion, 
and 86 publications were selected for this study. Figure 3 shows the distribution of papers 
for each technique incorporated in the study. Figure 4 shows the PRISMA flow diagram 
for the selection of articles. 
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Figure 3. Number of papers for each technique included in the study. 
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Figure 4. PRISMA 2020 flow diagram for selection of articles for the proposed scoping review. * 
IEEE Xplore, PubMed, and Science Direct, respectively. ** Duplicate records removed using End-
Note Web 20. 

2.3.2. Inclusion and Exclusion Criteria 
The following inclusion criteria were used to extract relevant studies: 

1. Studies published between 2011 and 2023 in English. 
2. Studies related to the diagnosis of pneumonia. 
3. Peer-reviewed publications, preferably in a journal. 
The exclusion criteria were as follows: 
1. Methods not about the diagnosis of pneumonia.  
2. Studies published before 2011. 
3. Studies published in other languages. 
4. Studies without any validation of proposed methods.  
5. The estimation method is not properly defined.  
6. Objectives are not mentioned. 
7. Reviews, patents, editorial papers, surveys, technical reports, etc., are not included. 
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2.4. Data Charting 
The publications were summarized for techniques, datasets used, evaluation meth-

ods, and results, and then categorized and compared according to modality or technique 
used to detect pneumonia using Excel spreadsheets and the Mendeley Cite citation man-
ager.  

2.5. Summarizing and Reporting the Results 
We categorized the research on the diagnosis of pneumonia into four categories using 

the scoping review framework. We focused on a broad range of studies and present a 
detailed overview, which are characteristic features of a scoping review [15]. We have pro-
vided a summary of the techniques used, the type of sample employed in each study, the 
datasets built or used where applicable, the evaluation method for generating the results, 
and a summary of the results with performance measures, where applicable, in the form 
of tables for each category.  

2.6. Patient or Public Involvement  
No patients or volunteers were involved. 

3. Results 
As part of the review process, we categorized the pneumonia diagnostic methods 

into four classes, as shown in Figure 5. Each category is discussed in detail. Section 3.1 
discusses laboratory-based diagnostic methods, Section 3.2 discusses acoustic- or chest-
sound-based detection methods, Section 3.3 discusses imaging-based methods—within 
which CXR, CT and lung ultrasound methods are discussed individually—and finally, in 
Section 3.4, physiological-measurement-based methods are described. Additional papers 
are discussed in Section 3.5. 

 
Figure 5. Pneumonia diagnostic methods. 

3.1. Laboratory-Based Diagnosis 
Table A1 presents the key publications carefully selected from the past ten years for 

laboratory-based methods, covering methods used, sample type used by each researcher, 
and evaluation techniques used to derive results and establish efficiencies. We have also 
summarized the data collected or generated by each work, and whether the results were 
compared with other techniques of CAP diagnosis. Finally, the key findings of each work 
are summarized under the results heading. Figure 6 presents a general overview of the 
techniques used in a laboratory setting for diagnosing various kinds of pneumonia [18]. 
The lab-based tests include a complete blood picture (CP, also known as complete blood 
count, or CBC), blood culture to rule out sepsis, and polymerase chain reaction (PCR)-
based tests for viral pneumonia. C-reactive proteins (CRPs) are also greatly used since 
they indicate infection, but CRP values generally indicate infection alone, rather than 
pneumonia exactly. Clinicians sometimes prescribe antibiotics in the first week of infec-
tion under the wrong impression of raised CRP in viral infections [19]. Bronchoscopy and 
pleural fluid cultures are also used in severe undiagnosed cases. 
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Figure 6. Possible lab-based tests for different causative agents, adapted from A. Torres et al. [18]. 

3.2. Acoustic-Based Techniques  
The method of diagnosing pneumonia using acoustic signals involves recording lung 

sounds with a digital stethoscope or similar device, then analyzing these sounds using 
advanced signal processing techniques and machine learning algorithms. Key features 
such as wheezes, crackles, and other abnormal respiratory sounds are extracted from the 
recordings. These features are then input into a trained classification model, which can 
distinguish between healthy and pneumonia-affected lungs. The process leverages the 
distinct acoustic patterns produced by pneumonia-related changes in the lungs, providing 
a non-invasive, quick, and cost-effective diagnostic tool that can be used in various set-
tings, including remote or resource-limited areas. This method is undoubtedly the oldest 
and most hands-on technique practitioners use in clinical settings. Automatic auscultatory 
methods involve using digital devices such as microphones to pick up the acoustic signals 
from the chest. Such systems are usually used in the research phase, and no practical de-
vice is available. Such techniques have been particularly useful since teleclinics have been 
in practice, especially after COVID-19. A summary of papers using sound-based tech-
niques for diagnosing pneumonia is presented in Table A2. The table summarizes the 
method and type of input sound used for diagnosis. It also briefly presents the evaluation 
techniques used to test the given method and the datasets used by each researcher. Finally, 
it can be extracted easily from the table if any given method has been compared with other 
related models or techniques, and accuracy, sensitivity, specificity, AUC, and other result 
parameters are given.  

3.3. Imaging-Based Techniques  
Imaging-based techniques such as CXR, CT scan, and LUS attempt to account for the 

anatomical changes occurring in the lungs due to pneumonia by taking physical images 
of the lungs. They can generally provide good insight, but are not feasible in limited-re-
source settings. The diagnosis of pneumonia is a combined result of correlating symptoms 
with lab results; however, the chest X-ray is considered the gold standard for diagnosing 
pneumonia [11,12,14,20]. 

Computed tomography (CT) scans are better in terms of accuracy; however, since 
they are generally not available in the primary care setting, CXR is preferred. CT is not a 
first-line imaging tool for uncomplicated community-acquired pneumonia. It is largely 
reserved for complications or difficulty differentiating CAP from other pathologies [21]. 
However, although not used much in practice, lung ultrasound (LUS) has recently been 
explored as an alternate option for diagnosing pneumonia instead of CXR or CT [22]. LUS 
could potentially be used instead of CXR, while the chest CT scan can be used for 
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complicated cases [23]. LUS was found to be very sensitive (98.02%) and considerably spe-
cific (64.71%) for pneumonia originally confirmed with X-rays [24]. With the recent 
COVID-19 pandemic, a huge influx of knowledge on diagnosing pneumonia using both 
CXR and CT scans has been observed. Many attempts to diagnose CAP using LUS and 
MRI have been made [25,26]. CAP can be distinctively diagnosed based on any of the 
following three features or a combination of them: peribranchial nodules (bronchopneu-
monia), consolidation (alveolar/lobar pneumonia), or ground-glass opacity (GGO) [27]. 
The fourth unique and infrequent form is random nodules implying infection [28]. A 
glimpse of the work completed using CT scans to diagnose pneumonia in the past ten 
years is presented in Table A3. The role of CT scans in diagnosing COVID-19 has increased 
the development of many CT scan image databases. Because of their low resolution and 
fewer image details, it is very difficult to identify the difference between abnormal and 
normal lung CXRs, even for experienced radiologists and robust machine learning algo-
rithms [29]. Typical CXR images with and without pneumonia taken from Kaggle and 
RSNA datasets are illustrated in Figure 7. 

H. Kumarasinghe et al. employed a modified U-Net architecture for lung segmenta-
tion and an ensemble of CNN models for classification. Using the V7-labs COVID-19 X-
ray dataset, the images were preprocessed, resized, and enhanced using CLAHE. Data 
augmentation techniques balanced the dataset. The modified U-Net included residual 
convolutional blocks and dropout layers, trained over 20 epochs with the ADAM opti-
mizer and dice loss function. After the post-segmentation, lung areas were extracted and 
used to train the MobileNetV2, InceptionV3, ResNet50, and Xception models, which were 
combined into an ensemble classifier. The evaluation metrics included IoU score, dice co-
efficient, precision, and recall, demonstrating improved performance in lung segmenta-
tion and disease classification. 

The methods for identifying pneumonia using CXRs, as well as the evaluation techniques 
and the datasets used by each researcher, are presented in Table A4. The table discusses if any 
given method has been compared with related techniques and, lastly, the results are summa-
rized in terms of accuracy, sensitivity, specificity, AUC, and other parameters. 

 
Figure 7. (a) Normal lung CXR images. (b) Pneumonia-infected lung CXR images taken from RSNA 
dataset. Bottom: CXR images of normal lungs, bacterial pneumonia, and viral pneumonia from left 
to right (c–e), taken from Kaggle, the open-access dataset [30,31]. 
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The key research articles presenting the lung ultrasound technique for diagnosing 
lower respiratory tract infection compared to CXR or CT scans are summarized in Table 
A5. The common pathological findings via LUS observed in the case of pneumonia are as 
follows: lines, hepatization, the shred sign, aerated bronchi, and hypoechoic parapneu-
monic effusion in the case of empyema [32]. Lung ultrasound images are shown in Figure 
8. The pleura is seen as a hyperechoic horizontal line (green lines in Figure 8) [33]. The 
pleural line synchronizes with breathing, which is sometimes referred to as lung sliding. 
Additionally, below the pleural line, continuous hyperechoic horizontal lines appear as A 
lines (blue lines in Figure 8). Whenever aeration becomes compromised due to the accu-
mulation of cells and fluids, the ultrasonic beam penetrates deeper into the lung, produc-
ing so-called B lines (comet-tail artefacts highlighted in yellow in Figure 8). The appear-
ance of C lines indicates that lung consolidation has occurred as a result of an infectious 
pulmonary embolism, obstructive atelectasis, or a contusion of thoracic trauma (high-
lighted in red in Figure 8). 

 
Figure 8. Reprinted: This shows the four types of lines found in LUS images. A lines are shown in 
blue; B lines are yellow; C line is shown in red; and the pleural line is green [33]. 

3.4. Physiological-Measurement-Based Techniques 
A physiological-measurement-based system uses a number of proposed techniques 

to extract physiological parameters such as body temperature, respiratory rate, heart rate, 
and oxygen saturation via various sensors to diagnose pneumonia. Unfortunately, we 
only have such systems in the prototype phase. A summary of the work on this topic is 
presented in Table A6. 

3.5. Results of Additional Papers 
To perform a comprehensive review, a similar database search was performed lim-

ited to publications completed in 2024 only. T. Wanasinghe et al. presented a lung sound 
classification model on the ICBHI 2017 Challenge dataset, which contains respiratory 
sound recordings for 10 lung disease classes, utilizing a lightweight convolutional neural 
network (CNN) with multi-feature integration [34]. The proposed model integrates three 
audio feature representations—Mel-spectrogram, Mel-Frequency Cepstral Coefficients 
(MFCC), and Chromagram—into a stacked input in the CNN. The authors experimented 
with different CNN architectures like Xception, DenseNet, MobileNetV2, InceptionV3, 
ResNet50, and VGG16, and found that the stacked feature representation outperformed 
the others that used each feature individually. The authors evaluated the classification 
performance using accuracy, precision, recall, and F1 score metrics. They also used a 
weighted average approach to account for the imbalanced dataset. The proposed CNN 
model achieved the highest accuracy of 91.04% using the stacked feature representation, 
outperforming the individual-feature approaches. XAI analysis provided insights into the 
model’s decision-making process by highlighting the most contributive regions in the au-
dio waveform. The authors conducted a comprehensive comparison of their work with 
existing studies in terms of feature selection, model architecture, datasets, number of clas-
ses, performance, and XAI techniques. They found that their approach achieved compet-
itive results while also incorporating novel XAI analyses for audio data classification. 
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K. Kanwal et al. [35] used a machine learning-based approach to diagnose commu-
nity-acquired pneumonia (CAP) in children using photoplethysmography (PPG) signals. 
The methods employed included the collection of PPG data from both healthy and pneu-
monia-infected children. A team of trained medical professionals under a consultant pe-
diatrician diagnosed and labelled the participant PPG data with CAP or healthy tags. The 
PPG recordings were filtered, detrended, and normalized. Time- and frequency-domain 
features were extracted from the normalized PPG waves along with key points detected 
previously. The performance of the classifiers was evaluated using various metrics, such 
as accuracy, error, sensitivity, specificity, precision, F1 score, and area under the curve 
(AUC) for the receiver operator characteristic (ROC) curve. The dataset consisted of PPG 
signals from 57 participants (31 healthy and 26 pneumonia-infected) used for training and 
10 participants (5 healthy and 5 pneumonia-infected) for testing. The highest accuracy was 
achieved by the linear discriminant classifier (84.09%), followed by the weighted KNN 
classifier (77.87%). The highest AUC-ROC value was associated with the linear discrimi-
nant classifier (0.82). The paper compares its results with existing studies in the field of 
respiratory rate estimation and pneumonia diagnosis using PPG signals.  

4. Discussion 
CAP stands globally as a lethal infectious disease, despite effective antibiotics and 

vaccines. The death rate for adult pneumonia as of 2018 was 93.2 deaths per 100,000 pop-
ulation for 65 year olds. The rate keeps increasing with age to as much as 377.6 per 100,000 
population [36]. Pneumonia is a leading cause of hospitalization for both extreme age 
groups (elderly and infants) [37,38] and remains a challenging health issue owing to the 
evolving microbial world that keeps generating novel causative agents for pneumonia. 
Humankind has experienced avian flu, Middle East respiratory syndrome (MERS), severe 
acute respiratory system (SARS) coronavirus, and SARS-CoV-2, resulting in COVID-19-
induced pneumonia. The threat of pandemics and endemics shall remain a serious prob-
lem. We are currently fighting one of the most lethal pandemics, resulting in 3.73 million 
deaths worldwide to date [39]. It is, therefore, important to devise accurate, time-efficient, 
and deterministic diagnostic techniques to detect pneumonia and differentiate it from 
other similar pathologies like congestive heart failure.  

Previously, systematic reviews of a very specific nature have been completed for the 
diagnosis of ventilator-acquired pneumonia (VAP) and hospital-acquired pneumonia 
(HAP) [40,41]. The review papers for CAP are mostly directed towards the management 
of CAP [42]. For the diagnosis of CAP, review papers usually target a specific area or 
method of diagnosis, like biomarkers only, as seen in [43,44], or a specific imaging modal-
ity [45]. Hence, we have tried to bridge the gap by presenting a scoping review of the 
many techniques currently used to diagnose CAP. We have attempted to summarize the 
pros and cons of each method in the present work to make them easier to comprehend. 
Very recently, Stokes et al. completed a systematic review of AI-based models for diag-
nosing pneumonia using signs and symptoms [46]. E. Gentilotti et al. performed a system-
atic review and meta-analysis of the diagnostic accuracy of point-of-care tests, including 
lung ultrasounds, X-rays, rapid antigen tests, etc. [47]. A. Heidari et al. performed a sys-
tematic literature review for diagnosing COVID-19-induced pneumonia using deep learn-
ing methods [48]. In our opinion, these reviews represent only a small portion of diagnos-
tic methods, and AI-based methods are not practiced in clinical settings yet. It was not a 
feasible option to perform a meta-analysis of different diagnostic methods with different 
key performance measures; hence, a scoping review has been completed so that we can 
underline future directions for research and advancement in the field.  

This scoping review highlights the need for a comprehensive review that categorizes 
diagnostic methods into four classes: laboratory-based, acoustic- or chest-sound-based, 
imaging-based, and physiological-measurement-based. Many surveys focus on specific 
aspects of pneumonia diagnosis, such as imaging-based methods or laboratory tests, with-
out providing a broad overview of the various techniques used. Some reviews are 
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restricted to specific databases or periods, which can lead to incomplete or outdated in-
formation. Different reviews use varying inclusion and exclusion criteria, making it diffi-
cult to compare results across studies. Previous reviews have often failed to provide a 
detailed analysis of the techniques used, datasets employed, and evaluation methods, 
making it challenging to understand the strengths and limitations of each method. Exist-
ing reviews often group methods into broad categories without providing a detailed 
breakdown of the techniques used within each category. 

To address these limitations, this scoping review paper presents a comprehensive 
scoping review that includes laboratory-based, acoustic- or chest-sound-based, imaging-
based, and physiological-measurement-based methods, providing a detailed overview of 
the various techniques used in pneumonia diagnosis. Standardized inclusion and exclu-
sion criteria were employed to ensure consistency and comparability across studies. The 
review includes detailed analyses of the techniques used, datasets employed, and evalu-
ation methods, enabling a better understanding of the strengths and limitations of each 
method. We categorized methods into four classes and provide a detailed breakdown of 
the techniques used within each category, allowing for a more nuanced understanding of 
the methods. The review covers articles from IEEE Xplore, PubMed, and Science Direct, 
and includes studies published between 2011 and 2023, ensuring a comprehensive and 
up-to-date overview of the field. By addressing these limitations, this paper provides a 
novel contribution to the field of pneumonia diagnosis by presenting a comprehensive 
and detailed review of the various techniques used, which can help researchers and clini-
cians better understand the strengths and limitations of each method and inform the de-
velopment of more effective diagnostic tools. 

This paper presents a summary of the various techniques used to diagnose commu-
nity-acquired pneumonia; to answer RQ1, we extracted research papers from three data-
bases and divided them into four categories based on the techniques used for detection. 
We then described each method briefly and analyzed them in terms of techniques em-
ployed and results achieved to answer RQ2. In the section above, to answer RQ3, we have 
summarized the pros and cons of using each method. With the huge surge of information 
after the COVID-19 pandemic and concerns about infection spread, it is impossible to de-
clare the single best method for pneumonia detection. Testing should be undertaken de-
pending on the availability of resources and the type of care setup. Diagnostic tests should 
be encouraged for patients at greater risk, such as infants, the elderly, and immunocom-
promised individuals, since proactive testing is a key step for the rapid diagnosis and 
treatment of pneumonia. Given the various available methods, we understand it is impos-
sible to make a conclusive statement about the best diagnostic method; hence, a meta-
analysis was not completed. However, a class-wise division of diagnostic methods has 
been established and we have identified potential directions of future research for the bet-
ter diagnosis of pneumonia in each class of technique. 

Figure 9 represents a graph of the number of selected papers that were published 
during the selected time. It is evident that research containing the keyword of pneumonia 
had a surge in 2020. This could be a consequence of the outbreak of COVID-19-induced 
pneumonia.  
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Figure 9. Number of selected studies in the given period. There was a surge in research containing 
the keyword pneumonia in 2020, and the trend continued after this point. This could be explained 
as being related to the COVID-19 pandemic. 

Figure 10 represents a technique-wise distribution of the selected papers for the year 
2020 and the following years. During the years 2020, 2021, and 2022, there were 25, 11, and 
2 selected papers that focused on radiology-based methods, respectively. This implies that 
most of the research during this period was geared towards radiology-based methods.  

 
Figure 10. Technique-wise distribution of the number of selected papers for the time when research 
related to pneumonia had a surge. Radiology-based techniques were the most researched. 

From Figure 11, it can be concluded that most of the researchers targeted CT scans 
and CXR for pneumonia diagnosis instead of other methods during this period.  

0
5

10
15
20
25
30

Lab-based methods Radiology-based methods Accoustic-technique based
methods

Physiological
measurement-based

methods

Nu
m

be
r o

f p
ap

er
s

Selected Research Papers for All Techniques after COVID-19 
Pandemic

No of paper 2020 No of paper 2021 No of paper 2022



Sensors 2024, 24, 4291 14 of 40 
 

 

 
Figure 11. Categorical distribution of selected papers on radiology for the three years after the out-
break of COVID-19. 

Finally, in Figure 12, we have attempted to visualize the different methods adopted 
to diagnose pneumonia using radiology-based methods, and it can be observed that al-
most 33 papers on CT scans and CXR were based on a deep learning method. This implies 
that advancements in deep learning, machine learning, and related fields are a primary 
reason for the influx of knowledge related to this field.  

 
Figure 12. The methodologies employed for diagnosing pneumonia using radiographic images. Ad-
vancements in deep learning and machine learning have been a fundamental reason for targeting 
images. 

The review presented in this paper could be improved by including more research 
databases and conference papers of good quality. The search was skewed by and includes 
more research related to COVID-19-induced pneumonia because of the plentiful efforts in 
the last three years by researchers around the globe to formulate reliable diagnostic 
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techniques during the global pandemic. Many researchers have attempted to perform ma-
chine learning on radiographic images. Most of the papers considered in the present re-
view cover imaging-based techniques. Lab-based techniques can be further divided into 
various types based on the type of sample or method of diagnosis employed. This could 
give a further understanding of the lab-based techniques currently in practice. Lastly, we 
have not attempted to perform any meta-analysis or statistical valuation to compare accu-
racy, sensitivity, or specificity because different performance measures were discussed in 
the included studies and the entire process was not expected to make any sense.  

Lab-based tests are very sensitive and adaptable, and can detect the entire range of 
respiratory pathogens; however, they are generally time-consuming. Pathogen cultures 
often take many days and several target detection systems (or multiplex assays); in gen-
eral, nucleic acid amplification by polymerase chain reaction (PCR) needs several hours 
to yield results. Certain biological compounds as biomarkers for disease can be employed 
to fabricate biosensors for the rapid diagnosis of pneumonia; however, we have limited 
research to support the claim. Lab-based techniques are currently the only way to find 
resistance patterns in pathogens causing pneumonia. Many diagnostic arrays and systems 
have been developed for rapid diagnosis, but the validation of new diagnostic technology 
platforms is crucial to evaluate their effectiveness and guide antibiotic treatment in this 
population.  

Acoustic-based techniques are generally accurate and sensitive, but usually nonspe-
cific. The practice of deep learning is expected to improve the specificity of using chest 
sounds for pneumonia diagnosis. Such systems can be better utilized for initial screening 
and monitoring, and should be used with other testing techniques for diagnosis. Most of 
the proposed systems are in the prototype phase and have not gone through clinical trials; 
thus, it is too early to expect any of the systems to be commercially available.  

Deep learning-based image segmentation algorithms applied to CXR and CT scans 
are very accurate and can be used where available. However, they are computationally 
intensive. Preprocessing techniques need to be improved to decrease computational re-
quirements at the detection phase. Point-of-care lung ultrasonography should be explored 
with the powerful computation ability of machine learning to achieve greater specificity. 
Using deep learning systems, researchers working with CXR images have achieved accu-
racy, sensitivity, and specificities up to 98%, 99%, and 96%. The downsides of deep learn-
ing are the huge computational requirements that make it unfeasible for primary health 
care centers and the unavailability of such systems as commercial products. CXR inter-
pretation by technicians or physicians is prone to error, making it an unsuitable choice as 
the gold standard. The accuracy of CT scans is comparable with deep learning-based CXR 
algorithms with more specificity. With the development of public-access databases for 
CXR and CT images in the past two years, a huge improvement in the diagnosis of pneu-
monia type has been observed, and it is expected that new, improved algorithms can be 
made that will help discriminate between pneumonia types with greater accuracy. CT 
scan facilities are scarcer than those for CXRs. For example, given the population of 216.6 
million in Pakistan, only 80 CT scanners are present, meaning that the demand of the gen-
eral population cannot be met [49]. The better specificity offered by lung ultrasonography 
is promising, and we expect more utility of point-of-care ultrasonography for pneumonia 
detection in the coming years, with research being undertaken in the relevant field.  

Advancements in medical technology have led to the development of several inex-
pensive, accurate, and easy-to-operate sensors and techniques that are used to extract val-
uable signals from the human body and measure physiological parameters. With the de-
velopment of accurate non-invasive sensors and technologies, it is possible to formulate 
devices that can extract relevant physiological parameters useful in diagnosing pneumo-
nia. Such techniques would not only decrease the cost of lab-based tests, but would be 
faster and more user-friendly. COVID-19 drew the attention of many researchers towards 
radiography. It is worth mentioning that the usage of simple sensors such as optical sen-
sors can extract valuable information about both respiratory and cardiovascular systems, 
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both of which carry information about pneumonia status. Current state-of-the-art hospi-
tals, diagnostic facilities, and care centers should have the option of remote screening and 
monitoring for pneumonia, which can be made possible by using these techniques. G li et 
al. [50] proposed a personalized remote monitoring method based on body temperature 
and heart rate. They established a body area network for edge computing that builds a 
blockchain of COVID-19-infected individuals. Their objective was to ensure patient secu-
rity. This confirms that the scientific world is shifting with technology, as imposed on us 
by the last pandemic. Our brief review of current techniques based on vital signs suggests 
that they are more for monitoring than diagnosis. The information about the respiratory 
and cardiovascular systems carried by biological signals encoded in PPG can be used for 
diagnostic purposes, and is an interesting research area. Applying machine learning on 
such signals could be very useful.  

For real-world deployment, the proposed model shows promise due to its high ac-
curacy in segmenting lung areas and classifying chest X-rays for COVID-19 and pneumo-
nia. However, several challenges need to be addressed for it to be adopted in clinical prac-
tice. These include ensuring the robustness of the model across diverse patient popula-
tions and clinical settings, integrating the model into existing healthcare IT infrastructures, 
and complying with regulatory standards for medical devices [51]. Additionally, compre-
hensive validation through clinical trials would be necessary to demonstrate its effective-
ness and safety in real-world scenarios [52,53]. Overcoming these hurdles could enable 
the deployment of this model as a valuable tool for aiding diagnosis and improving pa-
tient outcomes in clinical environments. 

5. Conclusions 
A comprehensive search and scoping review of the techniques available for diagnos-

ing CAP are beneficial for clinical health workers and clinical engineers. A tremendous 
amount of research has been undertaken to diagnose and detect pneumonia in the past 
few years. This study has summarized all possible techniques for diagnosis and high-
lighted areas of further research and improvement. The automatic detection of pneumonia 
features using CXR, CT, and LUS images has been attempted using the strong ability of 
deep learning-based techniques to extract complicated features from data. Various review 
papers have been published targeting CXR- or LUS-based techniques for pneumonia de-
tection, but a comprehensive guide on possible techniques has been lacking. Based on the 
present study, researchers can understand current techniques in practice, as well as their 
clinical significance, and attempt innovative techniques to overcome existing limitations. 
Acoustic-based and physiological-parameter-based techniques can be used to devise ac-
curate, inexpensive, and POC devices for the diagnosis of pneumonia in the clinical set-
ting, and this area should be explored further. 
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Appendix A 

Table A1. Brief summary of key publications focusing on laboratory-based techniques for diagnosing pneumonia published in three major databases, namely 
IEEE Xplore, PubMed, and Science Direct. This table presents the method and sample type used by each researcher. 

Author Techniques Sample Type Evaluation Methods Data 
Comparison with 
Other Studies or 

Other Models 
Results 

Zhou Li et al. (Jan, 
19) [54] 

Biomarkers for 
pneumonia 

ECG (electrocardio-
gram), serum levels of 
CK, CK-MB, and tro-

ponin (creatine ki-
nase, creatine kinase-
MB, and heart muscle 

enzyme) 

Mean, standard deviation, 
one-way ANOVA, and pair-
wise comparison performed 
by t-test and (Chi-squared 

tests) χ2 test 

Prospective study No 
CK, CK-MB, and troponin serum 
levels increased with the severity 

of the disease 

Naomi J. Gadsby et 
al. (Apr, 16) [55] 

Culture, RT-PCR 
(real-time 

polymerase 
chain reaction)  

LRT specimens 
Fisher exact test or χ2 test, 

Shapiro–Wilk W test, Mann–
Whitney U test, and t-test 

Patients presented to 2 
tertiary care hospitals in 
Edinburgh (UK) over 18 

months 

Yes 

A comprehensive molecular 
testing approach approximately 
doubles pathogen detection in 

patients with CAP from 39.3% to 
86.7% 

R. Borgohain et al. 
(Mar, 17) [56] 

Novel ZnO 
Biosensor 

Prepared solutions for 
the mentioned 

bacterium 

Graphs of voltage and 
concentration, etc. 

Not applicable No 

Maximum response = 96% and 
94.375%, min detection limit = 

1.12% and 1.01% @ room 
temperature 

Madieke J. Koster et 
al. (Jul, 13) [57] 

CRP level (C-
reactive protein)  

Blood samples 

(Un)adjusted association 
between CRP level and 

pneumonia and the 
diagnostic value of CRP 

investigated 

Retrospectively collected 
data from the ED 

(Antonius Hospital 
Nieuwegein) 

Yes 
Mean CRP children with 

pneumonia = 141 mg/L; without 
pneumonia = 34 mg/L 

R. Sorde et al. (Jan 
11) [58] 

Urinary antigen 
test 

Urine samples 
Sensitivity, specificity, 
positive and negative 

predictive values, as well as 

Adults hospitalized with 
CAP from February 2007 

to January 2008 
No Positive predictive value 88.8% to 

96.5% 
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positive and negative 
likelihood ratios 

S. L. Yang et al. (Oct, 
20) [59] 

RT-PCR 
BAL (bronchoalveolar 

lavage) and sputum 
samples 

Two-tailed Student’s t-test 

97 BAL samples and 94 
sputum samples from 

191 patients were used in 
the study 

No 

Diagnosis of PCP (pneumocystis 
pneumonia) should be based on a 
combination of clinical symptoms, 

underlying diseases, and PCR 
(polymerase chain reaction) results 

due to FP (false positive) in PCR 

Jan C Holter et al. 
(Feb, 15) [60] 

Bacterial 
cultures, urinary 
antigen assays, 

serology 
compared with 

swabs 

NP and OP swabs 
(nasopharyngeal and 
oropharyngeal swab)  

McNemar’s test, kappa 
statistics 

3-year prospective study, 
Drammen Hospital, 
Vestre Viken Health 

Trust 

No The ratio ranged from 14.6 to 19.9 

A. Ito et al. (Feb, 21) 
[61] 

Urinary antigen Urine samples Cross-tabulation table 
Study in 6 hospitals in 

Japan in 32 months, 
approx. 

Yes 

The overall match rate between 
LAC-116 (urinary antigen test kits) 
and Binax was 96.8% and between 

LAC-116 and Q-line was 96.4% 

Yuan Lu et al. (Dec, 
11) [62] PCR 

URT (upper 
respiratory tract) 

specimen 
AUC (area under ROC curve) NA No 

Highest specificity of 0.93 between 
quantitative PCR analysis and the 
major surface glycoprotein gene 

target 

M. A. Elemraid et al. 
(Jun 2013) [63] 

Culture and PCR 
testing 

Blood samples and 
other fluid samples p-value analysis 

From October 2009 to 
March 2011 in three 

hospitals in Northeast 
England 

No 

Pneumococcal infections 
identification rate = 26%. Detection 
improved with PCR compared to 

with culture 

F. Esteves et al. 
(Apr, 15) [64] 

Biomarkers for 
pneumonia 

Serum 

Chi-square test, Fisher’s exact 
test, Mann–Whitney U test, 

Spearman rank-order 
correlation test, ROC (receiver 
operating characteristic curve) 

Retrospective 
observational study 

Yes 

Reliability of markers for PCP 
diagnosis: (1-3-Beta-D-Glucan) BG 
> (Krebs von den Lungen-6) KL-6 > 

(Lactate Dehydrogenase) LDH > 
(S-adenosylmethionine) SAM. Best 

combination test = BG/KL-6 
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Y. Jiang et al. (Dec, 
20) [65] Digital PCR 

Patient and 
environmental 

samples 
Comparison of positivity rate Self-collected Yes 

SARS-CoV-2 was more frequently 
detected in respiratory tract-

derived samples (35.0%) than in 
non-respiratory tract-derived 

samples 

D. Xiao et al. (Aug, 
12) [66] 

MALDI-TOF MS 
(matrix-assisted 

laser 
desorption/ioniz
ation (MALDI)–

time-of-flight 
(TOF) analyzer)  

Throat swabs Chi-square test 

The prospective study 
included 70 CAP 

patients. Compared with 
Biotyper and SARAMIS 

databases 

Yes 
A total of 212 suspicious colonies 

representing 12 genera and 30 
species were identified 

Y. Wang et al. (Jun, 
18) [67] 

Multiple cross 
displacement 
amplification 

(MCDA) 

Sputum Accuracy, sensitivity 

K. pneumoniae-negative 
sputa (five patients) 
collected from the 

Clinical laboratory of 
Peking University 

Shougang Hospital 

Yes 

A temperature of 65 °C was found 
to be optimal for amplification, 

and seven K. pneumoniae strains 
were successfully cultured from 

positive sputum samples 

B. Medjo et al. (Dec, 
14) [68] 

RT-PCR and 
Serology Throat swabs 

Student’s t-test, Mann–
Whitney, Chi-square test, and 

Fisher’s exact test 

Prospective study 
Emergency department 
of University Children’s 

Hospital in Belgrade 
from April 2012 to March 

2014 

Yes 

The detection of IgM antibodies in 
conjunction with 8RT-PCR allows 

for the accurate and reliable 
diagnosis of Mycoplasma 

pneumoniae infections in children 
at a critical stage 

A. Edin et al. (Jul, 
20) [69] PCR panel NP swabs 

Two-by-two contingency 
tables of categorical variables 

were analyzed by Fisher’s 
exact and Wilson–Brown 

method 

Conducted at Umeå 
University Hospital 
(Umeå, Sweden) as a 
prospective method-

comparison study 

Yes 
In 30% of admitted patients, 

survey results were found to have 
an impact on treatment decisions 

A. Banerjee et al. 
(Sep, 20) [70] 

Machine learning Blood samples AUC, sensitivity, specificity, 
and accuracy 

mindstream.ai public 
dataset 

No 
Changes in numerous parameters 

assessed in the complete blood 
count for COVID-19-positive 
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individuals with a characteristic 
immune response profile pattern 

Chih-Min Tsai et al.  
(Jul, 20) [71] 

CRP as a 
biomarker Saliva samples 

Chi-squared test, t-test 
statistical correlations using 
Spearman’s rank correlation 

test, ROC 

Prospective research was 
carried out on patients 

aged 2–17 years; 60 
healthy children and 106 

pediatric patients 
suffering from 

pneumonia 

Yes 

Salivary CRP level pediatric 
patients with pneumonia= 48.77 ± 
5.52 ng/mL healthy = 14.78 ± 3.92 

ng/mL (p < 0.001) 

A Omran et al. (Apr, 
18) [72] 

CRP level, blood 
counts 

Saliva and blood 
samples 

Mann–Whitney U-test, Chi-
square, sensitivity, specificity, 

ROC curve 

Prospective case–control 
research included 70 full-
term newborns, 35 with 

late-onset neonatal 
pneumonia, and 35 

healthy controls 

Yes 

Salivary CRP means (neonates 
with late onset) = 6.2 ± 4.6 ng/L 

versus control neonates = 2.8 ± 1.9 
ng/L 

F. Patrucco (Mar,19) 
[73] 

Pneumoni 
checkTM 

Aerosol Sensitivity, specificity 
A prospective single-

center observational pilot 
study 

Yes 

Excellent specificity and 
correlation with 10BAL for non-

herpes virologic diagnosis in 
pneumonia patients 

M.C. Minnaard (Jul, 
15) [74] CRP level Blood sample AUC, multivariable odd ratios GRACE network Yes 

Five POC CRP test tools and the 
lab analyzer detected pneumonia 

with comparable accuracy in a 
single test 

Y Saffary et al. (July, 
22) 

Tetracosane 
functionalized 

TiO2 sensor 
Expired breath (gas) Mean, standard deviation Not tested in vivo No 

The functionalized sensor showed 
a change in current when exposed 

to heptane. The sensor response 
was found to be varied with 

varying concentrations 
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Table A2. Summary of key research articles from the last ten years using acoustic techniques for the diagnosis of CAP, retrieved from IEEE Xplore, PubMed, and 
Science Direct. This table summarizes the methods and types of input sound used for diagnosis. 

Author Techniques Input 
Parameters 

Evaluation Methods Data 
Compared 

with Related 
Work 

Results 

Acc. 
(Accura

cy)  

Sen. 
(Sensit
ivity)  

Spec. 
(Speci
ficity)  

AUC 
(Area 
Under 
ROC 

Curve)  

Other 

K. Kosasih 
et al. (Apr, 

15) [75] 

Wavelet features of 
cough sounds 

trained a logistic 
regression classifier 

Cough 
sound 

Sensitivity, specificity 

815 cough sounds 
from 91 patients 
with respiratory 

illnesses 

No 
(Not 

reported
) NR 

0.94 0.88 NR NR 

H. Chen 
et al. 

(Mar, 19) 
[76] 

Optimized S-
transform (OST) 

and deep residual 
networks (ResNets), 

Respiratory 
sound 

Classification 
accuracy, confusion 

matrix, standard error, 
standard precision 

Biomedical Health 
Informatics (ICBHI) 
scientific challenge 

database 

Yes 0.9879 0.9627 1 NR NR 

P. Porter 
(Mar, 21) 

[77] 

Smartphone-based 
algorithm 

Cough 
sound 

Percentage agreement 
(PA), AUC 

A prospective 
cohort study in a 

hospital in Western 
Australia 

No NR NR NR 
0.94–
0.95 

PPA = 86.2%, 
NPA = 86.5% 

Eric D. 
McCollum 
et al. (Sep, 

20) [78] 

Random-effects 
regression model 

Chest 
sounds 

T-test, Pearson, 
χ2(Chi-squared test), 
or Fisher exact test. 

Multiple logistic 
regression 

Prospectively 
enrolled hospital 

cases and 
community 

controls over two 
years in seven 

countries 

Yes 
Wheezing among children autonomously associated 

with lower odds of radiographic pneumonia 

A. Rao et 
al. (Aug, 
18) [79] 

K-nearest neighbor 
Chest 

sounds 
Accuracy, frequency 

spectrum 

Clinical data 
collected from 
UCSF Medical 

Center 

No 0.923 NR NR NR NR 
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A. Imran 
et al. 

(2020) [80] 

Distinctness of 
pathomorphological 

alterations in the 
respiratory system 

Cough 
sound 

Accuracy, specificity, 
sensitivity/recall, F1 

score 

ESC-50 dataset [62], 
self-collected via 

app 
No 0.956 0.8914 0.9667 NR 

F1 Score: 
0.8952 

precision 
0.8991 

RK 
Tripathy 

et al. (May 
2022) [81] 

Time and frequency 
features from 

sound, employed 
various classifiers 

for different classes 

Chest 
sounds 

Accuracy M. Fraiwan et al. 
dataset [82] 

Yes 
Accuracy SVM: 80.35; Random Forest: 83.27; extreme 
gradient boosting: 99.34; and light gradient boosting 

machine (LGBM): 77.13% 

Table A3. Summary of key research articles from last ten years using CT scans (an imaging-based method for the diagnosis of CAP), retrieved from IEEE Xplore, 
PubMed, and Science Direct. This table summarizes the algorithms or methods used to diagnose pneumonia using CT scans. It also briefly presents the evaluation 
techniques used to test the given methods and the datasets used by each researcher. Finally, it can be extracted easily from the table if any given method has been 
compared with other related models or methods, and accuracy, sensitivity, specificity, AUC, and other result parameters have been given. 

Author Techniques Evaluation Methods Data 

Compared 
with 

Related 
Work 

Results 

Acc. 
(Accuracy) 

Sen. 
(Sensiti

vity) 

Spec. 
(Speci
ficity) 

F1 Score 

AUC 
(Area 
under 
ROC 

Curve) 

Other 

Yaoming 
Lai et al. 

(Oct, 
2020) [83] 

Multiscale deep 
convolutional neural 

network (DCNN) 

ROC curve (receiver 
operating 

characteristic curve), 
accuracy, specificity, 

sensitivity, AUC 

Two hospitals’ 
retrospective study 

data 
Yes 0.861 

0.757, 
0.757 

0.952, 
0.815 

(Not 
Reporte
d) NR 

5% NR 

G. Wang 
et al. 
(Aug, 

2020) [84] 

2D convolutional 
neural network for 

segmentation + 
COPLE net (COVID-
19 pneumonia lesion 

segmentation 
network) 

Paired T-test 
Ten hospitals’ 

retrospective study 
data 

Yes NR NR NR NR NR 
Dice % 

COPLE-NET 
80.29+−11.14 
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Z. Wang 
et al. (Oct, 
2020) [85] 

Novel joint learning 
based on COVID-Net 

p values for paired t-
test 

SARS-CoV-2 and 
COVID-CT data Yes NR NR NR NR 

12.16%, 
14.23% NR 

Q. Wang 
et al. 
(May, 

2020) [86] 

Deep regression 
framework and 

RCNN (region-based 
convolutional neural 
network) based on 

ResNet-50 

Accuracy, sensitivity, 
specificity, and F1 

score 

Radiology 
department dataset Yes 

Improves by 
2.3% 

Improve
s by 
3.1% 

NR NR BR NR 

H. Kang 
et al. 
(May, 

2020) [87] 

Backward neural 
networks 

Accuracy, sensitivity, 
and specificity 

Three hospitals’ 
and collaborator’s 

study data 
Yes 0.95 0.966 0.932 NR NR NR 

X. 
Ouyang 

et al. 
(May, 

2020) [88] 

Novel online 
attention module 
with a 3D CNN 

(convolutional neural 
network)  

ROC curve, AUC, 
sensitivity, 

specificity, F1 score 

Eight hospital 
COVID-19 patients’ 

CT data 
No 87.50% 86.90% 90.10% 82.00% 0.944 NR 

D.P. Fan 
et al. 
(Apr, 

2020) [89] 

Semi-supervised 
segmentation 

framework 
(propagation 

strategy) 

Dice similarity 
coefficient, 

mean absolute error 

COVID-19 CT 
segmentation 

dataset 
Yes NR 0.725 0.960 NR NR 

(Mean 
absolute 

error) MAE: 
Semi Inf.net 
= 0.082 Inf 
Net (Dice 
Similarity 

Coefficient) 
DSC = 0.064. 
DSC: Semi 

Inf.net = 
0.682 Inf Net 
DSC = 0.739 
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X. Qian et 
al. (Dec, 

2020) [90] 

Deep learning made 
of two 2D CNN 

networks 

TPR, TNR, TP, TN 
(true positive rate, 
true negative rate, 
true positive, true 

negative), false 
positive/negative 

error, false disease 
prediction error, 

ROC, AUC 

Hospital 
information system 

data 
Yes 95.21% NR NR NR NR 

FP 2.83% 
and FN 
4.15% 

H.Y. Pei 
et al. 

(Mar, 21) 
[91] 

A multi-point 
supervised training 

structure, 
implemented into 
MPS-Net (multi-
point supervised 

network)  

Dice similarity 
coefficient (DSC), 

sensitivity, 
specificity, and IOU 

Not reported Yes NR 84.06% 84.06% NR NR 
DSC = 

0.8235 and 
IOU = 0.742 

J. Wang et 
al. (May, 
2020) [92] 

Double 3D-ResNets 
using prior-attention 

strategy 
AUC Multiple hospitals’ 

CT images 
Yes NR NR NR NR 97.3% NR 

D. Wu et 
al. (Oct, 

2020) [93] 

Hybrid weak label-
based deep learning 
method. Based on 

UNet and EM 
algorithms. 

Box plots, TPR, FPR, 
Mann–Whitney U 

test, Pearson 
correlation 
coefficient 

International multi-
retrospective 
studies’ data 

No NR NR NR NR NR 

Severity 
segmentatio
n, Pearson 
correlation 

coefficient of 
r = 0.825 (p < 

0.001) 

L. Li et al. 
(Mar, 

2020) [94] 

COVNet framework 
consists of RestNet50 

AUC, sensitivity, and 
specificity, analysis 

of variance tests, and 
Chi-squared tests 

Six hospitals’ 
retrospective and 
multicenter study 

data 

No NR 90% 96% NR 0.96 NR 
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X. Wu et 
al. (Jul, 

2020) [95] 

Trained a multi-view 
fusion model based 

on the architecture of 
ResNet50. 

AUC, Mann–
Whitney U test, and 

Chi-square test 

Three hospitals’ 
retrospective study 

data 
Yes 

Validation: 
0.7, test: 

0.760 

Validati
on 0.730, 

test: 
0.811 

Validat
ion0.61
5 test: 
0.615 

 
Validati
on: 0.732 

test: 
0.819 

NR 

K. Wang 
et al. 
(May, 

2020) [96] 

Correlation between 
the severity of chest 

infection, 
lymphocyte ratio, 
and SpO2 (blood 

oxygen saturation, 
usually in 

percentage)  

Mean, standard 
deviation, median 
value interquartile 

range, case numbers, 
and percentages. 
Spearman’s test 

114 confirmed 
COVID-19 patients’ 
retrospective study 

data 

Yes NR NR NR NR NR 

CT results 
have a 

negative 
correlation 
with SpO2  

(r = −0.446), 
and 

lymphocyte 
numbers (r = 
−0.780) 

A. 
Oulefki et 
al. (Nov, 
2020) [97] 

Present an approach 
to enhance and 
segment images 

Accuracy, sensitivity, 
F-measure, precision, 
MCC, Dice, Jacquard, 

and specificity 

COVID-19 patient 
CT image dataset 

Yes 0.98 0.71 0.99 0.73 NR 

Precision = 
0.723, MCC 
= 0.71, Dice 
Jacquard = 
0.71 and 

specificity = 
0.57 

M. 
Pennisi et 
al. (May, 
2021) [98] 

Tiramisu 
architecture-based 

segmentation model 
and a fully 

convolutional 
DenseNet in a U-Net 

architecture 

Chi-squared test, 
AUC, Sensitivity, 

specificity 

Prospective study, 
166 CT scans 

overall 
Yes 0.84 0.93 93.5 NR NR NR 

M. 
Polsinelli 

et al. 

A light CNN based 
on SqueezeNet 

Accuracy, sensitivity, 
specificity, precision, 

F1 score 

Two different 
datasets 

Yes 0.8503 NR NR NR NR 

Improvemen
t of 3.2% in 

the first 
dataset 
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(Dec, 
2020) [99] 

arrangement 
and 2.1% in 
the second 

Table A4. Summary of key research articles from last ten years using chest X-ray images (a radiographic method for the diagnosis of CAP), retrieved from IEEE 
Xplore, PubMed, and Science Direct. Latest research has been given preference. This table summarizes the methods for identifying pneumonia using CXRs. It also 
briefly presents the evaluation techniques used to test the given methods and the datasets used by each researcher. Finally, it can be extracted easily from the table 
if any given method has been compared with other related models or methods, and accuracy, sensitivity, specificity, AUC, and other result parameters have been 
given. 

Author Techniques Evaluation 
Techniques 

Data 

Compa
red 

with 
Related 
Work 

Results 

Acc. (Accuracy)  
Sen. 

(Sensitivit
y)  

Spec. 
(Specifi

city)  

AUC 
(Area 
under 
ROC 

Curve) 

Other 

V. Chouhan 
et al. (Jan, 
2020) [100] 

Transfer learning 
using AlexNet, 
DenseNet121, 
InceptionV3, 
resNet18, and 
GoogLeNet 

Accuracy, AUC, 
ROC (receiver 

operating 
characteristic 

curve)  

Dataset of Guangzhou 
Women and Children’s 

Medical Center 
Yes 

Ensemble 
model: 0.96395 

NR (Not 
reported)  NR 

Ensembl
e model: 
99.34% 

Recall 99.62% 

Jilian D. 
Londono et 

al. (Dec, 
2020) [101] 

Deep CNN 

Test positive 
predictive value, 

sensitivity, F1 
score, accuracy, 

balanced 
accuracy 

geometric, and 
area under the 

ROC curve 

ACT, China set, 
Montgomery, CRX8, 

CheXpert, and MIMIC 
datasets; COVID-19, 

BIMCV, ACT, and HM 
Hospital datasets. 

No 0.915 0.874 NR NR NR 
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M. E. H. 
Chowdhary 
et al. (Jun, 
2020) [102] 

CNN (convolutional 
neural network) 

models 

Comparison of 
the ROC curve 

for normal, 
COVID-19, and 

viral pneumonia 

Kaggle database [30] Yes 0.997, 0.979 0.997, 0.979 0.995, 
0.988 

NR 

DenseNet201 
outperforms 

other different 
deep CNN 
networks 

X. Yu et al. 
(Jan, 2021) 

[103] 

Deep learning using 
CGNet 

Sensitivity, 
specificity, 
accuracy, 

precision, F1 
score, ROC 

curves 

Dataset 1: bacterial 
pneumonia. Dataset2: 

COVID-19-induced 
pneumonia 

Yes 
Dataset 1: 

0.9872 dataset2: 
0.99 

Dataset 1: 1 
Dataset2:0.

98 

Dataset 
1: 

0.9795 
Dataset

2: 1 

NR NR 

P. 
Rajpurkar 
et al. (Dec, 
2017) [104] 

121-layer CNN called 
Chexnet F1 Score Chest X-ray 14 Yes NR NR NR NR 

Chest X-ray 14 
achieves state-

of-the-art 
results 

P. Chhikara 
et al. (Oct, 
2019) [105] 

Deep CNN model 
with transfer learning 

Classification 
matrices, ROC 

curve 

Database from 
Guangzhou Women and 

Children’s Medical 
Center 

Yes 0.901 0.957 NR NR F1 score: 0.931 
Precision 0.907 

M. M. 
Ahsan et al. 
(Feb, 2021) 

[106] 

Proposed and tested 
six modified deep 
learning models: 1. 

VGG16; 2. Inception 
ResNetV; 3. 
ResNet50; 4. 

MobileNetV2; 5. 
ResNet101; and 6. 

VGG19 

Accuracy, 
precision, recall, 

F1 score, paired t-
test 

Study One: smaller, 
balanced dataset: 

obtained from the open-
source repository. Study 
Two: larger, imbalanced 
dataset: obtained from 
the Kaggle COVID-19 

chest X-ray dataset. 
Study Three: multiclass 

dataset 

Yes 0.91 NR NR NR 

Models like 
Inception 

ResNetV2 and 
VGG19 

demonstrated 
an accuracy of 
97% on both 

datasets 
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K.K. Singh 
et al. (Feb, 
21) [107] 

CNN using wavelet 
decomposition 

Accuracy, 
sensitivity, and 

F1 measure 

A total of 1439 images 
from the three classes are 

available 
Yes 0.9583 0.9607 NR NR 

Precision = 
0.956, F1 score 

= 0.9563 
Ahishali et 

al. (Jun, 
2200) [108] 

Convolutional 
Support Estimator 
Network (CSEN) 

Accuracy, 
sensitivity, 
specificity 

Early-QaTa COVID-19 Yes NR 0.97 0.997 NR NR 

C. J. Saul et 
al. (Apr, 

2019) [109] 

Deep learning 
architecture for the 
classification task 

Accuracy 
RSNA (Radiological 

Society of North 
America) dataset 

Yes 0.7873 NR NR NR NR 

S. Yao et al. 
(Mar, 2020) 

[110] 

GeminiNet to identify 
and localize, 

DetNet59 to capture 
deep features 

Mean average 
precision, AUC, 

ROC 
RSNA dataset Yes NR NR NR NR NR 

E 
Rozenberg 
et al. (Apr, 
2021) [111] 

Neural network 
architecture uses 

Conditional random 
field layers 

Intersection-over-
union and 

intersection-over-
region 

RSNA dataset, NIH 
(National Institute of 
Health) chest X-ray 

dataset 

Yes 

Max IoU 
accuracy: 

0.924+−0.06, 
max IoR 

accuracy = 
0.935+-+−0.07 

NR NR NR 

IoU accuracy = 
0.918 ± 0.07, 

IOR accuracy = 
0.933 ± 0.06 

A. A. 
Saraiva et 
al. (Jan, 

2019) [112] 

Multilayer perceptron 
and CNN 

Confusion matrix 
CXR data set, Guangzhou 

Women and Children’s 
Medical Centre 

Yes 94.40% NR NR NR NR 

J.X.  Wu et 
al. (Jun, 

2020) [113] 

Multilayer machine 
vision bases classifier 

Mean recall, 
mean precision, 
mean accuracy, 

and mean F1 
score 

NIH chest X-ray database No 0.8537 0.9868 NR NR 

Mean precision 
= 82.42%, mean 

F1 score = 
0.8981 

R. G. 
Babukarthik 
et al. (Sep, 
2020) [114] 

Genetic deep learning 
CNN 

Accuracy, 
sensitivity, 

specificity, F1 

Custom-built dataset 
from GitHub 

Yes 0.9884 0.93–1 0.97 NR NR 
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score confusion 
matrix 

J. Zhang et 
al. (Mar, 21) 

[115] 

Confidence-Aware 
Anomaly Detection 

(CAAD) model 

AUC, sensitivity, 
specificity, 
accuracy 

X-VIRAL and XCOVID 
datasets 

Yes NR 0.717 NR 83.61% NR 

G. Liang et 
al. (Apr, 20) 

[116] 

A deep learning + 
residual thought + 

dilated convolution 
using the Keras 

framework 

Precision, recall, 
F1 score, 

accuracy, AUC, 
ROC, confusion 

matrices 

CXR dataset by Kermany 
et al. [117] Yes NR 0.967 NR NR 

F1 score = 
92.7%. 

O. Stephen 
et al. (Mar, 

19) [118] 

CNN model (Keras 
open-source deep 

learning framework) 
+ tensor flow backend 

Training 
accuracy 

Retrospective pediatric 
patients between 1 and 5 

years old 
No 0.9531 NR NR NR 

Training loss: 
0.1288, 

validation loss: 
0.1835 

Y. Xu et al. 
(July, 21) 

[119] 

MANet, segmentation 
model based on 

ResNet (Residual 
Network) classic 

CNNs with or 
without MA 

Confusion 
matrix, accuracy, 
precision, recall, 

F1 score, 
attenuation heat 

maps 

CXR dataset by Kermany 
et al. [117], Montgomery 
County and Shenzhen 

No. 3 People’s Hospital, 
and open public dataset 

on GitHub for COVID-19 

Yes 0.9631 NR NR NR 
ResNet50 
accuracy = 

96.32% 

M. Yaseliani 
et al. (June, 

2022) 

Hybrid CNN, three 
classification 
approaches 

Accuracy, 
precision, recall, 
specificity, and 

F1 score 

CXR dataset by Kermany 
et al. [117] 

No 98.55 NR NR NR - 
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A. Chharia 
et al. (Feb, 

2022) 

De novo biologically 
inspired Conv-Fuzzy 
network is developed 

Accuracy, 
precision, recall, 

F1 score 

Kaggle CXR dataset, 
COVID-CXR dataset 

[120] 
No 

Binary class 
97.47, multiclass 

90.68 

Binary 
97.46, 

multiclass 
90.67 

Binary 
97.46 
multi-
class 
90.70 

NR - 
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Table A5. Summary of key research articles from the last ten years using lung ultrasound scan (LUS) (a radiographic method for the diagnosis of CAP), retrieved 
from IEEE Xplore, PubMed, and Science Direct. This table summarizes the methods for identifying pneumonia using lung ultrasound. It also briefly presents the 
evaluation techniques used to test the given methods and the datasets used by each researcher. Finally, it can be extracted easily from the table if any given method 
has been compared with other related models or methods, and accuracy, sensitivity, specificity, AUC, and other result parameters have been given. 

Author Techniques Evaluation Methods Data Compared 
with 

Related 
Work 

Results 

Acc. 
(Accur

acy)  

Sen. 
(Sensiti

vity)  

Spec. 
(Specif
icity)  

AUC 
(Area 
under 
ROC 

Curve)  

Other 

MM.C. Ho 
et al. (Jul, 
15) [121] 

LUS scan features + 
chest X-ray + LUS 

Mean, standard 
deviation values, 

numbers, and 
percentages 

Three-year retrospective 
study data 

Yes 0.9754 NR 
(Not 

reporte
d)  

NR NR NR 

S. Roy et al. 
(May, 20) 

[122] 

Deep network made 
from Spatial 
Transformer 

Networks 

The mean and standard 
deviation of the 

weighted F1 score, 
precision, and 

sensitivity 

Italian COVID-19 Lung 
Ultrasound Database 

(ICLUS-DB) 

Between 
various 
models 

and 
subsets of 

the 
original 
dataset 

NR NR NR NR Reg-STN (Regression 
Spatial Transformer 
Network) performs 
the best amongst all 

baselines 

Laura E. 
Ellington et 
al. (May, 17) 

[123] 

A pediatrician’s 
clinical assessment 

and lung ultrasound 

Sensitivity, specificity, 
AUC 

A prospective study for 
primary respiratory 

complaints at the 
Instituto Nacional de 

Salud del Ni~no in 
Lima, Peru 

Yes NR 0.885 1 0.94 NR 

S. Ottaviani 
et al. (Aug, 

20) [124] 

All patients had 
their lungs 

examined with 
HRCT and 

Wilcoxon’s chi-square 
test, Kruskal–Wallis, 

correlation by the 

Prospective single-
center study 

Yes NR NR NR NR Correlation between 
the ultrasound score 

for 
B lines and the 
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ultrasonography by 
separate operators 
who were blinded 

to each other’s 
results 

Spearman correlation 
coefficient. 

classification (p < 0.01) 
and percentage of 

lung involvement on 
chest HRCT: r = 0.935, 

p < 0.001 
A. Reissig et 
al. (Oct, 12) 

[125] 

LUS, reference test 
and follow-up 

performed 

Sensitivity, specificity, 
likelihood ratio, Bland–

Altman plots 

Prospective, multicenter 
study: enrolled in 14 

European centers. 

Yes NR 0.934 0.977 NR For positive likelihood 
ratios = 40.5 (95% CI 
(confidence interval), 
13.2-123.9), negative 
likelihood 0.07 (95% 

CI, 0.04–0.11) 
J. Lovrenski 
et al. (2016) 

[126] 

In one hour, LUS 
and auscultatory 
procedures were 

performed 

McNemar’s test Seven-month 
prospective study data 

Yes 67/95 NR NR NR Lung ultrasound 
showed a positive 

finding in more hemi-
thoraces than 

auscultation (in 
children with 

clinically suspected 
pneumonia) 

C. Biagi et 
al. (Dec, 18) 

[127] 

LUS was performed 
in each child by a 

pediatrician without 
a patient chart and 

history 

Cohen’s Kappa test, 
chi-square test, Mann–

Whitney test, 
sensitivity, specificity, 

positive predictive 
value and negative 
predictive value, 

spearman’s Correlation 
coefficient 

A prospective study 
performed at the 

Pediatric Emergency 
Unit of S. Orsola-
Malpighi Hospital 
(Bologna, Italy) in 

association with the 
Pediatric Radiology 

Unit (2016–2017) 

Yes NR 1 0.839 92% When only 
consolidation > 1 cm 

was considered 
consistent with 
pneumonia, the 

specificity of LUS 
increased to 98.4%, 
and the sensitivity 
decreased to 80.0% 

L. 
Ambroggio 
et al. (Jun, 
16) [128] 

Four pediatric 
radiologists who 

were not aware of 
the patient’s 

condition were 

Median and IQR for 
continuous variables 
and for categorical 

variables. For 
diagnosis, count and 

A prospective cohort 
study of children with a 

CXR and LUS 
performed with or 
without a clinical 

Yes NR NR NR NR Pneumonia was 
clinically documented 

in 47 patients (36%) 
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assessed on the CXR 
and LUS scans 

percentage, IRR, 
sensitivity, specificity, 

Kappa 

diagnosis of pneumonia 
(1 May 2012, to 31 

January 2014) 
G. Tan et al. 

(Jun, 20) 
[129] 

Interstitial lung 
disease was used to 
evaluate the severity 

of COVID-19 on 
ultrasonography 
evaluated by the 
modified Buda 
scoring system. 

Wilcoxon rank-sum 
tests, chi-square or 

Fisher exact tests for 
categorical variables, 
Pearson correlation 

One-month prospective 
study data 

Yes NR NR NR NR Differences in 
ultrasonic features 
between COVID-19 

and CAP were 
statistically significant 

G. 
Muhammad 
et al. (Aug, 

21) [130] 

Model of a CNN 
(convolutional 

neural network)  

Confusion matrix, 
ROC, AUC 

POCUS (point-of-care 
ultrasound) dataset 

Yes 0.866, 
0.925 

NR NR NR NR 

Vaishali P. 
Shah et al. 
(Feb, 13) 

[131] 

Clinicians with 1 
hour of focused 

training used 
ultrasonography 

Likelihood ratios, 
sensitivity, and 

specificity with 95% CIs 

A prospective 
observational cohort 

study in two urban ERs 
(emergency rooms)  

Yes NR 0.86 0.89 NR Positive LR = 7.8 (95% 
CI, 5.0–12.4), negative 
LR = 0.2 (95% CI, 0.1–

0.4) 

Y. Wang et 
al. (Aug, 21) 

SVM classifier on 
pleural line and B 

line features to 
determine three 

categories of 
COVID-19 

pneumonia: 
moderate, severe, 

and critical 

Correlation between 
features and disease 
severity, ROC, AUC, 
specificity, sensitivity 

27 COVID-19 patients No NR 0.93 1 NR ROC = 0.96 
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Table A6. Summary of key research articles from the last ten years using physiological parameters extracted using different sensors for the diagnosis of CAP, 
retrieved from IEEE Xplore, PubMed, and Science Direct. This table summarizes the methods for identifying pneumonia and briefly presents the evaluation 
techniques used to test the given methods and the datasets used by each researcher. Finally, it can be extracted easily from the table if any given method has been 
compared with other related models, and the results are summarized. 

Authors Techniques Input 
Parameters Evaluation Methods Data 

Compared 
with 

Related 
Work 

Results 

W. Karlen et 
al. (Jul, 13) 

[132] 

Pulse oximetry PPG/pulse 
oximetry 

ANOVA (analysis of 
variance) for the test dataset 

Collected physiological data 
to calibrate the algorithms 

and evaluate the RR 
estimation performance 

No The mean RMS (root mean square) error (±1 SD 
(standard deviation)) of the smart fusion 

(3 ± 4.7 breaths/min) 

Mei-Jing Ly 
et al. (Jan, 
20) [133] 

EEG 
(electroencephalogram), 

PPG 
(photoplethysmogram), 
stethoscope, smart dog 

Sensors took 
vital signs 

Pie charts NR (not reported)  No Most of the caregivers were satisfied 

K. Mala et al. 
(Oct, 16) 

[134] 

RR, HR (heart rate), SpO2, 
and body temperature 

Sensors took 
vital signs 

Experimental data into 
graphs 

NR No Zero difference in vital sign measurement 
between the proposed and conventional devices 

T. Salti et al. 
(Dec, 19) 

[135] 

RR (respiratory rate), SpO2 
(oxygen saturation in 

blood, usually given in 
percentage)  

Sensors took 
vital signs 

Shapiro–Wilk test, paired t-
test, Pearson coefficients, 
Bland–Altman analysis 

NR Yes Mean, standard deviation and 95 CI (confidence 
interval) for SpO2 = 97.2%, 1.3%, 96–98%; for RR 

= 18.6%, 5.4%, 14.4–22.7 

Shih-Wen 
Chiu et al. 
(Dec, 14) 

[136] 

CMOsGas sensor Expired gas Accuracy Clinical experiment at Taipei 
Medical University, Taiwan. 

Yes 100% accuracy to identify the microorganisms 
of Klebsiella, Pseudomonas aeruginosa, 

Staphylococcus aureus, and Candida from VAP-
infected patients was achieved 

S. Doulou et 
al. (Nov, 20) 

[137] 

Novel optical biosensor 
(OB) 

Sensor data AUC (area under ROC 
curve), ROC (receiver 

operating characteristic 
curve), sensitivity, specificity, 

A clinical study was 
conducted in four study sites 

in two phases 

Yes, with 
the gold 
standard 

Sensitivity = 83.3%, negative predictive value = 
87.5%  
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