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Abstract 4 

Microplastics are contaminants of emerging concern - not only environmental, but also to 5 

human health. Characterizing them is of fundamental importance to evaluate their potential 6 

impacts and target specific actions aiming to reduce potential harming effects. This study 7 

extends the exploration of machine learning classification algorithms applied to FTIR spectra 8 

of microplastics collected at sea. A comparison of successful classification models was 9 

made in order to evaluate prediction performance for 13 classes of polymers. A rigorous 10 

methodology was applied using a pipeline scheme to avoid bias in the training and selection 11 

phases. The application of an oversampling technique also contributed by compensating 12 

unbalanceness in the dataset. The log-loss was used as the minimization function target and 13 

to assess performance. In our analysis, Support Vector Machine Classifier provides a good 14 

relationship between simplicity and performance, for a fast and useful automatic 15 

characterization of microplastics. 16 
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Plastic debris is today found in virtually every habitat on earth (Free et al., 2014; Lebreton et 24 

al., 2018; Saito et al., 2018; Wang et al., 2019; Zhang et al., 2020). Yet, major scientific 25 

concern has been given to plastics at sea, where they are almost omnipresent and when 26 

found in large quantities and/or concentrations their negative impacts may be serious 27 

(Barnes, 2002; Chae and An, 2017). Originated mainly on land as a result of large 28 

consumption of disposable items and poor waste management, plastics compose most 29 

marine debris (Galgani et al., 2015). 30 

According to the International Organization for Standardization (ISO), microplastics are any 31 

solid plastic particle insoluble in water with any dimension from 1 µm to 1 000 µm (1 mm) and 32 

large microplastics between 1 mm and 5 mm. (ISO/TR 21960:2020). They can originate from 33 

the degradation and fragmentation of larger plastic debris when exposed to environmental 34 

conditions or can be directly emitted in their form as, for example, microbeads, pellets, or 35 

textile fiber (Fendall and Sewell, 2009; GESAMP, 2019; Hidalgo-Ruz et al., 2012; Thompson 36 

et al., 2009). Their wide occurrence and physical characteristics, such as density and 37 

chemical composition, have contributed to consider these as emerging environmental 38 

contaminants (Sauvé and Desrosiers, 2014). 39 

An adequate characterization of these contaminants can provide substantial information on 40 

the inputs and transport in the oceans, rates of degradation and fragmentation, interaction 41 

with biota, consequences of their presence in natural habitats, and, finally, risk assessment 42 

and management. Multiple parameters are relevant for these analyses, such as size, mass, 43 

sampling site, and DNA from the plastisphere (Zettler et al., 2013). Determination of the 44 

chemical composition of sampled plastics has been used to suppose where they originated 45 

from, what human use they might have had, and even estimate their age (Song et al., 2015; 46 

Turner and Holmes, 2011).  47 

While diversity is wanted in the production and use phases of polymer products, it adds 48 

complexity to the identification process. For macroplastics, characterization may still be done 49 
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by recycling codes in the product or by physical characterization. Yet, for microplastics, these 50 

procedures have been shown to result in high rates of false positives when not followed by 51 

any chemical analysis (GESAMP, 2019; Hidalgo-Ruz et al., 2012)Thus, a chemical 52 

characterization of microplastics is fundamental to more adequately assess the sources, fate, 53 

and impacts of microplastics. 54 

Vibrational Spectroscopy, namely Raman and Fourier Transform Infrared Spectroscopy 55 

(FTIR), are established techniques to assess chemical composition (Käppler et al., 2016). 56 

Both analyses provide information on specific chemical bonds and functional groups, albeit by 57 

different methods (Kuptsov and Zhizhin, 1998). They allow differentiation between synthetic 58 

and natural polymers, identification of polymer type, and degree of weathering, hence their 59 

wide utilization in microplastic identification methods (Andrady, 2017). 60 

FTIR analysis can be done visually by an expert, but it is often more convenient to use a peak 61 

matching dedicated software with the available databases (Li et al., 2006). They perform what 62 

is called a library search, going through all spectra in the database and showing those with 63 

better ranking. This strategy allows a faster polymer identification, but since sampled 64 

microplastics are somehow dirty and weathered, peaks absent in the same non-weathered 65 

polymers can be seen in microplastics. (Jung et al., 2018; Xu et al., 2019). Therefore, their 66 

chemical signature (spectrum) can be significantly different from virgin polymers that 67 

commonly constitute databases (GESAMP, 2019; Primpke et al., 2018). Procedural factors 68 

can also influence the quality of measurements and impact identification accuracy and time. 69 

The size of identifiable microplastics, for example, is limited by the FTIR setup and should not 70 

be less than 500 µm (unless the spectrometer is coupled with a microscope) (Käppler et al., 71 

2016; Shim et al., 2017). Weathered microplastics could be fragile and shatter while being 72 

manipulated, which also hinders spectrum acquisition (Shim et al., 2017). 73 

A few alternatives have been proposed and tested to surpass these limitations. Pre-74 

processing of the raw data, the usage of specifically designed databases, and dual database 75 
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searches are some of the approaches that have been demonstrated to improve match results 76 

and allow library searches to be used with good confidence (Primpke et al., 2018; Primpke et 77 

al.2020; Renner et al., 2019). 78 

Most notably, µ-FTIR and µ-Raman techniques are being used to address common 79 

limitations on microplastics analysis. Coupling a spectrometer and a microscope, allows the 80 

characterization of smaller particles and with an additional Focal Plane Array (FPA) detector, 81 

several particles can be characterized at once (Cabernard et al. 2018; Brandt et al. 2020). In 82 

this sense, these techniques can provide a more accurate picture of the evaluated 83 

microplastic environment. Yet, this kind of equipment may be less available mainly due to 84 

cost issues. 85 

Improving methodologies for conventional vibrational spectroscopy could provide better 86 

alternatives to marine pollution researchers in places where financial support is insufficient, 87 

mainly the global south. Having said that, the proposed methodology could be used to 88 

evaluate the performance of classification algorithms using data from different spectroscopic 89 

techniques, especially FTIR imaging where data volumes are significantly larger (~ 106 90 

spectra per image) and spectra quality tends to be lower  (Primpke et al. 2017). 91 

Sampling microplastics at sea produces hundreds or even thousands of individual particles, 92 

which by manual methodologies would take far too long to be characterized. Increased 93 

automation of the characterization process of microplastic samples with higher confidence in 94 

the results could quicken information acquisition on this emerging contaminant, filling multiple 95 

knowledge gaps and significantly advancing understanding on the field. Indeed, that is the 96 

main objective of the study presented in this paper. A machine learning pipeline was 97 

proposed for the selection of the best among a few machine learning algorithms to classify 98 

microplastics spectra, then discuss the main findings. 99 

ML algorithms have recently been proposed as faster and more accurate methods to analyze 100 

spectra from marine microplastics and have been successfully used in chemometrics (and 101 
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many other fields) for more than a decade (Conroy et al. 2005). Most efforts have been 102 

applied to imaging techniques, probably due to high computational demands associated with 103 

higher data volumes - thus, the necessity to improve efficiency (Hufnagl et al., 2019). 104 

Nevertheless, conventional spectroscopic techniques could benefit from these improvements.  105 

In machine learning, classification algorithms are a category of prediction models used to 106 

attribute unidentified samples to a given class based on a set of variables. These algorithms 107 

have been applied by Hufnagl (Random Forest Classifier) and Kedzierski (K-nearest 108 

neighbors) to spectral data of microplastics and resulted in expressive classification 109 

accuracies (Hufnagl et al., 2019; Kedzierski et al., 2019). However, a comparison of different 110 

algorithms hasn‟t been made. Given the already demonstrated potential of these techniques, 111 

further investigation could lead to even better results. Since the learning process highly 112 

depends on the database available for training, comparable results should ideally derive from 113 

the same dataset. In the present study, data previously published by Kiedzierski were used 114 

for this purpose (Kedzierski et al., 2019). 115 

Methodologies focusing on the selection of relevant attributes on microplastics spectra have 116 

been proposed by Renner 2017, Hufnagl 2019, and da Silva 2020. Indeed, it is the approach 117 

experts take when visually interpreting a spectrum. In this paper, a dimensionality reduction 118 

(DR) technique called Principal Component Analysis (PCA) was applied to extract the most 119 

relevant features in the whole dataset. Some machine learning models lose performance 120 

when the data is represented in a high dimension space, falling into the so-called curse of 121 

dimensionality (Trunk, 1979). Feature selection or extraction is used to reduce the number of 122 

variables that describe a certain set of instances (samples) while retaining most of the 123 

information. This can, sometimes, reduce the time of implementation without significant loss 124 

of information and,when the curse of dimensionality is observed, even improve prediction 125 

performance.  126 
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The main disadvantage of the machine learning approach to this classification task is that it is 127 

limited to analyzing classes of polymers that are well represented in the training database. 128 

Since there is an enormous variety of plastics, setting up rather complete databases would be 129 

laborious. However, from all the known range of polymers, there are only a few commonly 130 

found as marine microplastics, making the setup of representative databases a lot more 131 

feasible. The method described in this paper goes further in the process of setting up this 132 

type of database by using an artificial oversampling technique to mitigate the effects of 133 

imbalanced datasets in the learning process, which can produce models that are biased 134 

towards the majority class.  135 

2. Materials and Methods 136 

This study extends previous efforts by combining several machine learning techniques and 137 

comparing algorithms, to find, among them, the best method to automatically classify 138 

microplastic spectra. It differs from other approaches by proposing a pipeline methodology to 139 

train, evaluate and select classification models. The methodology described next was 140 

rigorously defined to justify choosing one model over all others. Once the model is chosen, it 141 

can be trained and called to make a prediction. A researcher interested in reproducing the 142 

experiment must follow the entire methodology, whereas a potential user of the proposed 143 

predictive tool can skip to section 2.9 for a short explanation on how it can be used. 144 

All programming was made in a Core i5-7200U with 16 GB ram, using only 1 core of the 145 

processor to avoid issues related to parallel programming. We used Python programming 146 

language and some of its data analysis and machine learning libraries, namely: scikit-learn 147 

(Pedregosa et al., 2011), scipy (Virtanen et al., 2020), and imblearn (Lemaître et al., 2017). 148 

All programming is available in a supplementary file (Appendix D) so that the methodology 149 

described in this paper can be audited, reproduced and even improved by peers. It is also 150 

available online at GitHub (https://github.com/EdsonCilos/mp_classification). 151 

2.1. The dataset 152 
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The data used to train the algorithms were previously published by Kedzierski et al., 2019, 153 

and were generated from the Attenuated Total Reflection FTIR spectroscopy of samples 154 

collected during expeditions in the Mediterranean Sea. Spectra were recorded in 155 

absorbance mode in the range of 4000 to 600 cm-1 with 4 cm-1 resolution and 16 scans. The 156 

labeled dataset was constructed using the raw data consisting of 9581 spectra previously 157 

identified and assigned to 17 different classes. 158 

2.2. Dataset pre-processing pipeline 159 

Typically in the spectra evaluation by an expert, the analysis of some frequencies is not 160 

considered due to the presence of noise or just because the knowledge in the field 161 

prescribes that samples can be distinguished by some specific peaks. Our perspective, 162 

however, stands in the Machine Learning background,  assigning to the algorithm the task to 163 

find the most successful pattern matching. As pointed by Vapnik: “In a wide philosophical 164 

sense, predictive models do not necessarily connect prediction of an event with an 165 

understanding of the law that governs the event; they are just looking for a function that 166 

explains the data best.” (Vapnik, 2006) 167 

In other words, our goal is to look for a good explanation of the available data, and therefore, 168 

no feature selection based on expert knowledge was done, nor seemed to be necessary. As 169 

a consequence, all recorded wavelengths were used for the analysis. Additionally, a major 170 

drawback of a priori feature selection is that it may be suboptimal and should be revised 171 

when new classes are introduced, while PCA is embedded in the pipeline. 172 

Since the original dataset was highly imbalanced, the first step in pre-processing consisted 173 

of renaming the classes that were underrepresented in the dataset, assigning them to a 174 

generic class called “unknown”.  Samples from the 4 least represented classes, namely, 175 

Polyurethane, Animal fiber-like, Poly(vinyl chloride), and acrylic (PMMA) were moved to the 176 

unknown class, effectively removing 4 classes. The latter having only 3 samples, while the 177 

others only 1 sample, making it impossible to train a model using the methodology adopted 178 
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in this paper. The dataset then consisted of 958 samples from 14 different classes (13 179 

microplastic classes + unknown). 180 

It is important to note that apart from relabeling underrepresented classes and correcting the 181 

baseline, all preprocessing steps must be done after the train/test split, to avoid the so-called 182 

“snooping bias/data leakage” (see “Results and Discussion” for further details). It is a 183 

common mistake when coding machine learning algorithms. It happens when some 184 

information that typically would be available only in subsequent steps (like in a “production 185 

environment”), is introduced in the learning process. 186 

The remaining pre-processing steps were assembled in a pipeline, which we will call, for 187 

short, a Pre-pipeline (Later on in Section 2.6 we shall discuss the full Pipeline of the 188 

methodology, which includes the Pre-pipeline). All steps were tested in the “turn on/ turn off” 189 

configuration, to evaluate which of those was able to improve the final model‟s performance. 190 

It consisted of the application of the following techniques in the raw data (in this order): 191 

 192 

1. Baseline correction using Asymmetric Least Squares (Eilers and Boelens, 2005). 193 

Parameters were: lamba (2nd derivative constraint) = 1e5; p (weighting deviations) = 194 

0.05; itermax (number of iterations to perform) = 10 195 

2. Standard scaler (Z-transform), since the features are arranged at different scales, 196 

which could affect the model performance (Géron, 2017); 197 

3. Principal component analysis (PCA), as a method to verify if higher dimensions could 198 

impact the algorithm‟s performance (Jolliffe, 2002). PCA is an unsupervised learning 199 

technique that creates a new linear space with orthogonal variables, called principal 200 

components (PCs), which are the directions of most variance in the dataset. If the 201 

original features are uncorrelated, the new space contains the same number of 202 

dimensions as the original space, but, generally, a much smaller number of variables 203 
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is sufficient to describe the data without much loss of information. In our analysis, the 204 

first n PCs containing 99% of the explained variance were used. 205 

4. Oversampling to mitigate the effects of imbalance in the dataset. Despite having 206 

assembled underrepresented classes, the dataset was still highly imbalanced, as the 207 

2 most populated classes contained 45% of all samples in the dataset. This can 208 

cause distortions in the learning process, as the algorithm would be more likely to 209 

assign a new sample to these classes (Prati et al., 2009). This was done using the 210 

Imbalanced Learning API inside a Pipeline scheme (Figures 1 and 3). It generates 211 

new instances by randomly sampling the under-represented classes, effectively 212 

copying existing spectra (Lemaître et al., 2017). 213 

 214 

The four pre-processing techniques described (Baseline correction, Standard Scaler, PCA, 215 

and Oversampling) were subjected to analysis to evaluate if including them would improve 216 

the performances of the classifiers. Several combinations were tried for each classifier (e.g. 217 

kNN without PCA, with Standard Scaler, and with oversampling). The best combination was 218 

forwarded to another trial to examine if a frequency smoothing strategy could improve the 219 

performance likely by suppressing features that arise from non-ideal instrument and sample 220 

conditions (Renner et al., 2019; Zimmermann and Kohler, 2013). Ergo, a Savitzky-Golay 221 

filter was included before the standard scaler step, in which an evaluation of 115 222 

combinations of windows and degrees was performed. This step was done separately in 223 

order to speed the evaluation, considering it already took 4 days. 224 

2.3. The holdout strategy 225 

Initially, the dataset was split into training and test sets (holdout strategy), stratifying 226 

proportionally to the number of classes, to make sure every class is present both in the train 227 

and test sets.  The test set ratio choice was 25%. To allow reproducibility, we fixed the seed, 228 

as well as all random states, equal to 0. It is worth mentioning that the authors used the 229 
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holdout strategy to be able to evaluate, under mathematical assumptions, an “unbiased”2 230 

estimate of the generalization error. The holdout strategy allows the trained algorithm to be 231 

tested on an “external” dataset, completely unknown to the algorithm. This can be done 232 

using mathematical tools like Hoeffding's inequality (Hoeffding, 1963), Vapnik-Chervonenkis 233 

theory (Vapnik, 2000) or usual statistical inference techniques. Thereby, a unique and final 234 

evaluation in the test set is capable of providing a confidence interval for the proposed 235 

algorithm, as we shall see in the Results/Discussion section.  236 

2.4. The classification algorithms 237 

According to the "No Free Lunch Theorem" (Wolpert, 1996): there is no a priori reason to 238 

prefer one machine learning model over another without making any assumption about the 239 

data. Therefore, in practice, we must select some models and test them on the problem that 240 

we aim to solve. For this reason, we chose some of the most popular and relevant models in 241 

machine learning: Decision Tree (DT) (Moore, 1987; Murphy, 2012, p. 544), Gaussian Naive 242 

Bayes (GNB) (Murphy, 2012, p. 82), k-Nearest Neighbor (kNN) (Nordhausen, 2009, p. 14), 243 

Random Forest (RF) (Nordhausen, 2009, p. 587), Logistic Regression (LR) (Murphy, 2012, 244 

p. 14; Nordhausen, 2009, p. 119), Support Vector Machine Classifier (SVC) (Murphy, 2012, 245 

p. 496; Nordhausen, 2009, p. 417), and Neural Networks (Goodfellow et. al, 2016). 246 

Each model has general characteristics that may be more suited to one application than the 247 

other. A comparison of 5 of the models proposed here is presented in Table 1, adapted from 248 

Kotsiantis (Kotsiantis, 2007). For instance, GNB has a high speed of learning and 249 

classification but is highly affected by interdependent attributes. SVC, on the other hand, has 250 

a high speed of classification and is very tolerant to irrelevant attributes, but is slow to learn 251 

and falls short in explainability (Kotsiantis, 2007). 252 

 Decision 
Trees 

Neural 
Networks 

Naive 
Bayes 

kNN SVC 

Accuracy in general ** *** * ** **** 
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Speed of learning *** * **** **** * 

Speed of classification **** **** **** * **** 

Tolerance to missing values *** * **** * ** 

Tolerance to irrelevant attributes *** * ** ** **** 

Tolerance to redundant attributes ** ** * ** *** 

Tolerance to highly 
interdependent attributes 

** *** * * *** 

Dealing with 
discrete/binary/continuous 
attributes 

**** *** *** *** ** 

Tolerance to noise ** ** *** * ** 

Dealing with danger of overfitting ** * *** *** ** 

Attempts for incremental learning ** *** **** **** ** 

Explanation ability **** * **** ** * 

Model parameter handling *** * **** *** * 

Table 1 - A comparison of models‟ characteristics (Adapted from Kotsiantis, 2007) 253 

The algorithms have been configured to return probabilities (provided by Sklearn; 254 

sklearn.calibration) rather than just a deterministic output. This seems to be suitable for the 255 

current task, allowing the researcher to be more confident when the probability score is 256 

higher.  In this context, the cross-entropy (or log-loss) of a multinoulli distribution was chosen 257 

as an objective function to be minimized, to make the probability distribution of the model as 258 

close as possible to the empirical distribution (see Appendix B for further details) 259 

(Goodfellow et al., 2016). 260 

2.5. Gridsearch 261 

Every machine learning model has a set of parameters that must be predefined by the user 262 

and are not learned during training. These are called “hyperparameters”. Grid Search is an 263 

efficient tool to find the best combination of hyperparameters, given a predefined grid. 264 
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All combinations of hyperparameters can be found in the project‟s file (Appendix D)  (refer to 265 

param_grid.py). Just to mention a few, Logistic Regression, for example, was tested using 266 

diverse penalty schemes (l1, l2 and Elastic Net with different l1 ratios ranging from 0.1, 267 

0.2,..., 0.9), different regularization parameter C (C =     for j = -2, -1, .., 3) and several 268 

solvers depending on the penalty (newton-cg, sag, saga, lbfgs and/or liblinear).  269 

 270 

Figure 1 - Graphical representation of the pipeline used with Grid Search for assessing 271 

multiple classifiers. 272 

In a cross-validation we split the data in k folds (or partitions), for each fold we train the 273 

model in the remaining data (all data except the fold) and evaluate the model in the fold; in 274 

the end the k results are averaged producing a score. Such a strategy was used to evaluate 275 

the grid search, in a 5-fold cross-validation scheme (Figure 1). We fixed the seed that 276 

generated the partition in the cross-validation, therefore a reproduction of this experiment is 277 

likely to achieve the same result.  278 

Throughout this section whenever we refer to a “training set” we are referring to a new 279 

training set created by cross-validation or another validation mechanism. Otherwise, when 280 

referring to the initial training set, we will refer to it as the "original training set". 281 

Cross-validation was performed within Grid Search to avoid overfitting on the validation set - 282 

because these hyperparameters can be tuned optimally for a specific validation set. That is, 283 
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for a certain combination of hyperparameters, 5 different training and test sets are used to 284 

train and test the model‟s performance. The final result for that specific combination is the 285 

average of these tests (standard deviations were also computed).  286 

2.6. Monte Carlo Cross-Validation 287 

After the GridSearch, we looked for the best scores. Decision Tree e Gaussian Naive Bayes 288 

classifiers performed very poorly. Among the remaining models, we selected the most 289 

promising configuration in each case: the top 2 Neural Networks (with less or more neurons), 290 

top 2 Support Vector Machine (linear kernel and „rbf‟ kernel), the best Random Forest, the 291 

best kNN and the best Logistic Regression. These models were subjected to subsequent 292 

analysis considering a Monte Carlo Cross-Validation (MCCV) (briefly described next). The 293 

remaining classifiers showed a considerably higher log-loss and/or its parameters were 294 

unlikely to improve the performance; therefore, they were not forwarded to the next step. 295 

The selected model will be referred to as “the final hypothesis”. 296 

An MCCV consists in randomly splitting the data in train and validation sets, several times. 297 

It‟s a kind of holdout strategy with many trials, also known as “repeated learning-test”. This 298 

technique allows us to draw a “monte carlo picture” and check a model‟s performance in a 299 

histogram, allowing us to compute some statistics like mean and standard variation. In our 300 

case, the MCCV consisted of 1700 trials. Since the grid search was done with a fixed seed, 301 

it can produce models that perform well in rare cases. By introducing randomness through 302 

MCCV, we can make a second filter in the models, in an attempt to avoid “rare best 303 

performing models”.  304 
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 305 

Figure 2 - Graphical representation of the pipeline used in the Monte Carlo Cross-Validation. 306 

After 1,700 repetitions the results are averaged. The process was repeated on the seven 307 

most promising models. 308 

2.7. The Pipeline 309 

 310 

Figure 3 - Graphical representation of the full pipeline methodology. 311 

The application of the tools described until now was done by means of a pipeline 312 

methodology. In total, 878 models under 5 combinations of pre-processing techniques were 313 

subjected to the same workflow. Thus, using a pipeline was useful to automate the 314 

sequence of operations that we proposed (Figure 3).  315 
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One important step to mention is the pre-processing of the data, which happens after the 316 

train/test split, something that is commonly overlooked, but that avoids the snooping bias. 317 

Notice, as well, that all steps concerning the selection of the best model are done using the 318 

“original training set”, not the “original dataset”. Keeping part of the original dataset aside, we 319 

can use it in the end to test the selected model on a dataset completely new to the algorithm. 320 

We suggest this pipeline to be used to evaluate and compare the performances of different 321 

models in the task of microplastics classification with ATR-FTIR spectroscopy. It can be 322 

equally used with different datasets, containing, for example, other polymer classes. 323 

2.8. Comparability and External Validation 324 

In order to be able to compare our methodology with previous works, we applied, to the final 325 

hypothesis, the training methodology described by Kedzierski et al., 2019 (which consisted 326 

essentially of a MCCV with 1000 slightly different splits) with three differences: Firstly, we 327 

used a stratified split. This is important because our dataset is highly unbalanced with some 328 

classes underrepresented, therefore it is possible that in certain splits some classes remain 329 

only in the training set (more probable) or only in the test set (less probable), which can, in 330 

any case, introduce bias in our model.  Secondly, Kedzierski et al. assign all unclear 331 

predictions (less than 3 votes in kNN) to the “unknown” class, which the present 332 

methodology does not. Finally, and most importantly, it seems that the authors included a 333 

standardization pre-process in the entire dataset, which introduces a “snooping'' bias in the 334 

model. This means, for example, that the model “already knows” the mean and standard 335 

deviation of the features of the validation set before even being trained. On the other hand, 336 

our pre-processing methodology is built inside a pipeline that uses, for example, the 337 

standardization learned in the training set and applies it in the validation set, which avoids 338 

such bias.  339 

A further verification was included to prove that the approach proposed here is usable 340 

outside the Kedzierski dataset. To do so, a different environmental dataset was used to train 341 
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and evaluate the final hypothesis, which was done by MCCV, as described in section 2.6. 342 

There was no tuning of hyperparameters at this step. The dataset contained 800 FTIR 343 

spectra of polymers ingested by turtles and was published in a previous study by Jung et al. 344 

(2018). There were initially 9 classes, including a differentiation between high and low 345 

density poly(ethylene). As previously, the less representative classes were suppressed and 346 

spectra moved to the “unknown” class, which resulted in 5 classes. 347 

2.9. Application of the classifier 348 

If the reader is particularly interested in using the proposed final hypothesis (classifier), they 349 

can do so by running the code “final_classifier.py” in a python console, which is located in 350 

the root folder of the project repository.  351 

It should be stressed that the data provided for classification should not have been pre-352 

processed at all, as the appropriate pre-processing will be performed by the algorithm 353 

considering the results presented in the next section of this paper. Additionally, the spectral 354 

data should have been collected at the same frequency range described in section 2.1. 355 

Given the limitation of the classifier to recognize only the classes it was trained on, the 356 

classification result will be given as a probability of that sample belonging to the assigned 357 

class. If the user is then unsure of the assignment, it can be visually confirmed. An example 358 

of this application and output is given in Appendix C. 359 

3. Results/Discussion 360 

Using the methodology described in the previous section, 28096 models were evaluated in 361 

the 5-fold cross-validation. Results (log-loss and standard deviation) for the best combination 362 

of hyperparameters and pre-processing techniques for each different model are presented in 363 

Figure 4. 364 
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 365 

 366 

Figure 4 - Best performance found within the gridsearch for each evaluated algorithm, 367 

namely Random Forests (RF), Support Vector Machine Classifier (SVC), Logistic 368 

Regression (LR), K-Nearest Neighbours (kNN), Decision Trees (DT), Gaussian Naive Bayes 369 

(GB),  considering the best combination of hyperparameters and pre-processing techniques 370 

- the baseline correction, Standard scaler, Principal Component analysis (PCA) and (Naive) 371 

oversampling. The log-loss shown here is the mean of the five results (cross-validation). The 372 

correspondent standard deviation is also presented.  373 

 374 

For each simulation, a more detailed table can be found in Appendix D (paths can be found 375 

in Appendix A). Analyzing the GridSearch, the seven most promising models, based on the 376 

proposed metrics, were: LR with baseline correction; Sigmoid NN with baseline correction, 377 

standard scaler, and oversampling; Sigmoid NN with baseline correction and standard 378 

scaler; SVC with linear kernel, baseline correction, and oversampling; SVC with rbf kernel, 379 

baseline correction, and oversampling; RF with baseline correction, standard scaler, and 380 
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oversampling; kNN with baseline correction and PCA. The reader can refer to the 381 

“gridsearch” subfolder in the project repository for further details. 382 

The pre-processing combination that improved the performance was different for each 383 

model. For instance, SVC did not benefit from PCA, while kNN, DT, and GB did.  384 

When comparing several models with and without PCA, most of them present little scoring 385 

difference when PCA is applied. Meanwhile, we verified significant differences in the learning 386 

time. For example, baseline + oversample took around 5 hour to run, whereas baseline + 387 

pca + oversample took about 17 min. It should be noticed, however, that this is not a 388 

detailed picture of which algorithm could benefited from PCA, but an experimental evidence 389 

to affirm that future analyses, mainly when they involve the comparison of several 390 

algorithms, can be done with PCA (99%) without significant loss of information but with a 391 

saving time bonus. All grid search and MCCV (next) simulations have their time computed 392 

and stored in the file “time.csv” in the “results” project‟s folder.  393 

Previous results suggested the use of peak smoothing techniques over the spectra (da Silva 394 

et al. 2020; Zimmermann et al. 2013). In our case, however, a Savitzky-Golay filter did not 395 

improve the performance of any model. For this reason, the procedure was not included in 396 

the project. Such a phenomenon probably happens because smoothing peaks favours 397 

experts‟ visual inspection, while in a pattern recognition this is likely to be irrelevant. 398 

The next step was to subject the most promising models to an MCCV in order to validate the 399 

consistency of their performances when randomness is allowed. The resulting histogram of 400 

each model is presented in Figure 5. 401 
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 402 

Figure 5 - Cross-entropy log-loss for the seven most promising models: Logistic Regression 403 

with baseline correction; SVC with linear kernel, baseline correction, and oversampling; SVC 404 

with rbf kernel, baseline correction, and oversampling; kNN with baseline correction and 405 

PCA; RF with baseline correction, standard scaler, and oversampling; Sigmoid NN with 406 

baseline correction, standard scaler, and oversampling; Sigmoid NN with baseline correction 407 

and standard scaler 408 

Overall, the seven models had a decrease in performance (increased log-loss) but it could 409 

be said that they are, in fact, robust against randomness. Even though the results indicate 410 

that kNN and RF are the worst models, only by looking at these results it is not possible to 411 

choose the best model. To extend the analysis, the authors examined their accuracies and 412 

the results were very similar between models, so no further conclusion could be made. 413 

Considering the methodology proposed by (Renner et al., 2019), which was also used by 414 

(Kedzierski et al. 2019), we evaluated, for each model, how many classes were “working 415 
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well” (sensitivity greater than 75%) and equal conclusions were possible. Therefore, since 416 

none of these metrics provided clear boundaries for a final decision, we shall take into 417 

account Occam's Razor, which states that “the simplest model that fits the data is also the 418 

most plausible” (Abu-Mostafa et al., 2012, p. 167). Appropriately, SVC with a linear kernel 419 

was chosen as the final hypothesis. The reader can refer to the “results/graphics” subfolder 420 

in the project repository for further graphs in this matter. 421 

More complex, non-linear models, such as neural networks, can be tuned to fit the data well. 422 

Nonetheless, if the data were collected under different circumstances, or other pre-423 

processing techniques or parameters were changed, this would cause minor changes in the 424 

final performance of every model. The neural networks, for instance, would probably still 425 

perform well, but there would be many more hyper-parameters to tune again in order to 426 

obtain optimal results. Linear SVC has only one such parameter (C) that could be readily 427 

tuned in case new reference samples or a whole new training set was provided. Having 428 

considered this, SVC is expected to perform efficiently with low tuning and prediction times. 429 

Additionally, regarding the similarity in the performance of distinct models under various 430 

criteria, it is the authors‟ opinion that the “ideal theoretical structure” of the data is indeed 431 

linearly separable.  By “ideal theoretical structure” of the data, we mean: no error in data 432 

labeling, materials without wear, and all micro-plastic polymers well represented, thus we 433 

conjecture that under FTIR the microplastics exhibits an almost linear pattern, with linearity 434 

suffering small violations due to the presence of these “non-ideal elements”. Another 435 

important remark is that our model improved performance when combined with oversample 436 

technique, agreeing with the fact that in an imbalanced problem, a SVC classifier can 437 

produce suboptimal models that are biased toward the majority class (He, H., Ma, Y., 2013, 438 

p. 83). Lastly, Linear SVC can be implemented using the LIBLINEAR library, which is 439 

capable of handling large data sets (Fan et al., 2008). Therefore, we expect that the model 440 

could be implemented in a massive dataset, in which we expect similar results3. 441 

Since the methodology describes supervised learning procedures, it can be expected to 442 

observe where the algorithm makes mistakes when tested on a validation set. This is 443 
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possible by looking at the confusion matrix shown in Figure 6, generated by averaging 444 

results obtained for every split in the MCCV for the selected model.  445 

 446 

 447 

Figure 6 - Confusion Matrix for the results of MCCV for the final hypothesis. Each row 448 

represents the true class, meanwhile each column is the class predicted proportion, on 449 

average, by baseline_over_SVC_linear_100.0. Ideally, the matrix should be an identity 450 

matrix (perfect match).  451 

A confusion matrix compares the true class in the validation set with the class predicted by 452 

the algorithm for the same sample (Ballabio et al., 2018). Considering this, it can be 453 

observed, for instance, that samples from the “Cellulose Acetate” class were predicted to 454 

belong to their true class every time, whereas for the “Cellulose Like” class, 9.6% of all 455 
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predictions were incorrectly assigned to the “Poly(ethylene) + fouling” class and 1.1% were 456 

incorrectly assigned to the “Poly(ethylene) like” class. The same kind of error was observed 457 

by Kedzierski et al. (2019) using a kNN classifier. Since the algorithm is trained to distinguish 458 

between classes by identifying patterns in the provided dataset, which only contains 459 

information on spectral features and polymer classes, this could indicate similarities between 460 

spectra of both classes. As pertinently pointed out by the referred authors, spectral bands 461 

associated with aging and biofouling of microplastics could be the cause, with a 462 

preponderance of the latter. A visual examination of spectra from the “Poly(ethylene) + 463 

fouling” and “Cellulose Like” classes was done to check for specific bands related to these 464 

changes in their molecular fingerprint. However, it was not possible to visually establish any 465 

specific relations that could be causing the algorithm to mistake both classes, as spectra had 466 

too many overlapping peaks. We emphasize that the results are promising, nonetheless. 467 

It may be clearer to depict faults made by the algorithm by observing the “Ethylene 468 

Propylene Rubber” (EPR) class, where the algorithm wrongly predicted the “Poly(ethylene)” 469 

(PE) and “Poly(propylene)” (PP) classes. This is comprehensible since EPR is made of the 470 

same monomers as PE and PP and share their chemical characteristics, hence, their 471 

spectral features. For classes such as “Poly(ethylene) like”, “Poly(ethylene) + fouling” and 472 

“Poly(propylene) like”, the main error made by the algorithm was to assign samples truly 473 

belonging to these classes to their regular counterparts (i.e. “Poly(ethylene)” and 474 

“Poly(propylene)”.  475 

In the case of “Poly(propylene) like”, which had one of the worst results, most incorrect 476 

predictions (7,2%) were made to the “Poly(propylene) class. Since they were originally 477 

assigned to these classes by an expert due to their spectral similarities, this could be 478 

expected - and, in fact, was also observed by Kedzierski et al (2019). However, despite 479 

having similar spectra, the algorithm was able to differentiate them with considerable 480 

accuracy, showing better class results than the k-nearest neighbour (k-NN) method originally 481 

proposed by the referred authors. Further research on the quality of the data can respond 482 
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more assertively if errors of the algorithm are indeed mistakes or indicative of a human error 483 

in labelling the data. The class “Morphotype 2” was mistaken mostly with “Poly(amide)”, 484 

however, it returned excellent results meaning this grouping is probably very concise and 485 

should contain samples from remarkably similar polymers, or even, mostly samples from a 486 

single polymer type. It is also unlikely that this polymer is one of the others already in this 487 

database.  488 

Concerning the oversample methodology, adding new samples in the distribution of the 489 

training set can “impose non-uniform error costs, causing the learner to be biased in favour 490 

of predicting the rare class” (He and Ma, 2013, p. 37). As we can see in Figure 6, the 491 

proposed model does not suffer from this problem, since the less representative classes are 492 

not “stealing” sensitivity of the more representative ones, like (PE) or (PP).  This indicates, 493 

within the results shown, that the model properly handled the unbalanced dataset problem. 494 

After these considerations, the sensitivity calculated from results shown in Figure 6 is 495 

presented in Figure 7, along with results from a previous paper and the final test results. 496 

 497 

 498 
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Figure 7 - Sensitivity for every class in the dataset according to results published by 499 

Kedzierski et al. (2019) using a k-Nearest Neighbour algorithm, Support Vector Machine 500 

Classifier (SVC) in the methodology proposed by Kedzierski et al. (2019), SVC in the Monte 501 

Carlo Cross-Validation and SVC in the final test. 502 

Assuming that the dataset is statistically representative, the Final test results are what could 503 

be approximately expected of the performance of the algorithm in “real” conditions, that is, 504 

with the application of the deployed model to non-labeled or unknown spectra. Contrarily to 505 

the results given by the MCCV and the methodology adapted from Kedzierski et al. (2019) 506 

(refer to section 2.7. for a comparison between methodologies), which used the entire 507 

dataset for training, having test samples used for training even if in different 508 

splits/simulations, the test set in this case was completely new to the algorithm, giving an 509 

“unbiased” prediction. 510 

All methodologies had comparable sensitivities, with those from Kedzierski et al. (2019) 511 

being lower for some classes (Figure 7). Nonetheless, the referred author had shown that 512 

conventional machine learning algorithms could be powerful tools for classifying 513 

microplastics spectra. Interestingly, classes that did not perform as well with the kNN 514 

algorithm, like “PEVA”, “Poly(ethylene) like” and Poly(propylene) like” also had worse 515 

sensitivities with SVC in the MCCV, but presented a slight improvement. In general, this 516 

comparison indicates that Support Vector Machine Classifiers offer more appropriate 517 

classification boundaries for this specific task with even better scalability, since kNN 518 

algorithms are highly computationally demanding with large datasets (Gutierrez et al., 2016). 519 

The “Cellulose like” class presented no sensitivity, however. Among 240 samples, 4 of them 520 

belong to this class, therefore this undesirable event is plausible to happen and should not 521 

be interpreted as the actual performance for that class. In this regard, we expect that more 522 

samples in this class could improve the model performance.  523 
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Assuming the data is large enough, independent and identically distributed (i.i.d), the overall 524 

accuracy (non class-specific) of the model (which can be given with a 95% probability) is 525 

approximately   91.25% +/- 3.6%  (Mitchell, 1997, p. 132, formula 5.1). The condition “large 526 

enough data” ensures that the sample mean will be approximately normal, due to the Central 527 

Limit Theorem (Mitchell, 1997, p. 142). A more conservative confidence interval without such 528 

assumption can be computed by using Hoeffding's Inequality (Hoeffding, 1963), which can 529 

establish the following bound for the generalization accuracy (Abu-Mostafa, 2012, p. 40): 530 

                                         √
 

  
   

  

 
, 531 

with probability greater than      where   is the number of final models to be evaluated in 532 

the test set,        is the generalization accuracy of the model  ,        is the in-sample 533 

accuracy, similarly         the generalization error (the ratio of misclassified labels) and 534 

       the in-sample error. With             and  = 0.05 and assuming the data is i.i.d, 535 

the confidence interval is 91.25% +/- 8.8% with 95% of probability. 536 

In regard to the model tested on the Jung dataset, a detailed score is presented in Figure 8. 537 

The lower sensitivities for “LDPE” and “Mixture” are attributed to errors similar to those found 538 

in the confusion matrix in Figure 6.  539 



26 

 540 

Figure 8 - Detailed score for the MCCV applied to the Jung dataset considering five classes: 541 

High-density Poly(ethylene) (HDPE), Low-density Poly(ethylene) (LDPE), a mixture of PE 542 

and PP, Poly(propylene) (PP) and Unknown 543 

The model‟s cross-entropy log loss was 0.24554 (with a standard deviation of 0.0662) and 544 

the accuracy was 94% (with a standard deviation of 0.01209). This result is in accordance 545 

with those from the Kedzierski dataset in the MCCV (shown in Figure 5), although their 546 

comparison is not straightforward since the number of classes is different. The excellent 547 

performance of the Linear SVC classifier on a different dataset is another evidence of the 548 

linear separability of MP spectra. 549 

 550 

4. Conclusion 551 

The present study was able to demonstrate the performance of different machine learning 552 

classification algorithms to the classification of ocean microplastics using previously 553 

identified samples‟ ATR-FTIR spectra as input data. For this purpose, we proposed log-loss 554 



27 

to measure models‟ multi-class probabilities, an approach that has not been used previously 555 

in machine learning methods for microplastics characterization. 556 

We presented a machine learning combination not yet proposed for classification of 557 

microplastics, choosing linear SVC as the final classifier after thoroughly evaluating multiple 558 

conventional classification algorithms. The rigorous pipeline methodology described in this 559 

paper is essential to avoid introducing bias in the model training and evaluation, which 560 

supports the selection of the algorithm and substantiates the performance obtained.  561 

The best pre-processing of the raw spectra was also evaluated for each classifier. We 562 

identified that for the selected model, only a baseline correction and a naive oversampling 563 

was more effective. 564 

Linear SVC is well suited for scaling up. After being trained, the classifier can be directly 565 

deployed and applied to classify unknown spectra. The user doesn‟t have to upload the 566 

database or train the SVC. Given a spectra, the proposed model would return a probability 567 

score for each class, rather than simply a deterministic output. This procedure seems to be 568 

more realistic with practice, since the researcher may have greater or lesser confidence in 569 

the resulting model‟s evaluation, depending on the probabilities returned. 570 

This study attests for the use of this methodology applied to ATR-FTIR data. In many cases, 571 

other vibrational spectroscopic techniques may have been used, namely Raman and 572 

microspectroscopy. Despite the new challenges these techniques impose, such as particle 573 

morphology, moisture, and blank spectra, in the case of an FPA detector, due to the 574 

similarities between them, similar results could be expected. This hypothesis could be 575 

verified by applying the same evaluation methodology described in this paper. 576 

Machine learning models work within the learned database, which means that the database 577 

must be representative of the required task. Thus, it should be applied with caution to 578 

spectra collected under different circumstances. Beyond that, the major limitation of the 579 

learning approach is that the final model cannot predict samples for a class it does not know, 580 
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or doesn‟t know well, which could restrict the full deployment of this procedure, seeing that 581 

polymers can be of many kinds. 582 

The disproportionate amount of samples in some classes in the dataset was addressed in 583 

this study, but not solved. Regardless of the method adopted, “artificially balancing the 584 

training distribution may help with the effects of class imbalance, but does not remove the 585 

underlying problem" (He and Ma, 2013). In other words, the most appropriate solution to the 586 

problem needs to be solved through some specialized algorithm, which does not seem to be 587 

the case, since the statistical support will be missing anyway, or through the acquisition of 588 

new data, which seems to be the critical point to solve the issue of the unbalanced dataset 589 

and even improve the results in this and future works. 590 

Data sharing is necessary for the improvement of machine learning algorithms as it 591 

increases the size and diversity of training databases. Nonetheless, the authors came 592 

across some obstacles, such as: different file formats, huge files with lots of redundant 593 

metadata, missing class labels on identified spectra and data that were already pre-594 

processed. We recommend the publication of raw spectra, as the prior pre-processing may 595 

introduce bias. The JCAMP-DX file format is a standard defined by the The International 596 

Union of Pure and Applied Chemistry (IUPAC) and is considered the optimal format for 597 

sharing spectroscopy data. Also, providing the polymer class labels of every spectra should 598 

reduce redundant work and speed the collective learning process. 599 

Since identification is a critical step in the study of these contaminants, improving confidence 600 

and speeding up the process are crucial to the advancement of the area. Despite not yet 601 

being able to stand alone as a method to automatically classify every conceivable sample, 602 

given its limitations, this study presents robust statistics to support the utilization of machine 603 

learning methods to the problem of automatic classification of microplastics. 604 

 605 

1 Comparing with Kedzierski et al., 2019 dataset, we deleted 12 spectra, since they were not 606 

available as raw data.. Spectras related to Cellulose Acetate are also unavailable in the raw 607 

data, but we requested to Kedzierski, which gently provided us the data. 608 
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2 Quotes were used here because, despite every effort to minimize bias, machine learning 609 

models cannot really be unbiased. 610 

3 As long as this massive dataset adequately represents the distribution of MP classes in a 611 

way that the imbalance is less deleterious. Even in a scenario with little data, Linear SVC 612 

without oversample is still highly competitive. 613 
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