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Abstract

Fuzzy Logic Systems (FLS) have the full potential in handling

imprecise and uncertain data due to the inherent advantages of the

Fuzzy Inference System (FIS). Traditionally, fuzzy logic systems are

linked to specific hardware or software systems. The literature

review reveals that dispersed and distributed architectures of FLS

are in high demand due to their capability to handle the

complexities of fuzzy logic computations. However, the absence of

best practices and standard methodologies prevents widespread

adoption. As a result, some specific requirements, such as web

communications and Service-Oriented Architecture (SOA), which

can be found in many modern systems, are rarely adapted for FLSs.

Sharing FLSs accessibility as web services (called Fuzzy-as-a-Service

alias FaaS), in which the service is developed independently from a

specific client platform, allows for autonomy, openness, load

balancing, efficient resource allocation and eventually cost-effective,

particularly for computationally intense FLSs.

The proposed novel architectural solution (FaaS) is a web-based

service that distributes the main services for FLS on more than one

client and servers nodes that can reach multiple users. By extending

the IEEE-1855 (2016) standard in terms of system definition and

data exchange, this research offers a standard solution for building

FaaS as a novel method of implementing fuzzy logic systems by

means of a cloud-based collecting, processing, and examining data

over the web. Recent advances in standardising Fuzzy Mark-up

Language (IEEE 1855-2016) and its associated software libraries

(such as JFML and Simpful) have made this achievable. Two



different cloud service providers and software libraries (Amazon Web

Services using JFML as a java-based library and Azure Web Services

using Simpful as a python-based library) are exploited to realise the

FaaS on the cloud.

As a case study to establish the efficacy of the proposed FaaS, Human

Activity Recognition (HAR) that plays a pivotal role in monitoring

the health status of the Persons Under Observation (PUO)has been

taken under consideration. In order to monitor the data related to

HAR and physiological data, which are imprecise and uncertain in

nature, various previous researchers have developed a good number

of machine learning tools. However, such monitoring systems suffer

from certain limitations due to the nature and amount of data being

analysed.

A number of experiments are carried out in order to showcase and

evaluate FaaS performance in different HAR scenarios. The first

scenario has been a real-time walking/running detection. Secondly, a

fall detection system via FaaS is designed based on IEEE 1855-2016

and JFML. In view, the pandemic caused due to COVID-19, the

third application dealt with developing a system to determine the

health status of individuals by remotely monitoring their Oxygen

saturation and heartbeat rate using wearable sensors. Finally, a

performance comparison between a stand-alone fuzzy system and a

FaaS solution for fall detection is performed on two different cloud

services, namely AWS and Azure. Research findings exhibit that

while the proposed algorithm can keep the same accuracy as a

stand-alone fuzzy system (90%), it can significantly improve the

processing time, e.g., reducing the processing time for 10K data

samples from 179 to 45 seconds (78% improvement).

Towards the end of this PhD project, the new IEEE 1855 extension

is taken as a proposal into the consideration of the IEEE standards

committee and is currently in the process of final approval in 2023.
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EC2 Elastic Compute Cloud

ECOC Error-correction-output-codes

ECG electrocardiogram

ix



Nomenclature

FaaS Fuzzy-as-a-Service
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Chapter 1

Introduction

1.1 Motivation

Human resource is the best living resources to be preserved and maintained

carefully for the betterment of human civilisation. Better healthcare services are

facing significant complications in terms of quality, cost, transparency,

sustainability, and secrecy of individual data. Hence, technology intervention

has become inevitable in developing a sustainable healthcare service system for

the ultimate growth of the global population and economy. The utilisation of

information and communication technology to provide autonomous and

proactive healthcare services will be extremely beneficial. Consumer-driven

healthcare, web-based platforms, and electronic health records have enabled a

variety of enhanced healthcare solutions during the last several decades. Human

Activity Recognition (HAR) is one of the most essential steps in monitoring the

health status of a person, especially older adults. HAR provides benefits such as

health monitoring, detecting activities and discovering their patterns, and

improving general well-being. However, addressing the high computation

demands in HAR while dealing with high data sample rates and possible data

uncertainties exist in such applications, have become some of the major

challenges. Taking up a research project on the design and implementation of a

cloud-based architecture based on fuzzy logic with human activity recognition as

a case study can be motivated by several factors and potential benefits such as:
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• Emerging Technology: Cloud computing and fuzzy logic are both

emerging and rapidly evolving fields. Researching the combination of

these technologies can lead to innovative solutions that address complex

problems more effectively.

• Personal Interest and Curiosity: Researchers might have a personal

interest in artificial intelligence, human-computer interaction, or smart

systems. Exploring the fusion of fuzzy logic and cloud architecture for

human activity recognition can be intellectually stimulating.

• Real-World Applications: Human activity recognition has numerous

real-world applications, including healthcare monitoring, smart homes,

security systems, and more. Designing a cloud-based architecture using

fuzzy logic could enhance the accuracy and adaptability of such systems.

• Improved Accuracy and Robustness: Fuzzy logic can handle

uncertain and imprecise data effectively. By integrating it with

cloud-based architecture, researchers can aim to improve the accuracy and

robustness of human activity recognition systems.

• Scalability: Cloud computing offers scalability, enabling systems to

handle large amounts of data and users. Researching how fuzzy logic can

be integrated into cloud architecture can lead to scalable solutions for

human activity recognition.

• Customization and Adaptability: Fuzzy logic allows for rule-based

systems that can be customized easily. When implemented in a

cloud-based architecture, these systems can adapt to different users’

preferences and environments, enhancing the overall user experience.

• Cross-Disciplinary Research: This type of project can bridge the gap

between computer science, artificial intelligence, and human behavior

studies. It encourages collaboration between researchers from different

disciplines, leading to diverse insights and perspectives.

• Challenging Technical Problems: Designing a cloud-based

architecture that efficiently processes and analyzes human activities using
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fuzzy logic involves various technical challenges, such as data

preprocessing, rule generation, and real-time analysis. Solving these

challenges can contribute to the advancement of the field.

• Commercial Potential: Successful implementation of a cloud-based

system for human activity recognition could have commercial potential in

various industries, attracting interest from companies looking to enhance

their products or services.

• Contributions to Knowledge: This research can contribute to the

academic and scientific community’s understanding of how fuzzy logic can

be integrated into cloud architectures for practical applications. It could

lead to the development of new algorithms, methodologies, and best

practices.

• Ethical and Privacy Considerations: Exploring the implications of

using cloud-based human activity recognition systems raises ethical and

privacy concerns. Researchers can address these issues and propose

solutions that prioritise user privacy and data security.

In summary, a research project on the design and implementation of a distributed

architecture using fuzzy logic for human activity recognition can bring together

cutting-edge technologies, address real-world challenges, and contribute to both

theoretical knowledge and practical applications. The main focus of the research

presented in this thesis is the development of a cloud-based distributed system for

monitoring human activities and health status using Fuzzy logic-based decision

support system.

1.2 Human Activity Recognition

Ubiquitous computing, also known as pervasive computing, refers to a concept in

computer science and human-computer interaction where computing technology

is seamlessly integrated into the environment and becomes an integral part of

everyday life. The idea behind ubiquitous computing is to create a computing
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environment that is so pervasive and unobtrusive that it virtually disappears,

blending into the background of our daily activities.

HAR: Human activity recognition (HAR) can be referred to as the art of

identifying and naming activities using Artificial Intelligence (AI) from the

gathered activity raw data by utilizing various sources (so-called devices).

Uncertainties in HAR: The challenges of human activity recognition lie in

the complexity of human behaviours and movements, uncertainties in the data

gathered by the sensors due to noisy environments, running out of batteries,

imprecise outputs, missing activities, misnaming activities, communication

failures, etc.

A prime objective of ubiquitous computing is to provide accurate and timely

information on people’s activities and routines. During the past decade,

advancements in microelectronics and computer systems have allowed for the

customisation of sensors and mobile devices. The devices’ small size, high

capacity for network connectivity, and reasonable cost make them attractive for

widespread usage. Several tactical, military, law enforcement, and medical uses

might be devised. Ubiquitous sensing, an active area of study whose primary

goal is to derive insight from data gathered by ubiquitous sensors, was inspired

by this challenge [1].

Unexpectedly, HAR has emerged as a significant priority in the field, notably

for healthcare, military, and security applications. Patients with specific diseases,

including diabetes, obesity, and cardiovascular disease, may be recommended an

exercise regimen [2]. Consequently, acknowledging actions like walking, jogging,

or cycling is beneficial for providing feedback to the carer regarding the patient’s

behaviour. Also, monitoring individuals with dementia or other mental diseases

might help spot abnormal behaviour and prevent undesirable consequences [3].

Understanding of human activity has grown to be one of the most widely applied

fields of study, enabling significant improvements in elderly people’s quality of

life as well as patient care at home [4].

Since HAR can gather data on people’s daily activities, its potential uses

have expanded with the availability of acquisition tools such as smartphones and

video cameras. These programs improve the quality of life and medical care for

the elderly and dependants [5, 6]. HAR is used in fields such as: HAR has a wide
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range of applications across various fields due to its potential to understand and

analyze human behavior in different contexts. Here are some fields where human

activity recognition can be applied: Healthcare and Well-being include Fall

detection for the elderly, Monitoring patients’ daily activities to ensure they are

following prescribed routines, Physical therapy, and rehabilitation monitoring,

and Activity tracking for fitness and wellness.

Smart Homes and Ambient Assisted Living ensembles Automating

home appliances based on user activities (e.g., turning off lights when no one is

in the room), Detecting unauthorised access to secure areas, and Adjusting

temperature and lighting based on occupants’ preferences and presence.

Sports and Athletics comprise performance analysis for athletes to improve

technique and prevent injuries, tracking movements and activities in team sports

for strategy optimization, and monitoring physical activities for training purposes.

Security and Surveillance contains intruder detection and alert systems,

suspicious behavior detection in public spaces, and monitoring for unusual

activities in restricted areas.

Human-Computer Interaction (HCI) covers gesture recognition for

controlling devices without physical touch, context-aware interfaces that adapt

based on user activities, and natural user interfaces in virtual reality (VR) and

augmented reality (AR) systems.

Transportation and Automotive comprehends driver behavior analysis for

insurance purposes, monitoring fatigue and alertness of drivers for road safety.

Elderly Care consists of providing insights into the daily routines and

activities of seniors living independently and detecting deviations from normal

behavior that might indicate health issues.

Emotion Recognition deals with identifying emotional states based on

facial expressions and body language, and personalised content delivery in

entertainment and therapy.

1.3 Decision-Making Processes

The foremost goal of HAR is to predict the movements or actions of a person

based on the past action data collected by some data acquisition devices.
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Although numerous Machine Learning (ML) and Deep Learning (DL)

techniques within Artificial Intelligence (AI) framework offer for predicting

activities based on the data collected from the employed sensors, it is a

challenging task as it involves dealing with huge amounts of unlabelled,

imprecise and uncertain data. It becomes more challenging when it comes to

drawing decisions based on uncertain data using standard decision-making

algorithms. Various decision-making techniques for HAR include Decision

Trees, Random Forests, Support Vector Machines (SVM), Neural Networks,

Hidden Markov Models (HMM), Gaussian Mixture Models (GMM), K-Nearest

Neighbors (K-NN), Ensemble Learning, Dynamic Time Warping (DTW), Fuzzy

Logic, Bayesian Networks, and Long Short-Term Memory (LSTM).

The decision-making process in human activity recognition (HAR) involves

several steps that allow a system to identify and classify human activities based

on sensor data and other input sources. Here’s an overview of the decision-making

process in HAR:

Data Collection: HAR systems rely on data from various sensors, such as

accelerometers, gyroscopes, and sometimes additional inputs like audio or video.

These sensors capture raw data related to body movements, gestures, and

environmental conditions.

Data Preprocessing: Raw sensor data often contain noise, outliers, and

variations that need to be filtered or normalized. Preprocessing involves

techniques like filtering, feature extraction, and data alignment to ensure that

the data is suitable for analysis.

Feature Extraction: Relevant features are extracted from the

preprocessed data to represent distinct patterns and characteristics of different

activities. These features might include statistical measures, time-domain

features, frequency-domain features, and more.

Feature Selection/Dimensionality Reduction (Optional): In some

cases, not all extracted features are relevant. Dimensionality reduction

techniques can be used to reduce the number of features while preserving the

most important information. This helps improve the efficiency and accuracy of

the recognition process.

Model Training: HAR involves machine learning techniques, where models
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are trained on labeled training data. Common algorithms include decision trees,

random forests, support vector machines, and neural networks. During training,

the model learns to associate specific features with corresponding activity labels.

Model Evaluation: The trained model is evaluated using a separate dataset

(validation or testing set) that it hasn’t seen before. Evaluation metrics such as

accuracy, precision, recall, F1-score, and confusion matrices are used to assess

the model’s performance.

Model Optimization (Optional): If the model’s performance is not

satisfactory, optimization techniques like hyperparameter tuning or changing the

model architecture might be employed to enhance accuracy and generalization.

Real-Time Recognition: In a real-world scenario, the HAR system receives

new sensor data in real time. The trained model predicts the activity label based

on the extracted features from the incoming data.

Post-Processing (Optional): Additional post-processing steps might be

performed to smooth predictions over time, eliminate short-lived fluctuations, or

apply temporal constraints to the recognised activities.

Decision and Output: The final decision is made based on the prediction

probabilities or confidence scores assigned to each recognised activity class. The

activity label with the highest probability becomes the recognised activity.

User Feedback and Interaction (Optional): In some applications, user

feedback can be used to further refine the recognition process. For instance, users

might correct misclassifications, helping the system adapt and improve over time.

Continuous Learning (Optional): Some HAR systems employ techniques

for continuous learning, where the model updates itself with new data over time

to adapt to changes in user behavior or the environment.

The HAR system has many possible configurations since each phase can be

implemented in several ways. As a result, the possibilities become even more

convoluted when considering the area of application, the type of data collection

device, and the processing of AI algorithms for activity detection. Available

data analysis techniques widely differ in the data types, how they transform

the collected data, and the statistical methods they apply for inference and/or

classification. The objective of classifier selection is to choose a method that

yields the highest achievable classification accuracy given the available training
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data and processing environment (e.g., online vs. offline).

Activity Recognition Systems (ARS) are crucial components in various

fields, implemented through a range of machine learning techniques. Classically

supervised and unsupervised methods are commonly employed in developing

ARS. Supervised analysis techniques, as highlighted by [7], include Decision

Trees, Support Vector Machines, Naive Bayesian Classifiers, Artificial Neural

Networks, Decision Tables, and Logistic Models. These algorithms are adept at

learning from labeled data, enabling accurate classification of activities.

On the other hand, Unsupervised Learning methods, such as Clustering and

Association Rules Dimensionality Reduction, play a significant role in ARS

development. These techniques excel in identifying patterns and relationships

within unlabeled data, offering insights into complex activity datasets.

Ensemble Learning techniques like Stacking, Bagging, and Boosting further

enhance ARS performance by combining multiple models to improve predictive

accuracy and robustness. These methods leverage the diversity of individual

models to collectively achieve superior results. Moreover, the emergence of Deep

Neural Networks (DNNs) has revolutionized ARS, enabling multi-level feature

extraction and learning for knowledge discovery. DNN-based approaches

facilitate more nuanced analysis of activity data, leading to deeper insights and

improved performance.

In recent years, the evolution of machine learning has extended to include

Reinforcement Learning (RL) for ARS. RL algorithms enable agents to learn

optimal behavior by interacting with an environment, receiving rewards for

desirable actions and punishments for undesirable ones. This dynamic learning

paradigm enhances ARS adaptability and autonomy, making it well-suited for

real-world applications where activities may vary over time.

In conclusion, the diverse array of machine learning techniques, from

classical supervised and unsupervised methods to advanced ensemble learning

and reinforcement learning approaches, collectively contribute to the

development of robust and effective Activity Recognition Systems. These

techniques enable ARS to accurately detect and classify activities, extract

meaningful insights, and adapt to dynamic environments, ultimately enhancing

their utility in various domains.
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Activity Recognition Systems (ARS) are implemented by employing

classically supervised or unsupervised-based machine learning. Among the

unique algorithms of Supervised Analysis, the following can be highlighted [7]:

Decision Tree, Support Vector Machine, Naive Bayesian Classifier, Artificial

Neural Networks, Decision Tables, and Logistic Models. Regarding

Unsupervised Learning, several methods can be found, among which Clustering

and Association Rules Dimensionality Reduction can be highlighted. Ensemble

Learning techniques such as Stacking, Bagging, and Boosting can also be

highlighted. Methods or techniques based on Deep Neural Networks with

several levels of analysis for knowledge discovery have also gained much

attention. Nowadays, ML has evolved to analysis based on Reinforcement

Learning, which allows the algorithm that is strengthened in a system of

rewards and punishments to permeate the learning process.

The above decision-making processes provide satisfactory results as long as

the size of the data is manageable. Hence, significant technical challenges occur

due to the nature and size of the data.

1.4 Fuzzy framework for decision making

process in HAR

The data collected from wearable sensors of a concerned persons vary a lot

depending on the physiological factors affecting them. Moreover, no sharp

distinctions can be drawn among the boundaries of the physiological data

collected for making a decision. Hence, bi-valued logic is not suitable for

concluding the status of the health of the concerned person. Multi-valued logics,

such as Fuzzy logic, are the alternative approaches for cases where bi-valued

logic can not be applied in decision support systems[8, 9].

Based on the facts provided earlier, the adoption of fuzzy logic in our platform

is inspired by four primary reasons: first, the characteristic of data to merge,

which are measurements received from various sensors, may be ambiguous and

imprecise. Secondly, the lack of training sets that reflect activities of daily living

can greatly influences the decision-making process. Thirdly, fuzzy logic can gather
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performance and intelligibility, dealing with imprecision and uncertainty in data.

Finally, the fuzzy logic takes a close approach to how humans (i.e., experts) make

decisions. Its history shows that it is used in many applications in healthcare

including pattern recognition and clinical diagnosis [10]. For medical experts, it is

easier to map their knowledge onto fuzzy sets and fuzzy rules than to manipulate

complex probabilistic tools.

In real-world situations, we do not have enough knowledge to determine

whether a particular condition is true or untrue. Fuzzy logic provides valued

thinking flexibility. As a result, we may consider potential errors and

ambiguities in each given circumstance. In the Boolean system, 1.0 represents

the absolute truth value, and 0.0 represents the absolute false value. Fuzzy logic

allows for values that are neither completely true nor completely false.

Fuzzy sets theory was introduced by L. A. Zadeh [11] when the sets

boundaries are not precise, and the degree of belonging to a set is defined as a

membership degree. Fuzziness includes imprecision, uncertainty, and degrees of

the truthfulness of values. It is widespread in all areas where human judgement,

evaluation, and decisions are essential.

Due to the very nature of fuzzy logic, it enjoys certain advantages making

it suitable for the application under consideration: Fuzzy systems may employ

any type of input, including erroneous, distorted, or noisy information. The

architecture of the Fuzzy Logic System is simple and straightforward [12, 13].

Set theory mathematical notions are a prerequisite for fuzzy logic and may be

justified relatively easily. Because of the fact that it resembles human reasoning

and decision-making [14], it can offer a very effective answer to complex problems

that may be found in every aspect of life. Eventually, algorithms may be stated

with minimal data, utilising minimal memory.

The architecture of a Fuzzy Inference System (FIS) contains four parts, as

shown in Figure.1.1. The identified components are:

• Rules: It governs the decision-making system that is based on linguistic

information and comprises the set of rules as well as the IF-THEN

conditions that were offered by the experts. Recent advancements in fuzzy

theory have yielded a number of useful strategies that may be utilised in
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Figure 1.1: Architecture of Fuzzy Inference System.

the process of creating and optimising fuzzy controllers. The majority of

these advancements lead to a reduction in the total number of fuzzy rules.

• Fuzzifier: It is used to convert inputs, such as crisp values, into fuzzy

membership functions based on predefined fuzzy sets. Crisp inputs are

sensor-measured inputs that are sent to the control system for processing,

such as temperature, pressure, rpm, etc.

• Intelligence/Inference Engine: It determines the matching degree of

each fuzzy rule to the current fuzzified inputs (firing strength). Next, the

outputs of the fired rules are combined to form the control actions.

• Defuzzifier: It is used to convert the fuzzy sets obtained by the inference

engine into a crisp value. Several defuzzification methods are available, and

the best-suited one is used with a specific expert system to reduce the error.

As Fuzzy Logic (FL) depends on the level of truth, a Fuzzy Logic System

(FLS) generates a specific output by using the degree of truth of the input and

linguistic variables [15] to resolve complex situations involving ambiguous input

data. FLS can become overworked when dealing with large amounts of data

[16]. Hence deployment of the stand-alone FLS-based decision-making systems
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is not a wise decision. The alternative to overcome the challenges is the

employment of a distributed architecture. Although various approaches in

distributed architectures for HAR exist, only a few of them use FLSs.

1.5 Distributed Architecture in HAR

As HAR is crucial in the health monitoring domain, the question remains of

what type of architecture and where the architecture is to be deployed.

Decisions making processes using FLS to analyse a huge amount of data which

are imprecise and highly varying in nature, require high computational capacity,

and are very much starving for resources. Thus a standalone system will not be

suitable for the real-time processing of the data for HAR. Hence, a distributed

system that communicates and coordinates their actions by passing messages

from one component to another from any system must be deployed. Real-time

performance enhancement and fault tolerance can be achieved through a

distributed fuzzy system’s ability to adapt to changes in the computing network

during run-time. A standard solution to this problem is the deployment of cloud

services.

1.6 Cloud Computing in HAR

With the growing popularity of cloud computing, it is obvious to use it to spur

innovation and digitisation. It is possible to boost agility by using a cloud-

first strategy for digitisation [17]. Cloud-based IT infrastructure resolves critical

issues such as storage, computational resources, uninterruptible data access, and

processing capabilities of a huge amount of data hindering greater data discovery

and evaluation. Other advantages of cloud computing include decreased prices,

improved security against external threats, and efficient usage of resources.

In cloud computing, the computing resources from providers are deployed

as services (storage, computation, and communications), ready to be consumed

by users. These services can be broken down into three main abstract layers:

software as a service (SaaS), platform as a service (PaaS), and infrastructure as a

service (IaaS). Over the last ten years, cloud computing has more and more shifted
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the traditional on-premise paradigm towards an on-demand service delivery model

carried out via the Internet [18, 19]. The key advantages of cloud computing, such

as its scalability, on-demand availability, and pay-per-use pricing models, are

rapidly turning it into a more popular alternative to costly on-premises systems.

Despite this, cloud computing still needs to be enabled by the standard

methods that are used to construct FLSs. Thus, aspects such as flexibility,

portability, elasticity, or the service discovery are very rarely considered by FLS

designers. The proposal of Fuzzy-as-a-Service (FaaS), which inherits the stated

cloud advantages, can thus be used as a natural extension of the FLS to act as a

service in cloud computing platforms [20]. Realisation of FaaS can be achieved

by implementing the FLS framework on commercial cloud platforms such as

Azure and AWS, provides versatility, scalability, efficiency, and economical

solution for analysing large amounts of data from sensors [21]. The cloud

mentioned above services illustrates Service Oriented Architecture (SOA), a

methodology for enabling software components to be reused and interoperable

via standard interfaces. Services are readily integrated into new applications

due to their standardised interface and reusable architecture [22, 23]. This

eliminates the need for the application developer to redesign or replicate

existing functionality and understand how to link or offer compatibility among

existing functions. This removes tasks from the application developer who

previously redeveloped or duplicated existing functionality or had to know how

to connect or provide interoperability with existing functions. Hence design and

development of an SOA over the cloud pose a solution for the difficulties faced

in exploiting FLS in HAR under a distributed architecture.

1.7 Major Considerations in Implementation

The primary aim of HAR is the monitoring of the status of the health of a Person

Under Observation (PUO) on a 24/7 basis. The required data can be gathered

from the PUO using wearable gadgets. The characteristics of the collected data

depend on many factors, including the physical and physiological status of the

PUO. A high level of variation is observed in the collected data, and it makes

decision-making a difficult task since no common rule can be applied. The amount

13



1. Introduction

of data collected is huge, and storing them in standalone devices becomes very

tedious. In addition, there is a specific MTBF (Mean Time Between Failure)

during which the collected data are missed. The decision-making process based

on the data collected requires a high computational capability of the devices

under use. Therefore the challenges in implementing HAR using the distributed

system are also high, as enlisted below:

• Variability of Health Data:The variability of health data is substantial

as a result of the presence of various sources, including wearable sensors,

medical devices, electronic health records, and self-reported information.

The presence of a wide range of data types, formats, and attributes poses

difficulties in terms of standardisation, integration, and interpretation.

• Volume of Data: The proliferation of digital health technologies has led to

the generation of vast amounts of health data. Wearable devices, medical

sensors, and health monitoring systems continuously generate streams of

data, resulting in big data challenges related to storage, processing, and

analysis.

• Computational Cost: Analyzing large-scale health datasets requires

significant computational resources, including high-performance

computing infrastructure and scalable data processing frameworks. The

complexity of algorithms and the need for real-time or near-real-time

analysis further contribute to computational challenges.

• Availability of Decisions 24/7: Ensuring the availability of decision-

support systems based on health data round-the-clock poses logistical and

technical challenges. Factors such as system reliability, data accessibility,

and real-time response capabilities are critical for meeting the demands of

continuous healthcare monitoring and intervention.

• Integration and Interoperability: Integrating heterogeneous health

data sources and ensuring interoperability among disparate systems are

essential for holistic patient care and effective decision-making. However,

achieving seamless data integration across platforms, standards, and

protocols remains a significant challenge in healthcare.
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Figure 1.2: Schematic block diagram of distributed FLS.

Distributed fuzzy computing is implemented using a cloud-based architecture

in order to address the challenges mentioned above. An illustration for designing

the cloud-based architecture of FLS is shown in Figure.1.2.

For effective communication in a cloud-based FLS, selecting the appropriate

web-based data language is a strategic criterion. Fuzzy Mark-up Language

(FML), standardised as IEEE 1855 (2016) [24] an XML-based mark-up

language most suitable for the human-readable and hardware-independent

definition of an FLS, is exploited. FML and FML-compatible pieces of software,

such as Java-based FML (JFML) [25] and Python-based library Simpful [26] are

suitable for the development of FLS as per IEEE 1855 (2016) standard are used

as the basic design libraries in this study, and the extensibility of this standard

is a key solution proposed for the architectural growth.

1.8 Research Objectives

The major objective of the current research work is to exploit the technological

powers of computation processing and decision making based on uncertain and

highly varying nature of data using a multi-valued logic system like a Fuzzy
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system and cloud technologies for developing a cloud-based distributed

architecture for providing better handling of huge amount of data. The targeted

deployment system will be health status monitoring using FaaS, a distributed

FLS under a service-oriented architecture. The present research is based on the

question: “Can a distributed fuzzy logic system provide any advantage in

processing uncertain data over the current stand-alone and/or non-fuzzy

systems considering HAR as a test case?” In order to address the answers to the

above question, the following objectives are identified:

1. To conduct comprehensive research on existing tools and techniques and

related research work to explore the possibilities of exploiting the powers of

multi-valued decision-making processes like FLS.

2. To develop a service-oriented and web/cloud-based architecture for

addressing the associated problems with uncertain data processing. This

will involve exploring the applications and possibly extending the

standard web communication protocols for fuzzy logic systems, i.e., IEEE

1855 (2016) and its associated software libraries.

3. To investigate the efficacy of the developed method in data processing for

uncertain decision-making support scenarios considering HAR as a test case

for a better health care monitoring system.

4. To apply the developed method for fall detection of the persons under

observation using suitable sensors.

5. To measure the efficiencies of the proposed method in monitoring

physiological (non-invasive) data obtained from a person.

6. To compare the performances of the developed architecture with other

standard ML-based decision-making processes for HAR.

7. To compare the performances of the developed architecture with a stand-

alone fuzzy system in realising the support system for HAR.
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1.9 Research Approach and Design

The research approach is experiment-based research where data gathering, data

processing, result analysis, and comparing results with various soft computing,

cloud-based, and non-cloud-based systems are the main objectives to be achieved.

The research design is based on the following activities:

Using a fuzzy system to handle uncertainties in HAR: Fuzzy systems

have already shown their capabilities in learning from, processing, and predicting

uncertain information. However, it has been limitedly applied in HAR, partly

because of the computational complexities associated with high data volumes

and/or data rates.

Proposing a service-oriented architecture (FaaS) specialised for

HAR applications in order to overcome the computation problems:

Recent developments in cloud computing, the internet of things (IoT), and

SOAs have led to a shift from classical client-server models to service-oriented

models. An FLS-specific software/hardware solution proposed based on SOA

over the Web, named FaaS, will enable balancing the data collection,

processing, and dissemination over the Web in order to achieve a higher

processing power and a more manageable architecture than the classical

stand-alone fuzzy logic systems.

In order to implement and test FaaS for HAR applications so as to fulfil the

objectives stated, the research has been designed in a phased manner as follows:

• Phase I: A fuzzy logic-based HAR in both stand-alone and distributed is

implemented using the data obtained from open data sources (e.g.,

kaggle.com).

• Phase II: Datasets are generated using a smartwatch with accelerometer

and gyroscope for a fall detection scenario. The dataset is then fed into the

designed FaaS.

• Phase III: The experiments performed during Phase II are repeated

using various machine learning algorithms to ensure the effectiveness of

FaaS against some other ML-based stand-alone systems.
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• Phase IV: Another experiment is performed using collected physiological

data such as blood oxygen saturation (SpO2) and heart rate. Two cloud

services, namely Microsoft Azure and Amazon Web Services (AWS), and

two FML processing libraries are used to test. The considered combinations

are:

1. Mamdani FIE + JFML with AWS.

2. TSK FIE + JFML with Azure.

• Phase V: This part of the work is dedicated to all types of comparison

of the performances by various techniques such as Fuzzy stand-alone with

fuzzy real-time using Azure and AWS, Machine learning with fuzzy real-

time using Azure and AWS, and fuzzy real-time using Azure and AWS.

1.10 Relevance and Contributions

The following are the major contributions achieved:

• Indentification of the challenges in dealing with uncertain, complex, and

real-time data processing in standalone architectures while, particularly the

limitations of developing classical FLSs in such applications.

• Development of the novel distributed architecture for fuzzy logic systems

(FaaS), with a particular focus on their HAR applications, as a solution

to address the identified challenges. The architecture can also be reused

in other contexts beyond HAR, such as in time series prediction (e.g., for

finance applications).

• Investigating the implications of the cloud services that would be used for

implementing FaaS.

• Developing HAR test cases for evaluating FaaS performance compared to

some non-FaaS solutions. This includes online and offline fall detection and

health monitoring scenarios.
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• Creation, and submission to IEEE for approval, of an extended schema of

IEEE-1855 based on the newly found requirements.

1.11 Thesis Outline

As shown in Figure.1.3 this thesis is divided into eight chapters that outline the

research work. The structure of the thesis is as follows:

Chapter 1 describes the background and technicalities of the research work

carried out to provide the motivation and rationale for the study, progressing

from general to specific and has been accomplished by establishing a research

area and identifying a gap in that area. The study’s purpose and significance

are stated, and objectives are listed.

Chapter 2 aims to provide a comprehensive overview of current research work

carried out by previous researchers in the selected area as well as in related

areas, in addition to explaining the grounds for study in order to justify how the

current research work adds to, contradicts, or augments the existing knowledge.

Chapter 3 is a tour of the theoretical background required to solve the research

problems using appropriate justifications and assumptions. Furthermore, in this

chapter, the framework of the new methodology developed and deployed is

presented.

Chapter 4 provides the main components of design, data collection, and the

software tools used for the development of a distributed architecture of a fuzzy

logic system, including the use of FML and cloud for developing an SOA-based

fuzzy system (i.e., FaaS) to be deployed for healthcare applications. It also

presents the design and development aspects of fall detection methodologies in a

distributed architecture using a service-oriented architecture. The results of

using real-time data from the wearable accelerometer and gyroscope sensors as

sensors have been presented and discussed.
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Chapter 5 deals with the design and development of cloud-based FaaS for

condition-based health monitoring based on data received for blood oxygen

saturation and pulse rate via a wearable pulse oximeter sensor.

Chapter 6 presents the solution of human fall detection design settings,

including the data collection, the non-fuzzy machine learning model, the FaaS,

and then the performance measure and comparison methodology are presented.

Chapter 7: provides findings, implications, and recommendations based on

analysis of the research. It addresses the issues raised in the introduction,

evaluates the findings, and illustrates their underlying relevance. Lastly,

suggestions for further broadening the work of future researchers in the same

domain are provided.
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Figure 1.3: Thesis structure indicating the organization of the chapters and their
respective dependencies.
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Chapter 2

Literature Survey and Scope of

Work

2.1 Introduction

This chapter presents state-of-the-art and a global overview of research

challenges. This includes real-time distributed HAR with or without using fuzzy

logic and/or cloud environment. Activity recognition systems are a significant

area of research and development that are currently concentrating their efforts

on developing more sophisticated machine learning algorithms, advancing the

state of the art in terms of hardware architecture, and reducing the costs of

monitoring while simultaneously increasing levels of safety [27]. HAR systems

usually require 24 × 7 monitoring; hence a huge amount of real-time data is

generated during the monitoring process. Also, standalone systems cannot

handle such an amount of data with considerable speed of execution. Thus a

variety of distributed systems for HAR are designed [28, 29], which will be

reviewed in this chapter with a particular focus on fuzzy logic systems.

2.2 Distributed and Cloud-based HAR

This section presents a technical survey of recent literature on monitoring

systems. The survey provides an exploration of contexts, technologies, and
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existing approaches to figure out the further developments required to design

and exploit a complete HAR in distributed and cloud-based formats.

Activity as a Service (Activity-aaService), a cyber-physical architecture that

facilitates community, online, and offline human activity detection and

monitoring in mobility, was introduced by authors in [30]. Activity-aaService

can fill the requirement for Cloud-Assisted Body Area Networks systems and

apps that make it easier for both people and communities to monitor and

analyse human activities. Activity-aaService is based on the BodyCloud

platform, which allows for efficient collecting of BSN-based sensor data, local

processing (Body-side), high-performance computation, cloud storage

(Cloud-side), workflow-based programming of analysis, and enhanced

visualisation of findings (Viewer-side). It offers specialised, adaptable, and

potent programming abstractions enabling the fast development of efficient and

activity-oriented systems that support human activity. Several prototypes in

step counting, physical energy calculation, automatic fall detection, and smart

wheelchair support have demonstrated the proposed framework’s effectiveness.

By examining the processing load, data transmission time, CPU utilisation,

memory footprint, and battery consumption on four diverse mobile devices, the

performance evaluation of the proposed framework at the body side of the

activity categorisation has been carried out. These gadgets are examples of low,

medium, and high-performance mobile platforms.

Islam et al. [31] presented an activity monitoring and recognition framework

based on a multi-class cooperative categorisation procedure to improve the

activity classification accuracy in videos supporting the cloud computing-based

blockchain architecture. In their approach, frame-based salient features were

extracted from videos of different human activities, which were further

processed into action vocabulary for efficiency and accuracy. Similarly, activities

were classified using a Support Vector Machine (SVM) based on the

Error-Correction-Output-Codes (ECOC) framework. They reported, using the

experimental results, that the proposed approach was more efficient and

achieved higher accuracy regarding human activity recognition than other

state-of-the-art action recognition approaches.

An online activity detection framework called DOLARS (Distributed
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On-line Activity Recognition System), created by Lupion et al. [32] in 2021,

allows for the real-time evaluation of data from a variety of heterogeneous

sensors, such as binary, wearable, and location sensors. A common feature

vector was created by combining several descriptors and metrics from the

heterogeneous sensor data, and its extraction was done in real-time using a

sliding window technique. DOLARS offered a distributed architecture where a

stage for processing HAR data was deployed in distributed nodes. Temporal

cache modules computed metrics that efficiently aggregated sensor data for

computing feature vectors. Publish-subscribe models were integrated to spread

data from sensors and orchestrate the nodes (communication and replication)

for HAR. ML algorithms were used to categorise and recognise objects. Results

showed a promising level of performance in recognising activity sequences and

demonstrated the necessity of distributed architectures for real-time recognition.

Table 2.1 summarises the different features adopted by different healthcare-

monitoring-related studies in the literature.

2.3 Fuzzy Logic Systems for HAR

The very essence and important part of human activity recognition is to make the

correct decision based on the data acquired from the person under observation

using various sensors. Different ML techniques have been employed to obtain

the correct decision. However, the nature and characteristics of the sensor data

are full of uncertainties since it largely varies from person to person and is also

environment-dependent. Hence, many authors have employed Fuzzy Logic either

as a supportive technique or as a replacement for ML tools and have shown

the effectiveness of such methods in activity monitoring systems. This section

provides a review of some of the works reported in this aspect.

Brulin et al. [44] suggested a posture recognition system based on computer

vision for geriatric fall detection in the home setting. The data collected by the

strategically placed cameras served as the input for a decision-maker fuzzy logic

system. The system was designed to recognise four static poses. However, it was

unaffected by the subject’s distance from the camera. They reported a posture

recognition accuracy of 74.29%.
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Table 2.1: Comprehensive Overview of HAR Features Explored in the Relevant
Studies.

Feature Type Sample Studies (Ref.)

Monitoring mode
Local

Remote

[[33], [34], and [35]]

[[36], [37], and [38]]

Transmission type
Cloud -based

Device-to-Device

[[37], [33], [34], and [38]]

[[36], [39], and [35]]

Communication protocol

Wi-Fi

Bluetooth

Mobile cellular network

Zigbee

[[33], and [38]]

[[33] and [34]]

[38]

[36]

Monitored activity/condition

Respiration

Heart rate & SpO2

Body temperature

ECG

Blood pressure

Patient position

[[40], and [41]]

[[33], and [34]]

[[33], and [35]]

[[36], [39], [38], and [35]]

[[42], and [43]]

[[35], and [6]]

25



2. Literature Survey and Scope of Work

Rashidpour et al. [45] proposed a HAR system based on an adaptive neuro-

fuzzy inference system for learning and inference that uses smartphone motion

sensors. The algorithm could discriminate between nine different daily activities

and detect four types of fall.

Using a Takagi-Sugeno fuzzy inference engine with a triggering alert and a

two-input Mamdani fuzzy inference engine, Kwolek and Kepski [46] developed a

novel HAR method. The first Mamdani engine’s output was a fuzzy set that

assigned grades of membership to the possible values of dynamic transitions.

The Mamdani engine’s output was a second fuzzy set that assigned membership

grades to potential body postures. It was found to be very helpful in fall

detection, as demonstrated experimentally since a lesser amount of training

data was typically utilised than in non-fuzzy counterpart systems. They also

demonstrated experimentally that the proposed framework permitted reliable

and unobtrusive fall detection in real-time at a low computational cost.

Jayalakshmi et al. [47] suggested a context-aware health monitoring system

to track the physical and mental well-being of COVID-19-afflicted or confined

elderly people. The framework was created with a fuzzy reasoning technique to

use the event and medical context to anticipate or decide on the patient’s health.

The qualities are categorised using a fuzzy system based on patient activities.

Different classification models, including Bayesian Network, Decision Tree, K-

Nearest Neighbours, and Neural Network, were used to identify the patient’s

activities and medical history; however, the fuzzy adapted model produced the

most remarkable accuracy. The suggested strategy significantly enhanced the

reasoning engine’s reliability, specificity, and efficiency.

A fuzzy system solution to the posture detection problem with regard to fall

detection was offered by Kala et al. [48]. For the implementation, they presented

a system with two sets of fuzzy rules, the first derived from domain knowledge

and the second from rough set theory. They lowered the number of rules from 81

to just 44 in order to simplify the analytical process while retaining a high degree

of classification accuracy. Two fuzzy inference methods and their aggregation

were also considered, both with and without the knowledge measure.
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2.4 Distributed and Cloud-based Fuzzy Logic

Systems for HAR

Acceptance and use of fuzzy systems have increased and expanded into many

fields, including control, electronics, and mechanics. Historically, the software

used to build such systems has been derived from onsite tools, platforms, and

languages. Yet the widespread adoption of cloud computing has introduced a

game-changing approach to delivering IT services. Increased demand for cloud

services has spawned new niche markets, such as data mining and machine

learning[20].

The accelerated development, advances in cloud computing, and distributed

architecture have also changed how HAR is approached. From the user to the

health service provider, three layers of devices can be considered in the

distributed HAR approach: sensor terminal, gateway terminal, and service

(business) platform. The gateway terminal connects to the sensor terminal to

receive physiological indicators and transmit them to the business platform. In

addition to providing data, the gateway terminal may additionally receive

health recommendations and other instructions from the enterprise system. The

sensor terminal measures the user’s physiological characteristics and structural

data, such as their position, activity level, blood pressure, ECG, blood oxygen

saturation, and heart rate. This type of classification is essential in community

health care, where patients may be split based on their place of residence.

Assigning the appropriate service physicians and customer service workers

(nurses) is also a solution. The medical term allows users to obtain physiological

and positioning data both indoors and outdoors. These transmissions are sent

to the underlying health platform system across the mobile GSM-TD (Global

System for Mobile-Time Division) communication network. The Web/WAP

provides users access to prior health reports and medical experts’ suggestions.

The adoption of a cloud computing environment can dramatically lower storage

costs as the volume of medical data gathered from the subject of observation

increases, provide rapid access to the data stored there owing to the cloud’s

powerful processing capacity and enhance storage security. With the audit

technology, the defined access control rules may eliminate superfluous operation
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errors and unwanted operations while restricting the user’s access. The stored

physiological database can also be centrally checked for security aspects in order

to observe the medical data privacy protection guidelines.

An example is a cloud-based fuzzy system for health monitoring was

suggested by Thilagavathy et al. [49] to improve the effectiveness of health

services in general. The proposed analysis was shown to be able to track the

fitness risk related to blood pressure, heart rate, and kidney function. The fuzzy

rule-based component of the fuzzy logic system was used to represent the

deterministic parameters of interest for the subject’s fitness. However, the study

may exhibit several gaps and limitations that warrant attention. Firstly, the

lack of comprehensive validation of the proposed method could undermine its

reliability and accuracy in practical healthcare settings. Real-world validation

studies encompassing diverse patient populations and medical conditions are

crucial for assessing the robustness and generalizability of the FIS-based health

monitoring system. Additionally, the scalability of the method on cloud

infrastructure may not have been adequately addressed, raising concerns about

its ability to handle increasing data volumes and user demands over time.

Furthermore, the research may overlook critical security considerations

associated with storing and processing sensitive health data in the cloud,

potentially exposing patients to privacy breaches and cyber threats. Moreover,

the absence of user acceptance testing and usability evaluation could hinder the

adoption and effectiveness of the health monitoring system among healthcare

professionals and patients. Addressing these gaps through rigorous validation,

scalability testing, security assessments, and user-centered design approaches is

imperative to enhance the reliability, efficiency, and usability of the proposed

health monitoring method using FIS via the cloud.

A novel Android and cloud-based module easily adaptable to various

hardware designs was also proposed by authors in [50]. To help novice users, the

new module could automatically create executable files for Android and

cloud-based (i.e., those without programming skills). The authors explained

their innovative module using two case studies. Wearable accelerometers and

gyroscope sensors were used to study real-time fall detection using fuzzy logic

internet service providers. In their study, wearable sensors were used as an

28



2. Literature Survey and Scope of Work

example of how to monitor human behaviour using a rule-dependent fuzzy logic

system. To discriminate between the occurrence of falls and non-falls, they

created an algorithm with 90% accuracy, 88.89% sensitivity, and 91.67%

specificity. However, several gaps and limitations in the study merit

consideration. Firstly, the research may lack comprehensive validation of the

proposed falling detection algorithm across diverse real-world scenarios and

environments. Robust validation studies involving varied demographic groups,

environmental conditions, and types of falls are essential to assess the

algorithm’s accuracy, sensitivity, and specificity. Additionally, the scalability of

the algorithm to handle large-scale deployment and real-time processing may

not have been thoroughly investigated. As falling events can occur

unpredictably and require immediate response, evaluating the algorithm’s

performance under different workload conditions and resource constraints is

crucial for practical application. Furthermore, the research may overlook

potential security and privacy concerns associated with collecting and

processing sensitive data from multiple sensors. Ensuring data confidentiality,

integrity, and compliance with privacy regulations is paramount to protect

individuals’ privacy and prevent unauthorized access to personal health

information. Moreover, the usability and user acceptance of the falling detection

system may not have been adequately assessed. Involving end-users, such as

caregivers and elderly individuals, in usability testing and feedback sessions can

provide valuable insights into the system’s effectiveness, ease of use, and

integration into daily routines. Addressing these gaps through rigorous

validation, scalability testing, security assessments, and user-centered design

approaches is essential to enhance the reliability, efficiency, and usability of the

proposed falling detection algorithm based on multisensor data fusion with

SVM.
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2.5 Data Exchange Formats and Standards for

FLSs

A prevalent constraint arises from the absence of uniformity in data formats,

resulting in compatibility challenges and complications in achieving

interoperability among diverse cloud platforms and services. In the absence of

standardised criteria, the methods used to communicate data can differ

significantly, which can create difficulties when trying to seamlessly integrate

and collaborate in diverse cloud settings. In addition, certain current methods

may not possess adequate adaptability and scalability to suit changing data

needs and various application situations. The inflexibility of these systems

might inhibit the efficient processing and sharing of data, hence reducing the

overall effectiveness of cloud-based systems. Furthermore, specific data formats

may not sufficiently accommodate intricate data structures or semantics, hence

restricting the extent and depth of information shared inside cloud

infrastructures. The presence of these limitations emphasises the necessity for

standardised, adaptable, and compatible data formats and exchange protocols

to address current difficulties and unleash the complete capabilities of

cloud-based architecture.

A significant challenge in constructing fuzzy systems is that there needs to

be a standard for modelling this type of system. Although using FLS in HAR

has the potential to be more efficient than others in distributed and cloud-based

architectures, a major design issue is the need for a specific standard for

web-based data exchange format. In a public use case of fuzzy systems,

particularly for HAR applications, it is important to consider the principles of

Explainable AI [51] termed as Transparent Fuzzy Control (TFC), meaning that

”the joint use of fuzzy logic together with abstraction data tools, such as XML,

able to allow the implementation of distributed intelligent decision-making

systems independently from the details of hardware devices” [52]. Fuzzy

Markup Language (FML), defined in IEEE 1855 (2016) [24], is used in this

project as a unified and well-defined language for exchanging data about fuzzy

systems. Moreover, its schema has been extended to fit the purpose of this

project, which is recently submitted and is waiting for final approval by the
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IEEE standard association committee IEEE SA-P1855. FML is an XML-based

language used for data exchange specific to fuzzy logic systems. It is presented

as a new approach to defining a detailed structure of the fuzzy rule-based

system in an independent way from its legacy representation and the

consequent hardware implementation, which makes it suitable for the targeted

distributed architecture of the HAR systems in this project.

The use of FML enables system designers to swiftly convey their ideas,

which, as a result, speeds up the process of developing any given complicated

system [53]. This innovative representation of fuzzy systems can guarantee high

interoperability of HAR network devices characterised by hardware

heterogeneity, such as those composing a HAR framework. The design of a

Semantic Web-based search engine is another objective of proposing FML

because of being a markup language, which allows HAR designers to search for

and find the best set of fuzzy inference engines (coded in FML) and download

them to their devices’ set so they can automatically configure themselves.

The preceding chapter describes fuzzy logic and its most well-known

application, the Fuzzy Logic Controllers (FLCs), which are computational

systems that emulate human decision-making processes by employing linguistic

variables and fuzzy sets to model uncertain and imprecise information. FLCs

have been implemented in a variety of technical and social, economic, and

political domain scenarios. Nevertheless, despite their prevalence, the design

activity of an FLC may be impacted by major challenges associated with the

implementation of a given fuzzy system on various hardware architectures, each

of which is characterised by a unique set of electrical/electronic/programming

constraints. [54]. Particularly in a distributed, ubiquitous and pervasive system,

the problem is more critical since different components of a fuzzy system can be

implemented using different hardware/software configurations interacting with

each other.

Most other language proposals focus on providing environments to model

fuzzy systems for both general-purpose domains and specific fields. Prior to FML,

FCL (Fuzzy Control Language, as a part of IEC 61131-2000) was introduced as

an FLS definition language [55]. XFL [56] is another language specification for

fuzzy modelling of general-purpose systems used on the Xfuzzy [57]. On the other
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hand, XFSML [58], based on XML serves as a starting point for the definition of a

standard modelling language. Due to their inability to describe data abstractly,

these languages are unable to guarantee a sufficient enough level of hardware

compatibility [59]. The current research work has investigated the possibility

of integrating FML, as the chosen data exchange language, within the proposed

architectural design for a distributed fuzzy system for HAR.

The object model used in FML for the description of an FLS is illustrated as

a tree structure in Figure 2.1. This object model is encoded in an XML schema

that can be found in [24].

In compliance with IEEE 1855-2016, JFML is an FML-based Java library to

support designing and running FLSs [25]. JFML is an open-source Java library

certified under the GPLv3 license. It adheres to an object-oriented technique

and a modular architecture based on a similar tree structure used by FML. Four

fuzzy inference systems (Mamdani, TSK, Tsukamoto, and AnYa) that are used

in the basic specification of FML standard are supported by JFML. The authors

give three case examples to demonstrate JFML’s potential and the advantages

of sharing fuzzy logic structures across different software. Designing a fuzzy

logic system was the original case study for the well-known tipper regression

problem. The second case study focused on creating a fuzzy logic framework to

control a robot’s tendency to follow walls. The early construction of a fuzzy logic

classification system utilising the MATLAB fuzzy logic toolbox is the subject of

the third case study. Since its early version, the library design was subsequently

improved over the years.

An early application of JFML was designing an interoperability module for

Arduino boards to construct and run fuzzy logic systems for embedded systems

[60]. In addition, a communication protocol was built between the JFML and

Arduino, which helped to reduce the embedded systems’ limited computing

capabilities. To show the capacity of the interoperability module, the authors

analysed a wall-following fuzzy controller that manages a mobile robot in two

settings according to IEEE Std 1855-2016. This enables developers to extend

JFML without changing the grammar of the language. JFML facilitates using

standard fuzzy inference systems that are present in XML schema definition,

which includes membership functions and fuzzy operators. Other components
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Figure 2.1: The object model tree structure of FML in defining a Fuzzy controller.

could be needed for further use by researchers; however, those components are

not included in the current FML schema. Therefore, JFML makes available

custom methods for all elements specified in XSD, offering a method to expand

the library in fulfilment with this standard devoid of any changes in the

grammar of the language.

Simpful is another library for FLS design that supports FML. It is a Python

library that offers a complete implementation of the IEEE-1855 standard and has
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the capability to import/export fuzzy systems in accordance with other standards

too.

Table 2.2 summarises the major software tools, standards, and libraries for

FLS design that can be used in a distributed FLS architecture.

Several other research works followed up the initial FML introduction and

developing the associated libraries. Pourabdollah et al. [64] created web servers

and suggested improvements to use extended FML to run fuzzy logic systems

on a client-server basis. Their novel method involved integrating several

components of the fuzzy logic paradigm into a single web server framework

using HTTP requests/responses for web-based communication. The use of fuzzy

logic structures in AmI contexts demonstrated the viability of this approach.

Acampora and Vitiello [65, 66] showed how Arduino designs might create

compatible fuzzy rule-based systems using the intrinsic expansion capabilities of

IEEE Std 1855. Additionally, by avoiding addressing the hardware and software

of a specific Arduino device, this feature allowed programmers to concentrate on

abstract notions. A recommendation for a fuzzy-as-a-service solution. The three

main objectives of their proposal were to describe cloud services for fuzzy

systems using semantic technologies, to build services, and to use cloud

computing models in cloud platforms to interact with other services [20].

VisualJFML, an improved JFML GUI-based visual framework, was created by

Acampora et al. [67] to enable the modelling of fuzzy systems in compliance

with the IEEE 1855 standard. Since it lets designers create shared fuzzy

structures without any programming experience, VisualJFML provided

significant feedback, according to their analysis. They demonstrated a

user-friendly interface enabled by VisualJFML using a case study addressing the

problem of iris classification. For open embedded hardware systems,

Soto-Hidalgo [68] created a new JFML module that allowed programmers to

create and use fuzzy ruled-based frameworks.

2.6 Scope of The Work

The major takeaway from the literature survey made as reported in the preceding

sections are as follows:
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Table 2.2: List of software that can be used to make FISs.

Sr.

No

Libraries with

Language
Ref. Year Description with Gaps

1 FML [24] 2016

The two major issues across all
applications are identifying
contextual data from sensors in
a generalised and effective manner
and how contextual data is handled
in order to improve service functions.
FML exhibits limited functionality
compared to code-based libraries, with
usability hindered by the necessity to
learn a markup language.

2
Juzzy Libraries
Using Java

[61] 2018

A package or toolkit that simplifies
the design and implementation of
type-1, interval, and general type-2 FLSs.
Limited language interoperability restricts
juzzy to Java-based projects exclusively.

3
JFML Libraries
using Java

[25] 2018

There will eventually be gaps in the
internet of things, which will rely on
FML’s distributed processing capabilities.
The JFML library, on the other hand, can
take advantage of the situation by assisting
fuzzy developers in performing scenarios
in a more straightforward manner.
Like juzzy, jfml encounters comparable
restrictions regarding language interoperability.

4
JFML Libraries
using Python
wrapper on Java

[62] 2019

Membership functions, rules, and fuzzy
inference in Py4JFML requires the use
of some existing Python packages, such
as learning and visualisation modules.
The wrapper nature of jfml in Python
adds complexities and limitations.

5
Simpful libraries
using Python

[63] 2020

Tsukamoto and AnYa fuzzy logic
operations and fuzzy inference methods
are not supported in the current Simpful
version. There is no support for type-2
FISs or stochastic fuzzy reasoning, either.
The library’s restricted language
interoperability, tailored exclusively for
Python projects, may limit its applicability
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• The renowned fact is that FLSs, particularly for HAR applications, are

usually implemented on dedicated local hardware and software systems, and

most of these contemporary systems do not comprise distributed pervasive

and scalable architectures.

• Contemporary progress in cloud computing and SOAs has caused a

transition from traditional local or client-server paradigms to a

service-oriented model for HAR.

• By changing the classical approaches to FLSs software/hardware

architecture, a fuzzy logic system can be perceived as-a-service that, if

maintained on the cloud, permits computing to be divested and concealed

from devices in an intelligent environment, as well as being scalable, thus

providing advantages over the other local solutions.

• An open-service model is very much in need in the healthcare domain. This

openness can be accomplished by developing the system to be fully web-

based and device self-sufficient, particularly by utilising standard formats

for data exchange that are both consistent and readable as realistically as

possible.

• A web-based data language for FLS characterisations is the key criterion

for implementing such an architecture. The current standard for this

purpose is the IEEE-1855 (2016), also known as FML, an XML-based

mark-up language allowing the human readable and hardware-independent

definition of an FLS. FML and FML-compatible software, such as JFML,

can be used as the basic design standard in this study. The extensibility

of this standard is a solution to architectural growth.

In Summary, the reviewed literature shows a research gap being the rarity of

the standardised architecture adaptation for distributed FLSs for addressing the

growing requirements in HAR. Based on this, the proposed solution is explained

in the next chapter.
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Chapter 3

Methods, Materials and

Framework

3.1 Introduction

There is a need for a distributed and service-oriented architecture for FLS in order

to unveil the potential of FLSs in effectively processing real-time and uncertain

data in HAR scenarios. In this chapter, the details of the identified need and the

details of the proposed architecture called Fuzzy-as-a-Service (FaaS) are provided.

In order to implement the monitoring system for HAR, the potential of FLS

can not be overlooked. FLSs are intelligent systems that can approach the

ability of the human mind to approximate vague data, extract useful

information from them and infer a decision. Its potential can be applied to

numerous domains, particularly to the medical field, to model the high

complexity and uncertainty that characterises medical processes. An FLS

provides the opportunity to transfer human and expert information into

intelligent and automatic models by making use of linguistic terms. The

knowledge transfer process begins with the construction of a knowledge base

with the assistance of medical professionals and clinical experts. Since fuzzy

logic permits the interpretation of data with preset linguistic variables in

accordance with proper IF-THEN rules, fuzzy sets are used to treat uncertainty

and describe knowledge by means of rules. Fuzzy sets are written as follows:
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IF situation THEN conclusion

where the situation (premise) is called antecedent consisting of fuzzy terms

connected by fuzzy operators and the conclusion is called consequent [9]. In the

context of the HAR, fuzzy rules constitute the inferential engine of the FLS by

defining the necessary inferential mechanisms for arriving at the output value

related to the status of the persons under observation by using the physiological

parameters obtained through sensors. This is accomplished by using the

physiological data collected by the sensors. Human efficacy is said to stem not

just from exact cognition but also from fuzzy concepts and reasoning. Fuzzy

classification methods benefit over traditional methods since they produce a

fuzzy decision or a value indicating the degree to which the data falls inside a

range. Because it is based on natural language, fuzzy logic is becoming

increasingly popular in the field of artificial intelligence for use in

decision-making. It allows the natural description of problem domains in

linguistic terms rather than in terms of relationships between precise numerical

values.

The remaining sections of the chapter are organised as follows: Section 3.2

discusses the motivation for designing FaaS for human activity monitoring.

Section 3.3 reviews the proposed FaaS architecture design, including the design

attributes and the new software components. Section 3.4 explains an extension

of IEEE 1855-2016 and API setup using the FaaS architecture for HAR

applications; The implementation plan of FaaS in HAR will be explained in

Section 3.4.3. Finally, Section 3.5 describes the summary of the chapter with an

overview of the next chapter.

3.2 Motivation

Traditionally, fuzzy logic systems are linked to specific hardware or software

systems. Observations reveal that dispersed and distributed designs of

intelligent systems are gaining attraction. Due to the complexities of fuzzy logic

computations, distributed architectures can add value to the development of

fuzzy systems, especially in the field of HAR, where a large amount of data need
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to be handled in real-time. Cloud computing is increasingly becoming a

generalised alternative to expensive on-premise infrastructures with essential

elements such as scalability, on-demand availability, or pay-per-use. Cloud

computing is not supported by the conventional approaches taken to design

FLSs. Hence, elements like flexibility, portability, scaling-up of resources in

response to demand, and the discovery of services are not taken into

consideration. Implementing, building, and deploying fuzzy logic models as a

service on cloud computing platforms is a logical architectural extension for

fuzzy systems, bringing several advantages, including scalability, development

speed, portability, and interoperability.

The prime motivational forces to form the concept of FaaS in an AmI and

distributed context include the distributed architecture of AmI, the requirement

of high-power computation, reuse of computation results, scalability, openness

and Accessibility, security, cost, and advances in cloud computing and IoT

technologies [64]. Some of the aspects are specified below.

3.2.1 Openness and Platform Independence

This is a general motive not limited to AmI for some form of fuzzy logic system

applications. It is noticeable that the tools available for computing fuzzy logic

systems, e.g., some libraries/tools in MATLAB and R software tools generated

for fuzzy logic computation, are typically fitted for a single purpose. When an

independent architecture is developed, network connectivity to cloud service

providers removes any need to install specific tools/libraries for fuzzy logic

system computations[69, 70]. The platform-independent design is advantageous

for academic and educational purposes, where usability and dissemination of

both resources and outcomes are essential. Moreover, such an architecture leads

to developing systems that can work in a cross-platform environment. The

other benefit of developing a platform-independent architecture is that FLS

computation is accessible from any web-connected device at any geographical

location.
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3.2.2 Configuring the Fuzzy Systems from Anywhere

Cloud computing can be regarded as a valuable extension of the client-server

architecture because it makes allocating system resources more flexible based

on the required computational power for a specific FLS. The fuzzy systems can

be configured remotely and independently from their working environment. For

example, the system rule base can be updated from any place if a new or updated

set of experts’ views are to be applied. This feature is of high importance for HAR

scenarios since it requires minimum or no intervention with the living environment

of the subjects under monitoring.

3.2.3 Reuse of Computational Results

To circumvent recurrent computations, a server can record inputs and produce

output. For instance, if a specific device’s inputs have been handled in the past,

the stored outputs can be used as a reply through a lookup table. A single

FLS definition for a specific application may be combined and reprocessed by

several applications in dissimilar surroundings. Due to the distributed nature

of inputs/outputs, this is only possible if FLS servers can be inquired for FLSs’

definitions and past input/output descriptions within a distributed architecture.

3.2.4 Scalability of Fuzzy Logic System

Fuzzy logic systems can be extended further and merged with artificial

intelligence to develop intelligent systems in an AmI environment with the help

of a service-oriented architecture. This possibility arises from the well-known

Zadeh’s Incompatibility Principle, stating that when the complexity of a specific

system rises, precise categorical statements about that system lose meaning,

and meaningful statements cease to be precise and categorical. The linguistic

approach used by fuzzy logic allows us to overcome this limitation and make

fuzzy systems scalable to be embedded in complex frameworks such as AmI

environments [71]. In these scenarios, fuzzy rule bases semantically related to

different aspects of the controlled environment will be designed as pluggable

into the components of the artificial intelligence ecosystem.
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3.2.5 Need for a Standard Web-based Language

Scalability is an important concept, but it could lose many of its potentials if

not accompanied by technology for data abstraction that allows the model of

computing with words in a human-readable and hardware-independent manner

[72]. As described in chapter 2, IEEE 1855-2016, also known as FML, is an

XML-based language achieving the above goal, so that it will be a part of the

proposed architecture. This abstraction language, introduced initially as a tool

for modelling the behaviour of devices in smart homes, has been used in different

application domains. The main benefits of IEEE 1855 are related to being directly

convertible to programming logic in server-side programming to minimise the

development time of this kind of architecture. This aspect is beneficial in AmI

environments, where a collection of heterogeneous devices need to be opportunely

programmed and communicated among them [73].

3.3 Fuzzy-as-a-Service: The Proposed Software

and Hardware Architecture

Advances in HAR require decision-making tools and techniques to be accessible by

a large number of networked devices, ranging from small and low-power sensors

to embedded devices to PCs and large servers. The distributed architecture

preferred for ambient computing systems implies that the sensors, processors,

and output units can be physically distributed in the environment. FLSs are

potentially considered to be computationally intensive, particularly when it comes

to multi-input, multi-output, and multi-rule FLSs [74] or when it comes to higher

orders and complex forms of fuzzy systems such as type-2 or non-singleton fuzzy

systems [75]. Many designers avoid designing advanced forms of FLSs because of

the increased complexity. While small or embedded devices, such as wearable or

pervasive devices, are specially designed for networking and data communication,

they cannot undertake intense computation. A standard solution for the case of

non-mobile computer systems is to offload the complex logic from the clients to

specialised servers in a client-server model. However, recent advances in cloud

computing, IoT, and SOAs have led to a move from the classical client-server
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Figure 3.1: An illustrative diagram of client-server communication through the
API.

model to a service-oriented model for ambient intelligence [76, 77]. By applying

this approach to FLSs, fuzzy logic can be viewed as-a-service, called FaaS. If held

in a cloud-based architecture, it enables computation to be offloaded and hidden

from the devices in an ambient intelligent environment enjoying the advantages

of cloud computing as well as handling large volumes of data at a time.

3.3.1 Architecture Components

The proposed system uses web-connected devices to develop a cloud-based

service-oriented architecture for fuzzy logic systems. A sensor is a device to

detects physical quantities and then converts them into equivalent electrical

signals whereas web-connected devices widely known as IoT devices have the

capability to get connected to the internet and can send data wirelessly to the
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Figure 3.2: A schematic representation of the proposed system.

receiver. The significant benefit of using such sensors is that they can be

connected to any device, such as IoT devices [78, 79]. The other benefit is that

real-time data can be obtained from these sensors, which can be used for

prediction purposes. Using public cloud services adds advantage to the FaaS

architecture particularly when real-time data is obtained from the sensors and

processed using a cloud service in HAR applications, which gives the desired

results instantaneously.

The software/hardware components of FaaS include a fuzzy logic server(s),

environmental devices/apps, management station(s), and monitoring station(s).

The deployment diagram of the FaaS architecture is shown in Figure.3.1. An

example schematic diagram of the architecture implemented in a HAR scenario

is also shown in Figure 3.2. The architectural components are explained in the

following sections.

3.3.1.1 Fuzzy Logic Server(s)

One or more servers are dedicated for processing calculations of fuzzy systems.

Given an FLS definition in FML, the FML-based FLSs are generated, stored,

and maintained. An FLS definition in FML enables the representation of the

elements of a standard FLS using a labelled tree structure, in which an element,

an attribute, and a text node represent each XML tag, XML attribute, and value
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Figure 3.3: Example of FML labelled tree.

Figure 3.4: Main class diagram of JFML.

of an attribute. According to IEEE1855 and as depicted in Figure 3.3, the linkages

of the tree describe the relationships between XML elements and attributes [24].

JFML and Simpful (explained in chapter 2) are two alternative software

libraries responsible for FLS processing on the server(s). Figure.3.4

demonstrates the main class diagram for this library. The details of the JFML

library are explained in Appendix B in order to provide the reader with a

general understanding of the possibilities offered by the library.

3.3.1.2 Environmental Devices and Apps

The devices and apps to collect data from the environment or act on the

environment based on the received data are parts of the FaaS architecture.

These are the client-side devices and no FLS processing exists on them. They

are assumed to be connected to the network and able to encode/decode their

data in/from FML.
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3.3.1.3 Management Station(s)

These stations allow authorised people to design/redesign FLSs remotely as per

their requirements. People can add/remove the system, and anybody can use it

at any time from anywhere using HTTP request and response. A web tool is

designed to make it simpler for people utilising cloud computing. OAP, WSDL,

and REST are examples of web service applications. The best way to use RESTful

web resources is through the cloud. When a web service uses REST, it identifies

limitations, such as a single interface that give rise to desired characteristics that

allow services to work effectively on the web. In the REST architectural style,

data and features are referred to as resources and can be accessed via URIs,

typically web links. Using numerous well-defined operations, the resources will

be used. An API consisting of an HTTP request and response configures a web

service invocation for each feature.

3.3.1.4 Monitoring Station(s)

The outputs of the FLS calculations, along with the inputs are remotely

available to the authorised people through the monitoring station(s). The data

communication are in FML standard. This not only fits well to the HAR

scenarios due to minimising the intervention into the living environments but

also can offload possible post-processing tasks from the environmental devices or

other architectural components.

3.4 Proposed Extension of IEEE 1855

IEEE-1855 basic schema provides a comprehensive mechanism for defining an

FLS, however, the request and response features required in FaaS differ from

what IEEE-1855 basic schema can offer. It is therefore necessary to predict

mechanisms to send input/output data between the FaaS components.

The API data exchange in FaaS uses the core schema, IEEE standard

1855-2016, and the proposed extension. The extension is incorporated into the

schema to facilitate input/output value exchange between clients and servers.

The IEEE standards committee has recently approved the general framework of
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this extension and is currently in the process of approving the details to be

published in the next IEEE-1855 revision.

3.4.1 Need for Extending IEEE 1855 for FaaS

FML standard makes the information about fuzzy systems easily exchangeable

over the web. The current FML standard can comprehensively “define” a fuzzy

logic system. While applying FML for different applications, particularly for

developing web-based systems, it is observed that once the system is defined

by FML, communicating with the defined fuzzy system in the form of request-

response is not yet standardized. For example, there is no standard notation for

setting input values and getting the resulting output values for the defined fuzzy

system. Furthermore, in some web applications, it is necessary to redefine, edit,

query, or remove a fuzzy system from a set of defined systems, for which FML

can also be extended.

3.4.2 Extension Proposal and API Design

Based on this, it is proposed that FML support not only a system definition

standard but also a messaging standard (in which the current system definition

by FML is the most detailed one of the possible types of messages). Therefore,

adding notations to the new FML update is proposed to support a standard

method of client-server messaging related to fuzzy systems. This will make the

standard more general than just defining a fuzzy system, extending its

applications to a wide range of Internet applications, including IoT and ambient

intelligence domains [80].

The proposed added XML elements lie within two significant elements, i.e.,

FLSRequest and FLSResponse. This has been done intentionally and placed

within the IEEE-1855’s root element (Fuzzy Controller) [24]. In other words,

FLS Request, FLS Response, and their sub-elements are candidate extensions

of the original IEEE-1855 schema. The other interpretation would be that all

responses and requests from or to the server could be substantiated through a

single schema. Combining the schema for the newly required elements with the

standard IEEE-1855 schema results in an extended schema. The extended schema
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Figure 3.5: Schema of request/response the designed fuzzy-as-a-service API.
The fuzzySystem element is the core element that follows the IEEE1855-2016
standard, whereas the other elements are to be considered as extensions for the
Web services

would have the same root element as the original schema. Moreover, the original

sub-elements, i.e., Knowledge Base and Rule Base [65, 68]. Would be added

along with two additional complex-type elements for handling FLS requests and

responses under the root element. The standard IEEE-1855 has been opportunely

designed to enable a simple and direct extension to allow the original language

to be adapted to different application scenarios.

In brief, a wrapper element is proposed to be defined above the current FML

definition level. The sub-elements are proposed to be the desired services. Each
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service has two data structures defined for either “request” or “response” types of

messaging between a client and a server. For example, if a client wants to create

a new fuzzy system for a server, a current FML data structure is wrapped inside

a “request”-type message with the requested service as “createFLS”. Once the

new system is created, the server responds to the client acknowledging the new

system creation wrapped into a “response” -a typed message for the same service.

Similarly, two other services called “setInput” and “getOutput” will be used to

set the input values(s) and to get back the resulting output(s). A fuzzy system

URI, currently existing as IP in FML, will be used to refer to each fuzzy system

among different messages uniquely. Briefly, the “type” attribute determines if the

HTTP packet is a request or a response. In contrast, the name of the requested

functionality is encoded in the “service” attribute of both request and response

packets. The request/responses messaging format is proposed for the minimum

services defined in the table and schema graph shown in Figure 3.5. Table 3.1

defines the necessary parameters for request- and response-typed messages of each

service. This is followed up by some examples of how to use the proposed services.

Several methods accomplish the activities mentioned earlier. Such methods are

listed in the following sections.

3.4.2.1 createFLS

The client machines generate a request that includes the FLS definition in IEEE

1855-2016 standard format, which contains information and values for fuzzy

variables with a unique URI ID.

Create an FLS request consisting of URI and fuzzy system tags as input

parameters and “createFLS” as a service attribute. The fuzzy system consists

of two major elements, i.e., knowledge base and rule base. The knowledge base

consists of fuzzy variables such as pulse and SpO2 with values such as critical,

alert, low, and normal. There are a number of rules in the rule base (considered

as per the selected example), depending on which one can decide if a patient is

COVID-19 critical or not.

Request:

<fuzzyController type="request" service="createFLS">

48



3. Methods, Materials and Framework

Table 3.1: request/responses messaging format for the minimum services.

service
type=request type=response
parameters parameters Sample Messages

createFLS

URI

System

definition

URI

System xx created successfully.

System xx already exists.

Failed to create new system.

getFLS URI
URI System

description (FML)

System xx retrieved successfully.

System xx does not exist.

editFLS

URI

Edited

description

URI
System xx edited successfully.

System xx does not exist.

deleteFLS URI URI
System xx deleted successfully.

System xx does not exist.

setInput

URI

List of input

names

and values

URI

Input(s) set successfully.

Input variable xx does not exist.

Input is not validated.

getInput

URI

List of input

names

URI

List of input

names and values

Inputs retrieved successfully.

Input variable xx does not exist.

getOutput

URI

List of output

names

URI

List of output

names and values

Outputs calculated successfully.

Output variable xx does not exist.

Input variables xx are not set.
listSystems All systems’ URIs Systems list retrieved successfully.
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<URI>Covid_FLS</URI>

<fuzzySystem>...</fuzzySystem>

</fuzzyController>

Response:

<fuzzyController type="response" service="createFLS">

<URI>Covid_FLS</URI>

<message>System created successfully.</message>

</fuzzyController>

3.4.2.2 setInput

After the backend server has created the FLS file, values need to be set by the

client in that fuzzy system for different variables so that the system can provide

the desired output. The service “setInput” is used for this reason. Herein, the

XML request service attribute is “setInput”, and the input parameter is a variable

name. These crisp values are saved at the backend server so the fuzzy system can

evaluate the result. The sample code is as follows:

Request:

<fuzzyController type="request" service="setInput">

<URI>Covid_FLS</URI>

<variable name="pulse">

<value>50</value>

</variable>

<variable name="spo2">

<value>80</value>

</variable>

</fuzzyController>

Response:

<fuzzyController

type="response" service="setInput">

<URI>Covid_FLS</URI>

<message>Input(s) set successfully.</message>

</fuzzyController>

The Client can repeatedly set data into the database, but the latest data can

be used to evaluate the result.
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3.4.2.3 getInput

This service is used to retrieve the latest information about variables. Values are

retrieved for variable names provided in the request under the fuzzy controller

type. A specific URI file is searched at the back-end server and tried to match

the variable names passed in the request by iterating the entire file.

Request:

<fuzzyController type="request" service="getInput">

<URI>Covid_FLS</URI>

<variable name="pulse" />

<variable name="spo2" />

</fuzzyController>

As shown in the sample code, the XML request service attribute is “getInput”

In the request, the unique “URI” is passed, and only those variable names whose

latest information is required are taken into account. Values for matched variable

names are sent back to the client, or the error response is “Input variables do not

exist”.

Response:

<fuzzyController type="response" service="getInput">

<URI>Covid_FLS</URI>

<variable name="pulse">

<value>50</value>

</variable>

<variable name="spo2">

<value>80</value>

</variable>

<message>Input retrieved successfully</message>

</fuzzyController>

3.4.2.4 getOutput

The data input in createFLS and output in setInput is calculated in getOutput

service. The service attribute used is “getOutput”, and in a request, the ”variable

name” and “URI” are passed. All possible values for the particular URI are

checked against the system’s ruleset, and the result is then determined. If the
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variable values are unsent using the “setInput” service, the output is “Input fields

not set.” Also, if the variable does not exist at the fuzzy back-end system, the

output is “Output variable does not exist”.

Request:

<fuzzyController type="request" service="getOutput">

<URI>Covid_FLS</URI>

<variable name="covid" />

</fuzzyController>

Response:

<fuzzyController type="response" service="getOutput">

<URI>Covid_FLS</URI>

<variable name="covid">

<value>critical</value>

</variable>

<message>Output calculated successfully</message>

</fuzzyController>

3.4.2.5 queryFLS

Various clients may need access to information about the status of an FLS stored

on the server. The stored FLS will be retrieved from the back-end server based

on the URI passed in the request. The requested URI is searched in the system.

If found, the XML is converted to a Java object and sent as a response, which

includes the complete fuzzy system object (i.e., variable names, rule base, and

knowledge base).

Request:

<fuzzyController type="request" service="getFLS">

<URI>Covid_FLS</URI>

</fuzzyController>

The service attribute used is “queryFLS”, and only the “URI” is passed in a

request. Suppose the requested FLS with a unique URI is not present. In that

case, the response will be displayed as “System does not exist,” and if the URI is

found in the database, then the server response will be “System URI ID retrieved
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successfully”. The server response includes the FLS definitions mentioned earlier

in the IEEE-1855 schema as createFLS and the latest value, which is set by using

setInput.

Response:

<fuzzyController type="response" service="getFLS">

<URI>FLS5</URI>

<fuzzySystem>...</fuzzySystem>

<message>System retrieved successfully</message>

</fuzzyController>

3.4.2.6 deleteFLS

Finally, clients should be able to request that an FLS be deleted from the

database’s list of specified FLSs if the FLS description or past input/output

history is no longer required. This service is used to delete the FLS generated

using the “createFLS” service. In the deleteFLS service, the file at the backend

with the given URI is searched. If the file is found, it is deleted, and a successful

response is sent. However, if the file is not found, the error response “System

does not exist” is sent back to the client. The service attribute used is

“deleteFLS”, and the client needs to pass “URI” with the type of request to get

a response from the server.

Request:

<fuzzyController type="request" service="deleteFLS">

<URI>Covid_FLS</URI>

</fuzzyController>

Response:

<fuzzyController type="response" service="deleteFLS">

<URI>Covid_FLS</URI>

<message>System deleted successfully</message>

</fuzzyController>
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3.4.3 FaaS Implementation on the Cloud

The proposed FaaS architecture is to be evaluated in the context of HAR. In this

section, the methodological settings and plans for the implementation of the FaaS

architecture in HAR scenarios (to be detailed in the next chapters) are provided.

3.4.4 Deployment Plan

The plan was deployed in the following phases.

First Phase: A comparison was made between Machine learning

techniques and a Fuzzy logic-based system to explore the method’s

suitability for drawing the decision in health status monitoring.

Second Phase: This phase included the data collection using an Android

App (Wearable sensor and Android phone), real-time conversion of data to

IEEE 1855 standard (Cloud Version), and communicating the results in the

extended FML.

Third Phase: Design of the FLS, Fuzzification, Fuzzy rule, Fuzzy

Inference, Defuzzification (Android using JFML libraries).

Fourth Phase: Case studies of Fall detection and SpO2 and pulse rate

monitoring systems were developed using real-time data.

Amazon Web Service (AWS) and Microsoft Azure are used as two

alternative cloud platforms for FaaS implementation. Android devices (such as

smartphones and wearable devices) and ad-hoc sensors (such as oximeters) are

used as environmental devices. Finally, web apps are implemented for

monitoring and managing stations. The implemented apps are demonstrated in

Appendix A.

3.4.5 Data Collection

During this research, various datasets were incorporated to evaluate the

performance of the proposed approach. Initially, “Run or Walk” from
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Kaggle.com’s public repository was utilized to evaluate the effectiveness of the

proposed method. Six of the dataset’s attributes consist of accelerometer and

gyroscope sensor data, each in three dimensions, and their corresponding

timestamps. The dataset additionally labels each individual’s actual state, with

a value of 1 signifying that the person is running and a value of 0 representing

that the person is walking. The accelerometer and gyroscope data collection

from a smartphone worn on the wrist has 88588 samples with a sampling rate of

around 5 seconds. The additional details related to data collection and

processing are explained in Chapter 4.

Research can be done more effectively if data is collected by the researcher

as the researcher knows which type of data is required to evaluate the system’s

performance. The BM2000A SmartCare Oximeter wrist-worn pulse oximeter

sensor was used to capture human health monitoring data, namely SpO2 in

percent and heart rate in beats per minute. The sensor gathers heart rate and

SpO2 data at a rate of 10 milliseconds from a human fingertip. As soon as the

fuzzy logic system receives the heart rate and SpO2 data, it will progressively

analyze them to determine the health condition. The additional details are

described in Chapter 5.

The data collection system relied on wearable sensors like a three-axis linear

accelerometer and gyroscope. Six users were surveyed for this study, two in the

20–25 age range, two in the 25–30 age range, one in the 30-35 age range, and

one in the 60–65 age range. This information is laid out in six columns labelled

Ax, Ay, Az, Wx, Wy, and Wz. Five distinct types of activity are used for data

collection: walking, running, front fall, rear fall, and side fall. Information was

gathered using a time series format. In this case, the sensor data collection rate

was 419 Hz. The data collection process is explained in Chapter 6 and Chapter

7.

3.5 Chapter Summary

This chapter presents a novel approach toward a web-based service-oriented

FLS architecture as an example of implementing the recently agreed IEEE 1855

standard. This chapter aimed to facilitate the flexible delivery of the relatively
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complex computing required for FLS from clients to dedicated servers. The use

of vitalised cloud services provided exceptional elasticity to the device.

Fundamentally allowing universally accessible FaaS, other advantages of such

architecture included network sharing, hardware/software control, data reuse,

load balancing amongst FLS devices, and cost-efficiency.

Utilising FaaS for HAR in the cloud environment will be discussed in the next

chapter.
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Chapter 4

A Cloud-based FaaS for Fall

Detection to Recognize Human

Activities

4.1 Introduction

In the previous chapters, the contemporary progress in cloud computing, IoT,

and SOAs that has caused a transition from traditional local or client-server

paradigms to a service-oriented model for HAR has been reviewed. It is evident

that the development of distributed architectures for FLSs is a relatively new

field with very little progress. The previous chapter presented a proposal of a

general architecture for changing the classical approaches to FLS

software/hardware to a system that can be perceived as-a-service (FaaS). It was

also shown that if the proposed architecture is maintained on the cloud, it

permits computing to be divested and concealed from devices in an intelligent

environment and scalable. Development and standardisation for the

components of the underlying architecture and introduction of a fully-functional

service-oriented solution to make it practical and cost-effective to design and

implement complex FLSs, particularly in AmI environments, have been

undertaken. Particularly two case studies are considered: the detection of fall of

a person using the data obtained from wearable sensors and an overall HAR of
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the person under observation.

HAR offers numerous advantages across various domains due to its ability to

automatically identify and classify human actions using sensor data and machine

learning techniques. Here are some of the key advantages of human activity

recognition:

Healthcare and Elderly Care:

• Fall Detection: HAR can be used to detect falls in elderly individuals and

alert caregivers or medical personnel, enabling quick response and reducing

the risk of injury.

• Physical Therapy Monitoring: HAR can track patients’ exercises and

movements during physical therapy sessions, ensuring proper technique and

adherence to treatment plans.

Fitness and Sports:

• Personalized Training: HAR can provide real-time feedback on exercise

form, intensity, and performance, helping individuals optimize their

workouts.

• Performance Analysis: In sports, HAR can be used to analyze athletes’

movements, enhancing training techniques and preventing injuries.

Human-Computer Interaction:

• Gesture Control: HAR can enable natural and intuitive interactions with

computers, smartphones, and other devices through hand gestures and body

movements.

• Virtual Reality and Gaming: HAR enhances immersive experiences by

translating users’ physical movements into virtual environments.

Security and Surveillance:

• Intrusion Detection: HAR can distinguish between normal activities

and suspicious actions in security systems, improving intrusion detection

accuracy.
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• Anomaly Detection: Unusual activities or behaviors can be identified,

aiding in detecting potential threats or criminal actions.

Smart Environments:

• Context-Aware Systems: HAR contributes to building context-aware

smart environments that adapt based on occupants’ activities and

preferences.

• Energy Efficiency: Smart buildings can optimize lighting, heating, and

cooling based on activity recognition, saving energy.

Health Monitoring:

• Sleep Tracking: HAR can monitor sleep patterns and disturbances,

helping individuals understand their sleep quality and make necessary

adjustments.

• Chronic Disease Management: HAR can assist in managing conditions

like Parkinson’s disease by monitoring tremors and motor symptoms.

Safety and Industrial Applications:

• Occupational Safety: In industrial settings, HAR can identify risky

activities and provide real-time alerts to prevent accidents.

• Process Optimization: HAR can analyze workers’ movements to improve

workflow efficiency and ergonomics.

Assistive Technologies:

• Disability Assistance: HAR can aid individuals with disabilities by

enabling control over devices and interactions through movements and

gestures.

• Communication: HAR can facilitate communication for people with

speech impairments by translating gestures into text or speech.

Data-Driven Insights:
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• Behavior Analysis: HAR generates valuable data about individuals’

routines, habits, and behaviors, which can be used for research and

insights.

Automation and Efficiency:

• Automated Workflows: HAR can trigger automated actions or alerts

based on recognized activities, streamlining processes.

In all these applications, HAR has the potential to enhance safety,

convenience, efficiency, and overall quality of life. However, it’s essential to

consider privacy concerns, data security, and ethical implications when

deploying HAR systems, especially when dealing with personal data and

sensitive information. A fall detection system is a technological solution

designed to automatically identify and alert caregivers, emergency services, or

relevant personnel when a person experiences a fall. The primary objective of a

fall detection system is to provide timely assistance to individuals who might be

injured or unable to call for help themselves. These systems often incorporate

sensors, algorithms, and communication components to achieve their purpose.

Fall detection systems offer several important advantages, especially in

contexts where the safety and well-being of individuals are of concern. Here are

some key advantages of fall detection systems:

Timely Assistance: One of the primary advantages of fall detection systems

is their ability to provide timely assistance. When a fall occurs, the system can

automatically alert caregivers, medical personnel, or emergency services, ensuring

that help arrives quickly. This rapid response can significantly reduce the time a

person spends injured or incapacitated without assistance.

Injury Prevention: Falls can result in serious injuries, especially among the

elderly or individuals with certain medical conditions. Fall detection systems can

help prevent injuries by enabling swift response and medical attention, minimizing

the severity of potential injuries.

Independence and Quality of Life: Fall detection systems allow

individuals, particularly seniors, to maintain a greater level of independence.

Knowing that help is readily available in case of a fall can boost confidence and
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provide peace of mind, allowing individuals to continue with daily activities

without excessive worry.

24/7 Monitoring: Fall detection systems operate around the clock,

providing continuous monitoring and protection. This is especially valuable in

situations where caregivers or family members cannot be present at all times.

Reduced Burden on Caregivers: For caregivers responsible for looking

after elderly or at-risk individuals, fall detection systems can alleviate some of

the constant worry. These systems serve as an extra layer of support, reducing

the burden on caregivers while ensuring the safety of their loved ones.

Swift Medical Attention: Falls can lead to complications and medical

emergencies. Fall detection systems can expedite medical attention, enabling

healthcare providers to address potential issues sooner and improve the chances

of successful treatment and recovery.

Customizable Alerts: Fall detection systems often allow customization of

alert settings. Caregivers can receive alerts via phone calls, text messages, or

notifications, ensuring they are informed in the way that suits them best.

Privacy and Dignity: Fall detection systems can operate unobtrusively in

the background, preserving the individual’s privacy and dignity. They do not

rely on the person manually triggering an alert, which could be embarrassing or

difficult in some situations.

High Sensitivity and Accuracy: Advanced fall detection systems use

sophisticated algorithms and sensor technology to accurately distinguish

between falls and normal activities. This high sensitivity helps reduce false

positives and negatives.

Versatility: Fall detection systems can be integrated into various devices,

including wearable devices, smartphones, and home monitoring systems, making

them adaptable to different environments and user preferences.

Scalability: Fall detection technology can be scaled to accommodate multiple

users or residents in care facilities, making it suitable for both individual and

group scenarios.

Aid for Medical Conditions: Fall detection systems can be particularly

beneficial for individuals with medical conditions that increase their risk of falling,

such as Parkinson’s disease, epilepsy, or certain neurological disorders.
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Data Insights: Some fall detection systems provide data insights into users’

activity patterns and fall history. This information can be valuable for caregivers,

healthcare professionals, and researchers to better understand and address fall-

related issues.

Despite these advantages, it’s important to consider the limitations of fall

detection systems, such as the potential for false alarms and the need for user

acceptance. Additionally, the effectiveness of a fall detection system depends on

its accuracy, reliability, and the specific context in which it’s deployed.

Falls are the main cause of susceptibility to severe injuries for humans,

especially older adults aged 65 and over [81]. It is also one of the prime reasons

for fatality among older adults and creates a barrier to independent living.

Typically, falls are unnoticed and are interpreted as mere inevitable accidents

[82, 83]. In certain countries, Personal Emergency Response System (PERS)

facilities are developed for elderly people in case of falls, however, reports

indicate that 80% of older adults are unable to stand after a fall and fail to use

PERS to seek assistance [84, 85]. Therefore, an intelligent, automated, and

precise fall detection system will be a substantial part of the daily living

environment for elderly people to rapidly detect and provide fast medical

responses [86]. Various fall detection systems involve using analytical data from

images, videos, and audio, as well as data from inertial sensors such as

accelerometers and gyroscopes [87, 88]. Various wearable fall warning devices

have been created recently to ensure older people’s health, however, most of

these devices are dependent on local data processing [89, 90]. Moreover, several

approaches are used to detect falls using machine learning techniques via human

movement positional data to prevent accidents [48, 91]. The analysis is usually

performed using wearable accelerometers and gyroscope sensors. In machine

learning techniques, k-NN, decision tree, random forest, and extreme gradient

boost are used to differentiate between a fall and a non-fall.

One of the main design objectives of fall detection systems is to alert all types

of fall incidences, especially those related to Activities of Daily Lives (ADL) [87],

thereby aiming to lessen injuries to the spine, head, or severe bone fractures. The

main contribution of this chapter includes:

• A review on the performance of various fall detection machine learning
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techniques to detect a fall.

• An analysis of the performances of online and offline fall detection

techniques specifically, FaaS utilising an online real-time approach and

machine learning as an offline approach. Moreover, wearable sensors (i.e.,

accelerometer and gyroscope) that stimulate human activity monitoring

using a rule-dependent FLS are developed and tested with real-time data.

In this chapter, the details of a novel experiment for evaluating the cloud-

based FaaS for a human activity recognition scenario are presented. The subject

of the experiment is to analyse the sensor data collected from an iOS device

attached to a person’s wrist in order to detect if the person is walking or running.

An offline dataset is deliberately chosen so that different real-time data rates can

be simulated in software. Moreover, the chosen training method can produce a

very large rule base containing 240 rules, which can demonstrate the tolerated

processing load and evaluates the system’s limits in the higher sampling rates.

HAR using machine learning involves the development of algorithms and

models that can automatically identify and classify different activities

performed by humans based on input data, typically collected from sensors like

accelerometers, gyroscopes, and sometimes other sources like images or audio.

This technology has various applications ranging from healthcare to sports,

entertainment, and more. It’s important to note that the success of HAR

models heavily depends on the quality and diversity of the training data, the

choice of features, and the selection of an appropriate machine learning

algorithm. This study uses fuzzy logic web services and machine learning

techniques to perform a comparative analysis of real-time fall detection and

HAR to determine the optimized approach that might work better for real-time

fall detection and HAR. Accordingly, the cloud-based FLS has been designed

and implemented using wearable sensors.

The innovation of this experiment is not to achieve better accuracy than the

alternative machine learning methods, but to show the feasibility to shift from

a local solution to an open-service model, accomplished by developing a fuzzy

system to be entirely web-based and device self-sufficient, particularly by utilising

standard formats for data exchange that are both consistent and readable as
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realistically as possible. In FaaS, it is possible that an individual client computer

may outline its necessary FLS, input data can be provided for the specified system

by the same or another client computer(s), and lastly, the same or other client(s)

can repossess the calculated output. For example, as will be shown in this chapter,

requests from various clients can simultaneously be served in real-time by an FLS

server, in which one sends the sensor data and the other one receives the person’s

status.

The remaining sections of the chapter are as follows: After explaining the

experiment methodology in Section 4.3, Section 4.4 details the experimental

settings of using the FaaS architecture for the focused HAR application. After

providing the results in Section 4.6, Section 4.7 summarises the chapter with an

overview of the next chapter.

4.2 Proposed System for Fall Detection

Figure 4.1 illustrates the general structure of the system proposed, containing

three main steps, i.e., data acquisition 4.2.1, data processing 4.2.3, and feature

extraction of fuzzy data. Specifically, data from the accelerometer and gyroscope

are continuously sampled and stored prior to the fall event.

4.2.1 Data Acquisition using Wearable Sensors

Data from the accelerometer and gyroscope are continuously sampled and stored

before the fall. The sensors, namely the linear accelerometer, and gyroscope were

used for data collection. The wearable sensors used for data collection were part

of a smartwatch. The data acquisition was developed using wearable sensors

considering a three-axis linear accelerometer and gyroscope. Data were collected

from a total of six users, i.e., two users between 20 and 25 years, two users

between 25 and 30 years, one user between 30 and 35 years, and another user

between 60 and 65 years old. Data contains 6 columns, i.e. Ax, Ay, Az, Wx,

Wy and Wz. Five classes are used for data collection: walking, running, forward

fall, backward fall, and side fall. The sensor data collection rate was set to 419

Hz. Each individual performed the activities mentioned above once for the five

64



4. A Cloud-based FaaS in for Human Activity Recognition

Figure 4.1: System architecture of a fall detection system using both ML and
FaaS.

classes. The trends of fall/non-fall activities are in the place that should also be

considered in accordance with time. As shown in Figure 4.2, it can be observed

that data trends differed over time and were close to 0 in the event of a fall.

4.2.2 Data Diagnosis

Diagnosis of data helps analysing the nature and pattern of a fall as it provides

an in-depth discernment. Positional data ensures continuous fall distribution,

so analysing data that follows a normal distribution is invigorated. Figure 4.3

shows a normal distribution in case of a fall. Sharp peaks at 0 can be observed,

indicating a fall’s nature. From the figure, it is evident that data tends to follow

a normal distribution in the case of a non-fall. For each class, data frequency in

case of a fall and non-fall was checked, and assessed via a histogram plot shown
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Figure 4.2: Trend Plot for fall and non-fall activities: (a) Side Fall, (b) Forward
Fall, (c) Backward Fall, (d) Normal Walk and (e) Running.

in Figure 4.4.

From Figures 4.3 and 4.4, it is evident that data frequency at position 0 is very

high (for example, forward fall, backward fall, and side fall), whereas in the case

of a typical scenario, data frequency varies at different positions (for example,

normal walk and running). After analysing the data distribution through normal

distribution and histogram plots, data visualisation in three-dimensional (3D)

space was needed. It is apparent that in the case of a fall, data is plotted based on

a fall’s direction, whereas in the case of a normal scenario, positional data is being

concerned. 3D visualisations facilitate the depiction of high-dimensional data

representation. It is essential to examine the positional data patterns throughout

time. In a typical setting, it was noticed that positional data fluctuates over time

and approaches 0 in the event of a fall. As already observed in normal distribution

and trend plots, in the case of a fall, positional data ranges become close to 0,

whereas, in the case of a normal situation, positional data varies intensely.
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Figure 4.3: Normal distribution of the obtained accelerometer and gyroscope data

4.2.3 Data Processing

According to the method used in [92], two outputs can be obtained from the stage

of data processing, including the magnitude of the linear accelerometer (SVMA)

and the acceleration difference (∆A). The method of calculating SVMA is defined

as:

SVMA =
√

A2
x + A2

y + A2
z (4.1)

where the linear accelerations in the x, y, and z directions are described by Ax,

Ay, and Az, respectively. Moreover, the magnitude value exceeding 6.0 indicates

the possibility of fall occurrence. The program will compile 1000 data samples,

gathering data on typical user behaviours before and after the occurrence. Before

the fall, the first 950 data samples (expected to take 1.5 seconds) and 50 data

samples will be gathered from the current time step. 950 data samples (estimated

duration 1.5 seconds), and the following 50 data samples will be taken after the

fall. The average of the 50 samples taken before and after the fall is being

considered. The process of choosing data samples is illustrated in Figure 4.5.

The ∆A of the 950 data samples collected following the incident is used to

perform the first analysis. For calculating the ∆A, the XYZ accelerometer will
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Figure 4.4: Histogram plots of the obtained accelerometer sensor

have both start and end coordinates [92], which is shown as:

∆A = cos−1

 (Axs × AxE) + (Ays × AyE) + (Azs × AzE)√(
A2

xS + A2
yS + A2

zS

)
×
(
A2

xE + A2
yE + A2

yE

)
 (4.2)

where average accelerations along all three axes are denoted by the notation

AxS
, AyS , and AzS . In contrast, average accelerations along all three axes at the

endpoint are denoted by AxE
, AyE , and AzE . Since hand rotation is commonly

utilised in situations involving falls, the data acquired by a gyroscope may be used

to estimate the device’s angular speed in three dimensions (degrees per second).

This is possible because of the nature of the gyroscope. The unit can move in

any direction during the fall; because of this, the directionless SVMG takes into

consideration the unit’s potential to move in any direction. According to [92],

the amount of rotation, which SVMG represents, is calculated by making use of:

SVMG =
√

G2
x + G2

y + G2
z (4.3)

where Gx, Gy, and Gz are the speeds of rotation along the X, Y, and Z axis,
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Figure 4.5: Selection of a data sample.

respectively. According to Equation 4.3, the value of SVMG is obtained that is

used for the classification of the monitored individual’s status within the FaaS.

A fall can be typically viewed in three states: zero gravity, state of impact,

and inactivity. The accelerometer and gyroscope can check a sudden shift in

acceleration in the zero gravity state. The impact states are simple methods for

predicting the event of a fall. Similar to ADLs, hand clapping can easily trigger

false alarms for wrist-wearing applications. During a fall, the flipping and

spinning of hands might be critical. Nevertheless, two simple criteria that

distinguish falls for different people from all fall ADLs, particularly for the

presence of constantly moving hands, are almost impossible to determine.

4.2.4 Fuzzy Logic System Design

The fuzzy logic system suggested in [93] takes the inputs over and takes several

steps to generate vagueness-dependent output in fall detection. Fuzzification

turns signals into membership degrees within fuzzy sets defined for low, medium,

and high input signals. The system is a dual input that contains ∆A and SVM,

i.e., low, medium, and high ∆A values and low, medium, and high SVMA values.

Memberships in a scheme are drawn, and every member is classified as turning

points with different ∆A values choosing three turning points, i.e., 20◦, 45◦, and

90◦. Falls usually occur in 90◦, but some falls can exceptionally occur in less than

90◦ in which the wrist-worn sensor cannot determine an exact ∆A.
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Figure 4.6(c) shows the input fuzzy sets and Figure 4.6(c) shows the output

fuzzy set, in which all the three memberships functions have a triangular response

with an average scale from 0 to 60, and 10, 30, and 50 were the value of output,

respectively, and were allocated low, medium and high output.

The following steps are carried out to develop the FLS:

• Input fuzzy sets: SVM is the first input that contains three values, i.e., low,

medium, and high.

• Compounding: Set a minimum angle, leading to a 45° fall, and see it as a

medium angle. The lower and extreme angles are 20° and 90°, respectively.

The size of all 0° to 180° memberships was calculated by the minimum and

maximum angles that the sensor may calculate. If the angle is greater than

45°, the accident is more likely to be called a collision.

• Rule base: To conduct this experiment, a total of nine rules, are listed in

Table 4.1, was developed to determine whether or not it is a fall.

• Output fuzzy set and defuzzification: Similar to the input given to the

system that are transformed into three fuzzy sets, the system’s output

offered three values, i.e., low, medium, and high. After the inference, the

centroid method is used for defuzzification which transforms the output

fuzzy set into a crisp value at each time step.

The designed FLS has been adapted and implemented under the proposed

FaaS architecture. Figure 4.7 shows the flowchart of the proposed fall detection

system under FaaS.

4.2.5 Modelling Approach using Machine Learning

Techniques

The generated dataset consists of positional data accompanied by response

variables. A response variable is a multi-category variable with labels: backside,

forward, side falls, normal walk, and running. The dataset has been normalised

so that each answer variable has the same number of instances to exclude the

possibility of a bias factor being incorporated into the model. This was done to
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Figure 4.6: Membership for fuzzy inputs:(a) SVMG (Degree/s) (b) ∆A (Degree)
and membership for output (c) Fall Detection.
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Table 4.1: Rules for FLS to detect the risk of fall.

Rule
Number

Input
Output

∆ A SVMG

1 Low Risk Low Risk Low Risk
2 Low Risk Medium Risk Low Risk
3 Low Risk High Risk Low Risk
4 Medium Risk Low Risk Low Risk
5 Medium Risk Medium Risk Medium Risk
6 Medium Risk High Risk High Risk
7 High Risk Low Risk Low Risk
8 High Risk Medium Risk Medium Risk
9 High Risk High Risk High Risk

ensure that the model did not include any abnormalities. In order to construct a

model that is capable of delivering the desired result, it is necessary to separate

the abstract features included within the dataset. Because of choosing a model

is such a crucial step, we have analysed the results of a comparison between the

performance of an artificial neural network model, the model selection process,

and the selected machine learning model. The suggested fall detection system

features a three-stage modelling process depicted in the flowchart shown in 4.7.

In the first phase, the model selection technique is used to identify the

best-performing multi-class classification model, which outperforms the others.

The selected ML model is used in the second phase to build a fall detection

system that can predict the response variable. In the final phase, the

performance of the designed two-layered feed-forward artificial neural network is

compared with the best-selected ML model from the first phase. In the model

selection phase, four classification algorithms are taken into account, i.e., k-NN,

decision tree classifier, random forest classifier, and extreme gradient boosting.

• k-NN: Each object is graded by a majority vote of its neighbours, and the

entity is allocated to the most common class of its nearest k neighbours.

The purpose of considering the k-NN model is because the nearby linear

accelerometer or gyroscope sensor data points may form a specific pattern,

which can be used to identify a fall or non-fall.
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Figure 4.7: Flow chart of the proposed fall detection system.

• Decision tree classifier: In decision tree classification, branches represent

independent variables, and leaves represent class variables. The purpose of

using a decision tree classifier was to validate the effect of decision tree

learning on predicting a fall and a non-fall.

• Random forest classifier: It is a classification method for learning an

ensemble. It is a set of decision trees from a randomly chosen training

subset. It predicts the final class by aggregating the votes from various

trees for decisions.

• Extreme gradient boosting: is also an ensemble learning method and a

decision tree-based algorithm where gradient descent optimisation is used

for minimising errors to optimise parallel processing, tree pruning, and the

model’s over-fitting.

A three-Layered feed-forward ANN is also built to predict the fall. Here, the

neural network can help us to learn the latent features among the data which
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may not be captured using discussed ML models. This neural network contains

the following layers:

• Input Layer: It has the same dimension as input data. In our case, we have

six features where three features represent linear accelerometers, and the

remaining three represent the gyroscope data.

• Hidden Layer: There are 2 hidden layers, each having 600 neurons. The

output shape for these hidden layers is (None, 600). Rectified Linear Unit

(ReLU) is used as a non-linear activation function.

• Output Layer: As this is a multi-class classification problem and it is

aimed to predict five classes (backside fall, forward fall, side fall, normal

walk, running), there will be five neurons in the output layer. Each

neuron represents one class, and at the end, the final prediction will be

whichever neuron gets the highest probability.

• The Softmax regression is a type of logistic regression that normalises an

input value into a value vector that follows a distribution of probabilities

with a total amount of up to 1.

S(y = j | z) =
ez∑k

j=0 e
zk

(4.4)

where we define the net input Z as

z =
m∑
i=1

wlxl = W TX (4.5)

Here, W is the weight vector, and X is the feature vector [94]. Softmax

function computes the probability that training sample X belongs to class j

as forward fall, side fall, backside fall, normal walk, and running, given the

weight w and net input z.
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Table 4.2: A sample part of the run/walk dataset used in this experiment for
both training and testing.

4.3 Experiment Methodology for HAR

In this section, the methodology adopted for implementing FaaS suitable for

HAR is discussed with particular emphasis on Data sets used for performing

the experiments. The design of the proposed FLS and the rule-based training

required are discussed.

4.3.1 Dataset Used

To evaluate the performance of the proposed system, a dataset taken from

Kaggle.com [https://www.kaggle.com] open repository called “Run or Walk.”

The dataset contains 88588 sensor data samples from accelerometer and

gyroscope collected from smartphones located on a person’s wrist and an

average of about 5 seconds frequency. This dataset contains six attributes,

including accelerometer and gyroscope sensor data, each in 3 dimensions, along

with their timestamps. The dataset is also labelled with the actual status,

where 1 indicates that the person is running and 0 indicates that the person is

walking. The dataset includes about 90K data samples, where about 60K

samples were used for training, and the remaining data were used for testing. A

sample part of the Run or Walk dataset is shown in Table 4.2.
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Figure 4.8: Partial KB and RB of the adopted FML.
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4.3.2 FLS Design

A fuzzy logic system defined in IEEE-1855 can be processed in numerous

programming languages, such as Java [95], using an extensible style sheet

language translator. So, minimal attempts from the server are required to

encode a fuzzy logic system’s description into a local program logic. IEEE-1855

also authorises various agents to monitor the same fuzzy logic system that

communicates with the environment from distinct locations. This study aimed

to focus on FML’s known capabilities in defining an FLS by considering

essential parameters such as fuzzy input sets, rule base, inference method,

output fuzzy sets, and defuzzification [96].

The training outcome is used to compose the FLS description in FML format.

Triangular fuzzy sets for inputs and singleton fuzzy sets for the output were

embedded in the FLS description. Other parameters set for the FLS include

centroid defuzzification and Mamdani inference with min and max operators for

the t-norm and t-conorm, respectively. Finally, the FLS description was composed

in FML format and was sent to the server via a single API call from a simulated

“FLS designing station” client machine. Lists of Partial KB and rule-base of the

adopted FML are shown in Figure 4.8.

It is noticeable that the same client machine can later modify the FLS

parameters dynamically. It can even intervene in the middle of an experiment

by resending an updated FLS description via another API call. The FLS

outputs will be automatically adjusted in real-time according to the new FLS

parameters. This is an important feature to be considered in adaptable and

dynamically trained FLSs.

4.3.3 Rule-base Training

Rule-base training was carried out using the training set part of the dataset,

based on the known Wang-Mendel’s “learning from example” algorithm [97] and

[13]. This algorithm is able to build fuzzy rules given the number of required

fuzzy sets for each input-output. The algorithm was independently implemented

prior to the main experiment. Five evenly distributed fuzzy triangular sets were

used for each input data, whereas the binary output data was represented as two
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Figure 4.9: A sample list of rules created by the rule-base training algorithm.

singleton fuzzy sets located at 0 and 1.

As a result, 247 rules were created on six inputs and one output, samples of

which are shown in Figure 4.9. The number of rules is relatively high, leading to

a computationally intense FLS. Achieving real-time data processing with such a

system might become slow to respond in real-time if implemented locally in the

environment using the low processing power of the embedded devices. Therefore,

this could be a suitable case for checking if the Web service can provide real-time

processing.
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Figure 4.10: The elements of the carried-out experiment for the HAR scenario.

4.4 Experimental Settings

A FaaS solution for a human activity classification scenario is developed to

demonstrate the utility of the described architecture. The components of the

FaaS designed for this HAR scenario are illustrated in Figure 4.10.

A dataset of accelerometer/gyroscope measurements acquired from body

sensors of individuals labelled with their walking/running status is used to

validate the system. A fuzzy rule-based system is designed in which sample

input/output pairs train the rules. Then the designed FLS is set up on the Web

server to classify the individual’s current status as running or walking. All the

FLS definitions, input data collection, data processing, and output classification

(running/walking) data are being carried out in real-time purely via API calls.

IEEE standard 1855-2016 and its extension are used as the core schema in the

API data exchange. The extension is added to the schema to support

exchanging input/output values between the clients and the servers. Briefly, the

“type” attribute determines if the HTTP packet is a request or a response. In

contrast, the name of the requested functionality is encoded in the “service”
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attribute of both request and response packets, as explained in Chapter 3.

In a real-world scenario, the setInput API calls should be sent by

Web-connected sensors or through some Web-connected interfaces. In our

simulation, a client-side computer program is developed that reads the sensor

data from the dataset and sends them back-to-back to the Web server at the

same rate that the sensors originally produced them. Another program (running

on a different client PC) is also written that simulates a “monitoring station”,

in which the runner/walker status is requested from the Web server at some

different rate from that of the data collection (by sending back-to-back

getOutput API calls). On each getOutput request, the server runs the necessary

FLS calculation and delivers the real-time running/walking status back to the

monitoring station. As a result, human activity is detected in real-time.

The experiment and its results were limited to a specific sample scenario. They

were presented here as a proof of concept for the suggested approach, which will

be applied in subsequent works in a real-world problem where more in-depth

research will be done for real-world scenarios, and actual sensors/output devices

are established.

4.5 Results and Discussions of experiment

performed for fall detection

Data collection was done for the fall detection in actual settings with human

subjects. In this study, 30 sample datasets were collected from 6 participants, 18

of whom were enrolled. In the fall operation, 12 were held, and 12 were detected

for fall for non-fall behaviour. The data set was divided into 70:30 of the train-

test ratios. A total of 97,320 samples were considered in our study, where 68,124

samples were used as a training data set, and 29,196 samples were used as a test

data set. In order to test the designed fall detection algorithms, there are four

specific cases for each prediction: True Positive (TP) shows that fall is accurately

recognised, True Negative (TN) means that fall is not noted, mainly where fall

occurs in a very slow motion, False Negative (FN) indicates that a non-fall event

is categorised correctly, and False Positive (FP) when a non-fall event identified
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Figure 4.11: Real-time human activity classification process using HTTP
request/responses to the developed Web Services. A sensor client console view:
sending back-to-back XML requests to the server to set the input variables (i.e.,
the accelerometer and gyroscope data).

as a fall.

The results of testing FaaS with the collected datasets is shown in Table 4.3

and a screenshot of real-time fall detection in FaaS is shown in Figure 4.13. In

FaaS, the sensitivity outcome for fall activity is 88.89%, the specificity result

could reach 91.67%, and 90% is the total accuracy of fall and non-fall activities.

The FaaS could successfully respond in real-time and tolerate the actual sample

collection rate.

After testing with FaaS, the same datasets were also fed into the other

developed ML methods. Table 4.4 and Table 4.5 shows the results of the

feed-forward ANN, which provides an average of 92% accuracy. Table 4.6

compares different machine learning algorithms in terms of their average

accuracy and standard deviation, and Table 4.7 shows the result analysis of

Random Forest. Though the average accuracy of ANN is low compared with

the RF method, it proves that ANN can also be a good alternative if data
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Table 4.3: Fall detection result using FaaS

TP 16
TP + FN 18

FN 02
TN 11

TN + FP 12
FP 01
Sensitivity 88.89% Specificity 91.67%
Accuracy 90%

Table 4.4: Training and testing of a dataset with respective time using of ANN.

EPOCH
Training

Accuracy (%)

Training

Loss

Testing

Accuracy (%)

Testing

Loss
Time (sec)

1 48.96% 1.2248 60.04% 0.9999 63
2 65.81% 0.8732 71.47% 0.7354 64
3 74.47% 0.6733 75.74% 0.6421 69
4 79.51% 0.5595 79.81% 0.5469 69
5 82.63% 0.4776 82.66% 0.4945 69
6 84.78% 0.429 83.92% 0.4504 71
7 86.45% 0.3886 86.10% 0.3956 70
8 87.70% 0.3595 88.22% 0.3526 70
9 88.62% 0.3411 87.41% 0.3768 69
10 89.56% 0.3181 88.38% 0.3335 69
11 90.18% 0.3037 89.44% 0.3251 70
12 90.61% 0.2918 90.94% 0.2795 72
13 91.22% 0.2834 90.15% 0.3195 68
14 91.51% 0.2815 91.33% 0.2997 71
15 91.81% 0.2772 91.12% 0.3189 69
16 92.30% 0.2616 91.28% 0.2996 72
17 92.67% 0.2511 91.96% 0.2839 69
18 92.88% 0.2447 91.30% 0.3092 70
19 92.98% 0.2472 92.01% 0.2851 71
20 93.28% 0.2386 92.82% 0.2514 71
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Table 4.5: Result analysis of ANN.

Artifical Neural Network

No Action
True
Postive

True
Negative

False
Postive

False
Negative

Sensitivity Specificity

1
Backside
Fall

5326 23030 497 343 0.9394955 0.97887533

2
Forward
Fall

5307 22705 748 436 0.92408149 0.96810643

3
Normal
Walk

5641 22860 287 408 0.93255083 0.98760099

4 Running 5437 23125 184 450 0.92356039 0.99210605
5 Side Fall 5390 22969 379 458 0.92168263 0.98376735

Average 5420.2 22937.8 419 419 92.83% 98.21%

Table 4.6: Comparison of different machine learning algorithms.

Model Selection
Algorithm Average Accuracy Standard Deviation
KNN 96.85% 0.20%
Decision Tree classifier 96.18% 0.14%
Random Forest 99.19% 0.10%
XGBoost 84.18% 0.53%
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Figure 4.12: Consoles views of two monitoring clients: On the right side the
server acknowledgements per request are received; On the right side, the output
values (i.e., the activity classification) per request are coming from the server (the
client’s requests for getting the output values are not shown here).

becomes more complex. It is shown that the RF method offers a prediction

accuracy of 98.53%. Moreover, the model can accurately predict the response

variable because it achieves an overall sensitivity and specificity of 98.53% and

99.63%, respectively.

4.6 Results and Discussions of experiment

performed for HAR

Once the FLS is created on the server side, the FaaS system is ready to serve

setInput and getOutput requests coming from different clients simultaneously.

Two client programs independently started to send back-to-back setInput and

getOutput requests to the server in different frequencies. The highest testing

rate was two simultaneous requests every one second, whereas the original data

collection frequency was about 5 seconds. In this case, the server could calculate

the results based on the latest coming input and send the defuzzified output

back within the 1-second window without missing any of the coming requests.
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Figure 4.13: A screenshot of fall detection request/response in FaaS

Table 4.7: Result analysis of Random Forest.

Random Forest
No Action TP TN FP FN Sensitivity Specificity
1 Backside Fall 5645 23482 45 24 99.25% 99.48%
2 Forward Fall 5678 23408 45 65 97.99% 99.43%
3 Side Fall 6003 23114 33 46 98.33% 99.73%
4 Normal Walk 5866 23270 39 21 98.94% 99.74%
5 Running 5806 23312 36 42 98.13% 99.76%
- Average 5799.6 23317.2 39.6 39.6 98.53% 99.63%

This shows the ability to process data in a computationally intense FLS over the

developed Web services at a more sampling rate that would be necessary for the

real-world scenario. Figures 4.11 and 4.12 shows a sample running of the system

where it serves the requests of both clients in parallel.

The accuracy of the activity classification performed by this FLS Web Service

is shown in Table 4.8. This shows a noticeably high accuracy processed in real-

time. Although the classification performance of the FLS is provided here, it is

noticeable that the purpose of this experiment is not to check if the designed

FLS can do any more or less accurate than other classifiers. Instead, this should

be considered as a proof-of-concept for achieving a real-time FLS execution over

using Web services, which has yet to have any similar implementation as far as

we are aware.
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Table 4.8: Real-time Human Activity Monitoring result.

Data samples Type Accuracy
59058 Training 97.23%
29530 Testing 97.42%
88588 Overall 97.30%

4.7 Chapter Summary

The study under this chapter presents an analysis of real-time fall detection

using a web-based service-oriented FLS architecture and machine learning-based

methods. It is shown that FaaS can keep up real-time processing of the sensory

data with the actual sample rate necessary for fall detection, where it can detect

a fall and a non-fall with an accuracy of 90%. In contrast, machine learning

techniques can detect five classes of a fall: side fall, back fall, forward fall,

walking, and running, with a maximum accuracy of 99.19% offered by the

random forest technique shown in Fig.4.7.

It is observed that FaaS can detect falls from real-time data as it requires

minimum hardware and software specifications. Hence, it is concluded that a

cloud-based FaaS to generate real-time results is capable for such applications.

The main purpose of using FaaS is to permit multipurpose delivery from clients

to dedicated servers that perform complex computations required for FLSs.

Unequivocally, virtualised cloud services provide the proposed system with

elasticity. Reusing existing data, balancing load amongst FLS devices, and

cost-efficiency are some advantages of FLS architecture.

A comparison between the performances of a standalone hardware-dependent

solution and a cloud-based FaaS is discussed in the next chapter. Moreover,

the analysis and evaluation are performed on a human fall detection scenario

involving wearable sensors.

This chapter has presented an example of implementing the recently

accepted IEEE-1855-2016 standard. It is shown through experimenting with

human activity monitoring datasets that the proposed service-oriented

architecture can undertake real-time data processing using a complex fuzzy

rule-based system. The accuracy and the response time of the developed system
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are found to be relatively high. The experiment outcome offers a novel approach

for a web-based service-oriented FLS architecture. Although the architecture is

viewed in AmI environments, it can be extended to a much broader application

field, i.e., wherever an FLS’ storage logic requires to be abstracted from its logic

of information and presentation. The primary motivation is to allow the

versatile delivery from the clients to dedicated servers of potentially complex

computations needed for FLSs. Unambiguously, virtualised cloud services

provide the system with elasticity, essentially allowing universally accessible

FaaS. The other benefits of such an architecture are network share,

hardware/software autonomy, reuse of existing data, balancing the load between

FLS devices, and cost-efficiency.

One notable limitation is the potential complexity associated with

implementing the IEEE 1855-2016 standard in real-world applications, which

may pose challenges in terms of compatibility and interoperability with existing

systems. Additionally, the study may not fully explore the scalability and

efficiency of the proposed web services architecture, particularly in terms of

handling large volumes of sensor data and concurrent user requests.

Furthermore, the generalizability of the findings may be limited by the specific

datasets and experimental setups used in the study. Addressing these gaps and

limitations would contribute to the advancement and practical implementation

of fuzzy logic-based HAR systems using the IEEE 1855-2016 standard.

The subsequent chapter will explain the Framework, implementation, and

performance evaluation of a system for monitoring SpO2 and heart rate collected

from wearable sensors via mobile phone and classification of the resulting data

using a cloud-based FLS.
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Chapter 5

A Cloud-Based FaaS for

Pervasive Health Conditions

Monitoring

5.1 Introduction

Over time, it has been observed that people’s living standards have improved,

specifically regarding health-related qualities. The evolution of cloud computing

and cloud-based services offer a pervasive solution to the healthcare monitoring

system. The system users prefer using wearable devices with sensors, which

help monitor individual health [98, 99]. The application of lightweight sensors in

measuring physiological parameters supports monitoring human health conditions

regularly without visiting health centres. This has led to better living conditions

for human beings, especially for older adults, in improving their life expectancy. A

wearable pulse oximeter is an example of a non-invasive device utilised to analyse

oxygen saturation (SpO2), and heart rate [100, 101].

Moreover, the applications of the concerned technologies can further be

extended to monitor a person under observation remotely at any time from

anywhere [102, 103]. Moreover, healthcare service-associated cost rises because

of the rising cost of pharmaceutical drugs and devices [104]. Thus, it is

necessary to acquire and realise new tactics and know-how for offering superior
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quality healthcare services at a cheaper rate to the ageing population, thereby

ensuring maximum comfort.

Recently, by means of IoT and signal processing techniques, wearable non-

invasive plasma O2 monitoring has become possible[105, 106, 107]. People can

check their plasma O2 saturation, pulse rate, etc., at their residence and acquire

data about the changes in their breathing and arterial oxygen saturation [99,

108]. Many Machine Learning tools and techniques are employed to process the

collected data from sensors.

This chapter aims to develop a system that remotely monitors two

physiological aspects of individuals, namely blood oxygen saturation (in %) and

pulse rate (in bpm), using wearable sensors within the proposed new

cloud-based fuzzy logic system architecture (FaaS). Monitoring health remotely

based on wearable and non-invasive sensors provides a cost-effective solution,

which in turn permits the elderly to continue to live in his/her home

environment instead of spending on expensive healthcare facilities.

Implementing the monitoring application under the FaaS architecture allows

real-time monitoring of the individual’s health, not only by the individuals, but

also by healthcare personnel in different geographical locations. Moreover, the

developed rule-based fuzzy system can infer an individual’s health condition

based on the fuzzy rules. The acquired results are accessible through a

developed mobile application for both individuals and healthcare personnel.

The cloud-based inference engine can also offer scalability, so that many

individuals can be monitored simultaneously.

Developing this monitoring system was in the era of the COVID-19

pandemic. An application of the system was understood to be detecting early

signs of COVID-19 in the monitored individuals, since the abnormal changes in

both monitored physiological aspects could contribute to early COVID-19

detection, leading to an early treatment for the patient as well as reducing the

infection risk for the other individuals in the environment.

The remainder of this chapter is organised in the following manner. Section 5.2

delves into the architecture of the health monitoring system and the methodology,

which includes the use of fuzzy logic web services and a modelling approach.

Section 5.3 emphasises the results and discussion. The summary of this chapter
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Figure 5.1: Schematic illustration of the proposed system.

is discussed in Section 5.6 with a discussion of future scope.

5.2 Methodology

The proposed system is developed to monitor an individual’s health conditions by

means of values acquired from heart rate and SpO2, which act as the measurement

parameters for managing health conditions. The FaaS architecture explained in

Chapter 4 is employed using Microsoft Azure and AWS cloud platforms. In the

FLS server, fuzzy variables and membership functions are defined and processed

by a rule-based fuzzy logic system, and its output is displayed on an Android

application on the client side(s). The outline of the data flow in the proposed

system is illustrated in Figure 5.1. The framework of the proposed architecture,

including data collection point, data processing, monitoring point, design point,

and fuzzy logic system is shown in Figure 5.2.

For data collection, BM2000A Smart Care Oximeter wearable wrist pulse

oximeter sensor was used1. The sensor was used to collect the physiological

1More details are available from: http://devices.smartcareanalytics.co.uk/
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Figure 5.2: Framework of the proposed architecture including data collection
point, data processing, monitoring point, design point, and fuzzy logic system.

Table 5.1: Dataset with a few instances of feature-extracted data.

TIMESTAMP
(MilliSeconds(MS))

PULSE
BPM

SpO2

PCT
SpO2

STATUS
PLETH RED ADC IR ADC

PERFUSION
INDEX

0 87 97.7 0 25684 193775 250301 7.8
10 87 97.7 0 27597 193872 249747 7.8
20 87 97.7 0 29524 194064 250321 7.8
30 87 97.7 0 31383 194311 249979 7.8
40 87 97.7 0 33099 194559 251033 7.8
50 87 97.7 0 34598 195154 252450 7.8
60 87 97.7 0 35836 195384 252363 7.8
70 87 97.7 0 36778 195897 253078 7.8
80 87 97.7 0 37403 196275 253831 7.8

. . . . . . . .

. . . . . . . .

. . . . . . . .
124490 80 99.4 0 35096 273595 237903 1.4
124500 80 99.4 0 36308 273428 237995 1.4
124510 80 99.4 0 37626 273529 238138 1.4
124520 80 99.4 0 39009 273432 237897 1.4
124530 80 99.4 0 40407 273272 237526 1.4
124540 80 99.4 0 41766 273303 237676 1.4
124550 80 99.4 0 43067 273246 237656 1.4
124560 80 99.4 0 44256 273398 237882 1.4
124570 80 99.4 0 45324 273273 237634 1.4
124580 80 99.4 0 46227 273077 237433 1.4
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Figure 5.3: Transmittance oxygen saturation monitoring principle.

data, namely, heart rate and SpO2 shown in Table 5.1. Sensor details with the

respective error code are as follows:

1. SpO2 status is 0 if everything is ok.

2. 0x01: SpO2 sensor not connected

3. 0x02: No finger detected in sensor

4. 0x04: Could not detect pulse

5. 0x08: Indicates the pulse beats

Pleth is the plethysmograph signal shown on the screen of the oximeter and

the app. As shown in Figure 5.3, the RED/IR ADC values are the raw values

from the analog-to-digital converters for the red and infrared sensors in the probe.

These are used to calculate the SpO2 value. Perfusion index is the ratio of the

pulsatile blood flow to non-pulsatile. After receiving data from an Android-based

wearable device, SpO2 and heart rate data are transferred to the cloud server

in the extended FML format, where the FLS is created and maintained. It is
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required to set the sensor data as input values in the fuzzy system for different

variables so that the system can return the desired output. As discussed in

Section 3.4.2, API function calls are designed for data exchange.

5.3 Fuzzy System Design

The system architecture is designed to track health conditions using values

extracted from heart rate and oxygen saturation, which can be used as a

standard for condition-based monitoring of the person’s health under

observation. The wearable device’s output value in the application should be

processed using fuzzy logic. The design of the fuzzy sets and rules are as follows:

• Fuzzy Input Sets: SpO2 is the first input that is fuzzified using four fuzzy

sets for critical, alert, low, and normal states. The broad range for SpO2

pressed in % is from 0 to 100. Pulse rate is the second input containing four

sets: critical, normal, low, and alert. The range for pulse rate input is 0 to

180 beats per minute (bpm). There are four fuzzy sets for pulse rate: critical

is from 0 to 60bpm, normal is between 60bpm to 90bpm, low is between

90bpm to 100bpm, and alert is above 100bpm. Through fuzzification, input

signals are mapped into membership grades defined for critical, alert, low,

and normal states. The system is a dual input system that accepts SpO2

and heart rate as inputs so that the fuzzification is repeated for both inputs.

The input membership functions in each group are based on having three

turning points. For example, the Oxygen saturation value is usually known

to be critical if it is less than 30, alert between 30 and 60, and normal if

more than 60. Trapezoidal membership functions are used to convert the

crisp classifications to fuzzy grades, as shown in Figure 5.4 (a and b).

• Compounding: As shown in Figure 5.4(a), there are four fuzzy sets

associated with oxygen saturation membership, critical which is less than

85%, alert which is between 86% to 90%, low is 91% to 94% and normal is

above 95%.

• Rule Base: A total of 16 rules are created to identify humans’ health status.
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Figure 5.4: Membership functions for fuzzy inputs:(a) SpO2 (b) Pulse rate and
membership for output (c) Health Condition.
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Table 5.2: FLS rules for calculating health status.

No SPo2 Pulse Health Status
1 Critical Critical Critical
2 Critical Normal Alert
3 Critical Low Alert
4 Critical Alert Critical
5 Alert Critical Critical
6 Alert Normal Normal
7 Alert Low Normal
8 Alert Alert Alert
9 Low Critical Alert
10 Low Normal Normal
11 Low Low Normal
12 Low Alert Normal
13 Normal Critical Alert
14 Normal Normal Normal
15 Normal Low Normal
16 Normal Alert Normal

The fuzzy logic processing rules, which can classify a situation as critical,

alert, or normal, are shown in Table 5.2.

• Fuzzy Output Sets: According to the inputs, input fuzzy sets, and the

rulebase, the output of the fuzzy system offers three classes, i.e., critical,

alert, and normal. Figure 5.4(c) shows the membership grades for these

three output fuzzy sets. The membership grades of these fuzzy sets are

defined over a range of 0 to 100. Any output below 30 is deemed critical, 30

to 60 is called alert, and anything above 60 is considered normal. Through

defuzzification, the well-known centroid defuzzification method converts the

fuzzy output to crisp values.

5.4 Software Components

A Web application server is created according to the FaaS idea to provide essential

HTTP communication to and from clients. Python, Android Studio, AWS and

Microsoft Azure Services are the pieces of software and services to develop the
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Figure 5.5: List of methods created over Microsoft Azure.

final system. Simpful library is adapted as an Azure service on the cloud. Sample

adapted methods created in Microsoft Azure are shown in Figure 5.5. As an

alternative arrangement, AWS was used as the cloud platform and JFML was

used as the FLS software library, and the results were compared.

The proposed extended FML is used not only as the input/output format

for this system, but also for exchanging the FLS design details. Therefore, an

application called FLS designer is developed for this purpose. Because the

developed app is not restricted to a single fuzzy logic system, it is possible to

manage the design of many FLSs with separate knowledge bases that might be

located on different servers, even by different cloud service providers. This is

possible through identifying each FLS by a URI, as predicted in the FML

schema. The same system can also be used to manually send/receive

input/output data to/from the server in FML format. An example of the FLS

Designer’s user interface is shown in Figure 5.6, in which an FLS identified by

its URI is being designed and transferred to the AWS cloud platform in FML

format.

Finally, an Android app is developed using Android Studio for monitoring
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Figure 5.6: The User interface of the FLS Designer application. Under the
“Create FLS” tab, an FLS is being designed on the client side for being sent
to the server side. Other tabs are responsible for other input/output tasks as
defined in the proposed extended FML.

the health status of individuals to serve as a user interface on the client-side.

Sample screenshots of the developed app are shown in Figure 5.7 for three states

of critical, normal, and alert.

5.5 Experimental Results

In this investigation, real-time data were collected using the wearable sensor

BM2000A wrist pulse oximeter. The captured real-time data is sent to the server

through an android application that assesses the outcome using the defined fuzzy

rules. For example, Figure 5.7(a) indicates that the health condition is critical

when the SpO2 value is 88 percent and the heart rate is 55 bpm, which is very

low according to FLS calculations. Figure 5.7(b) indicates that the health status

is normal when the SpO2 value is 98% and the heart rate is 90 beats per minute.

Finally, Figure 5.7(c) illustrates how an alert for a health condition is shown

when the SpO2 value is 91 percent and the heart rate is 108 beats per minute, as

determined via FLS computation.
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Figure 5.7: Real-time human health monitoring and processing result a) Critical
b) Normal and c) Alert.

The main outcome of this experiment is the ability of FaaS to serve multiple

users in a distributed and cross-platform health monitoring system. Besides that,

this study aims to perform a comparative performance analysis of employing a

different arrangement of cloud providers and software libraries in realising FaaS.

In particular, it includes the use of two algorithms, real-time fuzzy with AWS and

JFML and real-time fuzzy with Azure and Simpful libraries, on a dataset whose

details are provided in Table 5.3. The experiments were performed in a real-time

environment with time intervals of 30 seconds to 5 seconds in decreasing manner

of 5 seconds. The result was very satisfactory with these intervals; hence started

from 5 seconds down to 1 second in intervals of 1 second to check the processing

time and effect of data rate on the application’s performance. A data set with

the size of 10000 samples has been used to evaluate the performance of AWS

and Azure cloud-based systems. Table 5.3 shows the comparison between the

processing time. The table interpretation indicates that AWS’s performance with

JFML requires less processing time of 19.65% compared to Azure with Simpful.

It is noticeable that this experiment does not compare the FaaS performance

results with those of any stand-alone FLS solution. A full comparative study

between FaaS and non-FaaS solutions for HAR will be presented in Chapter 7.
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Table 5.3: The analysis of cloud-based FLS on the provided dataset.

Cloud-based services AWS with JFML Azure with Simpful
Total records 10,000 10,000
Processing time 51 minutes 76 minutes
Processing time per record 0.306 seconds 0.456 seconds

Besides, real-time fuzzy systems with AWS and JFML support more

inference systems such as Mamdani and Basilian, Takagi–Sugeno–Kang (TSK),

Tsukamoto, and Anya. However, real-time fuzzy systems with Azure and

Simpful libraries have less compatibility as they only support Mamdani,

Basilian and Takagi–Sugeno–Kang (TSK) type-1 fuzzy inference systems. FaaS

decision-making can be improved by using a larger dataset for training and

testing. As compared to current systems, the proposed technique consumes the

least resources in terms of hardware and software. Consequently, this study’s

proposed designing systems that consume much less computational power in the

local devices than the previous efforts. This increases the usability and

deployability of the proposed technique in real-world circumstances.

5.6 Chapter Summary

The proposed service-oriented architecture analyses data in real-time by using a

complex fuzzy rule-based system and datasets tracking human activities. Based

on the above experiments, it is concluded that the proposed SOA can perform

real-time data processing by means of cloud computing with human activity

monitoring datasets using a complex fuzzy rule-based framework through FML.

The efficiency and response time of the developed system were considered

comparatively high. Even though the architecture is specified in AmI

environments, it can be expanded to a broader area. Fuzzy-as-a-service is now

more widely available because of the utilisation of visualised cloud services,

increasing system robustness. Network sharing, hardware/software

independence, data reuse, load balancing amongst FLS devices, and

cost-efficiency are only a few of the advantages of this design. Technically, the

suggested system is extendable in a variety of ways. The FLS community is
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invited to participate and contribute to the collaborative app development effort

by providing design input on feature prioritisation and contributing to the

collaborative app development effort. This enhances the proposed API structure

and/or invocation forms while giving more specialised feedback for specific

architectural implementations. The results indicate that AWS processing time

is 19.65% less than the time required by Microsoft Azure. Experiments were

performed with different time intervals and monitored processing time where

AWS processing time was 0.306 seconds and 0.456 seconds with Microsoft

Azure. Future work could be conducted to empirically compare cloud-based

web services versus standalone non-real-time fuzzy systems and non-fuzzy-based

learning systems. A novel fuzzy logic algorithm has been implemented to detect

a human’s medical condition with the help of a real-time wearable sensor and

cloud-based web services.

However, certain gaps and limitations exist in the research that warrant

further investigation. Firstly, while the use of fuzzy-as-a-service shows promise

for enhancing the accuracy and efficiency of health monitoring systems, there

may be challenges in ensuring the reliability and security of data transmission

and processing in a cloud-based environment. Additionally, the study may not

fully address the potential privacy concerns and regulatory compliance issues

associated with storing and analyzing sensitive health data in the cloud.

Furthermore, the scalability and interoperability of the proposed pervasive

application across different healthcare settings and devices may need to be

further explored and evaluated. Future research could focus on addressing these

gaps by conducting comprehensive usability and security assessments, as well as

exploring strategies to enhance the interoperability and scalability of

cloud-based health monitoring solutions. By addressing these limitations, the

potential benefits of fuzzy-as-a-service for healthcare applications could be more

effectively realized.

The subsequent chapter will explain the design and implementation of the

system for identifying cloud-based FLS for real-time fall detection using

wearable accelerometers and gyroscope sensors as a HAR, and the acquired

results are displayed on a mobile application via mobile phone and classification

of the resulting data using a cloud-based FLS.
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Chapter 6

A Comparative Study of

Standalone and Cloud-based

Fuzzy Logic Systems for Human

Fall Detection

6.1 Introduction

In the previous chapters, the feasibility and applications of FaaS in a number of

HAR scenarios have been studied. Particularly in the previous chapter, a

comparison between FaaS performance and other machine learning methods has

been provided, however, it is still an outstanding research question, as to

whether a distributed fuzzy logic system provides any advantage in processing

uncertain data in HAR over the stand-alone systems? This chapter addresses

this question by comparing between the performances of cloud-based FaaS

solutions and a number of standalone hardware-dependent solutions for a single

HAR scenario, namely, fall detection. The performance metric in this chapter is

not the classification accuracy, but it is the systems’ responsiveness for different

sample rates in real-time processing.

The analysis and evaluation are performed on a human fall detection scenario

involving wearable sensors. The proposed algorithm can identify between fall
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and non-fall events, in a similar experimental setting to that of the previous

chapter. The analysis is also carried out on two different cloud service providers

and software libraries (Amazon Web Services using JFML as a Java-based library

and Azure Web Services using Simpful [63] as a python-based library).

The primary contributions of this research are as follows:

• Showcasing a group of cloud-based and real-time fuzzy systems for human

fall detection application areas that would not be practical to implement

as standalone systems - therefore removing the design barriers that would

stop implementing FLSs for such applications. A wearable smartwatch is

used in this research to collect data.

• Comparing the performances of classical standalone architectures with the

proposed FaaS architecture for the above case studies on the cloud and

real-time high sample rate scenarios.

The remainder of this chapter is organised as follows: Section 6.2 explicates

the procedures for carrying out the study and describes the various approaches

used. Section 6.3 describes the experimental setup, followed by Section 6.4 that

elaborates on the basis of the performed experiments. Finally, Section 6.5

discusses the summary of the chapter with future scope.

6.2 Methodology

This section describes the experimental settings for the human fall detection

system, including data gathering, the non-fuzzy machine learning model, and

the FaaS. Then, the performance measure and comparison methodology will be

presented. In order to implement FLS for fall detection, the following approaches

were used.

6.2.1 Data Collection

For this research, an experimental dataset was compiled using a linear

accelerometer and gyroscope sensors connected to a smartwatch and a
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Table 6.1: Dataset with a few instances of feature-extracted data.

smartphone. A Fossil generation 5 Wear OS smartwatch1 and One plus 7

smartphones2 with a three-axis linear accelerometer and gyroscope were used

for the data collection. Ax, Ay, Az, Wx, Wy, and Wz are the six data columns

shown in Table 6.1. In order to collect data, the time series approach was used,

and the data capture rate was 419 Hz. Orientation and angular rotation were

determined by gyroscope sensors, while linear accelerometer sensors identified

fall or non-fall states. In addition to labels for fall and non-fall, the dataset

contained information on the time periods and human movement positioning

along three axes. Data processing, fuzzy sets, and rules are the same as what is

explained in Chapter 6 Sections 4.2.3 and 4.2.4.

1More details are available from:https://www.fossil.com/en-gb/watches/learn-more/gen-6-
smartwatches/

2More details are available from:https://www.oneplus.com/uk/7pro/
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Figure 6.1: System architecture of a standalone fuzzy system using the Mobile
application.

6.2.2 Fuzzy Logic System Design

In this subsection, two alternative architectures of implementing the designed

FLS for fall detection are described: the standalone and the distributed FaaS

architectures. The time required for processing data locally by the smartwatch

and the smart phone is to be compared to the processing time required by the

cloud-based FaaS.

6.2.2.1 Stand-alone Architecture

The system architecture of a standalone fuzzy system using a mobile application

is presented in Figure 6.1. This architecture uses smartwatch and mobile

applications to create output based on real-time input supplied to the system.

The stand-alone system uses all the FaaS architectural components but instead

of being distributed, they are locally implemented on the smartwatch and/or

the smartphone, so that the FLS processing is to be handled by the local

devices. As shown in Figure 6.1, this architecture takes input directly from

wearable devices or input data from any public data set.

When constructing fuzzy logic systems, the fuzzy rules and the member
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Figure 6.2: The suggested architecture includes data collecting, data processing,
feature extraction, and a fuzzy logic system.

variables were specified and exchanged between components in FML format.

The program allows a user to enter data in one of three ways: XML, CSV, and

sensor data-based. The raw data will be processed and parsed in XML or CSV

format or be taken directly through the device sensors at fixed intervals. The

FLS contains all of the necessary information and values and a unique URI. The

FLS comprises two major components: a knowledge base and a rule base. Once

the FLS is formed and listed, the XML data provided by the user can be

configured using the setInput() - the API function of the FaaS as described in

Chapter 3. Similarly, the getOutput() returns the desired result based on the

FLS and the input provided using the setInput(). It creates outcomes based on

the rules supplied to the fuzzy system.

6.2.2.2 Cloud-based Architecture

The proposed cloud-based FaaS architecture for fall detection includes distributed

blocks for data acquisition, data processing, and fuzzy logic system shown in

Figure 6.2. This architecture takes input directly from wearable devices connected

to the Web. Alternatively, if the wearable devices have limited connectivity to
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the Web, data from wearable devices can be passed on to mobile applications or

web-connected devices (e.g., via Bluetooth). This real-time data is transmitted

over the cloud using the IEEE 1855-2016 standard. This system architecture is

implemented over the cloud using the Amazon Web Service with JFML as Java

library, or alternatively using Azure Web Service with Simpful as Python library.

The real-time data will be passed through either of these modules. The real-time

data will be fuzzified, rule-based decisions will be taken, and later the data will

be defuzzified, and the fall/non-fall status will be passed on to the monitoring

station(s). If required, the monitoring station(s) will raise the alarm to other

connected devices based on the monitored status.

6.2.3 Non-FLS Machine Learning Design

In addition to comparing the performance between standalone and distributed

architectures, the performances of both FLS architectures can also be compared

with the performance of a non-FLS machine learning method (in a standalone

mode). This comparison can potentially identify the limitations of stand-alone

architectures in high sample rates for both FLS or non-FLS. For this purpose,

similar experimental settings to the machine learning approach explained in

Chapter 6 is designed. The Random Forest classification method showed its

superior accuracy in Chapter 6, therefore it is chosen in this chapter as the

non-FLS method for fall detection. Similarly, the dataset was arbitrarily

divided into a 70%:30% split and randomly assigned to training and testing.

Non-FLS machine learning is a crucial alternative for finding intrinsic or

internal data properties and predictions. On the other hand, non-FLS machine

learning is not well suited for dynamic factors in a real-time situation. It can

only forecast using previously taught factors, and re-learning is required every

time a new element is added. In contrast, an FLS may learn incrementally and

interactively in real-time. Another disadvantage of most non-FLS methods is

the lack of interpretability, exacerbated by the difficulty in explaining how they

work. Furthermore, having sufficient data for training is a significant challenge

in machine learning. FLSs can be created with a relatively smaller dataset than

non-FLS, because non-FLS machine learning is susceptible to over-fitting and
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under-fitting, and accuracy testing may misguide the model’s performance with

unseen data. On the other hand, FLS is unaffected by under-fitting or

over-fitting issues. In the case of an enormous amount of data, non-FLS

machine learning methods may necessitate a higher computational power during

the learning process in contrast to FLSs.

6.2.4 UI Design

The UI screen for the Android mobile application is shown in Figure 6.3 and

various methods of interaction with the system such as Create FLS, Set Input,

and Get Output is shown in Figure 6.4. This system is able to generate output

either based on non-real-time input supplied to the system in the form of an

XML or CSV file or based on real-time input supplied to the system directly

from device sensors such as accelerometer and gyroscope etc. The significant

advantage of this feature for the purpose of this experiment is that it can work

in offline mode with different simulated sample rates.

6.3 Experimental Results

This section provides the designed systems’ responsiveness results for different

combinations of FLS/non-FLS and distributed/non-distributed solutions tested

by data processing in different sample rates.

6.3.1 Offline Standalone FLS

The system was tested with a dataset containing 10,000 samples collected using

the smartwatch and the mobile phone. It was observed that the application

cannot handle more than 5000 samples using the smartwatch. The time required

by the smartwatch to process 5000 samples is 10 minutes and 1 second. It took

2 minutes and 59 seconds using a mobile phone to process 10,000 samples. The

result might vary depending on the device and Android specifications.

107



6. A Comparative Study of Standalone and Cloud-based Fuzzy Logic
Systems for Human Fall Detection

Figure 6.3: UI screen for Android mobile application.

Figure 6.4: Real-time human health monitoring and processing result using
A)Create FLS B) Set Input C) Get Output methods.
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6.3.2 Offline Non-FLS Machine Learning

The system was tested with a file containing 10,000 samples using the smartwatch

and mobile phone. It was observed that the time required to process and generate

results is 37 minutes and 02 seconds on the smartwatch and 1 minute 41 seconds

on the mobile phone using the Random Forest classifier.

6.3.3 Real-time Cloud-based FLS

The accelerometer and gyroscope sensors were used to directly fetch data in real-

time at certain time intervals. Testing was performed in a real-time environment

with various sample rates in an increasing manner. The obtained data (i.e., 10,000

samples) was fed to AWS and Microsoft Azure. Figure 6.5 shows the snapshot of

the smartwatch for different methods, namely Non-FLS machine learning Real-

time FLS with Azure/Simpful, Real-time FLS with AWS/JFML, and standalone

FLS.

The observed results are as follows:

1. AWS: It is possible to construct virtual computers and operate them on one

of Amazon’s data centres using the Elastic Compute Cloud (EC2) service.

Through AWS with JFML, 10,000 samples were processed, and the desired

results were generated using the smartwatch in 18 minutes 31 seconds, and

45 seconds using the mobile phone.

2. Microsoft Azure: Through Microsoft Azure with Simpful, 10,000 samples

were processed, and the desired results were generated within 20 minutes,

50 seconds using the smartwatch, and 1 minute 37 seconds using the mobile

phone.

6.4 Discussion

A comparison of detection efficiencies has been made among the existing fuzzy

logic-based standalone architectures and non-fuzzy ML-based decision-making

methods with the implemented architecture. The study included the use of four
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Figure 6.5: Snapshot of fall detection output using smartwatch A) Non-fuzzy
machine learning using cloud B) Fuzzy with simpful libraries and Azure C) Fuzzy
with JFML libraries and AWS D) Fuzzy standalone.

approaches which are elaborated in Table 6.2, i.e., machine learning (non-fuzzy),

fuzzy standalone, real-time fuzzy with AWS/JFML, and real-time fuzzy with

Azure/Simpful.

The summary of analysis, advantages, and disadvantages of the four

approaches are shown in Figure 6.6 and Table 6.3. It can be seen that the

cloud-based FaaS solution (based on AWS/JFML) has achieved a significantly

lower average processing time (45 seconds per 10K samples) compared to the

other three approaches.

A more detailed comparison between the processing time taken by the non-

FLS and FLS approaches using the smartwatch is shown in Figure 6.7(a) and

Table 6.4. Fig. 6.7(A) shows the difference between the processing time that is

taken for the collected data and given as an input to the ML model (Non-fuzzy)

and Fuzzy model. It was observed that for average processing times of 1000

records, 2000 records, 3000 records, 4000 records, 5000 records, 7500 records and

10000 records, the time taken was 1428 seconds, 1538 seconds, 1497 seconds,

1481 seconds, 1622 seconds, 2027 seconds and 2220 seconds, respectively for ML

(Non-fuzzy) model, whereas for Fuzzy (Standalone) model, average processing

times were 192 seconds, 333 seconds, 441 seconds, 533 seconds, 600 seconds.

The evidence shows that application were crash for above 5000 records using

standalone system, whereas Fuzzy model (AWS with JFML), average processing
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Table 6.2: Comparative analysis of real-time and non-real-time human fall
detection.

Sr. No. Model
File

format
Advantages Disadvantages

Type
of

user

Algorithm
used

1.
Machine learning
model (Non-fuzzy)

.csv
and

sensor
data

Model training is performed
over cloud and the five classes

of a fall detection can be possible.

Model training is
essential if user

requirements change.

Single
user

Random Forest
Classifier

2.
Stand-alone
Fuzzy model

.csv
and

sensor
data

Processing time taken is
comparatively less when

data sending rate is increased.

Since it is a non-real
-time system, only a

single user
can view results.

Single
user

Mamdani, TSK,
Tsukamoto and

AnYa

3.
Real-time fuzzy
model with AWS

and JFML

xml,
.csv
and

sensor
data

Processing time is less as
compare to other methods.

Four different types of
inferences are used,

namely Mamdani and
Assilian, Takagi - Sugeno -
Kang (TSK), Tsukamoto

and AnYa.

Dependency over cloud.
Multi
user

Mamdani, TSK,
Tsukamoto and

AnYa

4.

Real-time fuzzy
model with Microsoft
Azure and Simpful

library

xml,
.csv
and

sensor
data

It offers results in
real-time with the help of

Azure and a Simpful
library with a tolerable
amount of processing

time per data.

Processing time taken
is more as compared

to AWS with JFML models.

Multi
user

Mamdani
and
TSK

Figure 6.6: Comparative analysis of human fall detection.

Table 6.3: Summary of real-time and non-real-time human fall detection system.

Sr.
No.

Model
Average Processing
time per 10,000 data
using smartwatch

Average Processing
time per 10,000 data
using smartphone

Number of samples
processed per second
using smartwatch

Number of samples
processed per second
using smartphone

1
Machine learning
model (Non-fuzzy)

2220 101 4.5 99

2
Stand-alone
Fuzzy model

∞ 179.42 ∞ 56.68

3
Real-time fuzzy model
with AWS and JFML

1111 45 9 222

4
Real-time fuzzy model
with Microsoft azure
and Simpful Library

1250 97 8 103
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Table 6.4: Number of samples processed per second using the smartwatch.

Sr.
No

Model
1000
samples

2000
samples

3000
samples

4000
samples

5000
samples

7500
samples

10000
samples

1.

Machine
learning
model
(Non-fuzzy)

0.7 1.3 2.1 2.7 3.07 3.7 4.5

2.
Stand-alone
Fuzzy model

5.2 6 6.8 7.5 8.33
Appl
crash

Appl
crash

3.

Real-time
fuzzy model
with AWS
and JFML

4.7 5.3 5.8 6.25 6.7 7.67 9

4.

Real-time
fuzzy model
with Microsoft
Azure
and Simpful

1.96 3.38 4.47 5.55 6.25 7.5 8

times were 212 seconds, 377 seconds, 517 seconds, 640 seconds, 746 seconds, 977

seconds, and 1111 seconds and for Fuzzy model (Azure with Simpful), average

processing times were 510 seconds,590 seconds, 670 seconds, 720 seconds, 800

seconds, 1000 seconds and 1250 seconds, respectively. Similarly, Figure 6.7(b)

and Table 6.5 shows the number of samples that can be processed per second

by the smartwatch, when the number of samples is gradually changed from 1000

to 10000 samples. Fig. 6.7(B), the number of records processed per second was

calculated by supplying 1000 records, 2000 records, 3000 records, 4000 records,

5000 records, 7500 records and 10000 records. As shown in chart, 0.7 records /sec,

1.3 records /sec, 2.1 records /sec, 2.7 records /sec, 3.07 records /sec, 3.7 records

/sec, and 4.5 records /sec respectively for ML (Non-fuzzy) model, whereas for

Fuzzy (Standalone) model, 5.2 records /sec, 6 records/sec, 6.8 records/sec, 7.5

records/sec and 8.33 records/sec whereas Fuzzy model (AWS with JFML), 4.7

records/sec, 5.3 records/sec, 5.8 records/sec, 6.25 records/sec, 6.7 records/sec,

7.67 records/sec and 9 records/sec and for Fuzzy model (Azure with Simpful), 1.96

records/sec 3.38 records/sec, 4.47 records/sec, 5.55 records/sec, 6.25 records/sec,

7.5 records/sec and 8 records/sec.

For the smartphone, Figure 6.8(a) and Table 6.6 show Fig. 7 A) shows the

difference between the processing time that is taken for the collected data and

given as input to the ML model (Non-fuzzy) and Fuzzy model. It was observed
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Figure 6.7: Fall detection using smartwatch A) Total time required to process
the samples B) Number of samples processed per second.
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Table 6.5: Average processing time (in seconds) with respect to number of samples
using the smartwatch

Sr.
No.

Model
1000
samples

2000
samples

3000
samples

4000
samples

5000
samples

7500
samples

10000
samples

1.

Machine
learning
model
(Non-fuzzy)

1428 1538 1497 1481 1622 2027 2220

2.
Stand-alone
Fuzzy model

192 333 441 533 600
App
crash

App
crash

3.

Real-time
fuzzy model
with AWS
and JFML

212 377 517 640 746 977 1111

4.

Real-time
fuzzy model
with Microsoft
Azure
and Simpful

510 590 670 720 800 1000 1250

Table 6.6: Average processing time (in seconds) with respect to number of samples
using smart phone

Sr.
No

Model
1000
samples

2000
samples

3000
samples

4000
samples

5000
samples

7500
samples

10000
samples

1.

Machine
learning
model
(Non-fuzzy)

35.7 50 58.82 67 71.42 89.29 101

2.
Stand-alone
Fuzzy model

41.67 74.07 96.77 114 125 159.71 179.42

3.

Real-time
fuzzy model
with AWS
and JFML

15.38 24.69 30.61 32 34.96 39.68 45

4.

Real-time
fuzzy model
with Microsoft
Azure
and Simpful

31.25 44.44 52.63 63 65.8 82.41 97
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that for average processing times of 1000 records, 2000 records, 3000 records,

4000 records, 5000 records, 7500 records and 10000 records, the time taken was

35.7 seconds, 50 seconds, 58.82 seconds, 67 seconds, 71.42 seconds, 89.29

seconds and 101 seconds, respectively for ML (Non-fuzzy) model, whereas for

Fuzzy (Standalone) model, average processing times were 41.67 seconds, 74.07

seconds, 96.77 seconds, 114 seconds, 125 seconds, 159.71 seconds and 179.42

seconds, whereas Fuzzy model (AWS with JFML), average processing times

were 15.38 seconds, 24.69 seconds, 30.61 seconds, 32 seconds, 34.96 seconds,

39.68 seconds, and 45 seconds and for Fuzzy model (Azure with Simpful),

average processing times were 31.25 seconds, 44.44 seconds, 52.63 seconds, 63

seconds, 65.8 seconds, 82.41 seconds and 97 seconds, respectively. Similarly, the

average time taken for processing 1000 to 10000 samples are shown in Figure

6.8(b) and Table 6.7. The number of records processed per second was

calculated by supplying 1000 records, 2000 records, 3000 records, 4000 records,

5000 records, 7500 records and 10000 records. As shown in the chart, 28 records

/sec, 40 records /sec, 51 records /sec, 59.7 records /sec, 70 records /sec, 84

records /sec, and 99 records /sec respectively for ML (Non-fuzzy) model,

whereas for Fuzzy (Standalone) model, 24 records /sec, 27 records/sec, 31

records/sec, 35.08 records/sec, 40 records/sec, 49.9 records/sec, and 56.68

records/sec whereas Fuzzy model (AWS with JFML), 65 records/sec, 81

records/sec, 98 records/sec, 125 records/sec, 143 records/sec, 189 records/sec

and 222 records/sec and for Fuzzy model (Azure with Simpful), 32 records/sec

45 records/sec, 57 records/sec, 63.5 records/sec, 76 records/sec, 91 records/sec

and 103 records/sec.
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Table 6.7: Number of samples processed per second using smart phone

Sr.
No

Model
1000
samples

2000
samples

3000
samples

4000
samples

5000
samples

7500
samples

10000
samples

1.

Machine
learning
model
(Non-fuzzy)

28 40 51 59.7 70 84 99

2.
Stand-alone
Fuzzy model

24 27 31 35.08 40 49.9 56.68

3.

Real-time
fuzzy model
with AWS
and JFML

65 81 98 125 143 189 222

4.

Real-time
fuzzy model
with Microsoft
Azure
and Simpful

32 45 57 63.5 76 91 103

Figure 6.8: Fall detection using mobile phone A) Total time required to process
the samples B) Number of samples processed per second.
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6.5 Chapter Summary

In this chapter, a comparative analysis between standalone and cloud-based

systems was performed wherein different approaches were used. Based on these

findings, it can be concluded that the suggested FaaS can effectively manage

real-time data using cloud computing with datasets for human fall detection

using a fuzzy rule-based system utilising FML. The developed system was

regarded as having relatively good efficiency and response time. The

architecture may be extended to a broader region even though it was designed

with human fall detection. Additionally, this study attempted to make it easier

for clients to flexibly transmit relatively complex computational tasks to

dedicated servers. Utilising vitalised cloud services offers the devices a

remarkable level of flexibility. To demonstrate the value of fuzzy logic and

IEEE-1855 in a practical setting, such as forensic science, future work on an

artificial intelligence system for investigating crime scenes and the automatic

reconstruction of criminal dynamics will build on the recommended

architecture. Additionally, fuzzy services like fuzzy ontologies and fuzzy

querying of fuzzy databases can be taken into account. A suitable alternative

for implementation would be to expand web services to the Semantic Web due

to the close relationship between FML and fuzzy ontologies. In addition to the

primary advantage of FaaS, this type of architecture offered several other

advantages, including the ability to share networks, maintain control over

hardware and software, reuse data, provide load balancing among FLS devices,

and reduce costs.

The limitation of the research sheds light on the potential of fuzzy logic web

services and machine learning techniques in this domain. Firstly, the study may

not thoroughly explore the robustness and reliability of the proposed fall detection

systems in diverse real-world environments and conditions. Additionally, the

comparison between fuzzy logic web services and machine learning methods could

be further nuanced to consider factors such as computational efficiency, scalability,

and adaptability to varying sensor data characteristics. Future studies could

aim to address these gaps by conducting comprehensive performance evaluations

across diverse datasets and sensor setups, as well as exploring hybrid approaches
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that leverage the strengths of both fuzzy logic and machine learning techniques.
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Chapter 7

Conclusions and Future Scopes

7.1 Thesis Summary

The primary objective of the current research work is to develop a novel and

standard architecture for designing distributed fuzzy logic systems, with a

particular focus on human activity/health monitoring applications. The

research was motivated by the limitations and drawbacks of the classical

approach in implementing stand-alone complex fuzzy logic systems.

In order to meet the objectives set to reach the target, the following steps

were taken, and accordingly, relevant experiments were performed:

• A comprehensive research on existing tools and techniques and related

research work is conducted.

• A service-oriented and web/cloud-based architecture for addressing the

associated problems with uncertain data processing in HAR exploring the

applications and possibly extending the standard web communication

protocols for fuzzy logic systems, i.e., IEEE 1855-2016 and its associated

software libraries, are developed (called Fuzzy-as-a-Service or FaaS).

• The capabilities of the developed methodology in processing uncertain

data for decision-making support scenarios in HAR are investigated and

compared with alternative solutions. The results of the experiments are

summarised in the next section. In Section 8.3, the project’s initial
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objectives are revisited in detail. Finally, in Section 8.4., some directions

for future research are provided.

7.2 Results and Discussion

Managing data in an intense FLS on top of developed web services with a more

sampling rate is essential in real-world situations. Three different experiments

were performed and were reported.

Experiment 1 (Chapter 4): A Cloud-based FaaS for Fall Detection

to Recognize Human Activities. This experiment comprised wearable

sensors (i.e., accelerometers and gyroscopes) that promoted a practical HAR

scenario using FaaS. Research findings exhibited that the proposed method

could effortlessly differentiate between fall and non-fall occurrences with an

accuracy, sensitivity, and specificity of 90%, 88.89%, and 91.67%, respectively.

The results were also compared with some other machine learning methods.

This experiment demonstrated the effectiveness of using the proposed FaaS in

yet another practical and important HAR scenario.

Moreover, the responsiveness and accuracy of the proposed FaaS

architecture are examined in an intense HAR scenario. A walking/running

classification experiment using an offline public dataset was designed utilising

an FLS with 247 rules over 7 fuzzy sets. The system was implemented on the

cloud where it had to serve two clients’ back-to-back requests in parallel. The

results showed that the system was responsive at a more sampling rate that

would be necessary for a real-world scenario over a maximum of 1-second

turn-around delay without missing any of the coming requests. The developed

fuzzy logic web service system also attained an accuracy of 97.42%. This

showed achieving high accuracy and responsiveness in a relatively intense

real-time HAR data processing scenario.

Experiment 2 (Chapter 5): A Cloud-Based FaaS for Pervasive

Health Conditions Monitoring. This experiment used wrist pulse and

oximeter sensors to gather real-time data from individuals in order to predict

their health status using two alternative cloud-based FaaS architectures. The

data was passed to alternative cloud servers through an Android application
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and the responses were received on the same device based on a fuzzy rule-base.

Although the designed FLS has less complexity than that of Experiment 1, it

shows the capabilities of FaaS in a real-world setting where the actual

individuals’ data is collected and processed in real-time. The results showed a

processing time between 0.306 to 0.456 seconds per sample for alternative

cloud/library platforms (AWS/JFML vs. Azure/Simpful). A noticeable

highlight of the experiment is to demonstrate the cross-platform and openness

capabilities of the proposed FaaS, mainly due to the adaptation of IEEE 1855

standard, so that the same local devices can communicate with different FaaS

servers regardless of the employed cloud platform and/or software libraries. The

performed experiment is a proof-of-concept that aims to achieve an

instantaneous FLS execution via cross-platform web services, which to our

knowledge, has had no similar implementation record.

Experiment 3 (Chapter 6): A Comparative Study of Standalone

and Cloud-based Fuzzy Logic Systems for Human Fall Detection. This

experiment extends Experiment 4 in fall detection, by performing a comparative

analysis of the time-responsiveness between different combinations of

fuzzy/non-fuzzy and cloud-based/stand-alone approaches by sensing the

individual’s movements through a smartwatch and a mobile phone. Based on

the findings, it can be concluded that the suggested cloud-based FaaS can

manage real-time data with relatively better efficiency and response time.

Particularly, it was shown that while the local solutions struggle to keep up

with processing data in high sample rates, the FaaS implemented on the AWS

platform has the best response time among the other local solutions (i.e.,

processing 10K samples takes 45 seconds in FaaS, as opposed to 178 seconds in

a local FLS).

7.3 Conclusions

This project presents a novel approach towards a web-based service-oriented FLS

architecture (FaaS) as an example of the implementation/extension of the IEEE

1855-2016 standard. Based on the experiments performed, the proposed FaaS

can perform real-time data processing by means of cloud computing with human
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activity monitoring datasets using a distributed form of fuzzy logic systems. Even

though the architecture is specified in terms of AmI environments, it can be

expanded to a broader area, e.g., in which local computation power reaches its

limits in processing real-time data and/or open access to the shared FLS resources

is required.

This study aimed at facilitating the flexible delivery of the relatively

complex computing that might be required for complex FLSs from clients to

dedicated servers. The efficiency and response time of the developed system

were considered high. The use of virtualised cloud services provided distinctive

elasticity to the system. Fundamentally allowing universally accessible FaaS,

other advantages of such architecture included network sharing,

hardware/software control, data reuse, load balancing amongst FLS devices,

and cost-efficiency. The unique feature of the study was the use of an IEEE

1855-2016 algorithm in real-time, and a novel extension of the standard so that

it can be used not only for defining FLS specifications, but also for data

communication between different components of the distributed FLSs.

7.3.1 Revisiting the Objectives

The present research has been initiated by the question: “Can a distributed

fuzzy logic system provide any advantage in making decisions based on processing

uncertain data in HAR over the current stand-alone and/or non-fuzzy systems?”

In order to address the above question, the following objectives are discussed with

their respective answers:

1. To conduct comprehensive research on existing tools and techniques and

related research work.

Reflection: A comprehensive research on existing tools and techniques in

the referred domain has been carried out and is reported in Chapter 2 in a

systematic manner.

2. To develop a service-oriented and web/cloud-based architecture for

addressing the associated problems with uncertain data processing. This

will involve exploring the applications and possibly extending the
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standard web communication protocols for fuzzy logic systems, i.e., IEEE

1855 (2016) and its associated software libraries.

Reflection: Uncertain data processing is the main hurdle in handling

imprecise data generated by the sensors attached to the person under

observation. It has been demonstrated that a fuzzy logic system is the

main contender in solving such issues. Thus a standard FLS using a

suitable fuzzy inference engine has been designed and tested with such

imprecise data. It is observed that the efficiencies of FLS-based

decision-making systems are more effective compared to their counterparts

which are using other ML techniques. However, it is also observed that

the architecture involving standalone systems is not capable of handling

such a huge amount of data. Thus cloud-based architecture is proposed

instead of standalone architecture. Hence a service-oriented architecture

in a cloud platform (Azure as well as AWS) is designed and developed

with FLS as the decision-making tool. The main aim is to extend the

standard web communication protocols. We ultimately used various

libraries that implement IEEE 1855-2016 standards.

3. To investigate the capabilities of the developed methodology in processing

uncertain data for uncertain decision-making support scenarios in HAR.

Reflection: In Chapter 4, the capabilities of the developed methodology

in processing uncertain data for uncertain decision-making support

scenarios in HAR are reported. It is shown through experimenting with

human activity monitoring datasets that the proposed service-oriented

architecture can undertake real-time data processing using a complex

fuzzy rule-based system. The accuracy and the response time of the

developed system are found to be relatively high. The outcome of the

experiment offers a novel approach for a web-based service-oriented FLS

architecture.

4. To apply the methodologies developed for fall detection of the persons under

observation using suitable sensors.

Reflection: An in-depth analysis of real-time fall detection using a

123



web-based service-oriented FLS architecture is carried out. It is observed

that the proposed FaaS can detect a fall and a non-fall with a fair amount

of accuracy. Based on the experiment performed in Chapter 4, it is

concluded that FaaS can detect falls from real-time data as it requires

minimum hardware and software specifications.

5. To measure the efficiencies of the desired system in monitoring physiological

(non-invasive) data obtained from a person.

Reflection: Blood Oxygen Saturation (SpO2) and heart rate are the two

main physiological parameters obtained from the non-invasive methods

that are taken up as the input to measure the efficiencies of the system

developed. The novelty that followed in this study is that an extension of

the IEEE 1855-2016 standard is implemented in real-time for managing

sensor information. Moreover, the study includes the use of FaaS and

real-time monitoring of activities. Based on the experiment performed in

Chapter 5, it is observed that the efficiencies of the systems developed are

as expected.

6. To compare the performances of the developed system using FLS and other

standard ML-based decision-making processes.

7. To compare the efficacies of a stand-alone system and cloud-based system

in realising the support system for HAR.

Reflections regarding Objective 6 and 7: A comparative analysis

between standalone and cloud-based systems is performed wherein

different approaches are used. Based on these findings, it is concluded

that the suggested FaaS can manage real-time data using cloud computing

with datasets for human fall detection using a complex fuzzy rule-based

framework utilising FML. Based on the experiment performed in Chapter

7, the developed system has relatively good efficiency and response time.

In addition to the primary advantage of making FaaS internationally

available, this type of architecture offered several other advantages,

including the ability to share networks, maintain control over hardware
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and software, reuse data, provide load balancing among FLS devices, and

reduce costs.

7.4 Directions for Further Research

The practical perspective of the proposed system has many aspects of expansion.

The FLS Group is motivated to participate in the design process and provide

feedback on feature prioritisation and collaborative growth activities in deployable

applications. This reinforces the proposed API schema and/or invocation formats

as well as offers more advanced input for other architecture implementations.

However, even though this effort is the first stage of our HAR project, there is

still more that has to be done for improvement and extension, as shown below:

• In the future, it is necessary to extend FML to cope with more sophisticated

HAR scenarios and situations requiring complex interaction mechanisms

between agents.

• The study only looked at one type of FLS (i.e., rule-based systems). Other

fuzzy services, such as fuzzy querying of fuzzy databases or fuzzy ontologies,

may be employed in the future.

• Furthermore, caused of the close relationship between FML and fuzzy

ontologies, expanding web services to semantic web services (e.g.,

developing cloud-based searchable FLS repositories) will make a

significant choice.

• In the future, the proposed architecture can also be used as the main

framework to design an artificial intelligence system for the analysis of

crime scenes and the automatic reconstruction of crime dynamics to

highlight the role of fuzzy logic and IEEE-1855 in a critical real-world

scenario, such as that of forensic sciences.

• Efforts can also be made to optimise the distributed FML rules on several

hosts to minimise the fuzzy inference time.

125



Appendix A: Development of

AWS and Azure Web Services

The process of deploying an application over the cloud is as follows:

1. The deployment of this project will be handled by the cloud service provider

AWS (Amazon Web Services).

2. It offers a variety of implementation options for the project. As a result of

this, EC2 service is considered for this research.

3. EC2 is a Linux operating system running on an instance of a VM (Virtual

Machine) (Operating System)

4. The virtual machine needs to be prepared, which entails installing Java as

well as the MySQL database.

5. It is essential to change the network configuration so that users can access

port 22 from the internet. So that we can connect to the VM via SSH, we

must install the necessary software. For us to meet security requirements,

SSH Public Key Authentication is required.

6. To accomplish this, we will need to produce a key pair. The private key will

be held in Amazon Web Services (AWS), and a public key will be issued to

users wishing to connect to the Virtual Machine (VM).

7. When it comes to constructing artefacts for the Spring boot project, we

make use of Maven.
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8. With the ”mvn clean build” command, the jar file or artefact for this project

would be constructed.

9. The generated artefact has to be moved to the instance running on Amazon

Web Services EC2.

10. When it has been transferred, we will need to execute the jar within the

VM by using the command ”java -jar jar-name.”

11. In addition to this, we need to ensure that the jar contains the essential

database credentials in order for it to be able to connect to the database

that has been set up on the EC2 VM.

12. The application may be accessible through the internet by using the public

IP configuration.

The API developed over AWS tested by passing FML code to the respective

web page. Users can write or paste the FLS code on the creatFLS API shown in

Figure 1.

Users are required to have the ability to set their own individual values for

the FLS inputs. In addition to this, it is necessary that any number of inputs

can be included in a single invocation made by a particular client system. This

distributes the burden of data collection across a multi-input multi-output FLS

by enabling the system to collect individual or clustered outputs from a variety

of devices. This can be done individually or collectively. In spite of the fact that

each collected input has the potential to be stored in the server, only the most

recent collection will actually be used when the FLS algorithm is put into action,

as demonstrated in Figure 2.

The Getoutput API requires the FLS name and an output variable in order

to compute and generate output values, as illustrated in the figure 3.

In the future, when the description of an FLS or its input/output history is no

longer required, clients should be able to request that it be removed from the list

of specified FLSs in the database. After a predetermined amount of inactivity,

the device can be programmed to automatically remove the FLSs. Figure 4 shows

that FLs can be deleted by passing a unique FLS name.

127



Appendix A

Figure 1: Create FLS.

Figure 2: Setinput FLS.

Figure 3: GetOutput FLS.
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Figure 4: Delete FLS.

Figure 5: Azure services.
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Figure 6: FLS Simpful.

Figure 5 displays the homepage of Azure, which displays the fls-simpful and

the Azure subscription. fls-simpful is a function app in which the project’s APIs

are present. Simpfulserver stores a MySQL database storing the system’s FLS

file.

Figure 6 is the homepage of the fls-simpful function application. The process

can be stopped or restarted. After stopping, we will be able to locate the start

button. In addition, we have a great deal of additional information about the

system, including its operating system, deployment location, URL, etc.

Terminating the running process when it is not in use is a good practice.

Figure 7 shows the standalone APIs that were developed for this research.

The list of individual functions written for this project is available by clicking on

the functions. The APIs developed for this research are as follows:

• postfls: Inserting string XML passed during the ”CreateFLS” stage into

the database so that it can be used later during evaluation.

• XML inputfls: To save all variables and values.

• getfls: To retrieve the list of FLS that are saved in the system.
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Figure 7: List of functions.

Figure 8: Get FLS.
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Figure 9: Get FLS code.

• inputoutputfls: evaluate the output.

• output: Retrieve the output from the previous functions stored in a

database.

A specific sequence must be followed in order to evaluate the function. Postfls

must be completed before creating fls. Hit inputoutputfls to evaluate the output,

inputfls to set up the parameters, and output API to obtain the output.

The code elaborates the GetFls function, shown in Figure 9. The initial Figure

8 shows a database connectivity query that will instruct the DB to retrieve each

and every value from the fls table. If the IMEI number of a device is not present,

this provides a list of all of the FLSs that have been created in the system. If it is

there, the query for the second snapshot will be altered so that it will only return

FLSs that were produced using the IMEI no that was provided in the request if

the condition is met. After that, the result is converted into JSON, and that is

what is sent back as the output. The Application Programming Interface (API)

for posting FLS is created. The code shown in Figure 10 establishes a connection

with the database in the usual manner. Then it performs a validation check

to determine whether or not the necessary parameters have been passed in the
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Figure 10: Database connect.

request. The IMEI no parameter and the string value of the XML document are

required for this API. This includes a query that has been written to store the

value that was received in the DB against the IMEI number that was passed.
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Appendix B: JFML Library

Details

JFML library [25] adheres to a strong object-oriented methodology and a

modular architecture based on the same labelled tree structure that FML uses

to describe FLSs, allowing developers to expand FML without modifying the

language grammar. This programme is offered as open source under the

provisions of the GNU Public License GPLv3 and is hosted on the public

hosting platform GitHub, which provides several tools (such as a bug tracker

and mailing list) for leveraging the benefits of the open source approach.

Additionally, JFML has a web page with extensive documentation and a wide

range of examples. Following are the primary properties of JFML: primary

classes, FML XSD binding, extensibility, and software compatibility.

The class diagram of the library is already shown in Figure 3.4. The details

of JFML classes are explained in this Appendix.

1. Fuzzy System Type Class represents the four FLSs enclosed in the standard

scheme: Mamdani, Tsukamoto, TSK, and AnYa. This attribute is also

included in other subclasses that have the same aim, and each object of

this class possesses a unique name and a network address to define the

location of the FLS within a computer network system (this attribute is

also included in other subclasses that have the same aim). Additionally,

each object of this class consists of one element Knowledge Base and a

list of elements Fuzzy System Rule Bases, which represent the KB and the

RBs of the system, respectively. It is important to take note that an FLS

can accommodate more than one RB, each of which can be of a different
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Figure 11: Main Class Diagram for the definitions of KB.

type. By default, the system evaluates RBs in the order they appear in the

list, but this can be changed. Accordingly, we can define FLSs in different

sub-hierarchies.

2. The Knowledge Base Type Class represents the system’s input and output

variables. Each object in this class consists of a list containing one or more

members of the class Knowledge Base Variable, which represents a system

variable in an abstract manner. Subclasses are responsible for providing

detailed information about each variable and the operations that can be

performed on it; this base class consists only of the most basic operations

that may be performed on any variable (see Figure 11). They are introduced

as follows:
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3. Fuzzy Variable Type class represents a fuzzy variable that may appear

either as an antecedent or a consequent in Mamdani rule bases. It is also

possible for it to be a part of the rules in the antecedent of the Tsukamoto

and TSK RBs, as well as a part of the rules in the consequent of the AnYa

RBs. Each individual object of this class stores information regarding the

domain, type (input or output), the scale used to measure the variable, the

default value for this variable when no rule has been fired, the accumulation

(also known as a combination in the standard), defuzzification methods used

when this variable is involved in the consequent of the rules, and a list with

the linguistic terms of the variable.

4. Tsukamoto Variable Type class represents an output variable that can be

part of the consequent of the rules in Tsukamoto RBs. The objects of this

class contain the same information as the objects of the Fuzzy Variable Type

class; however, the membership functions of the linguistic terms associated

with these objects can only be monotone functions.

5. TSK Variable Type class is used to represent an output variable that may

be used as part of the consequent of the rules found in TSK RBs. The

consequent of a TSK rule may involve any object of type Tsk Term, which

may either represent a constant value (zero-order TSK system) or a linear

function of the inputs (one-order TSK system). Each object provides

information on its type (input or output), the scale that was used to

measure the variable, the default value for this variable when no rule has

been fired, the accumulation technique, and a list of other objects that are

of the Tsk Term Type.

6. The AnYa Data Cloud Type class is used to describe a data cloud that may

be utilised as an antecedent for rules that are contained within AnYa RBs.

Each object has its own list of data, which together represents a subset of

previous data samples that have common characteristics. It is important to

note that each data is specified as only one double value in the standard;

nevertheless, it is extensible to consider data objects with more than one

value.
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Figure 12: Main Class Diagram for the definitions of RBs.

7. Aggregated Fuzzy Variable class is used to express a new fuzzy variable in

which the linguistic terms are specified by the aggregate of the linguistic

terms used by existing variables. Each instance of the class object stores a

list of Aggregated Fuzzy Term objects. These objects employ the AND (a t-

norm) and OR (a t-conorm) operators to generate new terms for the variable

based on the combination of two or more terms from other variables. The

definition of variables and rules can be handled in an adaptable manner

using this class.

8. The Fuzzy Systems Rule Base Class is an abstract representation of an RB

of the Fuzzy Logic System. It mainly comprises the basic operations that

can be employed for any rule. In contrast, the subclasses are responsible for

defining the rules and determining how those rules should be applied (see

Figure 12). They are introduced as follows.

Rule Base Type class represents an RB in which the consequent and
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antecedent of the rules only have fuzzy variables. In addition to a list of fuzzy

rules, each instance of this class also holds details on the activation methods,

the AND and OR methods that are applied by default to all rules, and so on.

This class is extended by the classes Mamdani Rule Base Type and Tsukamoto

Rule Base Type to generate RBs with Mamdani and Tsukamoto rules,

respectively. Both of them contain a list of Fuzzy Rule Type objects. Notice

that the rules of the Mamdani Rule Base Type object involve Fuzzy Variable

Type variables in the antecedent and consequent. The rules of the Tsukamoto

Rule Base Type objects involve Fuzzy Variable Type variables in the antecedent

and Tsukamoto Variable Type variables in the consequent in order to assure the

use of monotone membership functions in the consequent of the rules.

TSK Rule Base Type class represents a TSK RB. The objects of this class

contain the same information as the Rule Base Type objects and a list of Tsk

Fuzzy Rule Type objects. Each Tsk Fuzzy Rule Type object involves Fuzzy

Variable Type variables in the antecedent and Tsk Variable Type variables in the

consequent of the rules.

The AnYa Rule Base Type class represents AnYa RBs. Each object of this

class contains the activation method and a list of AnYa Rule Type objects. Each

AnYa Rule Type object involves AnYa Data Cloud Type variables representing

the data cloud used in the antecedent, and Fuzzy Variable Type or Tsk Variable

Type variables in the consequent of the rules. These sort of rules can employ the

same consequence consequent as Mamdani and TSK rules.

Each antecedent element (Antecedent Type) in the rules has one or more

AND/OR-connected clauses. The specific connector and corresponding

t-norm/t-conorm can be selected for each rule. In contrast, the consequent

elements (Consequent Type and Tsk Consequent Type) have one element

THEN, which represents the THEN-part of a rule, and an optional element

ELSE, which represents the ELSE-part of a rule. Both parts may also have

single or multiple clauses, enabling the modelling of FLSs with numerous

outputs. In addition, we may assign a weight to each rule to describe its

significance in the inference.
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[56] D López, FJ Moreno, A Barriga, and S Sánchez-Solano, “Xfl: a language

for the definition of fuzzy systems”, in Proceedings of 6th International

Fuzzy Systems Conference. IEEE, 1997, vol. 3, pp. 1585–1591. 31

145



REFERENCES
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