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Abstract 1 

It is important for athlete and public health that we continue to develop our understanding of 2 

the effects of exercise and nutrition on bone health. Bone turnover markers (BTMs) offer an 3 

opportunity to accelerate the progression of bone research by revealing a bone response to 4 

exercise and nutrition stimuli far more rapidly than current bone imaging techniques. However, 5 

the association between short-term change in the concentration of BTMs and long-term bone 6 

health remains ambiguous. Several other limitations also complicate the translation of acute 7 

BTM data to applied practice. Importantly, several incongruencies exist between the effects of 8 

exercise and nutrition stimuli on short-term change in BTM concentration compared to long-9 

term bone structural outcomes to similar stimuli. There are many potential explanations for 10 

these inconsistencies, including that short-term study designs fail to encompass a full 11 

remodeling cycle. The current article presents the opinion that data from relatively acute 12 

studies measuring BTMs may not be able to reliably inform applied practice aiming to optimise 13 

bone health. Important factors to consider when interpreting or translating BTM data are 14 

discussed. 15 
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Introduction 25 

There is a growing need within sports and exercise science to improve our understanding of 26 

how exercise and nutrition influence bone health. Osteoporosis is a disease characterised by 27 

low bone mineral density (BMD) and millions suffer osteoporotic fracture each year (primarily 28 

the elderly and post-menopausal women), costing $17.9 and £4 billion to US and UK 29 

healthcare systems, respectively (Clynes et al., 2020). Low BMD is also prevalent in 30 

endurance-based athletes, in 28% of adolescent female runners  (Barrack et al., 2008) and 31 

89% of male masters cyclists (Nichols & Rauh, 2011), increasing the risk of bone injury and 32 

early onset osteoporosis. For example, it has been shown that up to 21% of female distance 33 

runners experience at least one bone stress injury per year (Barrack et al., 2014; Hutson et 34 

al., 2021b; Scofield & Hecht, 2012). Exercise and nutrition are known to influence bone health; 35 

however, it takes at least several months for stimuli to result in observable change in bone 36 

mass using the gold standard method of dual-energy x-ray absorptiometry (DXA) (Ahola et 37 

al., 2009). Therefore, high quality studies measuring bone using DXA bear a high time 38 

demand, the effects of specific practices are difficult to categorically confirm, and research 39 

progression is slow. Bone turnover markers (BTMs) offer the potential to reveal bone 40 

responses immediately post-exercise (acute) and within days (short-term) of a given exercise 41 

or nutrition intervention in the rested state (Smith et al., 2021). For this reason, it is tempting 42 

to consider that BTMs may be used to accelerate bone research in sport and exercise science. 43 

This article provides an important opinion on the extent to which acute and short-term BTM 44 

responses to exercise and nutrition intervention may be relied upon to inform applied practice 45 

aiming to optimise bone health during developmental and older years in athletes and non-46 

athletes.  47 

Bone turnover markers 48 

BTMs are typically products or signalling molecules released into the circulation during one or 49 

more stages of osteoblastic bone formation or osteoclastic bone resorption (Shetty et al., 50 

2016), see Table 1 for more detail on specific markers. They are often measured in plasma, 51 
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serum or urine to determine the rate of these processes on a systemic level at the time of 52 

measurement. The fact that studies measuring BTMs can be much shorter in duration 53 

compared to studies using imaging techniques allows for tighter control of extraneous 54 

variables, reduces participant burden and lowers the risk of participant dropout. Nevertheless, 55 

several laboratory visits are required under strict control. BTMs also provide mechanistic 56 

information regarding bone cell activity and data may be used to inform and justify larger scale 57 

long-term intervention studies. Furthermore, BTMs do not necessarily incur the same 58 

equipment purchase and maintenance costs of radiological scanning. These are some of the 59 

factors that have led to a growth in the use of BTMs in sport and exercise science; however, 60 

ambiguity remains over their association with bone mass change (Bennell et al., 1997). 61 

A bone remodeling cycle begins with osteoclastic bone resorption lasting up to 27 days, 62 

followed by several days of reversal until coupled osteoblast activity forms new osteoid bone 63 

in the resorptive cavity, which then becomes mineralised, with the entire cycle lasting >100 64 

days (Agerbæk et al., 1991). BTMs provide a snapshot of the rate of bone formation and 65 

resorption at the time of measurement and typicalpre-test-post-test study designs are much 66 

too short in duration to capture a complete cycle at any remodeling site initiated during the 67 

intervention. Outcomes will also be influenced by remodeling cycles that were initiated prior to 68 

study entry. Detailed reviews of the many available BTMs and associated limitations exist 69 

elsewhere (Hlaing & Compston, 2014; Vasikaran et al., 2011). BTMs are measured 70 

systemically whereas bone remodeling is highly localised and site-specific, at least in 71 

response to mechanical loading (Hart et al., 2017), and some can lack specificity to either the 72 

process of formation or resorption (or even bone tissue itself) (Table 1). Unlike the loss or gain 73 

of bone tissue measured via imaging techniques, there is no consensus as to what constitutes 74 

a meaningful change in any BTM in response to exercise or nutrition intervention. Several 75 

factors are known to influence the accurate measurement of BTMs, including circadian and 76 

seasonal variation, diet and exercise, disease and medication, hormonal status, intrinsic day-77 

to-day variations, renal function, blood flow, and sampling procedures and type (blood or urine) 78 
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(Hlaing & Compston, 2014). A summary of BTMs most frequently used in the studies cited 79 

herein is provided in Table 1; however, for the purpose of this article, findings will mostly be 80 

described in terms of the processes of bone formation and resorption rather than the specific 81 

marker(s) measured. 82 
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Table 1: A summary of several bone turnover markers commonly used in exercise and nutrition research. 

Marker (abbreviation) Origin Main activity Comments 

Bone formation 

Amino-terminal 
propeptide of type I 
collagen (P1NP) 
 

Carboxy-terminal 
propeptide of type 1 
collagen (PICP) 

N-terminal extension 
peptide of type 1 
collagen precursor 
molecule  
 
C-terminal extension 
peptide of type 1 
collagen precursor 
molecule 

P1NP and P1CP are both cleaved from newly 
synthesised type 1 collagen following secretion 
into the extracellular space and released into the 
bloodstream.  

P1NP is the international reference standard marker of 
bone formattion and the most used marker of bone 
formation in the studies cited in the current article. 
 
P1NP and P1CP are formed following the synthesis of 
newly formed type 1 collagen in other tissues (e.g., skin, 
dentin, cornea, vessels, fibrocartilage, and tendons) as 
well as bone. 

Osteocalcin (OC) Non-collagenous protein 
secreted by osteoblasts. 

OC encompasses both carboxylated (cOC) and 
undercarboxylated (ucOC) forms. cOC 
osteocalcin binds to hydroxyapatite and 
increased concentrations have previously been 
used as a marker of increased bone formation. 
ucOC does not bind to hydroxyapatite. It is 
predominantly released into the circulation and 
is proposed to have various endocrine functions. 
It has been used as a marker of bone formation, 
such that increased levels reflect decreased 
bone formation. 

cOC fragments bound to hydroxyapatite within the bone 
matrix are released into the circulation during bone 
formation.  
 
It is suggested that ucOC is involved in several processes 
in an endocrine manner, including glucose homeostasis. 
 
OC may be measured in its various forms, or as total OC, 
but it may be that none are markers of bone formation 
specifically, and may be influenced by bone formation, 
resorption, and several other metabolic processes. 

Bone alkaline 
phosphatase (BAP) 

Bone specific isoform of 
a membrane-bound 
glycoprotein. Found on 
outer surface of 
osteoblasts. 

Hydrolysis of mineralisation inhibitor 
pyrophosphate and adenosine triphosphate, 
forming inorganic phosphate accumulation and 
promoting hydroxyapatite mineralisation. 

BAP is considered a highly bone specific marker of bone 
formation, however, available assays exhibit some cross-
reactivity with other alkaline phosphatase isoforms (e.g., 
liver). 

Bone resorption 
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 83 

Carboxyterminal 
telopeptide of type 1 
collagen, β-isomer (β-
CTx) 
 

Amino-terminal 
telopeptide of type 1 
collagen (NTx) 

Telopeptides found on 
the C-terminal and N-
terminal of tropocollagen 
molecules. 

Form crosslinks between peptides within, or of 
adjacent, tropocollagen molecules and are 
cleaved and released into the circulation during 
collagen breakdown. 

β-CTx is the international reference standard marker of 
bone resorption and the most used marker of bone 
resorption in the studies cited in the current article. 
 
β-CTx and NTx are involved in crosslink formation in other 
collagen-based structures. 
Other collagen telopeptide bone markers exist that reflect 
different types of crosslinks (e.g., carboxyterminal cross-
linked telopeptide of type 1 procollagen; 1CTP) and 
various isoforms of specific crosslinks (e.g., α-CTx). 

Pyridinoline (Pyd or 
Pyr) 
 

Deoxypyridinoline 
(Dpd or D-Pyr) 
 

Pyridinium crosslink 
compounds formed 
during extracellular 
maturation of collagen 
fibrils 

Pyd and Dpd mechanically stabilise collagen by 
bridging collagen peptides and are released into 
the circulation during resorption as mature 
crosslinked collagens are broken down. 

Pyd and Dpd are formed in various other tissues of the 
body that also contain collagen. 
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Effects of exercise on bone 84 

The effects of habitual exercise on bone health are well documented (Santos et al., 2017). 85 

Cross-sectional (Nilsson et al., 2009; Tenforde & Fredericson, 2011; Varley et al., 2021) and 86 

longitudinal intervention studies (Evans et al., 2012; Nilsson et al., 2012; Weidauer et al., 87 

2012) have repeatedly shown the benefit of weight bearing exercise (including running) on 88 

BMD and bone structure. However, the BTM response to running has been shown to be 89 

variable, with both bone formation and resorption markers shown to increase (Scott et al., 90 

2011), decrease (Zittermann et al., 2002) and remain unchanged (Nishiyama et al., 1988) in 91 

the hours following a running bout. Moreover, a recent systematic review and meta-analysis 92 

showed no change in commonly studied BTMs in response to running (Civil et al., 2023). 93 

Systematic reviews of the literature have concluded that non-weight bearing exercise (cycling 94 

and swimming) does not benefit BMD (Gomez-Bruton et al., 2016; Nagle & Brooks, 2011; 95 

Olmedillas et al., 2012). Non-weight bearing exercise interventions tend to result in a moderate 96 

post-exercise increase in bone resorption; however, there is significant variability in this 97 

response with effect sizes indicating a very low certainty (Dolan et al., 2020). For example, 98 

bone formation has been shown to increase (Herrmann et al., 2007; Rong et al., 1997), 99 

decrease (Herrmann et al., 2007), and remain unchanged (Guillemant et al., 2004; Pomerants 100 

et al., 2008) in response to ergometer-based cycling.  101 

The reason for the varied response could be multi-factorial and include the following: lack of 102 

control over diet or exercise, history of physical activity, population studied, other tissues 103 

releasing studied markers, systemic measure of tissue which exhibits site-specific 104 

adaptations. Another reason for the inconsistency in the findings could be the time taken for 105 

bone markers to significantly increase in concentration following an exercise bout being 106 

greater than the time-period of follow-up (typically a maximum of 72 hours). Alternatively, an 107 

insufficient period of pre-intervention standardisation may have been employed, such that the 108 

increase or decrease in BTMs being captured during the measurement window could have 109 

been activated by a stimulus incurred well before the start of the study. The inability of studies 110 
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to follow-up for longer than 72 hours is likely due to practical and logistical reasons. However, 111 

it could be theorised that the effects of an exercise bout are not evident until >72 hours-post 112 

intervention. For example, it is unlikely that bone formation marker P1NP would increase in 113 

the 72 hours post exercise because it is a marker of type 1 collagen deposition, which is 114 

unlikely to be formed and deposited in a short space of time (Dolan et al., 2020). The observed 115 

increase in P1NP seen in some studies could be a result of leakage from other tissues 116 

containing collagen (Civil et al., 2023) or due to changes in plasma volume (Brahm et al., 117 

1996) that are not typically accounted for. Therefore, literature may be making erroneous 118 

conclusions regarding the effects of acute exercise on bone health due to the methodologies 119 

employed not adequately capturing the full bone metabolic response. 120 

Effects of low energy availability and low carbohydrate high fat diets on bone 121 

Nutritional practices can also influence bone health and the effects of various interventions on 122 

BMD and BTMs have been investigated (Palacios, 2006; Sale & Elliott-Sale, 2019). Energy 123 

and macronutrient (particularly carbohydrate) demands of athletes vary between and within 124 

days and this is a key driver of dietary intake, such that a degree of periodisation in energy 125 

and carbohydrate intake is typically recommended (Stellingwerff et al., 2019). Planned and 126 

unplanned bouts of low energy availability (LEA) and low carbohydrate diets (with or without 127 

high fat) have been observed in various groups of athletes; thus, the bone response has been 128 

of specific interest. It has been hypothesised that LEA and low carbohydrate high fat (LCHF) 129 

have detrimental effects on bone health (Garofalo et al., 2023; Hutson et al., 2021a). This 130 

raises ethical issues (in addition to the practical difficulties) of prolonged dietary control and 131 

standardisation of LEA and LCHF. Therefore, when measuring bone imaging outcomes in 132 

humans, investigations into LEA and LCHF have tended to employ observational or cross-133 

sectional designs (Garofalo et al., 2023; Hutson et al., 2021a). No gold standard measure 134 

exists for LEA, so surrogate markers of LEA such as menstrual function or cumulative risk 135 

score are utilised for group comparisons (Ackerman et al., 2011a; Heikura et al., 2018); 136 

creating a demand for highly controlled short-term studies to support conclusions. In contrast, 137 
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the effects of various nutrition interventions hypothesised to improve bone health (e.g., 138 

increased protein, vitamin D, and calcium intake) have been extensively examined in well-139 

controlled prospective studies utilising bone imaging techniques (Mitchell et al., 2015). Studies 140 

have begun to characterise the BTM response to <7 days of LEA or LCHF in men and women 141 

(Anton-Solanas et al., 2016; Clayton et al., 2020; Ihle & Loucks, 2004; Murphy et al., 2021; 142 

Papageorgiou et al., 2017; Papageorgiou et al., 2018; Zanker & Swaine, 2000) and these will 143 

be the focus of this section.  144 

It is often described that short (decreased bone formation and, sometimes, increased bone 145 

resorption in the resting and fasted state) and longer-term bone outcomes to LEA (lower BMD 146 

and differences in cortical bone geometry and trabecular microarchitecture) are both 147 

detrimental to bone health (Hutson et al., 2021a; Murphy et al., 2021; Papageorgiou et al., 148 

2017). However, the following evidence suggests that there is an array of confounding factors 149 

that impact this congruency. For example, men are more robust in defending against the 150 

effects of a standardised bout of short-term LEA compared to women (Papageorgiou et al., 151 

2017). Nevertheless, similarly high rates of LEA and low BMD exist in men and women 152 

participating in sports emphasising leanness and there is growing evidence to support that 153 

male athletes with LEA have impaired bone health (De Souza et al., 2019; Mountjoy et al., 154 

2023; Viner et al., 2015). Short-term LEA induced by treadmill running may not impact bone 155 

formation and resorption (Papageorgiou et al., 2018). However, a large body of evidence 156 

shows that female distance runners who exhibit symptoms of chronic LEA have impaired bone 157 

health (Hutson et al., 2021a). Carbohydrate restriction, independent of LEA, has been shown 158 

to decrease bone formation and increase bone resorption within 6 days of a LCHF diet in elite 159 

racewalkers (Fensham et al., 2022). Comparatively, a recent systematic review in overweight 160 

and obese populations found no evidence of negative effects of longer-term LCHF on BMD, 161 

although existing human studies are lacking in robust design and statistical power (Garofalo 162 

et al., 2023). There are also no robust long-term data in athletic populations by which to 163 

compare. Furthermore, 4 days caloric restriction of -630 ± 50 kcals.day-1 from estimated 164 
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energy requirement reduced bone formation but had no effect on bone resorption in healthy 165 

young women (Ihle & Loucks, 2004). However, 12 months caloric restriction of -280 ± 29 166 

kcals.day-1  from estimated energy requirement had no effect on bone formation but increased 167 

bone resorption and caused loss of BMD  in young healthy men and women, with no difference 168 

between sexes (Villareal et al., 2016). A far greater energy deficit can be accumulated over 169 

more prolonged periods of energy restriction (e.g., 12-months compared to 4-days) even if the 170 

daily deficit is less severe, and this likely contributed to the differences identified between the 171 

studies by Ihle & Loucks and Villareal and colleagues. The comparisons presented suggest 172 

that whilst short-term studies measuring BTMs may have the potential to identify a bone 173 

response, they do not reliably predict how bone mass (or even bone metabolism) will change 174 

during a similar but more prolonged intervention and should not be used as evidence upon 175 

which to base applied practice aiming to optimise bone health. 176 

Findings of impaired bone health in women exhibiting symptoms of severe chronic LEA are 177 

highly consistent (Ackerman et al., 2011b; Ackerman et al., 2012; Hutson et al., 2021a; Singhal 178 

et al., 2019). This does not necessarily mean that a decrease in bone formation and an 179 

increase in bone resorption in response to severe acute LEA (or LCHF) is detrimental. It is 180 

plausible that an acute and transient bout of LEA might accelerate bone adaptation by initiating 181 

greater resorptive activity which, provided adequate energetic recovery, may be followed by 182 

an equivalent increase in bone formation, as per a typical remodeling cycle. However, the 183 

typical pre-test-post-test design of acute studies fails to capture a complete bone remodeling 184 

response and energy status is fixed. 185 

A recent study haa performed repeated post-exercise BTM measurement for up to 3-hours 186 

(Fensham et al., 2022); however, it would be difficult to maintain appropriate standardisation 187 

for the duration of an entire bone remodeling cycle. Interestingly, Fensham and colleagues 188 

showed elevated post-exercise bone resorption for up to 3-hours following 6 days of LEA and 189 

LHFC compared to a control diet. It was suggested that these changes were unfavourable, 190 

but it is intriguing to consider the bone health result assuming an equal and opposite bone 191 
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formation response in following the days, weeks or months. In this view, parallels may be 192 

drawn with acute “train-low” strategies which have been shown to augment exercise stress 193 

and specific adaptations in muscle tissue provided daily energy status is not compromised 194 

(Hansen et al., 2005). A hypothetical benefit of carbohydrate or energy periodisation could 195 

help to explain why an observational study failed to show prospective losses in BMD over 12-196 

months in women exhibiting symptoms of long-term LEA (Singhal et al., 2019). There is also 197 

little evidence that intermittent fasting protocols negatively impact bone health and, on the 198 

contrary, some might even protect against bone loss during weight loss (Clayton et al., 2023). 199 

It is not clear exactly how long or how many samples would be required to characterise a full 200 

bone remodeling response to an acute stimulus of LEA (or indeed any nutrition or exercise 201 

stimulus), but it would likely become very expensive and difficult to maintain appropriate 202 

control and standardisation. Considering that months of repeat samples could be required, the 203 

time and cost benefit of measuring BTMs instead of using imaging techniques might all but 204 

disappear. 205 

Conclusion 206 

BTMs can be valuable tools for research and practice, particularly for monitoring an 207 

individual’s ongoing bone metabolic activity throughout a prolonged and consistent exercise 208 

or nutrition intervention. However, the opinion presented herein is that pre-post change in BTM 209 

concentration immediately following exercise or following several days of exercise or nutrition 210 

intervention should not be relied upon to inform applied practice, where the goal is to optimise 211 

bone health. A summary of the factors that should be considered when using and interpreting 212 

acute BTMs is presented in Table 2. Highly controlled short-term studies may still be useful to 213 

accelerate bone research by informing longer-term follow-up studies with greater efficiency. 214 

Regular measurement of BTMs in combination with imaging techniques during long-term 215 

prospective research will help to build a better understanding of how these markers relate to 216 

structural change in response to exercise and nutrition intervention. 217 
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Table 2: Considerations regarding the use and interpretation of bone turnover markers (BTMs) in 

applied exercise and nutrition research and practice. 

• Implement rigorous control measures and standardisation procedures for as long as feasibly 

possible preceding BTM measurement, considering the potential lasting influence of prior 

exercise or dietary practices on bone remodelling and the potential   

• There is no consensus regarding what represents a meaningful change in BTM 

concentrations 

• Longitudinal monitoring of BTMs (with as many repeat measurements as feasibly possible) 

should be preferred to cross-sectional or pre-post comparisons  

• Integrate BTM measurement with imaging techniques during longitudinal monitoring  

• Research aiming to make inferences regarding bone health should use imaging techniques 

for primary outcome measures 

• Avoid concluding a beneficial, detrimental or null effect of exercise or nutrition intervention 

based on BTM data alone 

• Avoid relying solely on BTM outcomes to inform applied exercise or nutrition practice aiming 

to impact bone health 

 218 
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