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Abstract: This article delves into optimizing and modeling the input parameters for the selective
laser melting (SLM) process on Inconel 625. The primary aim is to investigate the microstructure
within the interlayer regions post-process optimization. For this study, 100 layers with a thickness of
40 µm each were produced. Utilizing the design of experiments (DOE) methodology and employing
the Response Surface Method (RSM), the SLM process was optimized. Input parameters such as laser
power (LP) and hatch distance (HD) were considered, while changes in microhardness and roughness,
Ra, were taken as the responses. Sample microstructure and surface alterations were assessed via
scanning electron microscopy (SEM) analysis to ascertain how many defects and properties of Inconel
625 can be controlled using DOE. Porosity and lack of fusion, which were due to rapid post-powder
melting solidification, prompted detailed analysis of the flaws both on the surfaces of and in terms of
the internal aspects of the samples. An understanding of the formation of these imperfections can
help refine the process for enhanced integrity and performance of Inconel 625 printed material. Even
slight directional changes in the columnar dendrite structures are discernible within the layers. The
microstructural characteristics observed in these samples are directly related to the parameters of the
SLM process. In this study, the bulk samples achieved a microhardness of 452 HV, with the minimum
surface roughness recorded at 9.9 µm. The objective of this research was to use the Response Surface
Method (RSM) to optimize the parameters to result in the minimum surface roughness and maximum
microhardness of the samples.

Keywords: additive manufacturing; selective laser melting; Inconel 625 superalloy; roughness;
microhardness

1. Introduction

Today, the use of additive manufacturing (AM) in the production of complex compo-
nents has become very common. Many intricate metal parts, in terms of their geometry, are
accurately and rapidly fabricated using the SLM method [1–4]. Although employing this
technique requires process optimization, engineers have striven to optimize input param-
eters such as laser power, laser speed, hatch distance, and other input variables through
various methods [5,6] to optimize concise indexes like the volumetric energy density [7].
Metal powders like Inconel are utilized to manufacture very delicate components in the
medical, petrochemical, and automotive industries. After production, these powders might
undergo changes, leading to defects such as a lack of fusion, cracks, porosities, and other
manufacturing flaws, which can be mitigated by optimizing the input parameters [8–10].

Comprehensive studies on processing Inconel 625 alloy via SLM have explored its
microstructure, mechanical properties, and process optimization. Characterization using
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SEM, EBSD, and XRD revealed columnar crystals and high hardness due to rapid cooling.
Heat treatment induced distinct microstructures and altered the grain boundaries [11].
Nickel-based superalloy powders were assessed, linking their properties to the SLM pa-
rameters and the mechanical behavior in Inconel 625 parts [12]. Aerospace applications
were examined, comparing SLM and laser metal deposition (LMD) methods, highlighting
differences in the microstructure and material properties. The microstructural evolution
post-SLM and heat treatment clarified the uncertainties in the mechanical properties [10].
Investigations into the impact of the SLM parameters revealed specific track characteristics
and microstructural changes, while studies on lattice structures aimed to understand their
mechanical behavior and validate numerical models [13].

Predictive methods for the temperature profiles and melt pool shapes in SLM were
developed [14,15]. These studies emphasized microstructural variations, mechanical re-
sponses, and optimization strategies crucial for enhancing Inconel 625’s properties and
applications in various industries [16–19]. Kundakcıoğlu et al. [20] introduced a thermal
model predicting transient temperatures and molten pool shapes, which they validated
experimentally. Sun et al. [21] investigated high-temperature oxidation behavior, linking
lower laser energy densities to increased oxidation due to hindered protective oxide layer
formation. Balbaa et al. [22] explored the SLM parameters’ impact on part properties,
emphasizing density, surface quality, and residual stresses. Shrestha et al. [23] analyzed
porosity and single-track geometry variations based on SLM parameters, while Mazur
et al. [24] sought defect reduction strategies in SLM fabrication. Yan et al. [25] studied the
build orientation’s influence on the surface structure and tribological properties. Addi-
tionally, studies by [26,27] compared the microstructural and mechanical properties under
different manufacturing conditions, emphasizing the impacts of mechanical anisotropy, the
printing directions, and welding speed on the material characteristics in SLM-manufactured
Inconel 625. Huang et al. [28] investigated the scanning speed’s influence on oxidation
resistance and mechanical properties and attributed superior performance to unique grain
boundaries. The effects of strain rate on Inconel 625’s mechanical behavior, explored by
Du et al. [29], included rate sensitivity and temperature-induced softening. Zhang et al. [30]
examined the impacts of microstructural aspects and heat treatment on Inconel 625 alloy
blades and noted changes in the crystal grains and enhanced corrosion resistance. Pleass
et al. [31] delved into SLM’s effects on grain structures and mechanical properties, high-
lighting anisotropic microstructures’ role in enhancing failure resistance. Other studies
investigated heat treatment’s impact on the deformation mechanisms, identified core–shell-
structured oxides, and analyzed the tensile strength under various AM parameters, with the
aim of optimizing Inconel 625’s mechanical properties. Additionally, research has focused
on thermo-fluid conditions in laser surface melting, alloying of Inconel 625 at different
scanning speeds, and computational models’ accuracy in predicting the melt pool geometry.
The impact of annealing on the microstructure and corrosion resistance was elucidated for
various factors affecting the mechanical properties and behavior of selectively laser-melted
Inconel 625 [32–37]. Hu et al. [38] investigated the microstructure of Inconel 625 using
DED, highlighting significant anisotropy in its mechanical properties and fatigue crack
growth, attributed to the orientation of its epitaxial columnar grains. During heat treatment
of Inconel 625 [39], changes were noted in its grain structure and phase dissolution, which
impacted its strength and ductility differently based on the treatment methods. Li et al. [40]
developed a precise 3D finite element heat transfer model for SLM with Inconel 625, in-
tegrating various heat source models, achieving a higher accuracy with a hybrid model,
and enhancing the simulation’s precision. Allam et al. [41] explored phased array ultra-
sonic testing (PAUT) for non-destructive evaluation of SLM parts, successfully detecting
their internal porosity using multiple methods. Wormald et al. [42] provided solutions for
predicting cross-sectional dimensions in AM, achieving high accuracy in predicting track
dimensions. Teng et al. [43] investigated SLM’s impact on Inconel 718, identifying heat
treatment-induced phase changes, defect formations, and anisotropic mechanical prop-
erties, offering potential for tailored tensile properties. Schmeiser et al. [44] documented
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microstructural evolution in laser powder bed fusion (LPBF) of Inconel 625, studying how
process parameters influence texture, defects, recrystallization, and segregation. They
noted distinct texture generation influenced by laser power and scanning speed, along with
solid-state texture changes without remelting, linking them to in situ recrystallization and
subsequent segregation growth. Zhou et al. [45] developed a novel hybrid scanning strat-
egy that offers theoretical guidance for restoration processes. However, limited research
restricts further LPBF technology development. This study comprehensively investigates
the hybrid scanning strategy’s impact on the microstructure, mechanical properties, and
interfacial characteristics of Inconel 625, providing significant insights for designing addi-
tively manufactured Inconel 625 with specific microstructures and properties. Accurate
prediction of temperature distribution and melting pool geometry in additive manufactur-
ing requires careful selection of heat source models. Binxun et al. [46] compares surface,
volumetric, and double-ellipsoid models, implemented in Abaqus/Standard. Results show
the double-ellipsoid model best predicts melting pool geometry, while the volumetric
model is better for peak temperatures. Surface model accuracy is poor, emphasizing the
need for model calibration.

The crucial aspect lies in uncovering the correlation between process parameters and
defects, as it has the potential to reduce both time and costs associated with the manufac-
turing process. The present study aims to explore the optimization of the SLM parameters
for Inconel 625, focusing on interlayer microstructure post-process. This research tries to
optimize parameters using RSM to achieve minimum surface roughness and maximum
microhardness in the samples. Using DOE and RSM, we optimized SLM parameters like
laser power, and hatch distance, which are correlated to microhardness and roughness.
Examining cubic Inconel 625 samples, it revealed porosities and fusion issues due to rapid
solidification, prompting a detailed analysis for process enhancement and material per-
formance. The highest microhardness reported for the bulk samples is 452 HV with a
roughness of 10.2 µm. This was achieved using a laser power of 175 W and a hatch distance
of 0.1 mm.

2. Response Surface Methodology

Utilizing optimization techniques is crucial for selecting top-quality samples while
saving time and costs. RSM is particularly adept at streamlining SLM by organizing both
input and output parameters [47,48]. Its objective is to create an accurate mathematical
model for the SLM process, minimizing errors within Equation (1) where η is considered a
response and k steps are controlled factors. Ultimately, RSM aims to optimize the printing
process efficiently and effectively.

η = f(x1, x2, . . . , xk) + ε (1)

The variable ε represents the unpredictable SLM error stemming from uncontrollable
factors. Accurately establishing the η response is pivotal; a closer approximation of η to
the actual value enhances the reliability of the function on various factors. Equation (2)
presents another formula aimed at determining the true response factor for η.

η = β0 +
k

∑
i=1

βixi+
k

∑
i=1

βiix2
i + ∑

i.j=1
∑
i<j

βijxixj (2)

β0 represents a constant, βi signifies a linear factor, and βii denotes an interaction
factor. The study focused on LP and HD as controlled factors, utilizing statistical analysis
through Design-Expert V13. In total, nine samples were manufactured, and the assessment
focused on three optimal samples, considering three different output response levels. In the
DOE, the experimental design was chosen according to the varying levels of these input
parameters. The study examined a set of experiments designed to correlate specific input
settings with desired output responses, aiming to identify optimal sample configurations.
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3. Experimental Work

In this experiment, cubes with dimensions of 10 × 10 × 4 mm2 were produced by SLM
method due to setup Figure 1a, totaling nine samples based on DOE Table 1. A thickness
of 40 µm was considered for each sample (Figure 1b,c), consisting of 100 layers fabricated
using the SLM method with Inconel 625 powder without reinforcement, as specified in
Table 2. SEM images were taken by Tescan Mira3 SEM (Tescan Co., Brno, Czechia) in
Backscattered electrons mood. For surface roughness measurement, Alicona InfiniteFocus
SL (Bruker Alicona, Raaba, Austria) was used to measure Ra on the X direction of the
surface. To measure the microhardness, a test that involved loading 200 gf via Micromet
No. 5114 (BUEHLER micro-durometer, Neuss, Germany) was applied for five repetitions
in each area.

Designs 2024, 8, x FOR PEER REVIEW 4 of 16 
 

 

levels. In the DOE, the experimental design was chosen according to the varying levels of 
these input parameters. The study examined a set of experiments designed to correlate 
specific input settings with desired output responses, aiming to identify optimal sample 
configurations. 

3. Experimental Work 
In this experiment, cubes with dimensions of 10 × 10 × 4 mm2 were produced by SLM 

method due to setup Figure 1a, totaling nine samples based on DOE Table 1. A thickness 
of 40 µm was considered for each sample (Figure 1b,c), consisting of 100 layers fabricated 
using the SLM method with Inconel 625 powder without reinforcement, as specified in 
Table 2. SEM images were taken by Tescan Mira3 SEM (Tescan Co., Brno, Czechia) in 
Backscattered electrons mood. For surface roughness measurement, Alicona InfiniteFocus 
SL (Bruker Alicona, Raaba, Austria) was used to measure Ra on the X direction of the 
surface. To measure the microhardness, a test that involved loading 200 gf via Micromet 
No. 5114 (BUEHLER micro-durometer, Neuss, Germany) was applied for five repetitions 
in each area. 

  
(a) (b) 

 

(c) 

Figure 1. (a) Schematic of selective laser melting for processing Inconel 625 powder (b) sample im-
ages of #1 to #9 (c) dimensions of the samples for length (10 mm) and thickness (4 mm). 

Figure 1. (a) Schematic of selective laser melting for processing Inconel 625 powder (b) sample images
of #1 to #9 (c) dimensions of the samples for length (10 mm) and thickness (4 mm).



Designs 2024, 8, 87 5 of 16

Table 1. Design of experiments’ input and output parameters.

No.
Input Parameters Responses

Laser Power
(W)

Hatch Distance
(mm)

Microhardness
(hv)

Roughness
(µm)

1 200 0.1 448 9.9
2 150 0.1 449 10.3
3 200 0.3 425 11.9
4 175 0.2 422 11.5
5 200 0.2 436 10.7
6 150 0.3 406 13.2
7 175 0.3 418 12.5
8 150 0.2 408 11.8
9 175 0.1 452 10.2

Table 2. Chemical composition of Inconel 625 powder.

Elements Ni Fe Mo Nb Co Ta Ti Cr Al

% 60 5 10 0.9 1 0.8 0.7 21 0.6

4. Discussion
4.1. Microstructure Analysis of AM Samples

Figure 2 displays the microstructure of Inconel 625 in samples #1, #3, and #7 post-
additively manufactured through SLM. In Figure 2a, the deposited layers exhibit distinct
zones, which were influenced both by a high cooling rate and process direction, demonstrat-
ing the influence of manufacturing process factors in the SLM method. This variance in the
columnar dendrite deposition structure impacts microhardness, which is evident in Table 1,
where the higher the LS the lower the microhardness. The centralized pattern in Figure 2b
indicates a characteristic solidification behavior potentially linked to laser scan strategies
and energy input. Furthermore, the merging of melting pools in Figure 2c implies complex
interactions between laser settings, impacting the fusion and morphology of adjacent lay-
ers. This detailed analysis underscores the sensitivity of Inconel 625’s microstructure to
variations in SLM parameters, emphasizing the need for precise control and optimization
to tailor material characteristics for specific applications. Figure 3a shows the macro scale
of the deposited layer after the SLM process, while Figure 3b illustrates the outcome of
rapid solidification, depicting a centralized pattern post-process with all columnar dendrite
directions converging at a single center. Additionally, Figure 2c highlights instances where
reduced HD and increased LP cause certain melting pools to merge in select zones, hinting
at alterations within the heat-affected zone (HAZ). It is crucial to grasp the significance of
the overlap percentage in relation to HAZ. Even minor directional adjustments in columnar
dendrite structures are noticeable within the layers. The microstructural features observed
in these samples bear direct relevance to the SLM process parameters. The zone within
layers suggests varying cooling rates during deposition, which impacts dendritic growth
and ultimately influences material properties like microhardness.
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4.2. Revealing Defects
Lack of Fusion and Pores after SLM Process

Insufficient fusion at the interfaces of five adjacent layers in Inconel 625 SLM sam-
ples, which is particularly noticeable when four layers are formed consecutively, is often
observed. This lack of fusion results in the formation of voids and pores (Figure 4). LP
and powder properties significantly impact interlayer fusion. Variety in these parameters
affects the molten pool temperature distribution and the material cooling rates, which
influences the fusion quality between layers. The rapid solidification during SLM can
hinder proper bonding, leading to pores or voids at the interfaces. Inconel 625 microstruc-
ture analysis corroborates this hypothesis, revealing irregularities and insufficient bonding
at interfaces and further pore formation. Understanding and optimizing the interaction
between process parameters and microstructural characteristics are crucial for mitigating
this lack of fusion and enhancing material integrity in SLM-produced components. In-
conel 625 sample exhibits open pores, particularly clustered along the curves of melting
pools, with some in close proximity to each other. The presence of open pores in Inconel
625 samples manufactured through SLM can be linked to several causes. During the SLM
process, the rapid heating and subsequent rapid cooling rates can lead to incomplete fusion
or inadequate time for gas to escape, which leads to gases being entrapped in pockets and
thus leads to the formation of open pores. The formation of open pores near the curves of
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melting pools could be related to the keyhole effect in laser melting. This effect involves the
rapid vaporization of material under the intense heat of the laser, which can create voids or
open pores along the edges of the melted pools. Inconel 625 powder properties, such as
particle size distribution and morphology, can impact pore formation. Agglomerated or
irregularly shaped powder particles might not fuse properly during the melting process,
leading to open pores.
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4.3. Surface Roughness, Ra (SR)

Table 3 illustrates the ANOVA outcomes for SR. It reveals the effectiveness of all main
linear and quadratic parameters. Within the quadratic terms, the laser power’s quadratic
term (P2) stands out significantly, alongside three impactful interactions depicted in the
table. Table 3 shows the analysis of variance ANOVA model of SR. Equations (3) and (4)
display the regression relationship for SR, considering the influential terms based on coded
and actual values.
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Roughness, Ra = +423.11 + 7.33 Laser Power − 16.33 B + 4.50 Laser Power × Hatch Distance
− 1.67 Laser Power2 + 11.33 Hatch Distance2 (3)

Roughness, Ra = +431.11111 + 0.866667 Laser Power − 931.66667 Hatch Distance + 1.80000 Laser Power
× Hatch Distance − 0.002667 Laser Power2 + 1133.33333 Hatch Distance2 (4)

Table 3. Analysis of variance ANOVA model of surface roughness.

Source Sum of Squares df Mean Square F-Value p-Value

Model 2266.78 5 453.36 9.90 0.0440 significant
A-Laser Power 322.67 1 322.67 7.04 0.0767

B-Hatch Distance 1600.67 1 1600.67 34.94 0.0097
Laser Power × Hatch Distance 81.00 1 81.00 1.77 0.2757

Laser Power2 5.56 1 5.56 0.1213 0.7507

Hatch Distance2 256.89 1 256.89 5.61 0.0987

Residual 137.44 3 45.81

Cor Total 2404.22 8

Figure 5a shows the response surface graph, while Figure 5b displays a contour
plot for SR concerning LP, and HD. Two-dimensional-representation contour plots of
the surface graphs delineate the parameter effectiveness zones for each response more
clearly. These graphs, based on regression, are interpolated by the available data. The
interaction of hatch distance and LP on SR is evident in Figure 5a, showing SR dependency
on parameter changes. For instance, decreasing LP and increasing HD escalate surface
roughness. This occurs because reduced LP may hinder adequate energy delivery for
complete material melting, leading to incomplete fusion between layers and, consequently,
surface irregularities. Likewise, widened hatch distances limit overlap between laser
paths, resulting in visible gaps and rougher surfaces (Figure 6). This combination fosters
incomplete melting and inadequate fusion, culminating in heightened surface roughness
in the SLM process. Exposing the samples to air and cooling them after fabrication by SLM
led to the formation of surface pores due to heat transfer to the substrate and air. These
pores resulted in a rougher surface.
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Figure 6. Surface appearance of the direction of surface roughness test on sample #9 by considering
Ra factor for the measurement.

Figure 7 shows various plots from a statistical analysis; in more detail, Figure 7a
presents the normal plot of residuals. This plot illustrates that the differences between
observed and predicted values in the regression analysis are tightly clustered around the
line, indicating a close alignment. Additionally, Figure 7b graphically demonstrates the
proximity of actual and predicted amounts to the line, which accounts for the accurate pre-
diction by the statistical analysis of the responses. Figure 7c shows the perturbation plot of
SR, highlighting the depiction of parameter interactions affecting SR and the simultaneous
impact of these parameters on SR. By comparing Figures 5 and 7c, it is evident that the
SR significantly decreased as the HD increased. This reduction occurred because the gap
was more effectively filled in the layers fabricated at higher HD, leading to more uniform
metal solidification.
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4.4. Microhardness Profiles

Table 4 illustrates the ANOVA outcomes for microhardness. It reveals the effectiveness
of all main linear and quadratic parameters. Within the quadratic terms, the LP and
HD quadratic terms (A2, B2, and C2) stand out significantly, alongside three impactful
interactions depicted in the table. Analyzing ANOVA Table 4, Equations (5) and (6) display
the regression relationship for the microhardness, considering the influential terms based
on coded and actual values, respectively. Since the model was highly significant, with a
reported p-value of 0.0012, it was presented in the form shown in Table 4 to account for the
quadratic term.

Microhardness = +11.40 − 0.4667 A + 1.20 Hatch Distance − 0.2250 Laser Power × Hatch Distance
− 0.1000 Laser Power2 + 0.0000 Hatch Distance2 (5)

Microhardness = +4.21667 + 0.055333 Laser Power + 27.75000 Hatch Distance − 0.090000 Laser Power
× Hatch Distance − 0.000160 Laser Power2 − 1.81542 × −13 Hatch Distance2 (6)

Table 4. Analysis of variance ANOVA model of microhardness.

Source Sum of Squares df Mean Square F-Value p-Value

Model 10.17 5 2.03 120.03 0.0012 significant
A-Laser Power 1.31 1 1.31 77.11 0.0031

B-Hatch
Distance 8.64 1 8.64 509.90 0.0002

AB 0.2025 1 0.2025 11.95 0.0407
A2 0.0200 1 0.0200 1.18 0.3568
B2 0.0000 1 0.0000 0.0000 1.0000

Residual 0.0508 3 0.0169

Cor Total 10.22 8

Figure 8a shows the response surface graph, while Figure 8b displays a contour plot
for microhardness concerning LP and HD parameters. These graphs, based on regression
Equations (5) and (6), are interpolated by the data. Due to the coefficients of each parameter
in the regression equations and static analysis, the plots related to the interaction effect of
LP with HD, have assumed an oscillatory pattern. This phenomenon arises from the rapid
freezing and solidification of the powder following its melting by the laser within each



Designs 2024, 8, 87 11 of 16

distinct interval. The microhardness of the samples undergoes variations contingent upon
these conditions, which are highly influenced by input parameters.
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Figure 9 displays the normal plot of residuals. This plot illustrates that the differences
between observed and predicted values in the regression analysis are tightly clustered
around the line, indicating a close alignment. Additionally, Figure 9b graphically demon-
strates the proximity of actual and predicted amounts to the line, signifying the accurate
prediction by the statistical analysis of the responses for microhardness analysis. Figure 9c
shows the perturbation plot of microhardness, highlighting the depiction of parameter
interactions affecting microhardness and the simultaneous impact of these parameters on
microhardness. As shown in Figure 9c, increasing the laser power (LP) led to an increase in
microhardness due to the proper melting of the powder in the melt pool, resulting in the
complete formation of the metal.
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5. Optimization

Based on statistical analysis of the regression model of relations between input pa-
rameters and output responses, optimization was performed using the RSM method. The
statistical analysis of experimental data led to the regression equations that depict the
connections between input parameters and output responses. Employing the function
within the Design Expert V13 software facilitated process optimization to achieve specific
conditions. Table 5 lists the constraints and criteria for both variables and responses to
optimize the SLM process. Within Table 5, three solutions are presented, aiming to optimize
the SLM process based on the criteria of minimizing SR and maximizing microhardness. All
parameters and responses were given equal consideration, as the statistical analysis identi-
fied the significance of each input and output parameter in both the SR and microhardness
sections.

Table 5. Constraints of SLM input and output parameters.

Parameter/Response Goal Lower Limit Upper Limit Importance

Parameters
LP (W) in range 150 200 3

HD (mm) in range 0.1 0.3 3

Response
SR (µm) Minimize 9.7 13.2 3

Microhardness (hv) Maximize 400 500 3

After conducting the software analysis, three optimal samples were selected for po-
tential modification to achieve two distinct responses (as shown in Table 6). This process
involves a comprehensive review of the input parameters and their corresponding re-
sponses, which are illustrated in the overlay plots in Figure 10. The yellow areas in these
plots represent the optimal response levels. This implies that selecting process parameters
from the gray areas would result in insufficient microhardness and surface roughness. It
is important to note that the software, aiming to minimize surface roughness, identified
10.1–10.4 µm as an acceptable range, while for microhardness, the maximum range selected
was 432–438 HV. The software determined the range of input and output parameters based
on DOE Table 1.
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Table 6. Predicted and real parameters for optimum samples.

Parameters Response

No. Laser Power
(W)

Hatch Distance
(mm)

SR
(µm)

Microhardness
(hv)

1 200 0.300 Predicted 10.1 438

2 200 0.300 Predicted 10.2 435

3 190 0.200 Predicted 10.4 432
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6. Conclusions

In conclusion, this study extensively explores the optimization of SLM parameters for
Inconel 625, focusing on microstructure analysis and some defects after. Employing DOE
and RSM, the investigation considered the correlation between LP and HD with microhard-
ness and SR responses. SEM analysis revealed surface defects, guiding improvements for
enhanced material integrity and performance. The subsequent bullet list shows the most
significant findings from this investigation:

• Insufficient fusion at the interfaces of five adjacent layers in Inconel 625 SLM samples,
particularly when formed consecutively, often results in voids or pores within the
material, impacting fusion quality.

• Open pores in Inconel 625 SLM samples are linked to factors like rapid heating and
cooling rates, keyhole effect, and powder properties, emphasizing the need to optimize
process parameters for enhanced material integrity.

• Response surface graphs and contour plots for SR parameters are derived from inter-
polated data using regression equations, providing clearer delineation of parameter
effectiveness zones.

• The interaction between HD and LP significantly influences SR, with decreasing LP
and increasing HD leading to escalated roughness. Reduced LP impedes adequate
energy delivery for complete material melting, resulting in incomplete fusion and
visible gaps between laser paths, fostering incomplete melting and inadequate fusion.
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• The maximum microhardness achieved was 452 hv using an LP of 175 W and a hatch
distance of 0.1 mm, while the minimum SR was 9.9 µm with an LP of 200 W and the
same 0.1 mm HD.

• As part of the optimization process, three samples were introduced, with LP levels
ranging between 190 and 200 W and HD values between 0.2 and 0.3 mm.
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Abbreviations

SLM Selective laser melting.
DOE Design of experiments.
RSM Response Surface Method.
LP Laser power.
HD Hatch distance.
SR Surface roughness.
AM Additive manufacturing.
LMD Laser metal deposition.
LPBF Laser powder bed fusion.
SEM Scanning Electron Microscope.
HAZ Heat-affected zone.
ANOVA Analysis of variance.
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