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ABSTRACT Position verification is essential in connected and autonomous vehicle technology to enable
secure vehicle-to-everything communication. Previous attempts to verify location information have used
specific hardware, traffic parameters, and statistical model-based techniques dependent on neighbouring
vehicles and roadside infrastructure and whose judgements can be influenced by untrustworthy entities.
Considering the back-and-forth communications during verification, these techniques are also unsuitable
in the dynamic vehicular networking environment. In this context, this paper proposes a self-reliant trust-
based position verification technique using dynamic geofencing, neural network, and Mamdani fuzzy
logic controller. The method uses vehicular dynamics, such as distance between the sender and receiver
vehicles, magnitude of the speed difference, and direction, to verify the trustworthiness of vehicle positions.
An experimental analysis of a dataset of simulated driving scenarios in MATLAB demonstrates that the
feedforward neural network records the highest direction classification performance at 99.8% in conjunction
with the centroid defuzzification method. Subsequently, further quantitative analysis, including the Receiver
Operating Characteristic curve with Area Under Curve and trust level distribution histograms, indicates that
the suggested classification model outperforms a random classifier and effectively identifies false position
data from the actual during trust computation.

INDEX TERMS Defuzzification, Fuzzification, Fuzzy logic, Geofencing, Location verification, Position
verification, Time of Flight, Time Difference of Arrival, Trust computation

I. INTRODUCTION

THERE is a growing dependability and demand for
location-based applications and services in connected

and autonomous vehicles (CAV) traffic environments. Such
services include emergency incident reporting, collision
avoidance systems, information geocasting, driver assistance
systems, and secure vehicle-to-everything (V2X) commu-
nications. Trustworthy location information ensures explicit
and timely decision-making, which improves road reliability
and safety. However, untrustworthy location information
can lead to collision risk, navigation errors, system safety
and human life compromise. Various location-based attacks
include position spoofing, replay attacks, Sybil attacks, and
false position dissemination caused by perception errors and
untrustworthy vehicles. However, this study focuses on false
position dissemination attacks. The researchers in [1], [2]
explored the effect of false position on ad hoc geographic
vehicular routing. The study results indicated reduced net-
work performance due to a drop in the packet delivery ratio

with an increase in the number of untrustworthy vehicles
with false positions. A similar study by [3] investigated
the effect of forged positions on channel utilisation, packet
delivery, and vehicle speed. The simulation results indicated
that untrustworthy positions might reduce vehicle speed due
to the perception of congestion on nearby roads, reduced
packet delivery, and increased packet collisions.

Previous studies have suggested solutions to verify the
position of vehicles in connected and autonomous vehicle
environments. According to [4], these solutions are classified
into hardware, traffic parameters, and statistical model-based
techniques, including received signal strength, plausibility
checks, distance bonding, and time of flight. A study by [5]
suggested a transferable belief model that verifies location
information for geocast routing in VANETS. Firstly, the
researchers used the tile-based verification model to ascertain
the location of the tiles within the transmission range.
After the verification, the researchers calculated the belief
of the presence of a vehicle as a neighbour. Simulation

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3453666

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE OPEN JOURNALS

results indicated adequate location verification in map-based
realistic environments. The researchers in [6] suggested an
anonymous and cooperative position verification framework
for basic safety messages (BSMs). The study implemented a
central location authority to verify the claimed vehicle posi-
tions based on nearby vehicle reports. Despite the promising
results, the centralised verification model is a limitation due
to the highly dynamic vehicular environment and depends
on nearby vehicle reports. Another study [7] suggested
a position verification model that implements the Time
Difference of Arrival (TDoA) multilateration method. A
receiver (observer) vehicle records the Time of Arrival (ToA)
for each post-crash notification message from the sender
three consecutive times along the trajectory transmission
range and computes the sender’s location using the TDoA
multilateration technique. The limitation of this study is that
there is an increase in false sender position estimates with an
increase in distance between the receiver and the sender. The
large distance gap between the sender and receiver delays
position estimation, rendering it appropriate for dense or
static traffic environments.

A previous study by [8] suggested a cooperative location
verification model based on the distance calculated using
the ToF for challenge-response messages between the sender
(verifier) and next-hop neighbour (prover). The sender veri-
fies the location of its neighbours by calculating the distance
to the prover using the ToF during the challenge-response
process. The prover then selects the next hop neighbour,
known as the cooperator, that verifies the location of the
prover using the same challenge-response architecture. The
limitation of this model is that it relies on nearby vehicles
during the verification and introduces a delay due to the
challenge response communications. A similar study by [4]
suggested using one-hop neighbour information to verify the
claimed position based on various plausibility checks and
the strength of the received signal in sparse environments.
Despite the reasonable performance of the model as per
the simulations, untrustworthy neighbours can corrupt the
majority opinion. Furthermore, in the absence of neigh-
bouring vehicles, the feasibility of the model is based on
the received signal strength measurements used to calculate
the distance; however, these are affected by obstacles and
surroundings. Recent studies advocate the implementation
of artificial intelligence in location verification for vehicular
networks. The researchers in [9] presented a model that uses
neural networks to verify location information based on the
Time of Arrival (ToA) measurements. Despite the promising
results of the above location verification models, the follow-
ing limitations illustrated in Fig.1 still exist, making them
infeasible in real-world vehicular environments.

1) Depend on nearby vehicles or infrastructure for ex-
ternal position validation, making them impractical
in isolated areas and susceptible to influence from
untrustworthy vehicles.

FIGURE 1: A graphical representation of the current limi-
tations within trust position verification models.

2) The receiver accepts false position data from trustwor-
thy and untrustworthy vehicles.

3) Both trustworthy and untrustworthy vehicles send mes-
sages to the network, which consumes network re-
sources.

4) The absence of a communication history for vehicles
that have recently joined the network makes it chal-
lenging to identify the trust level based on previous
communications.

Considering the recent drive towards trust computation in
vehicular ad-hoc networks, researchers are implementing
security solutions that evaluate the trust of vehicles [10].
These solutions are known for their ability to identify internal
attackers with untrustworthy intent even after passing the
identity check and require less computational resources [11].
Therefore, to address these position verification challenges,
this paper proposes a novel trust-based position verification
system that computes the trustworthiness of the position
vectors based on the information provided by the sender
and receiver. In brief, below are the key contributions of
this paper:

1) Examine various machine learning classification mod-
els to pinpoint the most effective technique for identi-
fying the direction of vehicles on the network.

2) Assess the effectiveness of various defuzzification
methods to determine the desirable fuzzy logic ap-
proach for the model.

3) Implementation of a Mamdani fuzzy logic controller
for assessing sender trustworthiness utilising positional
characteristics.

4) Conduct experiments to identify the effectiveness and
performance of the system in the presence of untrust-
worthy position data.

The remainder of this paper is organised as follows. Section
II critically reviews related literature on geofencing and
position verification. Section III presents the details of the
proposed position verification model using geofencing and
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fuzzy logic. Section IV discusses the performance evalua-
tion considering different simulation setups and analysis of
results. Section V concludes the paper with future research
directions.

II. LITERATURE REVIEW
This section reviews literature subdivided into two subsec-
tions: geofencing and related work.

A. GEOFENCING
According to [12], geofencing 1 approach can be used to
identify occurrences of mobile objects within the vicinity
of geographical zones. The focal point of interest is the
location of one vehicle within each circular boundary formed
by a known radius. A vehicle is outside the Geofence if the
distance between it and the focal point exceeds the circle’s
radius. While the vehicle transitions, the radius remains
consistent, yet the point of interest, namely the vehicle’s
position, changes to form a dynamic geofence. Previous
researchers have defined the geofencing techniques such as
geofence area, proximity with point of interest and route
adherence [13], [14] for tracking and tracing systems such
as human activity monitoring, fleet and freight manage-
ment. Studies such as [15] implement static geofences in
Unmanned Aerial Vehicles where the destination is prede-
fined based on the known point of interest and the radius.
Geofencing within this study is used to identify the no-
fly zones based on the static information. A recent study
by [16] proposed a smart GPS geofencing system for various
tracing and tracking applications. Like earlier studies, this
system needs a predefined geofence area. However, given
the VANET environment’s dynamic nature, there is no static
point of interest because vehicle positions constantly change
along the network. Therefore, it is crucial to create dynamic
geofences around the receiver’s current location as the point
of interest and assess the sender’s location based on whether
it falls within the geofence area.

B. RELATED WORK
Countless studies have suggested techniques to improve the
accuracy and reliability of location information in vehicular
environments. An earlier study classifies these techniques
into position localisation 2 and position verification methods
3 Position localisation techniques estimate the positions. The
standard position localisation technique used in vehicular
networks is range-based localisation. It includes methods that
estimate distance and angle using received signal strength,
angle of (AoA) arrival, TDoA, and ToA [17]. These methods

1It is a technology that defines a boundary around a geographic area,
which enables software to trigger a notification when a device enters or
exits the defined area.

2position localisation known as secure localisation aims to protect the
accuracy and integrity of the computed node location.

3position verification known as location verification seeks to validate the
authenticity and trustworthiness of the reported location information.

deploy computation algorithms such as trilateration, multilat-
eration, and triangulation. Position verification validates the
estimated positions. The section below reviews the position
verification methods classified according to infrastructure
and infrastructure-less methods.

1) INFRASTRUCTURE-BASED POSITION VERIFICATION
Early researchers in [18] introduced the concept of verifiable
multilateration in position verification using roadside infras-
tructure. The study used four base stations (verifiers) placed
at different known locations on the network to calculate
the time of flight and distance from the vehicle based on
the challenge-response process using the distance bounding
protocol. This method is affected by the processing and
network delays when generating and sending an answer to
the challenge. Furthermore, real-world deployment would
require more base stations set up. A recent study by [19]
suggested a location verification system that relies on base
stations. In the study, the researchers calculate the unknown
locations of the vehicles from the nearby known base sta-
tion location coordinates using the conditional probability
distribution of the received signal strength measurements.
Researchers in [20] suggested a position verification model
that uses roadside units (RSUs) to verify node position
legitimacy using speed and time information. In the study,
the RSU performs a series of logical operations, such as
acceptance range verification, maximum allowable speed
check, and maximum density check, to verify the legitimacy
of position information. To avoid broadcasting false positions
from untrustworthy vehicles, researchers in [21] suggested a
location verification model that uses RSUs to perform the
localisation process. In the study, vehicles send localisation
requests to the network picked up by at least three nearby
RSUs. Each RSU calculates the distance from the vehicle,
and the three distance measurements are combined using the
triangulation technique to determine the vehicle’s position.

2) INFRASTRUCTURE-LESS POSITION VERIFICATION
In [22], researchers proposed an infrastructure-less scheme
for verifying position and velocity in vehicular networks,
which does not depend on external hardware or infras-
tructure. In this model, the sender initiates the process
by sending a ping message to the receiver, indicating its
intention to broadcast a message. The receiver responds with
an encrypted time token. Once the sender receives this token,
it broadcasts the message. The study uses round-trip propa-
gation time and distance comparisons to verify the accuracy
of distance and velocity values. Although the simulation
results are promising, the model faces significant delays due
to the back-and-forth communication between the sender and
receiver, posing a challenge in VANET environments where
communications are ephemeral and dynamic. Previously
discussed in section I is a challenge-response architecture co-
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TABLE 1: NOMENCLATURE

Notation Description

xs Sender’s latitude coordinate
ys Sender’s longitude coordinate
xr Receiver’s latitude coordinate
yr Receiver’s longitude coordinate
Dsr Distance between sender (xs, ys)

and the receiver (xr, yr) vehicles
r Geofence radius
Ss Sender’s Speed
Sr Receiver’s Speed
|Ssr| Magnitude of the Speed Difference
Qsr The angle of the sender from the

receiver
µWithinG(Dsr) Within Geofence
µSlightlyAG(Dsr) Slightly Above Geofence
µAboveG(Dsr) Above Geofence
µWithinSL(|Ssr|) Above Speed Limit
µSlightlyASL(|Ssr|) Slightly Above Speed Limit
µAboveSL(|Ssr|) Above Speed Limit

operative location verification suggested by [8]. The verifier
and cooperator send a challenge to the prover who claims
to be at a particular location on the network using radio
frequency. This model does not depend on infrastructure
but relies on the presence of nearby vehicles. A previous
study by [23] suggested a secure location verification trust
model based on fuzzy logic. It consists of a plausibility check
with two inputs: location verification using distance and
location verification using time. The output of this check is
a plausible level combined with the authentication level and
experience level inputs and fed into the fuzzifier to generate
an acceptable and non-acceptable trust level output. From
the experimental analysis, the model performance decreases
with an increase in untrustworthy vehicles.

III. METHOD-POSITION VERIFICATION USING
GEOFENCING AND FUZZY LOGIC
This approach employs a fuzzy logic model that is adaptable
to various scenarios to validate the sender’s position infor-
mation, as presented in Fig.2. We simulate the structure of
the basic safety message that is periodically exchanged by
vehicles in a vehicular environment, informing nearby vehi-
cles of its status using MATLAB driving scenario. The basic
safety message consists of sender ID, position coordinates,
speed, heading, message ID, and timestamp. Upon arrival of
the sender’s basic safety message, the receiver extracts the
sender’s position coordinates from the message along with
parameters such as distance, speed difference magnitude,
and angle of the sender from the receiver values. The
receiver then determines the sender’s direction to filter out
irrelevant notifications, avoiding unnecessary computations.
If the message is relevant, the receiver uses fuzzy logic
to compute the trustworthiness of the position coordinates.

FIGURE 2: Position verification model

This computation is based on the distance and magnitude
of the speed difference to assess the provided information’s
credibility. Finally, a threshold decision mechanism guided
by the trust distribution evaluates the trust output of the
fuzzy logic model to decide whether to accept or reject the
notification. The proposed model is based on the following
assumptions.

1) The messages are exchanged over a secure communi-
cation path.

2) The sender and receiver vehicles have a direct commu-
nication link with no obstacles, including buildings.

3) The maximum expected distance between the sender
and the receiver is 200 m.

4) All receiver vehicles travel at a maximum speed of
30mph.

The symbols used in the following subsections are explained
in Table 1.

A. DISTANCE AND SPEED CHECK
In this verification process, the system checks if the sender’s
position falls within the receiver’s transmission range by
calculating the change in positions of the sender (xs, ys)
and the receiver (xr, yr) over time to determine the distance
using Equation (1). The receiver’s current position is the
point of interest, with a maximum transmission range of 200
meters. We use the 200-meter range to manage the trade-
off between data relevance and processing requirements.
Additionally, a 200-meter range is the maximum detection
range for a long-range Radar, a commonly used sensor
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in autonomous driving applications and advanced driver
assistance systems [24]. We normalise (Dsr) if it exceeds
200 meters according to Algorithm 1.

Dsr =
√

(xr − xs)2 + (yr − ys)2 (1)

Next, the system also checks whether the sender’s speed (Ss)
meets the specified criteria computed in Equation (2) and
defined in Algorithm 1. For each position coordinate, the
magnitude of the difference in speed between the sender and
receiver |Ssr| is expected to be less or equal to the maximum
speed of the receiver. In this study, the maximum speed of
the receiver is set to 30 mph (48km/hr), the national speed
limit on all single and dual carriageways with street lights
in England [25]. We normalise |Ssr| if it exceeds 30 mph
according to Algorithm 1.

|Ssr| = |Sr − Ss| (2)

Algorithm 1: Distance and Speed Check
Input : xs, ys,xr, yr

Ss, Sr

Output: Dsr, |Ssr|

1 Initialize:

2 Dsr = [];
3 |Ssr| = [];
4 Start:

scenario= drivingScenario();
5 while scenario do
6 pause=0.1;
7 position=vehicle.Position;
8 if xs ys is not empty == True then
9 calculate the distance between the

vehciles;
10 Normalize the distance values greater

than 200;
11 if Ss is not empty == True then
12 calculate the magnitude of the

diference in speed;
13 Normalize the magnitude values

greater than 30;

14 return Dsr, |Ssr|

B. DIRECTION BASED MESSAGE RELEVANCE CHECK
This check identifies the sender’s direction relative to the
receiver to assess the message’s relevance, preventing un-
necessary trust computations and storage and allowing for
quicker position verification and reduced storage needs. The
receiver accepts the message for further verification if it is
determined to travel in the same direction as the sender;
otherwise, the receiver ignores the message. The direction

FIGURE 3: A visual presentation of the different model
validation accuracy.

of the sender vehicle is estimated based on the change in
the angle of the sender vehicle from the receiver vehicle as
presented in Equation (3) and the change in distance between
the two vehicles.

Qsr = arctan

(
yb − ya
xb − xa

)
(3)

This study analysed different machine learning classification
models, including decision trees, discriminant, linear regres-
sion, linear support vector machine, naive Bayes, support
vector machines, k nearest neighbour, assemble, neural net-
work and kernel, to determine the most accurate model for
identifying the direction. From Fig.3, the classification of
angle and distance features using the feedforward classifi-
cation neural network [26] produces the best performance
of 99.8%. The input of angle and distance is fed into
the feedforward neural network to precisely determine the
sender’s direction (e.g. north, northeast, east, etc.) relative
to the receiver, as analysed in section IV and computed
using Algorithm 2. The choice of the feedforward neural
network is strategic, given its ability to handle dynamic and
noisy measurements, including distance and angle, thereby
providing a more accurate prediction. This dual consideration
also serves as a cross-verification mechanism, significantly
reducing the likelihood of nodes providing false information
about their positions. It reassures the integrity of the system
and the accuracy of the reported distances relative to the
angles and vice versa. The neural network architecture in-
cludes one fully connected layer of size 100 comprising two
predictors and one response. Each input is standardised to
ensure a uniform format. The Rectified Linear Unit (ReLU)
activation function [27], which introduces non-linearity to
the network, follows each fully connected layer with 1000
training iterations. The final fully connected layer and the
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Algorithm 2: Identify the direction
Input : Qsr, Dsr

Output: Predicted labels

1 Preprocess:

2 minelements ← min(Qsr, Dsr);
3 Qsr ← Qsr(1:minelements);
4 Dsr ← Dsr(1:minelements);
5 Create table:

carTable ← table(Qsr, Dsr);
6 Load the classifier:

7 load trainedclassifier;
8 Make Predictions:

9 trainedClassifier.predictFcn (carTable);
10 predictedLabels ← yfitcar;
11 return Predicted labels

subsequent ReLU activation function produce the network’s
output, namely classification scores and predicted labels.

C. TRUST COMPUTATION USING FUZZY LOGIC
Now that we have established an acceptable distance (Dsr),
magnitude of the speed difference |Ssr|, and direction mes-
sage relevance, the system’s next task is to compute the
trustworthiness of the position data. The Mamdani Fuzzy
logic controller calculates trust by checking for inconsisten-
cies between the sender’s distance and speed values over
time, as presented in Algorithm 3. In the dynamic vehicular
environment, where a sender’s movement may cause inexact
measurements, the controller’s role is crucial in maintain-
ing the system’s performance. The Mamdani fuzzy logic
controller operates on the principles of fuzzy logic, which
include fuzzification, fuzzy inference, and defuzzification
[28]. Fuzzy logic is a technique used to make decisions
about uncertain situations [29] based on human reasoning
that makes non-binary decisions on a sliding scale from
truth, partial truth, and partial false to false. Fuzzy logic
consists of four components: the fuzzifier, knowledge base
(fuzzy rules), intelligence (inference engine), and defuzzifier.
At the start of the fuzzy logic operation, the fuzzifier converts
numerical values into linguistic variables using membership
functions that define the degree to which an object belongs
to a particular fuzzy set. The controller then feeds the
linguistic variables into the inference engine, which applies
rules from the knowledge base and provides an output value.
The value is then fed into the defuzzifier to convert the
fuzzy variables to numerical values. The key advantages of
fuzzy logic include the ability to relate uncertain or complex
data and increased robustness, but such models require more
simulation and review before actual implementation [30].

1) FUZZIFICATION
In the fuzzification verification process, the two numerical
input parameters, namely, (Dsr) and |Ssr| are fed into the
fuzzy controller and converted into fuzzy sets. For each
input value, a degree of membership is assigned based on
the defined membership functions. A membership function
(MF) is a graphical representation illustrating the mapping
of each point within the input space to a membership
value ranging between 0 and 1. This model implements the
trapezoidal membership function type for speed and distance
input values. Fig. 4 is a representation of the three distance

FIGURE 4: Distance membership function

membership function distributions as derived in Equations
(4),(5), and (6) using the max-min inference method [31].

µWithinG(Dsr) =



0 if (Dsr) ≤ −75
(Dsr)+75
−8.333+75 if − 75 < (Dsr) ≤ −8.333
1 if − 8.333 < (Dsr) ≤ 8.333
75−(Dsr)
75−8.333 if 8.333 < (Dsr) ≤ 75

0 if (Dsr) > 75
(4)

µSlightlyAG(Dsr) =



0 if (Dsr) ≤ 25
(Dsr)−25
91.67−25 if 25 < (Dsr) ≤ 91.67

1 if 91.67 < (Dsr) ≤ 108.3
175−(Dsr)
175−108.3 if 108.3 < (Dsr) ≤ 175

0 if (Dsr) > 175
(5)
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µAboveG(Dsr) =



0 if (Dsr) ≤ 125
(Dsr)−125
191.7−125 if 125 < (Dsr) ≤ 191.7

1 if 191.7 < (Dsr) ≤ 208.3
275−(Dsr)
275−208.3 if 208.3 < (Dsr) ≤ 275

0 if (Dsr) > 275
(6)

Figure 5 is a representation of the speed membership func-
tion distributions as derived in Equations (7),(8), and (9)
using the max-min inference method [31].

FIGURE 5: Speed membership function

µWithinSL |Ssr| =



1 if 0 ≤ |Ssr| ≤ −11.25
|Ssr|+11.25
−1.25+11.25 if − 11.25 < |Ssr| ≤ −1.25
1 if − 1.25 < |Ssr| ≤ 1.25
15−|Ssr|

11.25−1.25 if 1.25 < |Ssr| ≤ 11.25

0 if |Ssr| > 11.25
(7)

µSlightlyASL |Ssr| =



0 if (|Ssr|) ≤ 3.75
|Ssr|−3.75
13.75−3.75 if 3.75 < |Ssr| ≤ 13.75

1 if 13.75 < |Ssr| ≤ 16.25
26.25−|Ssr|
26.25−16.25 if 16.25 < |Ssr| ≤ 26.25

0 if |Ssr| > 26.25
(8)

µAboveSL |Ssr| =



0 if |Ssr| ≤ 18.75
|Ssr|−18.75
28.75−18.75 if 18.75 < |Ssr| ≤ 28.75

1 if 28.75 < |Ssr| ≤ 31.25
41.25−|Ssr|
41.25−31.25 if 31.25 < |Ssr| ≤ 41.25

0 if |Ssr| > 41.25
(9)

2) INFERENCE ENGINE
Next, the inference engine (decision-making model) com-
bines membership functions with fuzzy rules derived from
experience and system knowledge to attain a fuzzy output.
The defined nine fuzzy rules take the form presented in Table
2.

3) DEFUZZIFICATION
Finally, the output from the fuzzy inference engine is con-
verted back to numerical values through a process known
as defuzzification [23]. In this study, the two standard de-
fuzzification techniques, including the centroid and maxima,
are deployed and evaluated to identify the most suitable

TABLE 2: Fuzzy Inference Rules

Name Weight Rule

rule1 1 If (Dsr) is within Geofence AND (|Ssr|) is within
the acceptable range, THEN Position Trust Level is
High

rule2 1 If (Dsr) is within Geofence AND (|Ssr|) is slightly
above the acceptable range, THEN Position Trust
Level is Medium

rule3 1 If (Dsr) is within Geofence AND (|Ssr|) is above
the acceptable range, THEN Position Trust Level is
Low

rule4 1 If (Dsr) is slightly above Geofence AND (|Ssr|)
is within the acceptable range, THEN Position Trust
Level is High

rule5 1 If (Dsr) is slightly above Geofence AND (|Ssr|) is
slightly above the acceptable range, THEN Position
Trust Level is Average

rule6 1 If (Dsr) is slightly above Geofence AND (|Ssr|)
is above the acceptable range, THEN Position Trust
Level is Low

rule7 1 If (Dsr) is outside Geofence AND (|Ssr|) is within
the acceptable range, THEN Position Trust Level is
Low

rule8 1 If (Dsr) is outside Geofence AND (|Ssr|) is
slightly above the acceptable range, THEN Position
Trust Level is Low

rule9 1 If (Dsr) is outside Geofence AND (|Ssr|) is above
the acceptable range, THEN Position Trust Level is
Low
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Algorithm 3: Trust Computation
Input : Predicted labels, Dsr, |Ssr|
Output: Trustworthy or Untrustworthy

1 Initialize:
trustvalue = [];

2 Load:
predictedlabels;

3 if isthesame== True then
4 Load the fuzzy controller:

myFIS = fuzzy controller;
5 trustvalue ← evalfis(myFIS (Dsr, |Ssr|));
6 if trustvalue== 0.5 then
7 accept notification sender is moving in

the same direction and is trustworthy;
8 Store:

predicted label;
9 trustvalue;

10 else
11 reject notification the sender is not

trustworthy

12 else
13 clear trust value;
14 Ignore notification sender is not moving in

the same direction;

method for the trust computation model in VANET. The
defuzzification algorithm takes the fuzzy area’s centre of
gravity (COG) in the centroid method. It is a point at
which the fuzzy set balances along the x-axis. The maxima
defuzzification method accounts for the element with the
highest degree of membership. It is further categorised into
mean of maxima (MOM), first of maxima (FOM), last of
maxima (LOM), and the highest methods. All these methods
consider elements with the maximum degree of membership
but differ in the computation of the final output value. The
mean of maxima takes the average of the elements with
maximum values; the first of maxima considers the value of
the first element with the highest output value of all elements
with the highest degree of membership, and the last of
maxima considers the least element in the aggregated output
of all elements with the highest degree of membership. The
trust output membership function’s minimum and maximum
values are determined by the trust values used within the
vehicular trust framework, as indicated in [30]. A triangular
membership function [29] establishes the boundaries within
the 0 to 1 output range. The trust values begin at zero
because the verification model operates independently of
recommendations or neighbouring nodes, thus avoiding the
cold start problem when no neighbours or trust history is
available.

D. COMPLEXITY ANALYSIS
The storage and processing time requirements are two com-
ponents that define the complexity of Algorithms 1, 2 and 3.
Considering the dynamic nature of the vehicular environment
that demands instant connections excluding delays, it is
essential to evaluate the processing time and minimise the
storage to ensure effective operation in dense environments
and in the long run. This analysis is conducted differently
for each algorithm. Let (Ns) be the number of vehicles that
broadcast a message notification and (Nr) the receiver. The
time complexity in Algorithms 1 and 2 is O(Ns) because the
|Ssr|, Dsr, Qsr, and predicted labels depend on the number
of sender vehicles simulated within the single scenario. Let
the number of vehicles travelling in the same direction be
(Nsr). The trust algorithm computes the trust values for only
the sender vehicles travelling in the same direction as the
receiver. Therefore, the time complexity for algorithm 3 is
O((Nsr)). Regarding space complexity analysis in Algorithm
3, the receiver only stores the trust values and predicted
labels in arrays for the vehicles moving in the same direction
and whose trust value is above a certain threshold expressed
as O((Ts > threshold) where (Ts) represents the trust values
of sender’s position data. It eases the storage requirements
in the long run.

IV. PERFORMANCE EVALUATION
This section conducts experiments to analyse various meth-
ods and parameters for better model development. This
section is divided into three parts. Firstly, considering that
road structures are often not straight, we analysed the angular
changes between the receiver and sender across various road
structures to identify the most accurate labelling for the
classification model and study the change in angles of the
sender from the receiver as the distance between the sender
and receiver increases or decreases. Secondly, we performed
an analytical evaluation of the defuzzification methods to
identify the most suitable method. Finally, the third part is
an analysis of the effectiveness of the suggested model.

A. ANALYSIS OF THE CHANGE IN Qsr ALONG
DIFFERENT ROAD STRUCTURES
Firstly, in Fig.6a, Car A, Ego Car, and Car B are moving
along a horizontal straight road with Ego Car moving from
left to right. The Qsr for Car A and Ego Car are at 90◦

throughout the simulation. Subsequently, the Qsr for Car B
is observed to increase from 90◦ minimum value towards
270◦. It indicates that Car A and Ego Car are moving in
the same direction towards the east while Car B is moving
towards the west.

Secondly, in Fig.6b Car A, Ego Car, and Car B are mov-
ing along a horizontal straight road with Ego Car moving
from right to left. The Qsr for Car A and Ego Car is
observed at 270◦ slightly iterating between 268◦ and 270◦

throughout the simulation. In contrast, the Car B Qsr is ob-
served to increase initially from 270◦ towards the minimum
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(a) (b)

(c) (d)

FIGURE 6: change in the angles along: (a)Horizontal Straight road Car A and Ego Car = east, Car B = west (b)Horizontal
Straight road Car A and Ego Car = west, Car B = east (c) Vertical Straight road Car A and Ego Car = south, Car B =
north (d) Vertical Straight road Car A and Ego Car = north, Car B = south

angle 0◦ then increases towards 90◦. This analysis indicates
that Car A and Ego Car are moving in the same direction
towards the west, and Car B is moving in the opposite direc-
tion towards the east. Thirdly, in Fig.6c, Car A, Ego Car,
and Car B are moving along a vertical straight road with
Ego Car moving from top to bottom. The Qsr for Car A
and Ego Car is observed at 180◦ slightly iterating between
179◦ and 180◦ throughout the simulation. At the same time,
Car B Qsr increases from the minimum value 180◦ towards
the maximum 360◦. It indicates that Car A and Ego Car
are moving in the same direction towards the south, and
Car B is moving in the opposite direction towards the north.
Lastly, in Fig.6d, Car A, Ego Car, and Car B are moving
along a vertical straight road with Ego Car moving from
bottom to top. The Qsr for Car A and Ego Car is observed
at 0◦ iterating slightly between 180◦ and 180◦ throughout

the simulation. Subsequently, the Car B Qsr increases from
the minimum angle 0◦ towards a maximum value of 180◦. It
indicates that Car A and Car Ego are moving in the same
direction towards the north, and Car B is moving in the
opposite direction towards the south.

Fig.7 presents the sender and receivers’ angle variation
along the left and right diagonal roads. Firstly, in Fig.7a,
Car A, Ego Car and Car B are moving along a left diagonal
road with the Ego Car moving from the left to the right.
The Qsr for Car A and Ego Car is observed to be at 225◦

slightly iterating between 219◦ and 225◦ throughout the
simulation. Subsequently, the Qsr for Car B is observed
to increase from 225◦ towards the maximum value 360◦.
After that, it decreases to the minimum value 0◦ and starts
increasing again towards 45◦. It indicates that Car A and
Ego Car are moving in the same direction towards the
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(a) (b)

(c) (d)

FIGURE 7: Change in the angles along:(a)Left Diagonal road Car A and Ego Car = southwest and Car B = northeast
(b) Left Diagonal road Car A Car A and Ego Car = northeast and Car B =southwest (c)Right Diagonal road Car A and
Ego Car = southeast and Car B =northwest (d) Right Diagonal road Car A and Ego Car = northwest and Car B =southeast

southwest while Car B is moving towards the northeast.
Secondly, in Fig.7b, Car A, Ego Car, and Car B are moving
along a left diagonal road, with the Ego Car moving from
the right to the left. The Qsr for Car A and Ego Car Qsr

is observed at 45◦, slightly iterating between 40◦ and 45◦

throughout the simulation. In contrast, the Car B Qsr is
observed to increase initially from 45◦towards the maximum
angle value 225◦. This analysis indicates that Car A and
Ego Car are moving in the same direction towards the
northeast, and Car B is moving in the opposite direction
towards the southwest. Thirdly, in Fig.7c, Car A, Ego Car,
and Car B are moving along a right diagonal road with
Ego Car moving from the right to the left. The Qsr for
Car A and Ego Car is observed at 135◦ slightly iterating
between 130◦ and 135◦ throughout the simulation. While
Car B Qsr is observed to increase from the minimum value

135◦ towards the maximum 315◦. It indicates that Car A
and Ego Car are moving in the same direction towards the
southeast, and Car B is moving in the opposite direction
towards the northwest. Lastly, in Fig.7d, Car A, Ego Car,
and Car B are moving along a right diagonal road with
Ego Car moving from the left to the right. The Qsr for
Car A and Ego Car is observed at a constant value of
315◦ iterating slightly between 314◦ and 315◦ throughout
the simulation. Subsequently, Car B Qsr is observed to
increase from 315◦ towards a maximum value of 360◦, after
which there is a sharp decrement in the Qsr towards 0◦, the
minimum value, followed by an increase towards 135◦. It
indicates that Car A and Car Ego are moving in the same
direction towards the northwest, and Car B is moving in the
opposite direction towards the southeast.
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FIGURE 8: COG Fuzzy logic control surface plot.

B. ANALYSIS OF THE DIFFERENT DEFUZZIFICATION
METHODS
Table 3 summarises the performance of the fuzzy logic
model based on the different defuzzification techniques at
specific distance and speed inputs. According to Fig.8, the
impact of distance and speed on the position trust level using
the centroid method reaches its maximum point of 0.864409
when Dsr and |Ssr| is at the lowest value of 0. It is attributed
to the vehicle being close to the receiver and travelling at the
same speed as the receiver. Second, the trust value decreases
further to a minimum of 0.135591 at four noticeable points
with a sharp increase in |Ssr| to a maximum of 30 and a
decrement in Dsr to a minimum of 0 and vice versa.

FIGURE 9: MOM Fuzzy logic control surface plot.

Fig.9 illustrates an evaluation of speed and distance on
the position trust level using the mean of the maxima
defuzzification method. The impact of distance and speed
increases to a maximum value 1 at two points when there is
a significant decrement in |Ssr| and Dsr to the lowest value
0 and when there is relatively average increase in Dsr to
100 at a minimum |Ssr| of 0. Secondly, it is notable that
the position trust level decreases to a minimum of 0 at five
points at a maximum |Ssr| and Dsr, maximum distance at
a relatively low speed, maximum speed with a decrement in
distance, average speed with a sharp increment in distance to
a maximum value and at a maximum speed with a relatively
average distance.

FIGURE 10: LOM Fuzzy logic control surface plot.

Finally, Fig.10 is an analytical evaluation of the impact
of distance and speed on position trust level using the last
of maxima defuzzification. Firstly, the trust level reaches its
maximum value of 1 at various points within the figure’s
top rectangular shape. Secondly, a sharp increment in the
Dsr to a maximum value of 200 at low and average |Ssr|
results in a decrement of the trust value to a minimum of 0.
Furthermore, a sharp increment in the speed to a maximum
value with a minimum (0) and average Dsr (100) results in
a minimum trust value of 0.

The following observations are made from the experiment
results. Firstly, Table 3 shows that the centroid method is
superior due to its detailed trust values. While the Mean
of Maxima and last of maxima methods produce more
absolute trust values (such as 0, 0.5 or 1), indicating either
complete trust or no trust, the centroid method offers a range
of trust values from 0.135591 to 0.864409. It allows the
centroid method to represent varying degrees of trust, which
is more reflective of real-world driving scenarios where
inputs are not always entirely trustworthy or untrustworthy.
Secondly, the flexibility and precision of the centroid method
enhance the system’s ability to handle ambiguity and partial

VOLUME , 11

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3453666

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE OPEN JOURNALS

reliability, leading to more accurate and refined decision-
making. Consequently, the centroid method is better suited
for trust computation as it provides varying degrees of trust
levels that improve the performance and reliability of the
model. Secondly heading analysis has informed our labelling
process, delineating cardinal directions as follows: the north
cardinal point spans from 337.5 to 22.5 degrees, northeast
spans from 22.5 to 67.5 degrees, east spans from 67.5 to
112.5 degrees, southeast spans from 112.5 to 137.5 degrees,
south spans from 137.5 to 202.5 degrees, southwest spans
from 202.5 to 247.5 degrees, west spans from 247.5 to 292.5
degrees, and northwest spans from 292.5 to 337.5 degrees.
Furthermore, when vehicles are moving in the same direction
at constant speeds, the change in angle and distance between
them is approximately constant, while When vehicles move
in the opposite direction, the angle between them increases
continuously while the distance reduces and increases con-
tinuously.

TABLE 3: A comparison to evaluate the performance of the
different defuzzification methods.

MOM

Distance 0 200 200 0

Speed 0 30 0 30

Trust 1 0 0 0

LOM

Distance 0 200 200 0

Speed 0 30 0 30

Trust 1 0 0 0

COG

Distance 0 200 200 0

Speed 0 30 0 30

Trust 0.864409 0.135591 0.135591 0.135591

C. SIMULATION BASED CASE STUDY
This section has created two sets of conditions to evaluate
the effectiveness and performance of the direction and fuzzy
logic models that make up the position verification model.
The first setup defined in Table 4 aims to achieve real-world
road dynamics by importing Kirby in Ashfield real-world
road map data dynamics from the open street map in Fig.11
into the MATLAB driving scenario to evaluate the practi-
cability of the classification model in section IV subsection
A based on real-world data. The MATLAB driving scenario
designer object is used because it supports the import of real-
istic road map dynamics from OpenStreetMap (OSM). It also
supports the simulation of custom road layouts with different
actors, such as cars, trucks, bicycles, and pedestrians, as
well as sensor simulations, including LiDAR, radar, cameras,
and ultrasonic sensors used in autonomous driving systems.
Waypoints and speed describe the trajectory of actors within
the designer to define the route throughout the simulation.
Considering the position object within the designer, it is

(a)

(b)

FIGURE 11: Kirby in Ashfield (a) open street map view (b)
google map view

TABLE 4: Driving Scenario Properties

Parameter Value

Type of actors cars
Number of actors 9
Number of roads 3
Number of actors on each road 3
Maximum road length 300m
Speed Range 15-30 m/hr
Sample Time 0.01 ms

possible to attain the position coordinates of the actors
defined by the trajectory returned as a 1 * 3 matrix (x,
y, z). The dynamic vehicular characteristics, such as speed,
are extracted from these position coordinates to mimic the
content of the basic safety messages in V2X communication.
Furthermore, the driving scenario designer also supports the
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evaluation of the position vectors of neighbouring vehicles
using the ego vehicle, which can be used as a reference
point to calculate and identify the change in distance and
heading vectors between vehicles. Despite the enormous
features of the driving scenario designer, limitations within
OpenStreetMap import and sensor import or export are
barriers to accurate and effective vehicular environment
simulation. For example, OSM files with large road networks
take a long load; therefore, only the desired area of interest
with specific selected roads is imported to overcome this
limitation. Appropriate data extraction techniques are applied
within the exported driving scenario function to extract only
vehicle object dynamics and prevent the report of unclustered
data.

TABLE 5: Simulation Parameters

Normal
samples

False Samples Distance Ran-
dom Range

Speed Random
Range

100 100 151-300 23-40
100 100 161-400 33-50
100 100 171-500 43-60

The second experimental setup is designed to simulate
false position data to assess the efficiency of the proposed
model. Specifically, this study concentrates on random data
attacks as a preliminary benchmark for evaluation. In the
context of these attacks, the adversary transmits random
angle, distance, and speed values that fall within a predefined
false range and incorporate varying noise levels, as described
in Table 5.

1) IDENTIFIED DIRECTION USING REAL WORLD ROAD
DYNAMICS
In Fig.12a, the car ego maintains a consistent predicted label
of 5 throughout the simulation. In contrast, car2 initially
maintains a steady predicted label of 8 for approximately
200 seconds, then a transition to 1 for the next 100 seconds.
Subsequently, it fluctuates between 3 and 4 for 50 seconds
before stabilising at label 5. Similarly, the predicted label
for car1 remains constant at 1 for the initial 120 seconds,
shifts to 5 for the following 130 seconds, exhibits fluctuation
between 4, 3, and 2 for the subsequent 50 seconds, and
ultimately stabilises back at 1. It implies that car ego is
travelling in the south, car1 is heading to the north, and
car2 is heading to the south. In Fig.12b, the predicted label
for car3 ego maintains a constant value of 1 throughout
the simulation, as opposed to car4 and car5. During the
initial 100 seconds, the predicted label for the car5 fluctuates
between 1, 2, and 3, then remains constant at 3 for the
subsequent 150 seconds. Then, it fluctuates between 4, 5,
and 6 for 50 seconds before settling at 7. Similarly, during
the first 100 seconds, the predicted label for car4 initially
varies between 1, 2, and 3, then remains constant for the
next 200 seconds at 3, and finally fluctuates between 4 and

5 before stabilising at 6 as the predicted label. It indicates
that car3 ego is heading to the north, car4 is heading to
the southwest, and car five is heading to the west. Finally, in
Fig.12c, car6 ego, car7, and car8 maintain constant predicted
labels of 3, 1, and 5 throughout the simulation. It indicates
that car6 ego is heading east, car7 is heading north, and car8
is heading south.

2) MESSAGE RELEVANCE CHECK ANALYSIS
Fig.13 shows the performance of the message relevance
check in the presence of increasing random noisy Qsr

and Dsr values. The performance is better than random
classification at all the different noisy levels since the False
Positive Rate does not equal the True Positive Rate at any
point indicated by the AUC values at the bottom right corner.
From Fig.13a, the Qsr and Dsr values deviate from the
actual values by 10, and the message check verification is
observed above 0.99. When the noise level is increased to
20 in Fig.13b, where the Qsr and Dsr values deviate further
away, the message check verification is observed above 0.85.
In Fig.13c, performance is above 0.78, with the noise level
at 30. Therefore, model performance is better at the different
random or untrustworthy values than random classification.

3) TRUST COMPUTATION ANALYSIS
Fig.14 presents the effectiveness of the trust computation
algorithm in the presence of trustworthy and untrustworthy
data at varying noise levels, summarised in Table 5. From
Fig.14a, the false data values deviate from the actual values
by 10, and we can see that the false data has lower trust
levels concentrated towards the left, closer to 0. The normal
data has higher trust levels concentrated towards the right,
closer to 1. Like the previous figure, Fig.14b has false data
values higher to the left towards 0 and normal to the right.
We can observe a distinction in the trust values of the normal
and false data with less overlap at a deviation of 20. Finally,
in Fig.14c, the false data deviates from normal by 30. We
still observe the trust values for the false data concentrated
towards 0 while the normal data trust values are towards
1 with much less overlap. Therefore, the trust computation
model can identify false data, and its effectiveness improves
with an increase in deviation from the actual values.

V. CONCLUSION AND FUTURE WORKS
In this study, a position verification model that implements
geofencing and fuzzy logic for decision-making is presented.
The system analyses vehicle dynamic data, including posi-
tion, speed, distance, and direction, to assess the reliability
and integrity of received position data. Instead of depending
on recommendations, voting, or trust history values from
nearby vehicles, this model eliminates trust calculation bias
by directly assessing vehicle notifications’ reliability within
the geofenced area and adhering to the defined speed limit.
In addition, it improves storage efficiency by computing trust
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(a) (b) (c)

FIGURE 12: Visualisation of the predicted labels using real-world road dynamics (a) car ego and car2 = south, car1 =
north (b) car3 ego = north car4 = southwest, car5 = west (c) car6 ego = east, car7 = north, car8 = south

(a) (b) (c)

FIGURE 13: ROC Curves with AUC at: (a)Deviation from normal data by 10, (b)Deviation from normal data by 20,
(c)Deviation from normal data by 30

values exclusively for notifications from vehicles moving
in the same direction. This approach prevents unnecessary
computations, leading to maximised storage utilisation and
reduced computing time. The simulation results demonstrate
the effectiveness of the classification model due to its ability
to outperform random classification in the presence of false
data. Furthermore, a clear distinction between the trust
values of false and actual data indicates the model’s ability
to identify false positions. Future research will focus on
evaluating the model’s effectiveness using publicly available
position attack datasets and implementing the model in a
simulator with real-time V2X communications to identify
false position attacks.
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