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Abstract 

 

Smart homes are gaining more popularity by the day due to the ease they provide in terms of running 

our homes. However, the energy and resource constrained nature of the smart home devices make 

security integration challenging, thus making them prone to cyber-attacks. DDoS remains one of the 

most threatening attacks to this network and IoT in general. To curb this issue, there is a need to study 

the behavioural pattern of this attack and smart home devices at a low level. This will aid in designing 

a timely and more effective DDoS detection and attack type classification system, which is what this 

thesis presents. 

This research collects DDoS and benign traffic in a real smart home environment and performs an 

Exploratory Data Analysis (EDA), visualizing the behavioural pattern of DDoS flooding attacks when 

targeted at smart home networks in comparison to the benign smart home traffic pattern. Specific 

smart home traffic properties were selected, correlated, and visualized showing their reversed 

behaviour during an attack compared to their normal benign nature. To further validate the findings, 

public IoT datasets were analysed in the same manner and the same results were achieved. The results 

and observations from the findings are used to propose and implement a novel hybrid anomaly and 

feature-based DDoS detection and attack type classification system. 

The implemented system detects and classifies a wide range of DDoS flooding attacks at the very onset 

including unfamiliar, amplification, and protocol-based attacks. To validate this system, it is tested 

rigorously on both private and public sourced benign and infiltrated smart home traffic. An excellent 

performance was recorded making it not user, device or attack centric among other benefits.   

Due to the excellent performance recorded, the attack type classification approach was further 

applied to a supervised machine learning model, Random Forest. This was tested to find out the 

performance of the Random Forest model in attack type classification compared to when it is coupled 

with the classification module from the hybrid anomaly and feature-based solution. The performance 

clearly showed the latter outperforming the Random Forest model on its own by far in terms of attack 

type classification, thus proving that domain knowledge is very important when it comes to security 

design and implementation even when using Machine Leaning models.  
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Chapter 1 

Introduction 

1.1 Background 
IoT devices are becoming more popular in our daily lives due to the advantageous services they render 

to users. These devices cover a broad surface in terms of connectivity ranging from but not limited to, 

healthcare, home automation, weather forecast, transport, agriculture, security, and a variety of other 

dimensions. IoT further gives us the ability to have more control over our IoT ecosystem. By tailoring 

these devices to run exactly when we need them, this improves our energy conservation plans. We 

also get to monitor devices’ usage in real time, which paves way for accountability when the need 

arises. It is estimated that 150,000 IoT devices join the global network every minute [1]. 

However, the energy and resource constrained nature of these devices make them prone to cyber-

attacks [2] [3] [4] [5] [6]. This, in addition to their heterogeneous nature, makes security 

implementation challenging [7] [8]. The device vendors are not helping matters too as their focus is 

more aligned to device functionality and features rather than security [9]. This poses risks in terms of 

security as the lives of individuals are directly affected [10]. DDoS flooding attacks remain a big threat 

to the IoT network. During the first quarter of 2020 there has been a significant rise in DDoS attacks 

witnessing an 80 percent increase from 2019 [11]. This attack tends to flood a targeted server with 

voluminous unnecessary traffic, in the process over saturating its capacity causing service to be denied 

or halted to legitimate devices. Several of the server’s resources get negatively affected like processing 

power and memory capabilities as it is preoccupied in dealing with more traffic than it is designed to 

handle.  

The traditional approaches used in DDoS attack detection will not suffice in the smart home network 

due its heterogeneous and resource constrained nature at device level. This brings about the urgency 

to develop more efficient, centralized, and scalable solutions to deal with attacks of this form. The 

main goal of this thesis is to address these contemporary issues by designing and implementing a DDoS 

detection and attack type identification system based on the general behavioural properties of the 

smart home network, thereby making it not user, attack or device centric. 

1.2 Research Questions 
For this persistent attack to be detected and mitigated, there is a prerequisite need to study the 

individual attack traffic properties in relation to the benign corresponding properties of the smart 

network. This will help in identifying the affected traffic properties and what to look out for during a 

DDoS flooding attack. The best way to do this is by using data visualization techniques, as the network 

traffic is vast and multidimensional. This visualization method will also be beneficial to network 
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security operators as the human brain tends to better process images than text [12]. It can also give 

network operators the advance notice needed in case of a sensed attack. Although there have been 

immense contributions in DDoS visualization, detection and mitigation areas, there are still open 

challenges on the best way to identify and visualize DDoS attack patterns which will pave way for 

better detection and mitigation approaches [13] [14]. 

This led to the first 3 research questions which are as follows: 

RQ1 - What is the normal traffic pattern of a smart home network when visualized? 

RQ2 - What is the traffic pattern of the smart home network during a DDoS attack when visualized? 

RQ3 - What general smart home traffic properties get affected during a DDoS flooding attack?  

Several works have addressed DDoS detection and classification in the smart home network, however, 

there remain open challenges in this avenue [13] [14] [15] [16]. Some solutions make use of outdated 

or simulated data, which might hinder the accuracy when deployed in real life scenarios. In addition, 

some of the approaches used are not very practical or feasible in some scenarios. For example, using 

the single packet inspection method to determine if it is malicious or benign [17] [18]. This not only is 

time and resource consuming, but a less effective way of identifying DDoS patterns. This is due to 

DDoS flooding attacks being volume based, thus will need a volume based or cumulative approach to 

determine an attack pattern as opposed to the single packet approach. The approach of employing 

sequential user behaviour [19] or Device Usage Description (DUD) model [20] is not very practical as 

the former is user centric which will raise false positives when there is slight change in user pattern 

while the latter is not practical in large scale scenarios as it’s a device centric solution and not a 

generalized one. The issue of a solution being attack centric also comes into play [21] [22]. Using too 

much metrics for attack detection is another issue as it results in high resource consumption and 

detection time [23]. 

This led to the last 4 research questions which are as follows: 

RQ4 – How can the properties identified in RQ3 be used to develop a light weight, practical, 

centralized, and counter spoof DDoS detection and attack type identification system that is not user, 

attack nor device centric covering unfamiliar attack? 

RQ5 – Can a single network feature be used to detect all DDoS flooding attacks? 

RQ6 – Can feature absence or feature range be used in DDoS attack detection?  

RQ7 – Can the approach used in RQ4 be applied to a Supervised Machine Learning model leading to 

better performance while maintaining the benefits attained in answering RQ4? 
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RQ8 – Are the following metrics (Is attack present, type of attack present, is attack detected, packet 

number attack started, packet number attack detected, packet number attack type indicted, attack 

type indicated, window attack started, window attack detected) more relevant than using confusion 

matrix in assessing the performance of a DDoS detection and classification system?  

1.3 Aim and Objectives 
The main aim of this research is to develop a light weight, practical, centralized, and counter spoof 

DDoS detection and attack type indication system that detects and indicates attack type at the very 

onset, while not being user, attack nor device centric covering unfamiliar attacks based on the general 

behaviour exhibited by smart home devices when under attack. To achieve this aim, certain objectives 

must be outlined and adhered to. These are as follows: 

✓ Identify gaps in literature relating to DDoS attack detection and classification in the smart 

home network. 

✓ Setup a real smart home network to collect benign and attack data. 

✓ Identify the smart home network properties that get affected during the attack. 

✓ Design and implement a DDoS detection and attack type indication system. 

✓ Test and validate the system on both private and public attack and benign datasets. 

✓ Evaluate the system’s performance based on the following factors: Is attack present, is attack 

detected, packet number attack started, packet number attack detected, packet number 

attack type indicated, attack type indicated, window attack started, window attack detected. 

✓ Apply attack type indication module to a supervised machine learning model and compare the 

attack type indication performance with and without it.  

1.4 High level methodology 
Due to the broad and multiple research phases involved in this research, a high-level methodology 

covering the entire research journey is presented here. More detailed and elaborate methodology 

relating to each phase or chapter is presented at the beginning of each chapter. However, this high-

level methodology will give a general and comprehensive overview of the main methodological 

processes involved and adhered to. As this research is technically inclined, a quantitative research 

method is used because the research processes are heavily reliant on numerical analysis and empirical 

data. Figure 1.1 presents this high-level methodology. 

This methodology comprises of 5 phases. Each phase and what it entails are as follows: 

➢ Literature review: The adapted methodology for this phase is “Literature review and focusing 

the research” [24]. It involves reviewing literature in the field of interest which is detection 

and classification of DDoS attacks in the smart home network. This includes anomaly, 
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signature and supervised machine learning based solutions. Literature surveys around these 

topics are consulted to know the current state of the art and gaps. In addition to that, 

individual research papers, conference proceedings and technical reports are also consulted 

paying special attention to approach used, detection rates, practicality, light weightiness, 

validation process, attacks covered and issues the respective approaches and solutions solved. 

This will help provide a comprehensive and solid understanding of the state of the art relating 

to the topics in question. This will also help come up with the respective research questions 

that need answering in this thesis.   

➢ Data collection: This phase involves setting up the smart home network and DDoS attack 

experiments. Purely benign smart home traffic and a mixture of benign and attack traffic is 

collected by designing use cases that will provide the required data. The collected data 

includes several DDoS attacks and mixed attacks. Mixed attacks are a combination of different 

individual DDoS attacks like TCP SYN, ICMP and UDP attacks launched at the same time 

targeting the smart home network. Public attack and benign data from reputable sources are 

also gathered. These will be used in the validation phase. 

➢ Exploratory Data Analysis (EDA): The collected data is analysed using EDA [25] which is a 

statistical method used to analyse datasets summarizing their main characteristics using data 

visualization techniques [26]. Both private and public attack and benign data are analysed 

using this approach. Observations relating to how the smart home network properties are 

affected during a targeted attack are noted. These will be used to propose, design, and 

implement the detection and attack type indication system. 

➢ Iterative system development model [27] to design and implement detection and attack type 

indication system: The iterative model is adapted due to its recursive nature especially at the 

testing and tuning stage for this system. It is found to be most suitable as lots of testing and 

tunings are carried out to continuously improve the system after each iteration. The results 

and observations derived from the data analysis stage are used to design and implement a 

hybrid anomaly and feature-based detection and attack type indication system. The research 

questions to be answered and gaps to be bridged are taken into consideration in this phase 

as the solution will be modelled to successfully answer the research questions.  

The attack type indication approach used in the hybrid anomaly and feature-based detection 

and attack type indication system is applied to a supervised machine learning model (Random 

Forest). The ability of the Random Forest (GB) model in classifying attack type will be 

compared to when it is coupled with the algorithm-based approach which is based on domain 

knowledge. 
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The systems performances are evaluated based on quantitative factors which are: Is attack 

present, type of attack present, is attack detected, packet number attack started, packet 

number attack detected, packet number attack type indicated, attack type indicated, window 

attack started, window attack detected. These factors will provide very precise and accurate 

details as to how early and accurately the attack is detected and type indicated. 

The system is further validated by testing on public datasets spanning known attacks, 

Unfamiliar attacks (attacks not tested or exposed to system previously), mixed attacks and 

normal traffic using the same performance metrics listed in the performance evaluation phase. 

This will prove the system’s ability in: 

1) Not being user, device or attack centric,  

2) Eliminating bias with regards to the private dataset it was initially evaluated on 

3) Detecting and attack type identification of a wide range of DDoS attacks including mixed 

and unfamiliar attacks. 

➢ Compare with state of the art: This phase deals with comparing both the hybrid anomaly and 

feature-based detection and attack type indication system and the hybrid ML based 

classification model to existing methods and solutions in the same field. The comparison is 

based on 12 rigorous factors that provide clear and holistic justification that is scientifically 

sound.  

 

Figure 1.1 High level methodology 
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1.5 Contributions 
This research has 6 main contributions which are as follows: 

❖ Contribution 1: In the event of studying the smart home network behaviour and traffic 

patterns, unique correlated traffic patterns attributed to each mode of device control was 

visualized. This correlation and visualization are new with regards to deriving a unique 

signature for each method or mode used to control the smart devices. The explored modes 

include manually operating the devices, automated/ scheduled, using Hive app, using Home 

kit app and using Google home app. The protocol and packet length sequence of each mode 

of control was found to be unique and uniform regardless of the platform (iPhone, iPad, 

Samsung smart phone) used to control it. These correlated patterns can be used in forensic 

investigations to prove how someone controlled a particular device or devices and whether 

they were present at the scene during some specified times. For instance, if the evidence 

shows proof of manual mode of operation, then this ties one to physically being at the 

premises. Furthermore, as each operation mode has a unique traffic pattern, these patterns 

could be part of the allowed list on the smart home network to detect certain attacks relating 

to unauthorized control of device which might have a deviating pattern from the allowed 

listed ones. This is addressed in chapter 3. 

❖ Contribution 2: Normal smart home traffic pattern in comparison to when DDoS flooding 

attacks infiltrate the network are visualized using Exploratory Data Analysis. This visualization 

is new as it clearly visualizes the benign and attack patterns based on smart home network 

features that get simultaneously affected during an attack. The visualized network features 

can be incorporated into data visualisation tools and Intrusion Detection Systems. This will 

provide clearer low-level statistics as to how the network is deviating from its normal pattern 

during an attack. The visualised EDA [25] [26] images can also be trained on a Convolutional 

Neural Network (CNN) [28] using ResNet [29]. It is well known that deep learning models 

especially CNN achieved high significance due to their outstanding performance in the image 

processing field. The potential of CNN can be used to detect DDoS attacks by converting the 

network traffic data into images. This is addressed in chapter 4. 

❖ Contribution 3: A new approach to DDoS attack detection has been presented. The approach 

uses feature absence and feature range in attack detection from the very onset. Some 

prominent network features (Sequence numbers and TCP flags) were found to be absent for 

the duration of certain attacks. The narrative needs to be changed from only focusing on 

present network feature statistics to detect attacks, rather features that are normally present 

but tend to be absent for a prolonged period also contribute to rapid attack detection as seen 

in this research. In addition to that, the sequence number range in normal traffic tend to be 
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very wide, starting with a 0 or 1 at the beginning of a session and keeps incrementing to very 

high values. However, during an attack, the sequence numbers were found to stall at 0 or 1 

all through. This new detection technique led to contribution 4. This is addressed in chapter 

4. 

❖ Contribution 4: A hybrid anomaly and feature-based DDoS detection and attack type 

indication algorithm has been implemented and tested. This algorithm is based on the findings 

in contribution 3. The feature absence (sequence numbers & TCP flags) and feature range 

(Sequence numbers) phenomena are used as baseline as to what is considered anomaly in the 

traffic. Thus, this is incorporated as conditions in the algorithm to flag the anomalies as attack 

packets. After a grouped series of packets are flagged and labelled as attack, the protocol with 

the highest count among those flagged packets is used as the attack type classification label 

for each of the attack labelled packets. Both detection and attack type identification modules 

of the system performed excellently with only 1 wrong prediction due to traffic from a new 

device joining the network. The system was able to detect and indicate the attack type at the 

very onset. In addition to that the solution is light weight, practical, centralized, and counter 

spoof that is not user, attack nor device centric covering unfamiliar and mixed attacks. This is 

addressed in chapter 5. 

❖ Contribution 5: A hybrid Machine learning detection and attack type identification model is 

developed. Random Forest model is trained based on the same network features used in 

contribution 4. The model was able to accurately detect the attack at the very onset and to 

some extent classify the attack type. The model was able to predict the presence/absence of 

an attack in all testcases within the first 5 packets of an attack except for the attack type 

prediction which it failed to correctly predict in 5 testcases out of 20. However, the novel 

attack type identification approach used in contribution 4 which is based on highest protocol 

count among the attack labelled packets was applied to the Random Forest model. After the 

RF model detects the attack, the attack type indication module applies the highest protocol 

count check and labels the attack type using that. This hybrid model outperformed the RF’s 

ability to classify the attack type correctly including unfamiliar attacks with 99% accuracy. In 

all the testing and validation cases, the hybrid model predicted all testcases correctly except 

for one instance due to the same reason of new device joining the network as in contribution 

4 in Indicating the attack type while the RF model on its own misclassified the attack type 6 

out of 20 testcases. This proves that the hybrid model is more effective in terms of attack type 

identification. This is addressed in chapter 6. 
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❖ Contribution 6: A new approach to assessing the performance of a DDoS attack detection and 

attack type identification system is presented. This new approach is proven to be more 

relevant in terms of precisely measuring the system’s ability to detect and identify attack types 

at the very onset and how accurate the prediction is. Currently the conventional method is 

the use of confusion matrix [30]. However, confusion matrix does not specify how early the 

attack is detected or classified rather it gives statistics on how much the solution was able to 

predict right. This proposed approach is used in this research and has proven to provide more 

relevant performance details. The metrics used to gauge the performance of the detection 

and attack type indication system on each data source in this new approach are: Is attack 

present, type of attack present, is attack detected, packet number attack started, packet 

number attack detected, packet number attack type indicated, attack type indicated, window 

attack started, window attack detected. This is addressed in chapter 5. 

1.6 Scope and limitations 
The scope of this research is limited to the following areas: 

➢ Smart home network: The focus of this research is on smart home devices and the network 

they form; thus, the solution is tailored to detect and indicate attack types in this network. 

➢ TCP/HTTP based protocols: This research is also limited to devices that use TCP/HTTP 

communication protocols; thus, the solution is only intended for TCP/HTTP based traffic with 

TLS/SSH based encryption. However, the solution still accommodates other protocols like UDP, 

ICMP and the like used by these TCP/HTTP based devices. 

➢ DDoS flooding attacks: The attacks covered in this research are limited to DDoS flooding 

attacks like TCP SYN, UDP, ICMP, HTTP, DNS, NTP, ARP and the like thus slow stealth DDoS 

attacks are not catered for by the solutions. 

➢ Detection and attack type indication: The implemented and tested system is limited to 

detecting and indicating attack types as no mitigation is involved at this point. 

1.7 Thesis structure 
The rest of this thesis is structures as follows: 

❖ Chapter 2 Literature review: This chapter deals with reviewing the current state of the art in 

the field of DDoS detection and classification in the smart home network. The challenges, gaps 

and open research questions relating to the solutions are identified. 

❖ Chapter 3 Smart Home network behaviour: This chapter delves into setting up a real-life 

smart home network and collecting data from the network. The collected data is analysed to 

understand the behavioural pattern of the network. 
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❖ Chapter 4 Exploratory Data Analysis comparing attack and benign smart home traffic 

properties: This chapter is concerned with attacking the smart home network with DDoS 

flooding attacks and comparing the attack and benign patterns of the network using EDA. 

❖ Chapter 5 A novel algorithm-based DDoS attack detection and attack type indication in the 

smart home network: This chapter implements the DDoS detection and attack type indication 

algorithm based on the findings from the EDA in chapter 4.  

❖ Chapter 6 A novel hybrid Machine Learning detection and attack type classification model 

using domain knowledge: This chapter presents the hybrid supervised ML based attack 

detection and attack type indication model using the features and attack type indication 

approach from chapter 5. 

❖ Chapter 7 Research contributions: The overall research contributions and how they were 

achieved are discussed here. 

❖ Chapter 8 Conclusion: This chapter concludes the thesis. The limitations are discussed as well 

as future work. 
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Chapter 2 

Literature review 

2.1 Introduction 
The fast evolving and disruptive nature of DDoS attacks has become a great concern for smart 

homeowners. Due to this, security experts and researchers are continuously conducting investigations 

and research studies with regards to better and more efficient methods of dealing with this attack. 

The main goal of this chapter is to harness knowledge of the current state of the art, thereby 

identifying existing solutions, the gaps involved and how to bridge these gaps in ways that will address 

both the attack and the constrained and heterogenic nature of the network.  

The following methodology [24] was adhered to for a comprehensive and holistic understanding of 

the current state of the art and opportunities to build on. 

✓ Identify research topic: Topics with the following key words are the points of interest: 

Anomaly/signature/ML/hybrid-based DDoS detection and classification systems in IoT, IDS in 

smart home networks, DDoS attack identification and traffic analysis in smart homes, smart 

home network characteristics. 

✓ Database query: Reputable academic search engines and databases will be queried with the 

key words of interest. These include Google Scholar, IEEE Xplore, ScienceDirect. 

✓ Review secondary sources to get an overview of the topic: Literature surveys/ reviews of the 

current state of the art relating to the topic of interest are consulted. 

✓ Develop a search strategy and use appropriate preliminary sources and primary research: An 

inclusion and exclusion criteria will be outlined to avoid going out of scope. Relevant 

information from selected sources will be extracted like detection and classification 

approaches, performance metrics used, detection time, practicality and overall strengths and 

limitations. 

✓ Prepare bibliographic information and notes on each article: Relevant details derived from 

each source will be stitched together. 

✓ Evaluate the research reports: The potential gaps identified based on the consulted sources 

will be identified. This will give rise to research questions of interest and what approach/ 

methodology to employ while bridging these gaps. 

The rest of the chapter is structured as follows: Section 2.2 delves into the smart home architecture 

and network characteristics. 2.3 discusses the security challenges and risks associated with smart 

home networks due to their nature. 2.4 delves into an overview of DDoS attacks and their impact on 

smart home networks. 2.5 is concerned with the existing solutions in DDoS detection and classification. 
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2.6 discusses the main research gaps identified and how this thesis will contribute to bridging some of 

these gaps. 2.7 summarises the chapter. 

2.2 Smart home eco-system 
Advancements on the Internet of Things (IoT) has created a sharp rise in the popularity of smart homes 

over the years. The ease, convenience and efficiency that come with smart home devices keeps 

necessitating their presence in our lives today. Very drastic increase in the use of smart devices has 

been witnessed with statistics predicting that over 75 billion IoT devices will be connected around the 

world [31]. Figure 2.1 shows a projection of the sharp increase in the use of these interconnected 

devices from 2015-2025. 

 

Figure 2.1 Projection of increase in IoT use, 2015-2025 [31] 

The smart home eco system is made up of interconnected devices, controllers, sensors, and actuators. 

These exchange signals and communicate via numerous protocols [32]. The popular communication 

protocols include Zigbee, Z-wave, Wi-Fi, and Bluetooth [33].  

The smart home eco system can be broadly categorized into 3 namely centralized, decentralized and 

hybrid [34]. Centralized infrastructure is managed by a single hub that handles device management 

and data processing duties. As this type of connectivity comes with good coordination, it is prone to 

single point of failure. On the other hand, the decentralized version shares the decision-making 

process among several other devices that intercommunicate. This is deemed safer but can be difficult 

to maintain [35]. The hybrid infrastructure is a combination of both centralized and decentralized that 

brings about more flexibility and control [36]. 

The smart home can also be looked at from a layered perspective. There are four main layers which 

are physical, communications, information, and decision [37]. The physical layer consists of hardware 
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components like routers. The communication layer handles the connection between servers, routers, 

and other networked devices [38]. The information layer handles data storage, processing and analysis 

received from devices and sensors in the network [39]. The decision layer determines what action or 

data is to be stored in the information layer [40]. 

From this we can see how complex and heterogeneous the smart home eco system can be. 

2.3 Challenges and risks concerning smart home network 
Since smart home networks are becoming more and more interconnected with and very much 

internet dependant, this broadens the attack surface in addition to their not so security 

accommodating nature. This section delves into the various smart home network properties that 

make them susceptible to cyber-attacks.  

Among the smart home characteristics that make them highly prone and exposed to the fast-evolving 

cyber-attacks are: 

• Resource constrained: Smart home devices tend to have very limited memory, battery 

resource and processing power. This brings about the challenge in incorporating security 

protocols, thus leaving them exposed [41]. 

• Protocol diversity: The heterogeneous nature of the devices under a single roof without 

standardized and unified method of consolidation makes it difficult to implement seamless 

security measures [41]. 

• Wide attack surface: The ever-increasing smart home connections widens the attack surface 

thereby making provision for multiple entry and routing points for cyber attackers [42]. 

• Update challenges: Updating firmware and applying patches is difficult with the devices 

frequent updates to fix vulnerabilities [43]. 

The smart home device vendors are not making things easier as they tend to prioritize functionality 

over security. This results in having vulnerable devices in the market due to several security flaws like 

weak authentication credentials and weak or no encryption. This makes them prone to numerous 

attacks like unauthorized access, Man-In-The-Middle attack, reverse engineering attacks and the like 

[44] [45] [46]. Some popular cyberattacks on smart devices over the years include: 

• The baby monitor hack: In 2015, there were several reports of baby monitors being hacked as 

the attackers gained unauthorized access. The BBC reported a specific case of a hacker that 

shouted obscenities after taking control of a couple’s baby monitor [47]. 

• Ring camera hack: In 2019, unauthorized access to Ring cameras was reported. This event 

really put emphasis on privacy risks related to smart home devices. Weak and reused 
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credentials were the main point of exploit in this attack for unauthorized access. The attackers 

after gaining access were able to communicate with the legitimate owners and view live video 

feeds [48].  

• Mirai Botnet: In 2016, a malware called Mirai infiltrated smart home devices among other IoT. 

This was done by exploiting weak and default authentication credentials. The infected devices 

were used as Bots to spread DDoS attacks across high profile organizations leading to serious 

outages. More than 600,000 devices were affected [49]. 

• Dyn attack: In 2016, a company called Dyn had its servers targeted with DDoS. This company 

provides DNS related services. This resulted in significant disruptions to popular sites like CNN, 

Reddit, Netflix and Twitter among others. The botnets used in this attack were largely made 

up of IoT devices like digital cameras and DVR players [50]. 

• GitHub attack: In 2018, GitHub was hit by DDoS attack that lasted for about 20 minutes. This 

was traced back to over a thousand autonomous systems with tens of thousands of unique 

end points which greatly overwhelmed their defence measures [50]. 

2.4 DDoS flooding attacks in the smart home network 
DDoS flooding attacks remain a big threat to the IoT network. During the first quarter of 2020 there 

has been a significant rise in DDoS attacks witnessing an 80 percent increase from 2019 [11]. This 

attack tends to flood a targeted server with voluminous unnecessary traffic, in the process over 

saturating its capacity causing service to be denied or halted to legitimate devices. Several of the 

server’s resources get negatively affected like processing power and memory capabilities. 

DDoS attacks are well-known attacks of major concern violating the “Availability” principle of security. 

The attack vectors exploit several internet protocols features built decades ago when security was not 

a concern as it is today [51]. This attack is majorly categorised in two namely bandwidth and resource 

depletion attacks [52]. In the bandwidth depletion attack, legitimate looking traffic that is highly 

voluminous gets directed towards the target device or network while the resource depletion attack 

directs bogus service request that appear legitimate to the target device, thereby tricking it to respond 

continuously to the level that it can’t respond to legitimate devices requiring its service. In both 

scenarios service is denied to those that require it as the name implies Denial of Service attack. When 

multiple sources or agents are used to direct this attack to a target device, this becomes Distributed 

Denial of Service (DDoS). Figure 2.2 shows a taxonomy of these attacks [53]. A breakdown of these 

attacks and how they operate is as follows: 
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• Amplification attack: In this type of attack, a request is sent by the attacker to several DNS or 

NTP servers using a spoofed address which is the victims IP address. The servers respond to 

this with much larger bytes thereby overwhelming the victims’ network.  

• Protocol exploit attack: In this type of attack, the communication protocol is taken advantage 

of. An example is the TCP SYN flood attack where the attacker takes advantage of the 3-way 

TCP handshake, initiating the process without completing it. It floods the target server with 

SYN requests which arrive faster than the target server can process them, thus leaving it 

saturated. This results in the connection being half open as it is never acknowledged or ended 

[53] 

• Zero-day attack: This attack tends to exploit an unknown vulnerability in a target device, 

software, or network. Dealing with this sort of attack is challenging as traditional signature or 

anomaly-based IDS still miss it [54]. 

• ICMP: This attack tends to overwhelm the target server with ICMP echo requests (pings). The 

server tries to process each incoming packet and responds to it and in the process failing to 

process legitimate packets as it is already saturated. 

 

Figure 2.2 DDoS attack taxonomy [53] 
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2.5 DDoS detection and classification in smart home networks 
Several works have addressed DDoS detection in the smart home network, however, there remain 

open challenges in this avenue [13] [14] [15] [16]. For the attack to be efficiently and effectively 

detected and mitigated, analysis of the smart home network characteristics in relation to the attack 

patterns remain crucial. This section delves into the use of data visualization in cyber security and 

some DDoS detection and classification tools and approaches. The approaches of interest here are 

rule/signature based, supervised machine learning based, and hybrid-based Intrusion Detection and 

(Prevention) Systems (ID(P)S). However, the scope of this research is limited to detection and not 

prevention or mitigation. 

2.5.1 Data visualization in cyber security 
Data visualization is very important when it comes to understanding normal device behaviour and 

attack patterns. This can help security analysts in spotting outliers, patterns and trends that separate 

a normal behaviour from a malicious one [14]. When it comes to DDoS attacks, data visualization aids 

in anomaly detection in a network traffic [55]. 

Smart home, being one of the most popular and relatable IoT to users, has gained a lot of attention in 

the research community. This has led to growth in research relating to smart home behaviour and 

security. Several works have addressed smart home device identification or fingerprinting [56] [57] 

[58] [59] [60] [61] [62] [63] [64] [65] [66]. Privacy attacks from the adversary angle have also gained 

much attention within the research community, thereby being able to profile a smart home users’ 

behaviour [67] [68] [69] [70] [71] [72] [73] [74] from unencrypted logs. 

However, with all these developments, it is observed that there is lack of visualization for low-level 

network features in relation to their behaviour during a DDoS flooding attack. Studies mainly focus on 

smart home behaviour profiling and device fingerprinting. For this persistent attack to be detected 

and mitigated, there is a prerequisite need to study the individual attack traffic properties in relation 

to the benign corresponding properties of the smart network. This will help in identifying the affected 

traffic properties and what to look out for during a DDoS flooding attack. The best way to do this is by 

using data visualization techniques, as the network traffic is vast and multidimensional. This 

visualization method will also be beneficial to network security operators as the human brain tends to 

better process images than text [12]. It can also give network operators the advance notice needed in 

case of a sensed attack. Although there have been immense contributions in DDoS detection 

techniques, there are still open challenges on the best way to identify and visualize DDoS attack 

patterns which will pave way for better detection and mitigation approaches [13] [14]. 
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Exploratory Data Analysis is a statistical method of analysing data to summarize the main 

characteristics of the dataset by using data visualization tools and techniques to represent the derived 

results for ease of understanding. Visualization features like scatter plots, heat maps and time series 

graphs will help give insights to attack patterns [61]. 

2.5.2 Rule/ signature/ hybrid -based ID(P)S 
The signature-based ID(P)S monitors network traffic for known or prestored signatures relating to 

numerous known attacks. This allows it to precisely identify an attack for what exactly is as it already 

has knowledge of how it looks or behaves [54] [75] [76]. However, this ID(P)S cannot recognize 

unfamiliar attacks because it has not learned its signature or behavioural pattern in the past. Due to 

this, the signature-based ID(P)S requires a frequently updated database to keep track of the most 

recent attack signatures so it can flag them right away. 

The anomaly-based ID(P)S monitors a traffic for deviating patterns from the normal traffic pattern and 

uses this as a basis for intrusion detection. The challenging part of this ID(P)S is the very thin line 

between normal and abnormal traffic patterns which in turn leads to False Positive alarms [75] [76] 

[77]. 

The hybrid-based ID(P)S is a combination of both signature and anomaly-based versions. This 

combines both advantages of the anomaly and signature-based systems, providing a more robust 

solution. Nonetheless it can be challenging to implement and consolidate [54]. The working process 

as well as the up and down sides of the anomaly and hybrid- based ID(P)S are shown in figure 2.3 and 

table 2.1. 

 

Figure 2.3 Signature & anomaly-based monitoring process [76] 
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Table 2.1 Upsides and downsides of signature and anomaly-based ID(P)S [77] 

Snort and Suricata are two popular opensource ID(P)S’s. Snort is an IPS that can run in IDS mode 

purchased by Cisco from Sourcefire in 2013. It detects malicious activities like DoS and unauthorised 

access attacks. It carries out real time traffic analysis and packet logging. Snort has features to support 

anomaly-based detection. Similarly, Suricata is another IDPS tool that supports both signature and 

anomaly-based features. It was developed by the Open Information Security Foundation (OSIF). Both 

Snort and Suricata have proven effective in traditional networks, however certain limitations arise 

when they are deployed in smart home networks or IoT in general due to the nature of these networks 

in terms of resources, scalability, and high false alarm rates due to how heterogenic the network is 

[78]. 

Researchers in [20] propose the use of Device Usage Description (DUD) model for device behaviour 

and flow rules extraction to detect DDoS attacks in a smart home network. Nevertheless, this method 

tends to be device specific and may be problematic in large-scale networks as extracting each device 

DUD may not be feasible and bring about significant overheads. The paper also states traffic properties 

considered in generating flow rules for DDoS detection but without any visual representation or 

comparison. User behavioural pattern was also used in [19] to develop anomaly detection model in 

IoT device operations. The sequence of activities performed by the user is learned and any deviation 

from this sequence is classified as an anomaly. However, this could be problematic as any change in 

user behaviour can raise a false positive alarm. 

A rule based SIEM detection model is presented in [79]. It analyses a series of packets to find out if 

certain rules are breached based on a fixed threshold. Its main detection metric is SYN flags to detect 

TCPSYN attacks. This was tested on a simulated network. An SDN based detection system is presented 

in [23]. Various metrics like number of flow entries, similar payload packet count, number of sent and 

received packets on each node, power ratio of each node, in/out traffic load and session IP counter 

among others. Due to the intricacy of processing these metrics, it results in high detection time and 
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consumes a lot of processing power, thus the need to investigate on a light weight and intelligent 

method to detect attacks. The use of a packet counter can also be problematic in diverse environments 

as each device tends to behave differently in terms of number of packets transmitted over time. The 

use of similar payload in attack detection raises the rate of false positive alarms. The paper mentions 

early attack detection but without how this was evaluated. 

A Networked Smart Object (NOS) at edge is presented in [43]. The NOS acts as the middleware which 

approves and acknowledges every request on the network before a connection is established. 

However, this results in delays and the volume of attacks it can handle is determined by the number 

of NOS. It is also resource and memory consuming due to the TCP protocol involved in the request and 

approval or acknowledgement aspect by the NOS. Performance metrics used were latency, computing 

effort and attack recovery time. 

A whitelist and blacklist IP method is used in [80] to allow or deny IP addresses. The main features of 

detection are IP address and packet interarrival time which can raise false positive alarms as each 

device is different in terms of packet transmission frequency. 

Researchers in [81] present a signature-based IDS based on wired connection. It is limited to detecting 

HELLO flooding and version number modification attacks. Packet sending rate and signal power are 

the features used in detection. 

A device level signature-based botnet detection system is presented in [82]. Snort and Suricata are 

used to test this using 3 public datasets which are ISOT [83], IoT23 [84], and BOTIoT [85]. Only known 

attacks are detected and the performance metrics used are number of alerts, accuracy, detection time, 

CPU, and memory usage. The attacks covered are TCP, UDP, ICMP and IRC. 

Researchers in [86] proposed a detection mechanism that uses a predefined threshold of packets to 

determine attack traffic. If the total number of packets sent to an IP address exceeds the set threshold 

for a specific duration, this is blocked. Only TCPSYN attacks are covered in this work. This is not 

practical for large scale environments as false alarm rates will be high. 

In [87] an entropy-based DoS/DDoS detection and mitigation system In IoT is presented. The detection 

metrics are source/ destination IP addresses coupled with their respective port numbers and protocols. 

This experiment was simulated and when the window size is increased, the switches stop responding. 

Another downside to this approach was the fact that the entropy is calculated in real time at the 

beginning of the set window or threshold. If an attack starts at the very beginning of this window, then 

no entropy is calculated as no prior variation to compare with is present, thus the failure to detect the 
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attack. In [88] another entropy-based DDoS detection mechanism is brought forward with the same 

detection metrics and downsides as [87]. 

An anomaly detection model for fog empowered networks is proposed in [89]. Continuous Ranked 

Probability Score (CPRS) is used as the forecasting model. The number of packets passing through the 

network within a specified time window coupled with packet inter arrival times are the main detection 

metrics used. However, no clear performance metrics were discussed. 

Firewalls have also been known to play a crucial role in network protection. They control network 

traffic based on specified rules set by an administrator or security expert [90]. Firewalls have evolved 

and are categorised into several generations. First generation firewalls filter packets at the network 

layer of the OSI model [91] considering the source and destination IP addresses and ports. The second 

generation extends to carrying out stateful packet inspection by having the ability to keep track of 

state or status of connections which in turn is used to differentiate between legitimate and malicious 

traffic. The third-generation firewalls go beyond stateful inspection as they can have integrated 

features like IPS coupled with application layer filtering. Next Generation Firewalls (NGFW) further 

extend into deep packet inspection coupled with the previous generations’ abilities [92]. However, all 

these firewall generations require an expert’s intervention in deployment, defining rules and checking 

them for correctness [90] which raises and issue for the average smart home user. 

A firewall appliance for the smart home network called FANE is proposed in [90]. It operates using a 

Wi-Fi bridge that connects to the IoT network segment to the internet. It learns firewall rules by 

observing network packets of the devices at installation and whenever a new device joins, it has to go 

through this process. Standard firewall rules using IP tables and rate limiting are applied. However, no 

clear performance evaluation is provided. 

A Network Based IPS is proposed in [93]. This is located behind a firewall with network-based IP 

sensors installed to block malicious traffic. The countermeasure mechanisms include blocking activity 

from the source address, dropping malicious packets and resetting the connection. However, no clear 

performance evaluation is provided. 

In [94] a comparison between a NGFW and a traditional firewall is made. These are tested on DDoS, 

SQL injection and phishing attacks. TCP SYN and UDP attacks are focused on in the DDoS category. The 

UDP attack traffic was dropped by both firewalls due to a stateful rule that prevents UDP packets from 

going through a particular server and port. On the other hand, the TCP SYN traffic was allowed to pass 

by the traditional firewall while the IPS embedded in the NGWF blocked the traffic due to the 3-way 
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handshake being ignored. However how subsequent legitimate traffic of the same protocol is handled 

was not discussed. No clear performance evaluation was provided here as well. 

Another firewall-based DDoS attack mitigation is proposed in [95]. It used Manufacturer Usage 

description [MUD] to determine whether traffic is malicious or legitimate. The user is required to set 

the MUD rules for traffic flow generated by each device as well as access control lists. When the set 

rate limit is exceeded, the firewall drops the incoming packets. The same downsides to the work in 

[94] are noted here as well. 

Machine learning based IDPS is presented in [96]. The models tested and their respective accuracies 

are: Random Forest (85.9), Decision Trees (83.8), K Nearest Neighbour (84.3), Bagging (85.8), Ada 

Boost (86.6) and Voting (84.8). An IPS is further proposed to take an action after the detection by 

dropping the malicious packets and blocking the attackers IP and MAC addresses. Another IPS 

alternative presented is to redirect the intruder’s connection to a honeypot. 

An ML embedded IDPS is presented in [97]. Three models were tested with regards to DoS detection. 

The models and their respective accuracies are: Random Forest (99.68), Decision Trees (99.68), 

Gradient Boosting (99.59). The IPS embedded then drops the malicious packets. 

However, as these solutions might work well in handling certain attacks, it is not easily the case in real 

life smart home scenarios. Firewall and IDPS technologies are mostly suited for enterprise networks 

with mostly traditional IT devices [90]. The nature of the smart home network coupled with an average 

user’s knowledge and financial constraints give rise to several challenges in making use of or deploying 

these technologies. These challenges include: 

 Knowledge and expertise constraints: An average user does not have the technical know-how when 

it comes to setting up firewalls and ID(P)S’s. Having to define firewall rules based on the homes 

network traffic flow will be challenging. Another dimension is from cases where the firewall with 

combined ID(P)S or Machine learning features requires the smart home user to install and train each 

device joining the network as seen from the literature reviewed. Furthermore, having a segmented 

network for both smart home devices and traditional devices will be ideal [90] but an average user 

lacks the expertise. There is a need for usability with these security mechanisms in the average user 

home network without expert knowledge. 

Financial constraints: Having to deploy a NGFW with combined ID(P)S will add to the cost of the smart 

home devices already purchased, which will discourage users due to the financial implication. 

Continuous user intervention: These security mechanisms like firewalls need continuous monitoring 

and updates which an average home user will prefer to have this automated.   
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2.5.3 Supervised Machine learning based solutions for attack detection and classification 
Supervised Machine Learning solutions involves training an algorithm using a labelled dataset of attack 

and normal traffic. The Machine Learning model then uses this to make predictions on unseen data 

by classifying it as attack or normal data. 

Labelled datasets are required to train ML models for DDoS detection. These datasets should contain 

several DDoS attacks and benign traffic as well. There are numerous publicly available datasets for this 

purpose even though some are outdated which makes them unfit for training robust DDoS detection 

models which cannot handle recent attacks due to the fast-evolving nature of these attacks [54]. Table 

2.2 shows some public datasets and what they comprise of. 

Researchers in [98] use ML models to detect attack traffic in smart home network. Support Vector 

Machine (SVM), Random Forest (RF), Decision Tree (DT), Logistics Regression (LR), K-nearest 

neighbours (KNN), and Naive Bayes (NB) algorithm were tested. Random Forest classifier was the best 

performing model for detection. However specific attack type classification was not achieved. 

Confusion matrix was used to assess the performance. 

A framework for DDoS attack detection in smart home network using ML models is presented in [99]. 

The attacks covered are TCPSYN, ICMP and UDP attacks. Features used in detection are TCP, UDP and 

ICMP distribution, packet size and count and IP diversity ratio. Only the accuracy (98%) and average 

latency (1.18 milli secs) were provided for performance assessment. Random Forest model was also 

reported to have performed well in the detection.  

In [100] several ML classifiers were used to detect DDoS attacks in the smart home network. The 

attacks covered are TCPSYN, UDP and HTTP flood attacks. The Random Forest classifier was one of the 

best performing models in attack detection. Features used in detection include packet size, packet 

interarrival time, protocol, bandwidth, and IP addresses. Specific attack type classification has not 

been achieved. Confusion matrix was used to assess the performance. A similar research was carried 

out in [101] achieving similar results. 

In [102] a DDoS defence mechanism is proposed called FLOWGUARD. It consists of an identification 

and classification module. Long Short-Term Memory (LSTM) was used for identification while CNN was 

used for classification. Both achieved high accuracy and confusion matrix was used to assess the 

performance. LSTM achieved 98.9% while CNN achieved 99.9% accuracy. 83 features were also used 

for the training. 

https://www.sciencedirect.com/topics/computer-science/decision-trees
https://www.sciencedirect.com/topics/computer-science/logistic-regression
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Researchers in [103] propose a hybrid IDS that combines multiple ML models. An average accuracy of 

95% was achieved. Confusion matrix was used to assess the performance. However, attack type 

classification was not carried out. 

An IDS is presented in [104] which detects and classifies into 4 categories which are Man-In-The-

Middle, DoS, replay and reconnaissance attacks. On the side of DDoS attacks, three attacks were 

covered which are TCP, UDP and HELLO flood attacks. Confusion matrix was used to assess the 

performance. 

In [105] an ensemble feature selection algorithm was used to select features to detect DDoS attacks 

using various classifiers. Specific attack type classification was not achieved, and confusion matrix 

were used to assess the performance.  

A clustering based semi supervised ML model for DDoS attack detection is presented in [106]. Attack 

type classification was not achieved, and confusion matrix was used to assess the performance. 

A supervised IDS is presented in [107] which classifies attack types into 4 main categories which are 

DoS, evil twin, MITM and scanning attacks. Specific DDoS attack types were not classified, and 

confusion matrix is used in performance assessment. 

From the reviewed existing works, certain gaps are evident. Specific DDoS attack type classification is 

not carried out which tends to be highly relevant in terms of what mitigation measure to take. In 

addition to that most if not all current solutions base their performance assessment on confusion 

matrix which does not provide relevant details like onset attack detection. This is very relevant when 

it comes to assessing the performance of DDoS attack solutions as how early the attack is detected 

matters most. Another observation is that solutions tend to be attack centric covering between 1-4 

attacks (TCPSYN, UDP, ICMP, HTTP) at a time. There is a need for more robust solutions that can cover 

a wider range of flooding attacks at a go like DNS, NTP, ARP, TCP, HTTP, UDP, fragmentation and ICMP 

flooding attacks and the like. 

2.6 Gaps identified and contributions 
From reviewed literature, there have been numerous contributions in terms of DDoS detection in 

smart home networks and IoT at large. Nevertheless, there are still gaps in the approach relating to 

better and improved methods of DDoS traffic identification. There is lack of detailed analysis and visual 

comparison of attack and benign traffic patterns. 

 Some solutions make use of simulated data [108] [109] [110] [111] [112] [113], which might hinder 

the accuracy when deployed in real life scenarios. In addition, some of the approaches used are not 

very practical or feasible in some scenarios. For example, using the single packet inspection method 
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to determine if it’s malicious or benign. This not only is time and resource consuming, but a less 

effective way of identifying DDoS patterns. This is due to DDoS flooding attacks being volume based, 

thus will need a volume based or cumulative approach to determine an attack pattern as opposed to 

the single packet approach. The approach of employing sequential user behaviour or DUD model is 

not very practical as the former will raise false positives when there is slight change in user pattern 

while the latter is not practical in large scale scenarios as it’s a device centric solution. 

Name Format Size No. of 
Records 

Attack Types Features Data Types Environment Publisher Year 

ISOT PCAP 1.74 GB 1.67+M 
unique 
flows 

HTTP Botnet 49 Network 
(App layer) 

Testbed University 
of 
Victoria 

2017 

Bot-loT 
(Used in 
this 
research) 

Pcap, 
argus, 
CSV 

PCAP 
(69.3GB) 
CSV 
(16.7GB) 

72M DoS, DDOS (TCP, 
UDP, 
HTTP), Services 
scan, OS 
Scan, Keylogging, 
Data 
ex-filtration 
attacks 

46 Network Testbed UNSW 
Canberra 
Cyber 

2018 

N_BaloT CSV _ 7062606 Mirai and 
BASHLITE (10 
115 
attack classes, 1 
benign 
Class) 

115 Network Real (9 
Commercial 
IoT Devices) 
 

Maiden 
et al. 

2018 

Anthi 
Dataset 

Arff 977MB 2M 
Malicious-
Benign  
Ration 50-
50%) 

DoS,DDoS,MITM, 
Spoofing, 
Insecure 
Firmware, Data 
leakage 

135 Network Real (8 
Devices) 

Anthi et 
al. 

2019 

loTID20 CSV 294MB 625784 DoS, Mirai, 
MITM, Scan 

12 Network _ Ontario 
Tech 
University 

2020 

loT-23 
(Used in 
this 
research) 

Pcap, 
CSV 
 

21GB 
8.8GB 
(Lighter 
Ver) 

_ Mirai, Tori, 
Gagfyt, 
Kenjiro, Hakai, 
IRCBot, 
Linux.Mirai, 
Linux.Hajmi, 
Muhsitk, Hide 
and Seek, 
Trojan, Okiru 

21 Network 
(Application 
Layer 
Protocols) 

Real (23 
 Devices) 

Avast, AIC 
group, 
CTU 
 

2020 

Table 2.2 Public datasets [82] 

Furthermore, some existing works tend to be unfit for large scale or diverse environments as they 

require training the behavioural patterns of different devices which will be time and resource 

consuming [8]. This also raises the issue of having user, attack, or device centric solutions due to the 

type of network features used in detection which are very user or device dependent. More uniform 

and generalized approaches are needed which will cater for all regardless of the user or device. 

Light weight solutions are also needed. From literature we can see that some solutions use too many 

features for detection which leads to delayed detection times. A reduced number of features which 

at the same time are effective in attack detection need to be investigated. 
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The issue of assessing a systems performance based on confusion matrices and other conventional 

statistics also come into play. Confusion matrix does not specify how early the attack is detected or 

classified rather it gives statistics on how much the solution was able to predict right. The narrative 

from using conventional methods like confusion matrices and other statistics in terms of performance 

assessment as they do not provide relevant information as to how early and accurate the system was 

able to detect or classify an attack which is very crucial in the field of DDoS attacks needs to be changed. 

The effect is what you want to mitigate as early as possible not how much the attack is guessed right 

down the line when much of the damage has been done.  

Another challenging issue is dealing with unfamiliar attacks. Existing works don’t seem to have gotten 

around detecting and classifying unfamiliar attacks due to their unpredictive nature. An Intelligent 

way to handle this kind of attack is needed.  

To design an efficient and effective DDoS detection and classification system, there is a need to have 

an in-depth understanding with regards to the attack pattern and network changes that occur during 

the attack and in the process monitoring the most affected network properties. These can be used as 

a baseline for attack identification. To bridge the above-mentioned gaps, this research will carry out 

the following: 

• EDA on the normal and attack network characteristics in a real smart home environment and 

propose a better way to identify a DDoS pattern based on the analysed network features.  

• Identify the most affected network features during a DDoS flooding attack and capitalize on 

them for a timely and more effective solution 

• Design and implement a detection and classification solution that is light weight, not user, 

attack, or device centric and practical. This will cover all DDoS flooding attacks including 

unfamiliar attacks. 

• A better way to assess DDoS detection and classification systems performance which will 

provide details of how early and accurate a system is able to detect and classify an attack. 

• A more robust supervised machine learning model that covers a wide range of attacks 

including unfamiliar ones. 

2.7 Summary 
This chapter has reviewed the current state of the art in terms of DDoS detection and classification in 

smart home networks. The different approaches used to combat this attack has been researched as 

well as the existing gaps that need to be bridged. Areas have been identified which this research aims 

to contribute to in terms of bridging the gaps identified. 
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Chapter 3 

Smart home network behaviour 

3.1 Introduction 
This chapter delves into the network behaviour of the smart home devices used in this research. The 

chosen brand is Hive home [114] due to the lack of attention from the research community despite 

being one of the most patronized smart home brands in the UK. An in-depth study of the Hive home 

devices is carried out in this chapter to have a clear understanding of how these devices behave 

normally, as this will be used as a baseline for attack detection in subsequent chapters. The 

behavioural pattern of the devices both independently and collectively as an IoT network in 

connection to user behaviour is studied and analysed as these observations and analyses will be used 

to tailor security protocols that will suit the IoT network in question. Exploratory Data Analysis (EDA) 

is the technique used to analyse and visualize the collected hive home dataset, which led to some 

interesting novel findings. 

In terms of device behaviours and characteristics, this chapter covers the following: 

• Collection of data from a real-life Hive home network due to unavailability of Hive dataset in 

existing works. 

• EDA on the collected logs visualizing the behaviour of these devices covering the following 

aspects: flow volume, flow duration, protocols, traffic categorization, device identification, 

varying flow volumes and duration based on device mode of control (manual, automated, Hive 

app, home kit app, Google home app) and the distinct traffic pattern that applies to each of 

the mentioned device modes of control. 

• Discussion of new findings based on results derived from the EDA with regards to device 

behaviour when certain triggers are applied. 

The sub-sections in this chapter covers the methodology used, network setup, data collection process, 

EDA on the collected data, new findings, and comparison with literature and finally a summary of the 

chapter. 

3.2 Methodology 
The methodology used in this chapter is broken down and explained in this section. It has four phases, 

which are network setup, data collection, Exploratory Data Analysis, and reporting. 

The network setup phase involves getting the required tools, designing the network topology, and 

making the smart home network connection. The next phase is data collection where the use cases 

for data collection were outlined. This includes use cases like collecting data from each individual 
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device and together as a collective, triggering the devices at certain times using specific modes 

(manual, scheduled, application) and monitoring the devices in different states like idle and active. 

Traffic generated from the various use cases are sniffed using Wireshark. The EDA phase entails data 

pre-processing, network feature selection, normalization, and visualization of results. The last phase 

is the reporting phase where the findings are documented, compared with literature and new findings 

discussed. 

3.3 Network setup 
Hive home smart devices were used for this study. The devices include a smart hub (to integrate the 

smart devices), a motion sensor, a smart plug, and a smart bulb. The network communication that 

takes place when these devices are both idle and active is the main point of interest, thus a setup to 

collect this network data for further analysis was carried out. Hardware and software tools used are 

listed as follows: 

• Samsung A12 smart phone 

• Netgear GS308E – 100NAS switch [115]  

• Mac book air OS X El Capitan 10.11.6  

• Jupyter Notebook [116] 

• TL-WR940N Router [117] 

• iPhone SE  

• iPad  

• LAN cable  

• Wireshark 2.6.0  

• Hive starter pack (motion sensor, plug, Bulb, hub) [114] 

• Hive home app v.10.44.0 (6)  

• Google home app v.2.42.120  

• Home kit app 14.4.2  

Traffic generated from/to each of the mentioned devices was captured separately to know the type 

of network traffic that relates to a particular device. To get very detailed network traffic, the capture 

setup was made to collect traffic at layer 2 (datalink). This was done by connecting the hub to port 1 

of the switch. Port 8 of the switch was then connected to the router (for internet connection). To 

capture all that flowed in and out of the hub and all devices paired to it, port 1 was mirrored on port 

4. Port 4 was connected to the laptop using a Local Area Network (LAN) cable and Wireshark was used 

to capture this traffic. This capture setup is depicted in Figure. 3.1.  
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Figure 3.1 Data collection connectivity 

3.4 Data collection 
Before the commencement of collecting traffic, use cases were drafted for specific scenarios. This will 

give a clear understanding of the kind of traffic that gets generated by these devices for every scenario. 

The parameters that come with each use case include: 

• Device: This indicates what device or devices are being monitored. This can be a single device 

isolated or connected to other devices. For instance, there is a use case which monitors only 

the smart hub to know how this device behaves in solo and there is also a use case which 

monitors the smart hub, motion sensor, smart plug and bulb connected to get the type of 

traffic generated when the devices are working together.  

• Mode of control: This refers to the means used to operate or control the device(s). Five 

different modes were studied which include: 

- Using the Hive proprietary app: The Hive app was used to operate these devices after 

downloading it on the control devices (iPhone, iPad, Samsung smart phone).  

- Using Google home app: The Google home app was used to operate these devices after 

downloading it on control devices. 

- Using home kit: This app comes preloaded on apple devices (iPhone, iPad). This app is 

compatible with Hive devices just like the Google home app. This was also used to operate 

the hive devices. 

-  Manually: The devices (plug and smart bulb) were controlled by physical means by 

turning their switch ON and OFF.  

- Scheduled: Using the Hive app, times when the devices should automatically go ON and 

OFF were set on the app. This automated the triggers without any manual intervention 

either physically or via the apps. In this auto mode the hive devices go ON/OFF at the 

desired pre-set times. 
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• Trigger: This refers to the trigger action used for each particular use case. This can be turning 

the device ON, OFF, brightness UP/DOWN, physically triggering motion sensor and the like. 

• State: This indicates whether the device is in active or idle state. Active state is when the 

device is ON from the switch and triggered like plug ON or bulb brightness UP/DOWN while 

idle state is when the device is in the OFF state but still ON from the switch. 

• Window duration: This refers to how long a particular use case is being monitored as well as 

capturing the traffic relating to that particular use case. 

• Mode: This indicates whether the device is pairing, unpairing or at boot stage. 

• Count: This indicates the number of times a particular trigger like ON/OFF has been executed 

within a particular window duration.  

Table 3.1 shows some of these use cases. Figure 3.2 shows some of the Wireshark file captures. Figure 

3.3 shows some of the MOOP Wireshark captures. 

Table 3.1 Use cases scenarios 

ID Device(s) Mode of 
operation 

Trigger State Duration Mode Count 

1 Hub Manual ON Idle 2 hours Boot 3 

2 Hub   Idle 8 hours   

3 Hub + plug Hive app  Idle 30 minutes Pairing 1 

4 Hub + plug Hive app  Idle 30 minutes Unpairing 1 

5 Hub + plug   Idle 2 hours Paired  

6 Hub + plug Manual ON Active 2 hours Paired 4 

7 Hub + plug Manual OFF Active-idle 2 hours Paired 4 

8 Hub + plug Hive app ON Active 2 hours Paired 4 

9 Hub + plug Hive app OFF Active-idle 2 hours paired 4 

10 Hub + plug Home kit ON Active 2 hours Paired 4 

11 Hub + plug Home kit OFF Active-idle 2 hours Paired 4 

12 Hub + plug Google home ON Active 2 hours Paired 4 

13 Hub + plug Google home OFF Active-idle 2 hours Paired 4 

14 Hub + plug Scheduled ON from 6-
8pm 

Active 2 hours Paired 1 

15 Hub + plug Scheduled OFF from 
8:30-9pm 

Active-idle 1 hour Paired 1 

16 Hub + Motion Sensor + 
bulb + plug 

Scheduled If motion 
detected, ON 
bulb for 10 
minutes and 
plug for 5 
minutes. 

Active 5 hours Paired 4 

17 Hub + bulb Hive app Brightness UP Active 1 hour Paired 3 

18 Hub + bulb Hive app Brightness 
DOWN 

Active 1 hour Paired 3 

19 Hub + motion sensor Scheduled Move to 
perimeter 

Active 5 hours Paired 10 

20 Hub + Motion Sensor + 
bulb + plug 

Scheduled If motion 
detected, ON 
bulb and plug 
for 1 hour 

 8 hours   
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Figure 3.2 Wireshark captures for separate devices 

 

Figure 3.3 MOOP Wireshark captures 

Before the execution of each use case, Wireshark is connected to sniff the traffic. This lasts until the 

window duration has elapsed. This is then saved in the default Wireshark extension as a pcap file 

which is later converted to csv for further analysis if needed.  

Figure 3.4 shows a sample of the raw data capture. This shows the packet header details like the 

source and destination IP addresses between the smart devices and the external servers they 

communicate with. The time stamps, protocols utilized, packet lengths and sequence number utilized 

by each packet are shown as well. The info column shows additional details like the TCP flags. 
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Figure 3.4 Raw data capture sample 

3.5 Exploratory Data Analysis 
This section delves into the EDA of the unencrypted collected logs. EDA is a statistical method of 

analysing data to summarize the main characteristics of the dataset by using data visualization tools 

and techniques to represent the results derived for ease of understanding. Jupyter notebook is the 

tool used for this purpose [116]. The areas covered were chosen for specific reasons. Traffic 

categorization was covered to have a holistic view of the kind of traffic Hive devices exchange. This 

will help in addressing strange and malicious traffic. Device identification was carried out to know the 

fingerprint of each device to be able to identify Hive devices in a pool of other IoT. Protocols and flow 

volume and duration were studied as these aspects are used in propagating DDoS attacks. Studying 

them will help in knowing the normal Hive traffic pattern when it comes to protocol sequence, flow 

volume and duration in comparison to malicious use of them in flooding attacks as we will see in 

subsequent chapters. This section is further divided into subsections addressing traffic categorization, 

device identification, protocols in both Idle and active states, flow volume (total number of incoming 

and outgoing bytes in one cycle) and flow duration (time it takes from the beginning of a flow to the 

end) and traffic pattern distinct to each mode of operation. 

3.5.1 Traffic categorization 
Traffic collected from this network was broadly categorized into 3 after analysis of the executed use 

cases. These categories are as follows:  

• Periodic queries: These queries were found to take place automatically regardless of an event 

trigger ranging from every few minutes to some hours depending on the protocol or device. 

The hub was studied without pairing any device to it to capture the network activity that takes 

place in its lone state. This was repeated with devices (plug, lamp, motion sensor) paired to 

the hub to identify what happens differently in this scenario. Figure 3.5 shows this periodic 
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activity originating from the hub without any device paired to it compared to when a device 

is paired to the hub over a period of 2 hours. As seen from Figure 3.5 there is more frequent 

DNS, TCP and TLS activity happening when a device is paired to the hub as opposed to when 

the hub is on its own. Figure 3.6 – 3.10 shows a raw data capture of this extended protocol 

activity comparing the hubs protocol activity to when it is connected to a motion sensor in 

one minute window. We can see that the protocols in figure 3.6 are much less than those in 

figure 3.7 – 3.10 due to the motion sensors presence. 

 

Figure 3.5 Protocol count compared by device state 

• Event trigger: This kind of traffic gets generated whenever an event is triggered. For instance, 

when the plug or lamp goes ON or OFF or the motion sensor detects movement. This results 

in generation of DNS, TCP, and TLS packets. In some cases, mDNS traffic is also generated 

depending on the mode of operation used to trigger the event. An example is shown in figure 

3.11 when the mode of operation is from a mobile phone via an app as compared to a manual 

trigger shown in figure 3.12 where no mDNS protocol appears. We can see mDNS protocol as 

the very first under the protocol column with the mobile phones IP address in the source 

address column as 192.168.0.102 with the DNS query appearing at the very bottom of the 
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protocol column showing the smart hub source address as 192.168.0.101. However, with the 

manual trigger, only the DNS query appears with the same hub IP source address. 

• Boot, pairing and firmware updates: This traffic is generated whenever the hub is in boot 

mode, when paring with the devices or a firmware update takes place. A certain number of 

DNS servers are communicated with when these take place. Figure 3.13 shows some DNS 

servers that are being queried during boot mode in the info column with the hub IP address 

being 192.168.0.103 in source address column while figure 3.14 shows some DNS servers 

being queried during pairing mode with the hub/plug IP address being 192.168.0.101 as the 

source. 

 

Figure 3.6 Hub protocol frequency 
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Figure 3.7 Hub + motion sensor protocol frequency 

 

Figure 3.8 Hub + motion sensor protocol frequency 
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Figure 3.9 Hub + motion sensor protocol frequency 

 

Figure 3.10 Hub + motion sensor protocol frequency 
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Figure 3.11 mDNS protocol in appearance when using a mobile phone 

 

Figure 3.12 Absence of mDNS when operating using manual mode 
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Figure 3.13 DNS queries during boot mode 

 

Figure 3.14 DNS queries during pairing mode 

3.5.2 Device Identification 
Each device was paired with the hub individually to get a unique fingerprint of the device. This method 

will help in identifying each device from the type of traffic it generates when all devices are paired to 

the hub. However, it was discovered that all 3 devices have a similar pattern. All devices utilized the 

same source MAC and IP Address, which is that of the hub. They also utilized the same protocols and 

server-side port numbers. Furthermore, when an event is triggered, all devices have the same traffic 

pattern of contacting the same DNS servers, having the same flow volume and duration as will be seen 

in subsequent sections of this chapter. Table 3.2 shows a list of these DNS servers, their respective 

lengths and purpose. Whenever an event is triggered like the smart plug or lamp going ON, a DNS 

request is made to kinesis.eu-west-1.amazonaws.com, which contains requests and reply packets. 

The same thing happens when the plug or lamp goes OFF, as this DNS is queried. An interesting 

observation is, whenever the interval between one triggered event (ON/OFF) and the next is less than 

an hour then a DNS request is made to only kinesis.eu-west-1.amazonaws.com, however if the 

interval is more than an hour then a DNS request is made to c3t5k8kx91jab4.credentials.iot.eu-west-

1.amazonaws.com, sts.amazonaws.com and kinesis.eu-west-1.amazonaws.com. The reason behind 

this is c3t5k8kx91jab4.credentials.iot.eu-west-1.amazonaws.com and sts.amazonaws.com are 

responsible for providing temporary authentication keys whenever a request or a triggered event 

takes place. These keys are short lived and by default expire in one hour, thus the need for newly 

generated authentication keys when a new query is made an hour after the last one as seen in table 

3.2. 
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 However, one slightly different behaviour was observed which differentiated the motion sensor from 

the plug and lamp. When it detects motion, a DNS query and response is established as mentioned 

earlier which is the same with the plug and lamp. However, the motion sensor always establishes 

another DNS query 5 minutes later, which is not the case for the plug and lamp. Figures 3.15, 3.16 and 

3.17 show these commonalities shared by the plug, lamp, and motion sensor. Figure 3.18 shows event 

triggered DNS activity from these devices, independently. The packet length was plotted against the 

time stamp. The reason for using the packet length is because each length corresponds to a particular 

DNS address. For instance, length 102 is kinesis.eu-west-1.amazonaws.com and 125 is 

c3t5k8kx91jab4.credentials.iot.eu-west-1.amazonaws.com. This method was found to present a 

neater and less cluttered labels on the graph, as they are shorter and easier to read. The lamp and 

bulb have a single peak of contacting the kinesis.eu-west-1.amazonaws.com DNS server of length 

102, when an event is triggered while the motion sensor has a distinct pattern of having 2 peaks for 

every event trigger to this same server. In Figure 3.18 the lamp was triggered at 12:00, 1:00, 2:30 and 

at 3:30, all having a single peak. The plug was triggered at 2:30, 3:30 and 4:30 with single peaks as well 

for each trigger. The motion sensor detected motion 3 times between 8:30 and 12:00 each time having 

double peaks when motion was detected.  

As observed from the section above in periodic queries, the hub has a unique pattern of generating 

periodic traffic like TCP Keep Alive, DNS, ARP, and DHCP. This unique traffic makes it easier to identify 

the hub in a pool of other IoT devices. This can be seen in figure 3.19, 3.20, 3.21 and 3.22 respectively 

with the hubs IP address being 192.168.0.101. 

Table 3.2 DNS servers queried and their purpose 

Sts.amazonaws.com 
(packet length 88) 

For provision of temporary limited privilege credentials for AWS 
identity and access management. These temporary credentials last for 
one hour by default thus, why the sts.amazonaws.com DNS query 
when an event is an hour apart from the last. 

Dynamodb.eu-west-
1.amazonaws.com 
(packet length 103) 

Proprietary NoSQL database service that supports key value and 
documents data structure. 

Kinesis.eu-west-
1.amazonaws.com 
(packet length 102) 

Managed scalable cloud-based service allowing real-time processing of 
streaming large amount of data. Designed for real-time applications (in 
this case hive app). 

Credentials.iot.eu-west-
1.amazonaws.com 
(packet length 125) 

This credentials provider authenticates a client in this case the smart 
device making request, and issues temporary limited privilege security 
token. This token can be used to sign and authenticate any AWS 
request. Therefore, the same one-hour expiration rule applies. 

Ec2.00.00.00.00.eu-
west-1.amazonaws.com 

Elastic compute cloud that provides secure, resizable compute 
capacity on the cloud. 
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Figure 3.15 Plug traffic 

 

Figure 3.16 lamp traffic 

 

Figure 3.17 Motion sensor traffic 
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Figure 3.18 Device identification by trigger pattern using DNS query length 

 

Figure 3.19 Hub TCP keep-alive packets 
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Figure 3.20 Hub DNS packets 

 

Figure 3.21 Hub ARP packets 

 

Figure 3.22 Hub DHCP packets 
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3.5.3 Protocols (idle & active states) 
These devices both in idle and active state utilize several protocols. Idle state refers to when a device 

is connected to the hub but without any triggered activity like ON or OFF. Active state refers to when 

a device is connected to the hub and triggers take place, which results in extra traffic generation, thus 

the spike in certain protocols. The hub sends TCP Keep Alive messages every 14 and then every 19 

seconds. This message tends to keep the hub awake to prevent the connection between the client 

(hub) and the server from breaking, which is why this takes place frequently. Another protocol is NTP 

(Network Time Protocol) taking place every 34 minutes. NTP is a protocol utilized by IoT devices, as 

very accurate timings are highly important in IoT communication. This happens periodically to 

synchronize their time with publicly available NTP servers. DNS requests are also made to four 

addresses every 3 to 4 hours. Other protocols observed were TLS, ARP, ICMPv6, DHCP and mDNS. This 

shows that the hub regardless of a device paired to it, or an event being triggered generates this traffic 

intermittently. By pairing a device to the hub and triggering events, the frequency of some of these 

protocols increase. The ratios of these protocols are compared over 2 hours when the hub is not paired 

with any device, when the hub is paired with devices but are in idle state and when there is activity 

(event triggers). This is shown in Figure 3.5. It is observed that the packet count of these protocols like 

DNS (52), TCP (3143) AND TLS (1423) drastically increase due to the presence of activity while NTP (8) 

and DHCP (4) remain fairly the same. The hub without devices paired has the least count of these 

protocols DNS (10), TCP (2239) TLS (900), NTP (8) and DHCP (4) followed by when devices are idle 

which shows a slight increase in DNS (22), TCP (2401) and TLS (1003) while NTP (8) and DHCP (4) 

remain the same. This protocol data gives us an idea on the frequency or count of the several protocols 

utilized by these devices over time. We can see that there is a limit or cap to how frequent these get 

generated which will be useful in DDoS attack mitigation strategies like rate limiting. 

3.5.4 Flow volume and duration 
Whenever an event is triggered, or boot and pairing modes are taking place or some periodic updates 

take place, a DNS query and response happens. A TCP connection is then established which involves 

a client and server handshake and a change of cipher spec between the smart devices and the DNS 

servers as shown in figure 3.23 under the info column. This entire process is referred to as a flow. The 

total number of bytes exchanged in this entire flow is known as the flow volume while the total time 

it takes for one complete flow is the flow duration. This was computed by getting the time difference 

between the first and last packet in that flow. Packets in a flow come in pairs consisting of a request 

and reply packet. Each packet also has a fixed length. Furthermore, a single flow comprises of several 

combination of protocols as we have seen. This can include DNS, TCP, TLS and mDNS. The flow volume 

and flow duration differ for each mode of operation and also when an event is triggered by one device 

compared to when multiple devices are triggered like a motion sensor detecting movement and 
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triggering the light bulb to go ON. The Hive devices were tested in 5 different operation modes 

(manual, scheduled, Hive app, Google home app, Home kit app). This was carried out using several 

control devices, which are Samsung A12 phone, iPhone SE, and an iPad. This was done to make sure 

these discovered distinct patterns for each mode are uniform across a variety of control devices. 

Traffic was captured from all the above-mentioned control modes to identify a pattern for each mode 

and also the flow volume and duration as seen from figure 3.24. The trigger times for each mode of 

operation was noted to use these for cross referencing during analysis. Several packet header details 

were captured including source, destination, time, packet length, sequence number, protocol, and 

info (a column that gives extra details like packet sequence and labels). Figure 3.25 shows the varying 

flow volumes and duration for the different modes of operation. 

 

Figure 3.23 Client server handshake and cipher spec change. 

 

Figure 3.24 Wireshark files for each MOOP 
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Figure 3.25 Device mode of operation by flow volume & duration 

 It is observed that when we use any of the smart phone apps (Hive, home kit, Google home) to control 

the devices, the flow volumes of these tend to be higher compared to when we operate the devices 

manually or the scheduled way, which have the same flow volume and duration. This increase in 

volume is due to the extra traffic generated because of using an application to control the devices. 

Mere opening any of the apps generates bytes of traffic without triggering an event. The duration can 

also vary because of extra time taken by the user to launch the app and further trigger an event as 

opposed to the scheduled and manual modes that has no delay involved during the flow, as there is 

less human intervention. Figure 3.26 shows a capture from the Hive app pattern. 

 

Figure 3.26 Hive app flow volume and duration traffic 
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The flow volume is calculated by taking the total bytes using the individual packet lengths of each 

packet in the flow from the beginning which starts at packet no 24 in figure 3.26. The flow duration is 

arrived at by comparing the arrival times of the first and last packet in the flow to get the time 

difference. This was done for each mode of operation thus arriving at figure 3.25 showing the 

respective flow volumes and duration of each MOOP. 

 Figure 3.27 also shows the varying flow volumes and duration of a triggered event originating from 

one device compared to when the motion sensor triggers the plug and bulb to go ON (integrated form). 

Both the flow volume and duration of the traffic that originated because of multiple devices being 

active at the same time is higher. This helps give an idea of the maximum flow volume to expect at 

times of operating multiple devices making the volume to peak which can be useful in terms of traffic 

rate limiting as part of DDoS attack mitigation. 

3.5.5 Traffic pattern based on mode of operation 
As mentioned earlier, controlling the smart home devices was done using 5 different modes, with each 

mode monitored and analysed in isolation. This led to some interesting observations whereby each 

mode exhibited a distinct pattern in terms of the protocol and packet length traffic sequence. This was 

tested using three different devices (iPhone, iPad, Samsung smart phone) to confirm this exhibited 

unique sequence for each mode is uniform regardless of the platform used to control it. After several 

repetition of the test cases this uniformity was validated. 

Whenever an event is triggered like ON/OFF, a DNS query and response takes place between the 

device and a kinesis DNS server which is responsible for triggered events of this sort. This became a 

 

Figure 3.27 Single & integrated device traffic compared by flow volume 
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baseline for identifying triggered events as this server is always queried when such happens. This was 

found to be uniform across all control devices. However, the preceding packets right before this DNS 

packet were observed to have a unique sequential combination in terms of protocol and packet length 

for each mode of operation. Each packet is paired with a corresponding protocol and packet length, 

among other network details. Table 3.3 shows the unique pattern attributed to each mode of 

operation. We can see that each mode has a different combination of protocols and packet lengths 

except the manual and scheduled modes which have an identical pattern, thus categorized together. 

This order for both protocol and packet length were found to be consistent for each MOOP when 

there is a trigger. 

Table 3.3 MOOP protocol & packet length sequence 

Mode of operation (MOOP) Protocol + Packet length order 

Hive app TCP+1506 

TLSv1.2+1019 

TCP+66 

TLSv1.2+99 

TCP+66 

DNS+102 

DNS+118 

Google home app MDNS+103 

TCP+1506 

TLSv1.2+1003 

TCP+66 

TLSv1.2+99 

TCP+66 

DNS+102 

DNS+118 

Home kit app TCP+275 

TCP+66 

TCP+111 

TCP+66 

TCP+60 

TCP+66 

DNS+102 

DNS+118 

Manual and scheduled TLSv1.2+97 

TLSv1.2+97 

TCP+66 

DNS+102 

DNS+118 
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3.6 Comparison to literature and new findings 
This chapter has analysed several behavioural aspects of Hive home devices. An EDA was performed 

on the unencrypted features from the captured logs addressing traffic categorization, device 

identification, protocols in both Idle and active states, flow volume (total number of incoming and 

outgoing bytes in one cycle), flow duration (time it takes from the beginning of a flow to the end) and 

traffic sequence based on the mode of operation. Based on these logs it conforms to [118] about 

generally categorizing M2M generated traffic into 3, which are periodic update, event driven and 

payload exchange. Furthermore, this research also agrees with [119] where it states that IoT 

communicates with a number of fixed DNS servers. Several protocols were found to be utilized by 

these devices, which vary in volume and duration depending on the device state (active or idle). On 

the aspect of device identification, the motion sensor and the hub have their unique patterns, but this 

was not the case with the plug and bulb as they had an identical pattern. This could be due to their 

similar basic functionalities of ON and OFF. Other similarities shared by all the devices are 

communication with the same DNS servers, server port numbers and protocols among others. This 

conforms to the findings in [57] that devices from the same vendor behave in a very similar manner. 

The idle and active moments of these devices can also be identified based on the drastic increase in 

the volume or count of certain protocols when active as we have seen in this study. 

During analysis, some observations were made which led to new findings. These are as follows: 

• Distinct flow volumes and duration for each mode of operation as shown in figure 3.25. It was 

observed that while using the apps the flow volume in bytes was higher than when operating 

the devices in the manual or scheduled mode. This is due to more traffic being generated from 

mere opening of the app. The flow duration also differed for each mode. This provides a 

signature relating to how these devices are operated which can be used to detect an 

unauthorised user. 

• Unique traffic patterns based on protocol and packet length are also exhibited for each of the 

modes as shown in table 3.3. We can see that the packets before the DNS query during event 

triggers have a unique sequence for each MOOP. However, the manual and scheduled modes 

have identical patterns which is also the case for flow volume and duration. This can also be 

used as a signature to know what mode is used for operating these devices. 

These new findings can be used in forensic investigations to prove how someone controlled a 

particular device or devices and whether they were present at the scene during some specified times. 

For instance, if the evidence shows proof of manual mode of operation, then this ties one to physically 

being at the premises. Furthermore, as each operation mode has a unique traffic pattern, these 
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patterns could be whitelisted on the smart home network to detect certain attacks relating to 

unauthorized control of device which might have a deviating pattern from the whitelisted ones. For 

instance, if a user normally operates their device manually between 8am and 10am, and for some 

reason the device gets operated using another mode like one of the apps, then this should raise a flag 

for unauthorised control.  

3.7 Summary 
This chapter has covered several aspects relating to the behaviour of Hive home devices both in their 

lone state and as a collective. Traffic was collected from a real-life hive home network with an EDA 

performed on it. The areas covered are traffic categorization, device identification, protocols in both 

Idle and active states, flow volume (total number of incoming and outgoing bytes in one cycle), flow 

duration (time it takes from the beginning of a flow to the end) and traffic sequence based on the 

mode of operation. Several observations have been made which agrees with existing literature with 

regards to the behaviour of IoT devices in general. New findings were also derived from the EDA results 

which can be applied in forensic investigations and detection of unauthorised control of smart home 

device by an attacker. 
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Chapter 4 

Exploratory Data Analysis comparing attack and benign smart home 

traffic properties 

4.1 Introduction 
As the previous chapter has dealt with the study of normal smart home network behaviour, this 

chapter extends to study how these devices behave under the influence of DDoS flooding attacks in 

real time. Both behavioural properties (attack and benign) are compared to see what aspects differ. 

This will aid in designing a timely and more effective DDoS visualization and detection models as we 

will see in subsequent sections. The findings from this EDA led to a proposed novel DDoS detection 

approach as covered in this chapter.  This chapter covers the following areas in general: 

• It collects DDoS and benign traffic in a real smart home environment and performs an 

Exploratory Data Analysis (EDA), visualizing the behavioural pattern of 3 types of DDoS 

flooding attacks when targeted at smart home networks in comparison to the benign smart 

home traffic pattern. The attacks covered are TCP SYN, ICMP and UDP flooding attacks.  

•  For each of the covered attacks, specific smart home traffic properties were selected, 

correlated, and visualized showing their reversed behaviour during an attack compared to 

their normal benign nature.  

• To further validate the findings, public IoT datasets were analysed in the same manner and 

the same results were achieved.  

• It presents 3 principles derived from the EDA based on which DDoS flooding attack traffic can 

be identified.  

• Finally, it presents a DDoS detection approach by integrating the 3 principles derived from the 

EDA which are feature variance, absent features, and feature range. It discusses the 

significance of this approach in comparison to present approaches. 

The sub-sections in this chapter covers the methodology used, attack propagation, EDA on attack 

traffic, comparison of attack and benign traffic EDA, new findings, comparison with literature and 

finally a summary of the chapter. 

4.2 Methodology 
The various processes and sub processes followed in this phase are broken down and explained in this 

section as shown in figure 4.1. It has three main phases, which are data collection, Exploratory Data 

Analysis and proposed novel method of DDoS detection based on the EDA results. This method is 

designed in such a way that one phase and its sub phases are needed to be completed before moving 

to the next. This ensures that a complete understanding and outcome of each phase is clearly drawn 
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out before proceeding. As this chapter is aimed at studying attack behaviours in comparison to normal 

network behaviours and further proposing a better method to detect these attacks, this methodology 

provides the suitable execution points to achieve this in the following ways: 

✓ The data collection phase anticipates for an unbiased EDA and evaluation of the proposed 

detection approach thereby making provision for credible public data. This was used to 

showcase that the same observations were arrived at in terms of traffic properties and 

patterns for both the public and private data covering attack and benign traffic. 

✓ Using EDA as a method for the data analysis provided clearer and more efficient way to 

represent the multidimensional nature of the datasets. The graphical or visual aspects of the 

EDA also makes it easier to understand as the human brain tends to better process images 

than texts, thus giving a clear picture of what both an attack and normal traffic looks like with 

very visible differences. 

✓ To design an effective DDoS detection system, there is a need to have an in-depth 

understanding with regards to the attack pattern and network changes that occur during the 

attack and in the process monitoring the most affected network properties. These can be used 

as a baseline for attack identification. This methodology paved way for the prerequisite of 

having the in-depth understanding from the EDA thus, giving rise to the proposed detection 

approach with ease and better clarity referencing facts and observations derived from the 

EDA. 

 

Figure 4.1 Research methodology 
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4.2.1 Data Collection 

➢ Setup: The network topology to be used for data generation and collection is the same one 

from figure 3.1 in the previous chapter. 

➢ Benign data: Normal smart home traffic was collected here, which was generated from using 

the smart home devices. Public datasets were also sourced for validation purposes. 

➢ Attack data: 6 types of DDoS flooding attacks (TCP, UDP, ICMP, HTTP, SLOW LOIC, RECOIL) 

were launched on the smart home network and the traffic from this attack was collected. 

Public datasets were also sourced for validation. HTTP, SLOW LOIC and RECOIL attacks are 

collected for testing purposes in the next chapter. 

 4.2.2 Exploratory Data Analysis  

➢ Data pre-processing: Each dataset was filtered to have only the relevant traffic flows from the 

target devices needed for analysis. This involves eliminating background traffic generated by 

other devices on the network. An instance is shown in figure 4.2 where several other IP 

addresses and protocols appear in the traffic. However only IP address 192.168.0.100 is 

relevant in this case, which is the smart hub’s address, thus the filter syntax applied at the 

very top of the figure to get only this relevant traffic. 

➢  Feature selection: The corresponding attack and benign network traffic properties to be 

analysed were selected and extracted. The most affected benign traffic properties during an 

attack were chosen and filtered out. This was done for each attack. These properties include 

protocol, packet length, sequence number and TCP flags bearing in mind the time stamps and 

packet ID or frame number for each packet. Figure 4.3 shows the selected features which will 

be converted to csv and exported for further analysis. Figure 4.4 shows this converted and 

exported file. 

➢ Data normalization: Among the selected network features, those with a wide range of numeric 

values were normalized using the min-max scalar to have a more befitting range during visual 

representation. These features are packet length and packet sequence. Figure 4.5 shows the 

packet length scaling for TCP SYN dataset and a benign dataset. 

➢ Label encoding: Non numerical values like the various protocols were encoded using a 

numerical value. This means each protocol corresponds to a number on the plotted figures. 

This is shown in figure 4.6 where encoding labels are applied to TCP SYN and benign dataset. 

➢ Feature correlation: The selected benign features were analysed side by side to find out if they 

get affected simultaneously during an attack. This was tested for each of the 3 attacks covered.  
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➢ Method of representation: Various methods of visual representation were used like bar charts, 

pie charts, frequency polygons and scatter plots. The most befitting method of representation 

was chosen based on the network feature(s) being visualized.  

➢ Visualization: Python programming was used on Google Colab [120] to plot the charts and 

graphs. Corresponding network features for each attack and benign scenario were compared. 

Each of the analysed network feature (protocol, packet length, sequence number, TCP flag) 

was plotted against the respective frame number of the corresponding packet. 

 

Figure 4.2 Filtering traffic 

 

Figure 4.3 Selected features 
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Figure 4.4 PCAP converted to CSV 

 

Figure 4.5 Packet length scaling 

 

Figure 4.6 Label Encoding 
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 4.2.3 Proposed novel approach  

➢ Propose novel detection method: A novel DDoS identification approach is proposed based on 

the derived EDA results.  

➢ Novel method application strategies: Ways by which the proposed novel method can be 

incorporated into the smart home network for better DDoS detection are outlined. 

4.3 Attack data collection 
The smart home devices used in this study include a smart hub (to integrate the smart devices), motion 

sensor, smart plug and bulb. The network communication that takes place when these devices are 

being flooded with DDoS traffic is the main point of interest, thus a setup to collect this traffic for 

further analysis. Six types of DDoS flooding attacks were launched on the smart devices with the smart 

hub serving as the main gateway. These are TCPSYN, UDP, ICMP, HTTP, RECOIL, SLOWLOIC and mixed 

attacks. Low Orbit Ion Cannon (LOIC) [121] and Hping3 [122] of Kali Linux suit [123] coupled with 

Wireshark [124] as packet analyser are the tools used for these attacks. For each attack, the target IP 

address and flooding rate of packets was specified and then launched. Each attack was directed to the 

target device using 4 different machines on the same private network to make it a distributed attack. 

Traffic generated from/to the target smart home device (hub) was captured separately for each attack 

to know the network changes that relate to each attack. To get very detailed network traffic, the 

capture setup was made to collect traffic at layer 2 (datalink). This was done by connecting the hub to 

port 1 of the switch. Port 8 of the switch was then connected to the router (for internet connection). 

To capture all that flowed in and out of the hub and all devices paired to it, port 1 was mirrored on 

port 4. Port 4 was connected to the laptop using a Local Area Network (LAN) cable and Wireshark was 

used to capture this traffic. This connection is shown in figure 4.7.  

 

Figure 4.7 Attack data collection 
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Figure 4.8 shows the launching of LOIC on 4 virtual machines and Wireshark. Each of these LOIC 

windows will be used to launch the same attack in parallel with others. Figure 4.9 shows the launch of 

TCP flood attack. The IP address of the smart hub which is 192.168.0.103 is typed in the box as 

specified target IP. The attack thread is set to 1000 and the type of attack is chosen from the drop-

down menu in this case TCP. The port number is specified as port 80. After populating these details, 

the immacharginmalazer button is clicked to initialize the attack. Figure 4.9 shows the attack traffic 

being captured by in the Wireshark window. The same process is repeated to launch HTTP, UDP, ICMP, 

RECOIL, SLOWLOIC and mixed attack. Figures 4.10 and 4.11 show the launch of HTTP and UDP attacks. 

As mentioned, Hping3 on Kali Linux is also used for attack propagation. Figure 4.12 shows the 

command to launch the TCP flood attack. The type of attack is specified as -s which is TCP, the attack 

is set to flood using --flood, the port number of hub is specified as -p49808 and the hubs IP address as 

target which is 192.168.0.103. On the left side in the Wireshark window, we can see the flood packets 

to the hubs IP address. Figure 4.13 shows the UDP flood attack. A similar syntax is used to the TCP 

flood however UDP is specified here by using --2. The UDP flood packets can be seen on the Wireshark 

window. Figure 4.14 shows the ICMP flood attack. This is signified by --1 in the syntax. The flood 

packets are seen in the Wireshark window as well. 

 

Figure 4.8 LOIC windows and Wireshark 

 

During the collection of attack traffic, each capture session starts off with normal traffic and then the 

attack traffic comes through after launching the attack. That way, a real-life scenario of having normal 
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traffic flow before an attack is launched at the target gets mimicked. The attack source IP address is 

used to pinpoint the very moment the attack traffic starts coming through. Table 4.1 shows the attack 

traffic capture details. Each attack is launched several times and collected as a separate dataset file as 

indicated under file count column. Each data source is properly labelled according to the category it 

falls in. These categories include: 

➢ Single attacks: Individually launched attacks. This comprises of one exploited protocol. 

➢ Mixed attacks: A combination of the single attacks considered are launched at once and this 

traffic of mixed attacks is collected. 

➢ Unfamiliar attacks: Attacks not exposed to detection system in the first batch of testing. This 

will be used to confirm if the system correctly detects and classifies new attacks in the next 

chapter. 

➢ Public data: Both attack and normal data are publicly sourced to be used in the validation 

phase. 

The data source being public or private is also indicated. The source and target IP addresses are also 

specified as well as the composition of the dataset whether it is purely normal or a mixture of attack 

and normal. 

 

Figure 4.9 TCP flood using LOIC 
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Figure 4.10 HTTP flood using LOIC 

 

Figure 4.11 UDP flood using LOIC 
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Figure 4.12 TCP flood using Hping3 

 

Figure 4.13 UDP flood using Hping3 
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Figure 4.14 ICMP using Hping3 

Table 4.1 Data collection 

ID Label 

(Protocol) 

Source IP Target IP  Public/Private Known/Unfami

liar 

 Count Composition 

4 HTTP 192.168.0.103 192.168.0.102 Private Known 3 Attack+benign 

5 SLOWLOIC 192.168.0.103 192.168.0.102 Private Unfamiliar 2 Attack+benign 

6 RECOIL 192.168.0.103 192.168.0.102 Private Unfamiliar 2 Attack+benign 

7 Mixed 192.168.0.103 192.168.0.102 Private Unfamiliar 3 Attack+benign 

8 Normal  192.168.0.101 Private  34 Benign 

 TCPSYN 192.168.0.101 192.168.0.102 

192.168.0.103 

Private familiar 8 Attack+benign 

 UDP 192.168.0.101 192.168.0.102 

192.168.0.103 

Private Familiar 8 Attack+benign 

 ICMP  192.168.0.101 Private Familiar 5 Attack+benign 

9 TCPSYN 192.168.100.147-

150 

192.168.100.3 Public Known 12 Attack+benign 

10 UDP 192.168.100.147-

150 

192.168.100.3 Public Known 10 Attack+benign 

11 HTTP 192.168.100.147-

150 

192.168.100.3 Public Known 3 Attack+benign 

12 FRAGMENTED 192.168.1.195 74.91.117.248 Public Unfamiliar 3 Attack+benign 

13 Mixed 192.168.100.147-

150 

192.168.100.3 Public Unfamiliar 3 Attack+benign 

 ICMP   Public Familiar 1 Attack 

14 Normal  192.168.1.158 

192.168.1.132 

Public Unfamiliar 5 Benign 

 

The benign data used in this research is from the previous chapter which addresses EDA on benign 

smart home traffic. This consists of the same network devices and topology as mentioned in the attack 

data collection above just excluding the DDoS attacking points. The IoT-23 dataset [84] is the public 

dataset used for validation of the EDA on benign smart home traffic. This dataset consists of IoT 

network traffic from real devices. It has 20 malware captures executed in IoT devices, and 3 captures 

for benign IoT devices traffic. These traffic flows were captured in the Stratosphere Laboratory, AIC 

group, FEL, CTU University, Czech Republic. The benign traffic flows were extracted from this dataset 

and used in this research. The BoT-IoT dataset [85] is one of the public attack datasets used for the 
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EDA validation. It was created at Cyber Range Lab of UNSW Canberra by designing a realistic network 

environment. The network environment incorporated a combination of normal and botnet traffic. The 

dataset includes DDoS, DoS, OS and service scan, keylogging and data exfiltration attacks, with the 

DDoS and DoS attacks further organized, based on the protocol used. TCPSYN and UDP DDoS attack 

flows were extracted from the dataset and used in this research. Lastly, public ICMP DDoS attack flow 

was extracted from the BUET-DDoS2020 dataset [125]. It consists of several DDoS flooding attack 

flows including TCPSYN, DNS, HTTP and UDP. 

4.4 Exploratory Data Analysis 
Exploratory Data Analysis is a statistical method of analysing data to summarize the main 

characteristics of the dataset by using data visualization tools and techniques to represent the derived 

results for ease of understanding. Google Colab [120] has been used for this purpose in this research. 

As outlined in the methodology, the EDA process has several sub processes of data pre-processing, 

feature selection, data normalization, label encoding, feature correlation, method representation and 

lastly visualization. After collecting the data, it was filtered to have only the relevant flows relating to 

the smart home devices. The data had several columns carrying different packet details. Certain 

network features were found to be greatly affected during a DDoS flood. These features were filtered 

out and focused on for further analysis. They are as follows: 

- Protocol: These are the various communication entities necessary for different types of 

data transmission between devices. They include TCP, UDP, NTP, ICMP, DNS, MDNS, TLS, 

SSH. Each transmitted data packet is associated with a protocol.  

- TCP Sequence number: This is a counter-based mechanism attributed to TCP packets to 

keep track of transmitted and received packets. Packets in the same flow carry an 

incremental value of sequence numbers, thus you can identify what packet comes after 

which by computing these numbers.  

- Packet length: This is the payload size carried by each packet  

- TCP flags: These are the labels carried by each TCP packet to indicate the state of 

connection. These are also present during the 3-way TCP handshake. For a complete TCP 

handshake to take place, these flags must be present in their sequential manner 

depending on the type of communication.  

- Encryption: A secure communication channel is bound by encryption protocols. These 

include TLS and SSH. 
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 As each packet is attached to some or all the above listed network properties, they were observed to 

be simultaneously affected during an attack, thus the reason they were correlated as a baseline for 

attack detection. 

4.4.1 Benign traffic 
The benign smart home traffic was analysed based on the listed features. One minute traffic was 

filtered out and visualized to show how these properties behave. The ID of each frame or packet which 

corresponds to the time series column in Wireshark is plotted against its corresponding protocol. This 

shows the dynamic pattern of the visualised packet headers in the smart home traffic. 

▪ Protocols: The protocols in a benign flow are dynamic. They tend to change from one packet 

to the next or every few packets. These varying protocols can include DNS, TCP, MDNS, TLS, 

NTP, ICMP, and the like. This is shown in figure 4.15 and 4.16 for both the private and public 

benign traffic flows respectively. Both figures show the alternating pattern of the protocols 

having various combinations. Encryption protocols (TLS.v1.3) also tend to be predominant in 

a flow as most exchanged packets are securely encrypted. This results in encryption protocols 

being one of the frequent ones among the pool of protocols utilized by the devices. Message 

Queuing Telemetry Protocol (MQTT) is the application layer protocol used by the private 

dataset which are Hive devices. The significance of these figures is to show that smart home 

traffic comprises of a variation of several protocols in a short period of time. This will be 

compared with the absence of this variation in the DDoS attacks covered in this research in 

the next section.  

 

 

Figure 4.15 Varying protocol (private data) 
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Figure 4.16 Varying protocol (public data) 

▪ Packet length: The packet length of the benign flow had the same varying property as the 

protocol. Figures 4.17 and 4.18 show the private and public packet length dynamic nature. We 

can see that the lengths fall in different ranges from one packet to the next. 

 

Figure 4.17 Varying packet length (private data) 

 

Figure 4.18 Varying packet length (public data) 

▪ TCP Sequence numbers: TCP Sequence numbers also had the same varying nature. This is 

shown in figures 4.19 and 4.20. However, not all protocols carry TCP sequence numbers like 
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DNS, NTP, ICMP and the like. Nonetheless TCP sequence numbers were found to be persistent 

as the scope of this research is limited to TCP/ HTTP based traffic. This makes the appearance 

of TCP sequence numbers frequent as the predominant traffic protocols are of this type. TCP 

sequence numbers were observed to be incremental from one packet to the next in a flow. 

This starts from a 0, 1 and shoots up to very high values as shown in figures 4.19 and 4.20. 

This shows that apart from being dynamic in nature, the TCP sequence numbers have a wide 

range that they fall within. The relevance of this TCP sequence number visualisation is to 

compare the dominance of these TCP sequence numbers to exploited attack protocols that 

do not carry this feature like UDP and ICMP attacks among others. This will aid in attack 

detection in TCP based traffic which the scope of this research is limited to. 

 

Figure 4.19 Varying sequence number (private data) 

 

Figure 4.20 Varying sequence number (public data) 
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▪ TCP flags: Due to the 3-way handshake that takes place for TCP flows, varying TCP flags were 

observed to be present in a flow. Figures 4.21 and 4.22 show the various proportions of these 

flags contained in a one-minute window for both private and public datasets respectively. This 

observation also validates TCP flags having several combinations in a flow, thus also having a 

dynamic pattern like the previous features. The TCP flags from both public and private dataset 

are extracted from a one-minute window of the traffic. The public dataset tends to have more 

generated packets in a one-minute window compared to the private one as seen across all 

visualizations in this section. The significance of this is to show how TCP flags vary in a traffic 

flow compared to some attack traffic that lack this variation which can be used for attack 

detection in TCP based traffic. 

 

 

Figure 4.21 Varying TCP flags (Private) 
 

Figure 4.22 Varying TCP flags (public)

 
Figures 4.23 to 4.32 show the various packet header patterns visualised at packet level. Figure 4.23 to 

4.26 are from the private dataset while figure 4.27 to 4.32 are captures from the public dataset. In all 

the figures under the protocol column we can see the dynamic nature of these protocols over time as 

explained in the EDA. The packet length columns exhibit the same pattern of having dynamic lengths. 

From the TCP sequence number columns (Sequence number) we can see these incremental numbers. 

As mentioned earlier they start with 0,1 at the beginning of a flow which can be seen to correspond 

with the first SYN packet under the info column. These can be seen in figures 4.23, 4.24, 4.25, 4.26, 

4.30 and 4.31 right after the DNS query and response. The next packet after this query tends to have 

a SYN flag and a sequence number of 0 which keeps incrementing as the flow generates. We can also 

see the various TCP flags present in this traffic under the info column including SYN, ACK, PSH and FIN 

as also visualised in figures 4.23, 4.24 and 4.25. 
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Figure 4.23 Private dataset benign pattern 

 

 

Figure 4.24 Private dataset benign pattern 
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Figure 4.25 Private dataset benign pattern 

 

 

Figure 4.26 Private dataset benign pattern 
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Figure 4.27 Public dataset benign pattern 

 

Figure 4.28 Public dataset benign pattern 
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Figure 4.29 Public dataset benign pattern 

 

Figure 4.30 Public dataset benign pattern 

 

Figure 4.31 Public dataset benign pattern 
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Figure 4.32 Public dataset benign pattern 

4.4.2 Attack traffic 

The results from the attack flow EDA for the 3 considered attacks (TCP, UDP and ICMP) are visualized 

and discussed here. 

▪ TCPSYN: This attack takes advantage of the 3-way TCP handshake, initiating the process 

without completing it. It floods the target server with SYN requests which arrive faster than 

the target server can process them, thus leaving it saturated. This results in the connection 

being half open as it is never acknowledged or ended. After some time of waiting without 

acknowledgement from the malicious source, the target server sends a bulk of TCP reset 

packets to the malicious source with the aim to wake it up to respond to the half open 

requests. During this flooding process, certain network features lose their dynamic nature and 

get stalled at a single state making the network pattern static. The protocol in the traffic flow 

gets stalled at TCP for however long the attack runs. Figure 4.33 shows the 1st 50 packets of 

both the private and public TCP attack traffic focusing on the protocol. Comparing these to 

figures 4.15 and 4.16 shows the static pattern exhibited by the protocols during the attack. 

The frame number of each packet is plotted against its corresponding protocol which shows 

the attack pattern of the packets over time protocol wise. Moreover, encryption protocols 

(TLsv.2) that tend to be persistent in the benign traffic are nowhere to be found in the attack 

traffic. The same was observed for the packet length in figure 4.34 in comparison to figures 

4.17 and 4.18 where the lengths vary. The frame number of each packet is plotted against its 
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corresponding packet length to show the pattern of attack traffic in terms of packet length. 

The sequence numbers also maintained a static pattern of getting stalled at 0 or 1 for all the 

attack packets. The respective frame numbers are also plotted against their corresponding 

sequence numbers to show the attack traffic pattern in terms of TCP sequence numbers. 

These are shown in figures 4.35 as compared to figures 4.19 and 4.20 where they exhibit a 

wide range of varying values. The frame numbers in the public dataset plots do not start from 

the first 50 as the traffic began with benign traffic. The TCP flags were also affected as the SYN 

flag became predominant as shown in figure 4.36 when compared to figures 4.21 and 4.22 

where the flags vary. In figure 4.36 we can see a proportion of the TCP flags are RST because 

of the target server trying to reconnect with the malicious source. 

  
Figure 4.33 Protocol pattern, 1st 50 packets, private dataset (left) and public dataset (right) 

  
Figure 4.34 Packet length pattern, 1st 50 packets, private dataset (left) and public dataset (right) 

 
  

Figure 4.35 Sequence number pattern, 1st 50 packets, private dataset (left), public dataset (right) 
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Figure 4.36 TCP flags proportion (private data on left and public data on right) 

Figure 4.36 shows the dominance exhibited by the SYN flag during this attack. This unusual 

pattern can help in attack detection as the normal traffic pattern has far less proportion of the 

SYN flag. In figures 4.34 and the public dataset of 4.35 we can see that 3 packets are not 

uniformly aligned as the rest of the packets. This is due to normal smart home traffic making 

its way into the attack traffic, thus disruption the static pattern slightly. 

▪ UDP: This attack floods a target server with UDP packets. This in turn overwhelms the server’s 

ability to process and respond to the packets and in the process denying service to legitimate 

packets. The protocol and packet lengths were found to lose their varying nature as seen in 

the TCPSYN attack. The packet length and protocol are plotted against their corresponding 

frame numbers in both figures 4.37 and 4.38. Figure 4.37 shows the static protocol pattern 

during this attack when compared to figures 4.15 and 4.16. The same is seen in figure 4.38 for 

the packet lengths when compared to figures 4.17 and 4.18. The sequence numbers are 

absent deviating from the normal traffic pattern of having sequence numbers frequently as 

observed in figures 4.19 and 4.20 of the TCP based traffic. Another unusual pattern observed 

during this attack was the absence of encryption protocols (TLsv.2) as compared to the normal 

traffic pattern in figures 4.15 and 4.16 where TLsv.2 is one of the predominant protocols. 

  

Figure 4.37 Protocol pattern, 1st 50 packets, private dataset (left) and public dataset (right) 
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Figure 4.38 Packet length pattern, 1st 50 packets, private dataset (left) and public dataset (right) 

 

The normal TCP based traffic as we have seen tends to have frequent TCP flags like SYN, ACK, 

and FIN flags. However, these flags are absent due to the UDP flood packets which deviates 

from a normal TCP traffic. This can also help in attack detection.

▪ ICMP: This attack overwhelms the target server with ICMP echo requests (pings). The server 

tries to process each incoming packet and responds to it and in the process failing to process 

legitimate packets as it is already saturated. This attack pattern is very similar to UDP attack 

as sequence numbers, encryption protocols and TCP flags are also absent for the duration of 

the attack.  The packet length and protocol are plotted against their corresponding frame 

numbers in both figures 4.39 and 4.40. The protocols in figure 4.39 and packet lengths in figure 

4.40 exhibit a static pattern. Figure 4.39 shows the protocol stalled at ICMP. In figure 4.40 we 

can see the packet length alternating between two lengths strictly. The echo request has a 

packet length of 0.000 and a reply of 0.020 in the private dataset of figure 4.40 while it is 0.000 

and 0.012 for the public data. This is due to the reply packets directed to each ping. The 

incoming pings have the same length while the reply packets have the same length. This still 

opposes the varying packet length nature of the normal traffic flow from figures 4.17 and 4.18.  

 

 
 

Figure 4.39 Protocol pattern, 1st 50 packets, private dataset (left) and public dataset (right) 
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Figure 4.40 Packet length pattern, 1st 50 packets, private dataset (left) and public dataset (right) 

Even with the slight appearance of benign traffic amid the attack flow as observed in figures 4.34    

and public dataset of 4.35, this still does not affect the predominant static effect the attack causes 

to the network pattern as seen from figure 4.33 to 4.40. The EDA has clearly shown the difference 

in pattern between a benign and attack traffic flow regardless of the dataset being analyzed. 

Figures 4.41 to 4.52 show Wireshark captures of the attacks visualized. Figures 4.41 to 4.47 show 

captures of TCP SYN attack. The protocols under the protocol column are all TCP due to the flood. 

This conforms to the static pattern of the protocol in figure 4.33. The packet length under the packet 

length column of figures 4.41 to 4.47 are also stalled at the same length as visualized in figure 4.34. 

The TCP sequence numbers are also stalled at 0 or 1 as presented in figure 4.35. TCP flags which can 

be found in figures 4.41 to 4.47 under the info column are also stalled at the SYN flag as visualized 

in figure 4.36. 

 

Figure 4.41 TCP SYN attack using LOIC 
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Figure 4.42 TCP SYN attack using LOIC 

 

Figure 4.43 TCP SYN attack using Hping3 
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Figure 4.48 and 4.49 show Wireshark captures of UDP flood attack. The protocols under the protocol 

column are stalled at UDP as shown in figure 4.37. The packet length is also stalled on the same 

number all through as presented in figure 4.38. 

Figures 4.50 to 4.52 show the Wireshark captures of ICMP flood attack. The protocols under the 

protocol columns are all stalled at ICMP as presented in figure 4.39. The packet length in figures 4.50 

and 4.51 are stalled at 2 lengths as one is for the request while the other is for reply as shown in 

figure 4.40. However, the packet length in figure 4.52 is just a single length of 42 which is the echo 

request length as no replies are received. 

 

Figure 4.44 TCPSYN Public dataset using Ostinato 

 

Figure 4.45 TCP SYN public dataset using Ostinato 
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Figure 4.46 TCP SYN public dataset using Ostinato 

 

 

Figure 4.47 TCP SYN public dataset using Ostinato 

 



 
 

86 
 

 

Figure 4.48 UDP attack using Hping3 

 

Figure 4.49 UDP attack using Hping3 
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Figure 4.50 ICMP attack using LOIC 

 

Figure 4.51 ICMP attack using LOIC 
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Figure 4.52 ICMP attack using Hping3 

4.5 Proposed novel detection method 
The proposed detection mechanism takes into consideration three characteristics of IoT traffic as a 

benchmark for DDos traffic identification as derived from the EDA. These characteristics are often 

neglected when it comes to DDoS detection. They are: 

➢ Feature randomness: From the EDA we can observe that certain network features like 

protocol, packet length and sequence numbers have a dynamic property. They tend to be 

randomized as opposed to the static nature they exhibit during a DDoS attack as seen from 

the attack EDA and Wireshark captures. For instance, when you take a window of 20 packets, 

you sometimes find the protocols changing after every three to four packets. The sequence 

number also varies in most cases for each packet having an incremental value. The packet 

length exhibits the same property of varying lengths every few packets. TCP flags also fall in 

this category as a normal TCP flow contains varying flags (SYN, SYN+ACK, ACK, FIN+ACK) as 

opposed to the single flag exhibited during attacks like TCPSYN flood. Lack of this dynamic 

pattern exhibited by these features in the smart home traffic flow should raise flags.  
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➢ Absent features: To identify or detect an attack, we should change the narrative from only 

focusing on the statistics or behaviour of present network features. Rather, features that are 

normally meant to be present but for some reason are absent for a prolonged period or 

certain threshold of packets should be a point of concern. For example, the normal network 

flow we have observed in the EDA tends to have a continuous flow of sequence numbers, as 

they are required for majority of the packets. However, during a UDP or ICMP attack, the 

sequence numbers are absent as these two protocols are not sequence number carriers 

naturally. A prolonged exhibition of this absence should raise a flag in a TCP based network or 

traffic. The same rule applies to missing encryption protocols in the traffic flow. For smart 

home devices that make use of encryption protocols like the TLSv.2 from the benign EDA, this 

protocol is persistent whenever a TCP connection is established. However, in the attacks 

within the scope of this research, this encryption protocol appears to be absent as attacks of 

this sort do not carry encryption protocols normally. As mentioned earlier, a complete 

established TCP flow carries several TCP flags. Having completely absent or some missing flags 

in a flow should raise concern as this is a common characteristic of flooding attacks. This shows 

that focusing on the missing features can also aid in identifying a malicious traffic flow. This 

should be an important avenue to consider for a more effective approach of attack detection.  

➢ Feature range: Another important neglected point in DDoS identification is the range in which 

some features normally fall into. If we look at the sequence number range for the benign 

smart home traffic, we see the values are mostly double, triple, or quadruple digits with a few 

single digits of 0’s and 1’s at the beginning of a flow. This pattern contrasts with an attack flow 

within the scope of this research which carries only single digits of sequence numbers of just 

0’s or1’s for all the packets as seen in the Wireshark captures provided. 

After considering the points above, a DDoS traffic detection approach is presented. The network 

features considered in this proposed approach were found to be simultaneously affected during an 

attack. This means the packet lengths, sequence numbers, protocols and TCP flags all lost their 

variance at the very onset of an attack by exhibiting a static pattern as well as missing encryption 

protocols or sequence numbers in some cases. This new approach is composed of the following 

processes and sub processes to be implemented at the gateway of the network: 

▪ Define target address: The target IP/MAC address of the device is set here. 

▪ Specify flow direction: The desired flow direction of packets is specified. For instance, 

incoming/outgoing or bidirectional. However, for a lighter weight detection module with 

clearer variance and less redundancy during the flow, a single direction of flow is advised being 

incoming traffic to the specified device
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▪ Set threshold/ time window: A cumulative sum of packets on which the subsequent checks 

will be carried out is set. This can be capped at every 20 packets or what best suits the type of 

network. Alternatively, a time window of some seconds or minutes can be used here for 

instance the n number of packets after every 60 seconds.    

▪ Network feature checks: This is where feature presence, absence and variance are inspected, 

after which a decision is made of the pattern being malicious or not. This is done for the 

following network components: 

▪ Protocol & Packet length: The protocol and packet length variance for the specified number 

of packets are checked. If the ratio of the various protocols and lengths present are balanced, 

then this is passed. However, if the ratio is found to be imbalanced like one protocol being 

present thorough out or the same value of length for all packets or majority of the packets, 

then is also logged. However, this is not objective as this must be tested first to confirm what 

ratios work. 

▪ TCP Sequence number: The sequence number is first checked for presence or absence. If 

absent, this is logged. If present, variance, and range are checked. If the variance ratio is 

imbalanced or majority of packets have the same value of sequence number as are attacks 

within the scope of this research, this is logged. The range is also checked. If the values are all 

single digits of either 0’s or 1’s or both, this is also logged. Alternatively, if the range of values 

is incremental or maintains values with multiple digits, then this is passed. This is limited to 

TCP based network as mentioned in the scope of this research.  

▪ Encryption & TCP flags: The presence or absence of encryption protocols and TCP flags are 

checked. If found absent for all packets, this is logged. On the other hand, if found present, 

this goes through a balance check. If found to be evenly distributed, this is passed. On the 

contrary if it is found to be highly uneven, this is logged. For example, with the SYN flag being 

predominant or completely dominant. 

For a malicious pattern to be detected a minimum of 3 logged features must take place to avoid false 

positives. Moreover, the fact that these listed components get affected simultaneously during an 

attack makes it more likely for all components to be logged during an attack. For instance, a TCPSYN 

attack will log absence of encryption, imbalanced sequence number, imbalanced packet length, 

imbalanced protocol, and imbalanced TCP flags with the SYN flag predominant. On the other hand, a 

UDP or ICMP attack will log an absence of sequence numbers, absence of TCP flags, absence of 

encryption, imbalanced protocol, and an imbalanced packet length. 
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4.6 Comparison to literature and new contributions 
The previous section has proposed an approach for DDoS flooding attack detection. This section 

moves to compare the proposed approach to literature based on several factors. It also highlights the 

contributions made in this chapter. It discusses how some aspects in literature have been improved 

and the novel contributions made. 

As this the proposed approach is theoretical, which has not been implemented and tested, the factors 

used in this comparison are limited to technique, methodology and practicality among others rather 

than performance related factors. After implementation and testing performance related 

comparisons are made in the next chapter. The factors considered as a baseline for comparison here 

are five in number. These are as follows: 

❖ Technique: The detection technique used like machine learning or algorithm based. 

❖ Features: Network features used and biased features that could favour performance. 

❖ Data analysis: The method used to analyse the traffic or dataset. 

❖ Centric: Is the solution attack, user, or device centric? 

❖ Practicality: How feasible and light weight is the solution. What are the down sides? 

Table 4.2 shows this comparison citing each paper and evaluating it against the above listed factors. 

Table 4.2 Comparison details 

Paper Technique Features Data analysis Centric Practicality Data source  Attacks 

covered 

[19] Algorithm 
based. 
Learns 
sequential 
user 
behaviour 
to detect 
anomalies 

Conditions 
(temperature, 
humidity, 
noise), User 
behaviours 
(operating 
devices like 
opening fridge, 
Tv On)  

No comparison 
or analysis of 
data in normal 
and anomalous 
moments. Lack 
of visual dataset 
representations. 

Solution tends 
to be user 
centric as 
sequential user 
behaviour is 
being learned 
prior to 
anomaly 
detection. 

Having to learn each 
user behaviour does 
not seem practical in 
bigger 
environments. 
Having multiple 
users in the same 
place can also raise 
performance 
problems. 

Real Iot 
devices 

Anomalous 
behaviours 
or events 

[20] Rule based 
algorithm. 
Uses 
Device 
Usage 
Description 
(DUD) 
model for 
device 
behaviour 
and flow 
rules 
extraction 
to detect 
attacks. 

Communication 
direction, 
Destination IP, 
port, protocol, 
interarrival 
time of packets, 
number of 
packets over 
time, packet 
sequence (7) 

Lack of 
sufficient 
graphs. Only 
one visual 
showing 
number of 
exchanged 
packets. 
Presented what 
normal data 
looks like, 
however 
nothing about 
what attack 
data looks like 
or visual 
comparison.  

Solution tends 
to be device 
and user 
centric. It’s 
limited to 
Samsung 
Smartthings. 
Solution 
depends on 
extracting 
device 
behaviours 
which is also 
dependant on 
user behaviours 
in some cases. 

Due to the need for 
having to extract 
and train or learn 
each devices pattern 
this is not practical 
in large scale 
environments. 
Training time too 
will be a hassle as 
each device will 
have to go through 
training for a period. 

Private 
network. 

UDP, SYN, 
ACK, HTTP, 
DNS Flood 

[22] Machine 
learning 
based DNS 

DNS packets (1) Data analysed 
and visualized 
showing 

Solution is 
attack centric as 

Solution attack 
centric. 

Private 
network 

DNS 
spoofing 
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botnet 
detection. 

differences in 
normal and 
attack data. 

it only covers 
DNS attacks. 

[23] Counter 
based 
DDoS 
attack 
detection 
using SDN. 

number of flow 
entries, similar 
payload packet 
count, number 
of sent and 
received 
packets on each 
node, power 
ratio of each 
node, in/out 
traffic load and 
session IP 
counter 

Attack and 
normal data 
patterns 
analysed 
visualizing 
differences 

Attacks covered 
and their 
collection 
details not 
provided. 

Due to the intricacy 
of processing these 
metrics, it results in 
high detection time 
and processing 
power. 

Simulation 
using SDN. 

DDoS (not 
specified) 

[62] Machine 
learning 
based 
DDoS 
detection 
using 
stateful 
and 
stateless 
network 
features. 

Packet size, 
protocol, 
interarrival 
time, 
bandwidth, IP 
destination 
address (5) 

Dataset used 
analysed 
visualizing 
differences in 
attack and 
normal data. 

Only 3 attacks 
covered.  

Public data has not 
been used for 
validation. 

  

[79] Using 
Wireshark 
to identify 
TCPSYN 
attack 

Request/reply 
packet count, 
SYN & ACK flag 
count, average 
packet per 
second, 
average packet 
size, average 
bytes of 
captured 
traffic, number 
of packets, time 
span (7) 

Raw attack data 
Wireshark 
screen shots 
provided. 
However, no 
visual 
comparison 
with normal 
traffic. 

TCPSYN attack 
centric as only 
this attack is 
analysed. 

No detection 
module in place 

Simulation TCP SYN 

[87] Entropy-
based 
DoS/DDoS 
detection 
system 

source/ 
destination IP 
addresses 
coupled with 
their respective 
port numbers 
and protocols 

Only entropy for 
attack data is 
visualized 
leaving out the 
normal data 
pattern. 

Attacks covered 
limited to 
TCPSYN and 
UDP attacks. 

If an attack starts at 
the very beginning 
of this window, then 
no entropy is 
calculated as no 
prior variation to 
compare with is 
present, thus the 
failure to detect the 
attack 

Simulation 
using SDN 

TCP, UDP  

[100] ML based 
DDoS 
detection 
through 
network 
traffic 
analysis. 

Selected 
network 
features not 
mentioned. 

Dataset used 
not analysed 
with no visual 
comparison 
between normal 
and attack 
patterns. 

Attacks covered 
not mentioned. 

Lack of sufficient 
data analysis and 
some important 
details missing like 
features selected 
and attacks covered. 

Simulation 
using Hping3, 
Golden eye. 

TCP SYN, 
UDP, HTTP 

[104]  A 
supervised 
based IDS 
for 
anomaly 
detection. 

121 network 
features. 

Dataset used 
not analysed to 
show attack and 
benign patterns. 

Covers 
reconnaissance, 
spoofing, 
replay, MITM 
and DoS/DDoS 
(TCP, UDP, 
Hello flood) 
attacks 

Single packet 
inspection approach 
used which is time 
and resource 
consuming as 
dealing with each 
packet for feature 
extraction and 
classification takes 
significant time and 
processing power. 

Real IoT 
devices. 
Kali used. 

TCP, UDP, 
HELLO 
flood. 

[126] Algorithm 
based 
solution. 

Data rate, 
packet length, 
average time 

Data used has 
not been 
analysed or 

No mention of 
dataset used or 
how it was 

The proposed 
algorithm was not 
presented as well as 

Simulation. 
Wireshark 
used. 

DDoS (not 
specified) 
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Applies a 
limit to 
network 
parameters 
which if 
exceeded 
flags an 
attack. 

between 
requests and 
responses, 
port, protocol 
(6) 

compared 
visually. 

collected. 
Attacks covered 
also not 
mentioned. 

the type of attacks 
covered in the 
paper which makes 
it difficult to 
reconstruct and 
validate. 
 

[127] Machine 
learning 
based 
solution to 
detect 
botnets. 

29 features of 
BoTIoT dataset. 
8 features were 
selected to 
train model. 

Statistical data 
provided 
showing 
difference in 
attack and 
benign data. 
However, no 
visualization 
provided 

Device centric 
due to metrics 
used for 
detection. 

Metrics used were 
limited to packet 
count over time, 
which might hinder 
the accuracy of 
detection 

BoTIoT 
dataset. 
Python 
libraries used. 

Botnet 
attacks. 

 

From reviewed literature, there have been numerous contributions in terms of DDoS detection in 

smart home networks and IoT at large. Nevertheless, there are still gaps in the approach relating to 

better and improved methods of DDoS traffic identification. There is lack of detailed analysis and visual 

comparison of attack and benign traffic patterns. Some solutions make use of simulated data [108] 

[109] [110] [111] [112] [113], which might hinder the accuracy when deployed in real life scenarios. In 

addition, some of the approaches used are not very practical or feasible in some scenarios. For 

example, using the single packet inspection method to determine if it’s malicious or benign. This not 

only is time and resource consuming, but a less effective way of identifying DDoS patterns. This is due 

to DDoS flooding attacks being volume based, thus will need a volume based or cumulative approach 

to determine an attack pattern as opposed to the single packet approach. The approach of employing 

sequential user behaviour or Device Usage Description model (DUD) is not very practical as the former 

will raise false positives when there is slight change in user pattern while the latter is not practical in 

large scale scenarios as it’s a device centric solution and not a generalized one. There is also the issue 

of using biased network features in detection like IP addresses and port numbers which are device 

specific. This tends to favour the performance of the detection approach to the very scenario in 

question, thus making the solution user or device centric. Some detection approaches also use too 

many features which is time and resource consuming and leads to very significant overheads. This is 

due to the intricacy of processing these metrics as it results in high detection time and consumes a lot 

of processing power. 

The network features used as a basis for detection gives this approach a generalized edge in terms of 

not being device, user or attack centric as seen in related works. This is due to all detection metrics 

being derived from general network characteristics shared by IoT devices. The various checks 

incorporated in this approach gives it the robust edge when dealing with the detection of several kinds 

of attacks. This is not only limited to the attacks covered here, but other attacks with similar 

propagation pattern to the ones covered like NTP, ARP and DNS flooding attacks.  



 
 

94 
 

The entropy or variance of the detection metrics is not calculated in real time based on the network 

statistics. Rather, a set of rules and conditions are used to identify an attack traffic. This will handle 

the failure in detection experienced by some approaches as seen in the related works when an attack 

starts at the very beginning of a set window. This is because no prior variance or entropy statistics are 

available to compare the current attacks entropy to. As a result, this approach does not rely on prior 

real time network statistics.  

This approach is also light weight in terms of time and resource consumption as the flexibility to 

monitor a single flow direction (incoming traffic to target device) is possible. This results in clearer and 

less redundant variance statistics as opposed to a bidirectional flow (incoming/outgoing) which might 

hinder the clarity of the variance and carry redundant statistics like protocols, lengths, Flags, and 

sequence numbers. 

This approach also eliminated the use of certain network features that can result in higher rates of 

false positives/negatives. For instance, the use of incoming/ outgoing distribution will raise a false 

negative for attacks like ICMP flooding. This is due to the nature of the attack traffic whereby majority 

of the echo requests have a paired reply packet from the target, thus making the incoming/ outgoing 

ratio evenly distributed. Same applies to the use of source IP addresses and port numbers in highly 

distributed attack scenarios where the source IP’s and ports are spoofed. Moreover, IP addresses and 

ports tend to bring about biases especially in Machine Learning domains as they are specific to each 

scenario. 

This approach can be incorporated into areas like Data visualization tools, Intrusion Detection System 

(IDS), Software Defined Network (SDN) & Machine Learning for better DDoS detection. The proposed 

network features used as detection metrics can be integrated into data visualisation tools and IDS. 

This will provide clearer low-level statistics as to how the network is deviating from its normal pattern 

during an attack. These features can also be defined as flow rules and conditions at the SDN gateway 

coupled with the appropriate mitigation measure in the case of a detected attack. The visualised EDA 

images can also be trained on a Convolutional Neural Network (CNN) using ResNet, as deep learning 

models especially CNN achieved high significance due to their outstanding performance in the image 

processing field. 

4.7 Summary 
This paper has carried out an EDA on collected smart home data, comparing the behavioral pattern of 

certain network features in a benign and DDoS attack flow. The same results have been derived for 

both privately collected data and public datasets. Based on the EDA results, a novel DDoS detection 

approach has been proposed which is neither user, attack nor device centric as it is applicable to IoT 
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devices in general and a variety of DDoS flooding attacks. The detection model is based on the 

observed general network behavior of the smart home devices. These include feature variance, absent 

features and feature range which tend to be neglected in attack detection as observed from related 

works. The narrative needs to be changed from only focusing on present network feature statistics to 

detect attacks, rather features that are normally present but tend to be absent for a prolonged period 

also contribute to rapid attack detection as seen in this paper. However, this proposed approach relies 

heavily on the static nature of DDoS attack traffic and as such, low stealth DDoS attacks that exhibit a 

dynamic nature are not detected by this approach. The approach also detects a DDoS pattern at a 

certain threshold of packets which if not reached will fail to detect an attack. However, the 

overwhelming nature of the attack traffic always tends to go way above the threshold. As this 

detection method has not been implemented and tested, the next chapter covers this. 
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Chapter 5 

A Novel Hybrid DDoS attack Detection and attack type indication 

system in the Smart Home Network 

5.1 Introduction 
The previous chapter proposed a novel approach to DDoS identification in the smart home traffic 

based on some observations derived from the Exploratory Data Analysis (EDA). This chapter 

implements a detection and attack type indication system based on the EDA observations which were 

majorly categorized into three conditions (Feature absence, Feature range, Feature randomness). The 

main goal is to have a detection and attack type indication solution that is light weight, practical, not 

attack, user nor device centric which works on several flooding attacks. In addition to that this solution 

is required to flag the covered attacks at the very onset to avoid the intended damage as the attack 

will be contained or thwarted in time. These conditions which the solution is based on are translated 

into an algorithm that will flag attack traffic in a pool of benign traffic and further indicate the type of 

attack. This solution is first tested on 3 flooding attacks (TCP SYN, UDP, ICMP). The performance of the 

system is evaluated, and improvements are made to the algorithm after which it is further tested on 

unfamiliar flooding attacks (HTTP, Slow LOIC, RECOIL [128]) and a mixture of all the attacks (TCP SYN, 

UDP, ICMP, HTTP, RECOIL, slow LOIC). This detection and attack type indication algorithm is also 

validated using public attack and benign data to eliminate biases and verify that it is not user, attack 

nor device centric. Finally, the implemented and tested detection and attack type indication system is 

compared to other state of the art solutions based on 12 critical factors. This chapter covers and 

achieves the following points: 

• A better and more efficient methodology is designed and employed in terms of robustness, 

relevance, and clarity when it comes to the testing procedure as it redefines performance 

metrics using more relevant factors. 

• Novel detection and attack type indication approaches are presented. It achieved better 

performance when compared to state of the art in terms of light weightiness, attacks covered, 

accuracy, practicality in terms of feasibility and scalability and not being attack, user nor 

device centric.  

• The detection and attack type indication algorithms cover a broader surface in terms of attack 

variation. It works on known attacks, unfamiliar attacks, and mixed attacks. It is also validated 

successfully on Public normal and attack data. 

The remaining sections in this chapter cover methodology used, how the novel detection and attack 

type indication system works, an implementation of the system, its performance and results achieved, 
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a comparison of the systems performance to literature, new findings, and finally a summary of the 

chapter. 

5.2 Methodology  
The various processes and sub-processes followed to achieve a successful implementation of the 

proposed detection and attack type indication system is broken down in this section as shown in figure 

5.1.  

 

Figure 5.1 Methodology 

This methodology consists of 6 main phases which are data preparation, algorithm scripting, testing, 

tuning, validation, and comparison to literature. The methodology is designed to be smooth and 

seamless in terms of transitioning from one phase to the next. It is manageable due to its segregated 

phases with having to complete one phase before moving onto the next as the results from the 

previous phase are used to commence working on the next phase. A recursive point is also included 

in the methodology comprising of testing, tuning and validation. This gives a smooth and clear process 
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in terms of accommodating observations during testing that will be used in tuning the system for 

better performance.  More attacks (unfamiliar attacks, mixed attacks, public data) are tested on the 

system at the validation phase for robustness and elimination of biases in terms of data source used. 

As the main goal is to have a solution that is light weight, practical, not user, device, nor attack centric, 

which works on unfamiliar and mixed attacks, this methodology tends to provide a plan to achieve 

each of these goals. A concise way to measure the systems performance in relation to how early the 

attack is flagged and robustness is also presented using more relevant metrics and factors. The 

methodology also lays out a rigorous comparison of the systems performance to other state of the art 

solutions based on several clear and critical factors. The factors based on which the systems 

performance is measured tends to be clearer and more scientifically sound which makes this 

methodology stand out when compared with state-of-the-art methods. The various phases and what 

they entail are outlined in the subsequent sections.  

5.2.1 Data preparation 
This phase is concerned with making sure the collected data is in the most suitable form for use in 

testing the proposed system. This involves the following steps: 

➢ Data conversion: The collected raw data on table 4.1 in chapter 4 is converted from the 

Wireshark format (.pcap) to csv. This csv format is better in terms of compatibility with Google 

Colab that will be used as a platform to draft and test the algorithm.  

➢ Filtering features: The relevant network features to be used are filtered. These features are 

source address, destination address, protocol, packet length, TCP sequence number and TCP 

flags. Although these features are for a TCP based traffic, using them does not completely 

deny the necessary UDP and ICMP traffic in the network as the algorithm is designed to 

accommodate them. 

➢ Labelling: Each data source is properly labelled according to the category it falls in. These 

categories include the various attacks, whether it is a mixed or single attack, known or 

unfamiliar attack, public or private data and finally purely normal data or a mixture of normal 

and attack. This will help in giving a clear distinction of how the detection and attack type 

indication algorithm performs on each category. 

5.2.2 Algorithm drafting 
This phase delves into the steps taken to develop the detection and attack type indication algorithm 

in the most suitable environment. This includes the following: 
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➢ Language choice:  A language that is easy to comprehend, light weight and compatible across 

several simulation platforms is considered for scripting the algorithm. The chosen language 

that fits all the considered qualities is python. 

➢ Required conditions: Before scripting the algorithm, each considered network feature is 

translated into a condition that if met or breached, will result in a predefined decision. This 

will help in coupling up the various segments of the detection and attack type indication 

algorithm and the action taken after each condition. 

➢ Window size: A specified number of packets to be inspected at a time is set here. This is 

intended to be set at the gateway. However, Google Colab is used to test this. 

➢ IP address filter: The relevant IP addresses to be used are noted for each data source. This will 

be specified in the algorithm for each data source file to be tested. The flow direction 

considered is to the target device to avoid redundancy. 

➢ Relevant protocols: Relevant protocols to be used in the conditions are noted from each data 

source. This will later be incorporated into the algorithm so the protocols from each data 

source are recognized during testing. 

➢ Data source labels: The data source files, and column headers are labelled using a uniform 

naming convention so that each data source as well as the various columns are recognized 

without errors during testing. 

➢ Result presentation: This involves coming up with how the detected and indicated attacks and 

normal traffic are flagged, labelled, and presented in the output file. The chosen method for 

this is to create 2 additional columns in the output file. One column will present traffic as 

either “attack “or “not attack” corresponding to each packet while the second column will 

present the attack type corresponding to each detected attack. Normal packets will carry the 

label “no type” in the classification column as they are already labelled “not attack” in the first 

column. 

➢ Software choice: The preferred testing platform is Google Colab as it is open source, no 

downloads/installation needed, allows writing code and collaborating on it with team 

members and lastly being able to save directly to Git hub.  

➢ Develop script: After fulfilling all the above-mentioned steps, a script is developed in python 

using Google Colab to test on the various data sources. 

➢ Output location: The output location for each tested data source is set. 
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5.2.3 Testing 
The testing phase is concerned with running several variations of the attacks, recording the 

performance, and making observations which will be used to improve the performance. The following 

steps are followed to achieve this: 

➢ Test case metrics: Several factors used to distinguish between the various testcases, and the 

performance of each test case are outlined. This helps to give precise and scientifically sound 

results in relation to the performance of the algorithm. These factors include Dataset 

category (private/public), attack variation (single/mixed/unfamiliar), attack type (TCP, UDP, 

ICMP, HTTP), detection column label, indication column label, packet number attack started, 

packet number attack detected, packet number attack indicated.  

➢ Note observations: Observations made relating to the performance of the algorithm are 

noted and these are used in the tuning phase to improve the weak points of the system. 

➢ Unfamiliar attacks: These attacks (HTTP, SLOW LOIC, RECOIL) are tested on the algorithm to 

confirm if it precisely detects and indicate the attack type in unfamiliar attacks. Results from 

this is recorded in the test case table. 

➢ Mixed attacks: These attacks are tested on the algorithm to confirm if it precisely detects and 

indicates the attack types in mixed attacks (a combination of several unfamiliar and known 

attacks). Results from this is recorded in the test case table. 

5.2.4 Tuning 
This phase requires making improvement to the detection and attack type indication algorithm based 

on the observations made during the testing phase. The steps in this phase include: 

➢ Eliminate redundancy: Network features that pose redundant in the algorithm are removed 

to increase the light weightiness of the system. Only the best performing features in terms of 

detection trigger will be used. 

➢ Alter number of consecutive packets to be flagged: Based on the performance of the algorithm 

on the various test cases in relation to number of consecutive packets to be flagged, this 

number is altered to the one which gives better results in terms of accuracy. 

➢ False positive/negative reduction: One of the major aims of this system is to detect and 

indicate the attack type at the very onset (within the first 10-15 attack packets targeting the 

device) to minimize or totally avoid damage. Based on the performance results from the test 

cases, possible ways to improve the algorithm to achieve this precise detection and attack 

type indication at the onset or as close to the onset of the attack as possible are applied. 
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5.2.5 Validation 
This phase is concerned with testing the detection and attack type indication algorithm on public data. 

This data is from a different environment and from a variety of smart home device brands. This is done 

to make the system bias free in terms of the data used. Furthermore, it will prove that the detection 

and attack type indication system is not user or device centric as it works on other smart home device 

brands from other users. The steps involved in this phase are: 

➢ Normal data: Sourcing purely normal data. 

➢ Normal + attack: Sourcing a mixture of normal and attack data. 

➢ Record performance: Testing both publicly sourced data on the algorithm and recording its 

performance on the test case metric table. This will provide a clear result and conformation 

on whether the detection and attack type indication system are not user nor device centric. 

5.2.6 Comparison to literature 
This phase is about comparing the performance of the implemented and tested detection and attack 

type indication algorithm to state-of-the-art solutions. This will help to provide a clear-cut evaluation 

based on the performance of the implemented solution against current solutions. This comparison is 

based on 12 factors which are: 

1) Features used: This refers to the network features used like protocol and port numbers and 

their total number. Are biased features used in attack detection? The traffic flow direction is 

also identified. 

2) Attacks covered: The types and variations of attacks the solution covers. 

3) Problem solved: What the solution solves like detection or classification or both. 

4) Focus: Is the solution user, device or attack centric? 

5) Practicality: Is the solution feasible in large scale environment, with reasonable resources and 

deployment time? 

6) Data source: Is data source simulated or is it from a real smart home network? Is data 

composition realistic for use in testing? 

7) Performance metrics: Are the metrics used to measure solution performance relevant? 

8) Onset detection: Is the attack detected/ type indicated at the very onset? 

9) Validation: How is the solution validated?  

10) Counter spoof: Is the solution resistant to IP/port spoofing? 

11) Approach: Relevance/downsides of approach to solving problem. 

12) Coverage: Does the traffic inspection point cover all devices on the network? 
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5.3 How the detection and attack type indication algorithm work 
The detection and attack type indication algorithm has two main functions which are to detect DDoS 

attacks and indicate the attack type in the infiltrated smart home traffic. It is built on 3 smart home 

traffic properties derived from the EDA in the previous chapter which are feature absence, feature 

range and feature variance. These properties are based on the general characteristics of smart home 

device traffic which the DDoS attack traffic violates. They are based on some smart home network 

features which were discovered to be simultaneously affected during a flooding attack. These affected 

features are protocol, packet length, sequence numbers, TCP flags and encryption. A raw data 

comparison of the state of these features in normal traffic to when attack sets in has been addressed 

in chapter 4 in figures 4.29 to 4.40. Each feature is categorized into one of the 3 properties due to its 

behavioural pattern during the attack flood. The features and properties are linked in the following 

ways: 

o Feature absence: This refers to network features that are normally present in the smart home 

traffic but disappear during certain DDoS flooding attacks like ICMP, UDP and DNS among 

others. The affected network features that fall in this category are TCP flags, encryption 

protocols, and TCP sequence numbers. However, this is not tagging all ICMP, UDP or DNS 

traffic as malicious because the TCP based traffic also uses these at some point. These will be 

only tagged malicious if they go above a certain threshold. 

o Feature range: This refers to network features that have numbers falling in wide ranges as 

they get incremental from one packet to the next in a short period of time but get limited to 

0’s/1’s during an attack. The affected network feature in this category are the sequence 

numbers. This was discovered to be true for attacks like TCP SYN, HTTP and RECOIL among 

others. The sequence numbers that usually start from 0 or 1 and shoots up to thousands 

within seconds was found to be limited to just 0’s or 1’s or a combination of both for the 

packets during the duration of these attacks. 

o Feature variance: This refers to the randomness or dynamics exhibited by some network 

features in normal smart home traffic but tend to get static during an attack. The features 

affected here are protocol, packet length, TCP flags and TCP sequence numbers. These 

features tend to have different compositions within a short period of time but become static 

to a single value during an attack like in TCP SYN, HTTP, UDP among others. 

The above-mentioned properties were translated into conditions which if met or violated results in a 

specific action which in turn were embedded in an algorithm that detects and classifies the incoming 

attacks at the very onset. However, these conditions will be improved after the initial testing stage, 
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thus removing some aspects of it. These conditions are as follows for each network feature for the 

detection aspect: 

• Condition A (Protocol): If 10 consecutive packets out of 20 have the same protocol, in 

combination with either sequence number or TCP flag triggers then flag all 20 packets as 

“Attack”. The TCP flag triggers are mentioned in condition D. A 20-packet window is chosen 

as it doubles the number of the consecutive packets needed to flag an attack. Moreover the 

20-packet window is useful in the attack type indication stage where the highest protocol 

count is taken out of the 20 attack packets to label the attack type. This reduces the chances 

of a false negative due to window not being wide enough. 

• Condition B (Packet length): If 10 consecutive packets out of 20 have the same packet length 

in combination with TCP sequence number or TCP flag triggers, then flag all 20 packets as 

“Attack”. 

• Condition C (TCP Sequence numbers): If 10 consecutive packets out of 20 have absent TCP 

sequence numbers, then flag all 20 packets as “Attack”. If 10 consecutive packets out of 20 

have their sequence numbers as only 0’s or 1’s or a combination of 0’s and 1’s, then flag all 20 

packets as “Attack”. However, this does not mean all packets that do not carry these sequence 

numbers like UDP and ICMP will be automatically flagged as attack. The 10 consecutive packet 

rule takes care of this. 

• Condition D (TCP flags): If 10 consecutive packets out of 20 have absent TCP flags, then flag 

all 20 packets as “Attack”. If 10 consecutive packets out of 20 have their TCP flags set to SYN 

or RST or a combination of SYN and RST, then flag all 20 packets as “Attack”. 

• Condition E (Encryption): If encryption protocol (tlsv1.2) is missing for 10 consecutive packets 

out of 20 in combination with either TCP sequence number or TCP flag alarm, then flag all 20 

packets as “Attack”. However, this depends on whether the devices use encryption protocols 

or not and the type of encryption used. 

Attack type indication comes after the flagged packets have been labelled as “Attack”. The condition 

relating to classification is as follows: 

• If 20 packets are flagged and labelled as “Attack” based on the aforementioned conditions, 

then focus on the protocol column and take the protocol with the highest count out of the 20 

packets flagged as “Attack” and label all 20 packets as the protocol name like “UDP” or “TCP”. 

This provides the information on the protocol used in the attack. 

The network feature(s) in the conditions above that lead(s) to packets being labelled as “Attack” and 

type indicated using the highest protocol count from the attack labelled packets is subject to changes 
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based on the performance of the feature(s) at the testing stage. This depends on the result of how 

well a condition independently or in combination with others flag an attack. An accurate truth table 

will be provided after testing confirming the most appropriate conditions. 

5.4 Implementation 
This section delves into the series of steps and processes carried out during the implementation of the 

detection and attack type indication system. Several phases of the previously presented methodology 

are laid out here with details of the actual work done to successfully achieve the overall intended 

system. 

5.4.1 Data preparation 
The dataset files were converted from the Wireshark format (.pcap) to csv. Figure 5.2 shows the 

process of this conversion. The pcap file is exported as csv in Wireshark and saved. Figure 5.3 shows 

the converted csv. The relevant network features to be tested are filtered. These features are source 

and destination IP addresses, protocol, packet length, sequence number and TCP flags. The required 

attack source and destination IP addresses are also isolated. Each data source is properly labelled 

according to the category it falls in. These categories include the various attacks, whether it is a mixed 

or single attack, known or unfamiliar attack, public or private data and finally purely normal data or a 

mixture of normal and attack. This will help in giving a clear distinction of how the detection and attack 

type indication algorithm performs on each category. Table 5.1 shows the details of the dataset labels 

with their file count, source and destination IP addresses and categories they fall into whether 

public/private or known/Unfamiliar. 

 

Figure 5.2 CSV conversion 
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Figure 5.3 Converted pcap to csv 

Table 5.1 Dataset categorization details 

ID Dataset Source IP Destination IP Public/Private Known/Unfamiliar Composition Protocol 

1 TCPSYN (5 files) 192.168.0.10

3 

192.168.0.102 Private Known Attack+benign TCP,DNS,ICMP

,TLSv1.2,NTP 

2 UDP (5 files) 192.168.0.10

3 

192.168.0.102 Private Known Attack+benign UDP,TCP,DNS,I

CMP,TLSv1.2,

NTP 

3 ICMP (5 files) 192.168.0.10

3 

192.168.0.102 Private Known Attack+benign TCP,DNS,ICMP

,TLSv1.2,NTP 

4 HTTP (3 files) 192.168.0.10

3 

192.168.0.102 Private Unfamiliar Attack+benign TCP,DNS,ICMP

,TLSv1.2,NTP,H

TTP 

5 SLOWLOIC (2 

files) 

192.168.0.10

3 

192.168.0.102 Private Unfamiliar Attack+benign TCP,DNS,ICMP

,TLSv1.2,NTP 

6 RECOIL (2 files) 192.168.0.10

3 

192.168.0.102 Private Unfamiliar Attack+benign TCP,DNS,ICMP

,TLSv1.2,NTP 

7 Mixed (3 files) 192.168.0.10

3 

192.168.0.102 Private Unfamiliar Attack+benign TCP,DNS,ICMP

,TLSv1.2,NTP,H

TTP,UDP 

8 Normal (5 files)  192.168.0.101 Private  Benign TCP,DNS,ICMP

,TLSv1.2,NTP,

MDNS,ARP 

9 TCPSYN (2 files) 192.168.100.

147-150 

192.168.100.3 Public Known Attack+benign TCP,DNS,ICMP

,TLSv1.2, 

1

0 

UDP (2 files) 192.168.100.

147-150 

192.168.100.3 Public Known Attack+benign TCP,DNS,ICMP

,TLSv1.2 
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1

1 

HTTP (2 files) 192.168.100.

147-150 

192.168.100.3 Public Unfamiliar Attack+benign TCP,DNS,ICMP

,SSH,HTTP 

1

2 

FRAGMENTED 

(2 files) 

192.168.1.19

5 

74.91.117.248 Public Unfamiliar Attack+benign TCP,DNS,ICMP

,TLSv1.2,UDP 

1

3 

Mixed (2 files) 192.168.100.

147-150 

192.168.100.3 Public Unfamiliar Attack+benign TCP,DNS,ICMP

,TLSv1.2,UDP 

1

4 

Normal (5 files)  192.168.1.158 Public  Benign TCP,DNS,ICMP

,SSH,NTP,HTTP

,ARP 

 Normal (1 file)  192.168.1.132 Public  Benign TCP,DNS,ICMP

,SSH,NTP,HTTP

,ARP 

 

5.4.2 Algorithm Drafting 
The listed conditions from section 5.3 are translated into a python script. The window size is fixed to 

20. The number of consecutive packets required to flag an attack pattern is tested by setting it to 5 

and 10 packets respectively. Both will be tested to see how they perform. The relevant destination IP 

addresses for each dataset will be incorporated into the script as well as the correct dataset label so 

it can be identified as the data source. The flow direction is set to only focus on incoming packets to 

the target smart home devices. This means a one-way traffic direction will be monitored which 

contributes to the solutions light weight nature. The encryption protocol present in the dataset is also 

defined in the script so it can identify the absence of such protocols. Pandas and NumPy are the 

libraries imported at the beginning of the script as some functions from them will be utilized. 

Figure 5.4 shows the code responsible for creating the data frame with the respective relevant 

columns. This is read from the dataset file it is pointed to. 

 

Figure 5.4 Data frame creation 

Figure 5.5 is where the destination IP is set, which is that of the smart home device. The “window size” 

refers to the number of packets checked at a time. The “number of packets checked” is what 

determines how many consecutive packets make an attack pattern if the conditions in figures 5.6 to 

5.9 are true. The output file path is also set here. 
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Figure 5.5 Setting IP, window size, packets checked and output path 

Figure 5.6 shows the code in charge of checking the protocol conditions. The number of unique 

elements present in the protocol column are checked for. If any of those unique elements appear 

consecutively for ten or more packets at a go, then this is flagged as attack. Secondly, if the encryption 

protocol TLSv1.2 is missing for ten consecutive packets, then the 10 packets are flagged as attack. 

 

Figure 5.6 Protocol condition check 

Figure 5.7 shows the code responsible for checking the packet length conditions. It checks the number 

of unique elements in the packet length data frame. If only one or two unique elements are found for 

10 consecutive packets, then these 10 packets are flagged as attack. 

 

Figure 5.7 Packet length condition check 

Figure 5.8 shows the code responsible for checking the sequence number conditions. If the sequence 

number column of the data frame is found to have only 0’s or 1’s or a combination of both for 10 

consecutive packets, then these 10 packets are flagged as attack, otherwise normal. Secondly, if 10 
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consecutive packets have absented or null sequence numbers, these are also flagged as attack, 

otherwise normal. 

 

Figure 5.8 Sequence number condition check 

Figure 5.9 shows the code responsible for checking the TCP flag conditions. This checks for the number 

of unique elements in the TCP flag column data frame. It further checks if only SYN or RST flags or a 

combination of both are found for 10 consecutive packets then these are flagged as attack, otherwise 

normal. If TCP flags are found to be absent for ten consecutive packets, these are also flagged as attack. 

 

Figure 5.9 TCP flag condition check 

Figure 5.10 shows the code responsible for checking if any of the conditions in figures 5.6 – 5.9 are 

true, then return the sequence of packets with attack label. This code triggers the actual labelling of a 

sequence of packets as an attack or not attack depending on what has been flagged from figure 5.6 – 

5.9. 
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Figure 5.10 Flagging and labelling true conditions 

Figure 5.11 shows the code responsible for stacking the labelled packets of each iterated window. The 

protocol column of the packets labelled “attack” is checked for the most appearing protocol. The 

protocol with the highest count is then labelled as the attack type, thereby indicating the attack type 

detected. However if packets have a label of no attack, then the corresponding attack type column 

carries the label “ no type ”. 

 

Figure 5.11 Stacking labelled packets and indicating attack type 

5.4.3 Initial Testing 
Some of the dataset files from table 5.1 are run over the scripted detection and attack type indication 

algorithm from section 5.4.2. This initial testing stage focuses only on testing and recording the 

performance of known private attacks which comprises of a mixture of benign and attack traffic (ID 1-

3) as well as benign private traffic (ID 8) from table 5.1. The number of “packets checked” will be tested 
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by setting it to “5” and “10”. All algorithm conditions A – E from section 5.3. will be applied. Table 5.2 

shows when the number of packets check is set to 5 while 5.3 shows when it is set to 10. Observations 

based on the performance are also noted which will be used in the tuning phase. The test case metric 

table is being populated with the details of the tested datasets based on several factors mentioned in 

section 5.2.3. This is presented in table 5.2 and 5.3. For each dataset it states the following: 

- The name of the dataset, specifying if its attack or normal. 

- Whether attack traffic is present in the flow. 

- If the algorithm detected the attack. 

- Attack type indicated. 

- The packet number the attack started in the traffic flow. 

- The packet number at which the algorithm detected the attack. 

- The packet number at which the attack type is indicated. 

- The feature(s) that triggered the attack detection. This will help to gauge the best performing 

feature in terms of detection trigger. The keys to this column are A = Protocol, B = Packet 

length, C = Sequence number, D = TCP flags, E = Encryption. 

- The window where the attack started. For instance, if there are 100 packets and the window 

size is 20 packets. If an attack starts between packet 1 and 20 then this is the first window. 

The packet number the attack started is divided by 20 to get the actual window. 

- The window at which the attack is detected and classified. 

The number of “packets checked” will be tested by setting it to “5” and “10”. All algorithm conditions 

A – E from section 5.3. will be applied. This means that if any of the conditions is flagged in 5 or 10 

consecutive packets, then this will be flagged as “attack”. Table 5.2 shows when the number of packets 

checked is set to 5 while 5.3 shows when it is set to 10. 

From table 5.2 we can see that more false alarms (in red) have been raised in comparison to table 5.3 

where the packets checked is set to 10. This indicates that using a threshold of 10 packets yields better 

results. Nevertheless, the algorithm still must be improved for better performance to reduce the false 

alarms. From the trigger feature column of both tables, we can see that Protocol (A), Packet Length 

(B) and Encryption (E) are those that led to all the false alarms. However, Sequence Number (C) and 

TCP flags (D) resulted in all the true cases. These factors will be taken into consideration in the tuning 

stage where the algorithm is improved. Figure 5.12 shows an instance where setting the packets 

checked to 5, labelled normal traffic as “attack” while figure 5.13 shows the 10-threshold labelling the 

same set of packets as “not attack” which is true. 
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Table 5.2 Initial Testing results, packets checked set to 5 

ID Dataset Attack 

present? 

Attack 

detected

? 

Attack 

type 

indicat

ed? 

Pkt no 

attack 

started 

Pkt no 

attack 

detected 

Pkt no 

attack type 

indicated & 

and attack 

type 

Trigger 

feature(s

) 

Window 

attack 

started 

Window 

attack 

detected  

1 TCPSYN01.csv Yes Yes Yes 2402 232 232,TCP A,E 120th 10th 

2 TCPSYN02.csv Yes Yes Yes 272 15 15,TCP A,B,E 13th 1 ST 

3 TCPSYN03.csv Yes Yes Yes 38 38 38,TCP A,B,C,D,E 2nd 2ND 

4 TCPSYN04.csv Yes Yes Yes 19 19 19,TCP A,B,C,D, 

E 

1st 1ST 

5 TCPSYN05.csv Yes Yes Yes 279 53 53,TCP A,B,E 13th 3rd 

6 UDP01.csv Yes Yes Yes 196 75 75,TCP A,B,C,E 9th 4TH 

7 UDP02.csv Yes Yes Yes 304 118 118,TCP A 15th 6th 

8 UDP03.csv Yes Yes Yes 325 46 46,TCP A,B,E 16th 3rd 

9 UDP04.csv Yes Yes Yes 202 43 43,TCP A,B,E 10th 3rd 

10 UDP05.csv Yes Yes Yes 297 297 297,UDP A,B,C,D,E 14th 14th 

11 ICMP01.csv Yes Yes Yes 598 370 370,TCP A,B,E 29th 19th 

12 ICMP02.csv Yes Yes Yes 509 96 96,TCP A,B,E 25th 5th 

13 ICMP03.csv Yes Yes Yes 191 191 191,ICMP A,B,C,D,E 9th 9th 

14 ICMP04.csv Yes Yes Yes 181 181 181,ICMP A,B,C,D,E 9th 9th 

15 ICMP05.csv Yes Yes Yes 293 62 62,TCP A,B,E 14th 4th 

16 Normal01.csv No Yes Yes Null 12 12,TCP A,B,E Null 1ST 

17 Normal02.csv No Yes Yes Null 6 6,TCP B Null 1st 

18 Normal03.csv No Yes Yes Null 56 56,Tlsv1.2 A,B,E Null 3rd 

19 Normal04.csv No Yes Yes Null 93 93,TCP A,E Null 4th 

20 Normal05.csv No Yes Yes Null 47 47,Tlsv1.2 A,E Null 3rd 

 

Table 5.3 Initial Testing results, packets checked set to 10 

ID Dataset Attack 

present? 

Attack 

detected

? 

Attack 

type 

indicat

ed? 

Pkt no 

attack 

started 

Pkt no 

attack 

detected 

Pkt no 

attack type 

indicated & 

and attack 

type 

Trigger 

feature(s

) 

Window 

attack 

started 

Window 

attack 

detected  

1 TCPSYN01.csv Yes Yes Yes 2402 496 496,TCP A,E 120th 24th 

2 TCPSYN02.csv Yes Yes Yes 272 167 167,TCP A,B,E 13th 8th 

3 TCPSYN03.csv Yes Yes Yes 38 38 38,TCP A,B,C,D 2nd 2ND 

4 TCPSYN04.csv Yes Yes Yes 19 19 19,TCP A,B,C,D, 

E 

1st 1ST 

5 TCPSYN05.csv Yes Yes Yes 279 294 294,TCP A,B,C,D,E 13th 14TH 

6 UDP01.csv Yes Yes Yes 196 196 196,UDP A,B,C,D,E 9th 9TH 

7 UDP02.csv Yes Yes Yes 304 304 304,UDP A,B,C,D,E 15th 15th 

8 UDP03.csv Yes Yes Yes 325 325 325,UDP A,B,C,D, 

E 

16th 16th 
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9 UDP04.csv Yes Yes Yes 202 202 202,UDP A,B,C,D,E 10th 10th 

10 UDP05.csv Yes Yes Yes 297 297 297,UDP A,B,C,D,E 14th 14th 

11 ICMP01.csv Yes Yes Yes 598 598 598,ICMP A,B,C,D,E 29th 29th 

12 ICMP02.csv Yes Yes Yes 509 509 509,ICMP A,B,C,D,E 25th 25th 

13 ICMP03.csv Yes Yes Yes 191 191 191,ICMP A,B,C,D,E 9th 9th 

14 ICMP04.csv Yes Yes Yes 181 181 181,ICMP A,B,C,D,E 9th 9th 

15 ICMP05.csv Yes Yes Yes 293 293 293,ICMP A,B,C,D,E 14th 14th 

16 Normal01.csv No Yes Yes Null 81 81,TCP B Null 4th 

17 Normal02.csv No Yes Yes Null 6 6,TCP B Null 1st 

18 Normal03.csv No Yes Yes Null 56 56,Tlsv1.2 B Null 3rd 

19 Normal04.csv No Yes Yes Null 93 93,TCP B Null 4th 

20 Normal05.csv No Yes Yes Null 47 47,Tlsv1.2 B Null 3rd 

 

 

Figure 5.12 False positive by setting packets checked to 5 

 

Figure 5.13 True negative by setting the packets checked to 10 
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5.4.3.1 Observations 

The relevant observations made which will be taken into consideration at the tuning stage are 

presented in table 5.4. 

Table 5.4 Observation details 

Observation ID on table 
5.2 

ID on table 5.3 Reason 

Trigger feature (E) 
which is the encryption 
condition leads to false 
positives. 

1, 2 1,2,5,6,8,9,11,12,15,16,18,19,20 Encryption protocols tend to be absent in normal 
traffic for 10 packets sometimes, thus the false 
positives raised. 

Trigger feature (E), the 
encryption condition 
leads to wrong attack 
type classification. 

18, 20 18, 20 The classification method takes the protocol with the 
highest count in the attack labelled packet and labels 
the attack type using that protocol name thus 
labelling attack types using encryption labels. 

Trigger features A 
(Protocol) and B 
(Packet length) lead to 
false positives. 

1, 2, 16, 17, 
18, 19, 20 

1,2,5,6,8,9,11,12,15,16,18,19,20 Protocol and packet length tend to be the same for 10 
consecutive packets in normal traffic sometimes. 

Trigger features C 
(Sequence no) and D 
(TCP flags) lead to true 
positives. 

3-15 3,4,10,13,14 Sequence no and TCP flags tend to always be part of 
the trigger features during true positive attacks. They 
never appear as trigger features in false positive 
attacks. 

Packets checked set to 
5 leads to more false 
alarms 

  5 consecutive packets are not sufficient to declare 
and attack, thus the higher false alarms observed. 

Packets checked set to 
10 leads to less false 
alarms 

  10 consecutive packets sufficient to declare an attack, 
thus the more positive alarms. 

5.4.4 Tuning 
The detection and attack type indication algorithm will be tuned and improved based on the noted 

observations in table 5.4. The respective approaches taken to improve the algorithm are presented in 

table 5.5. 

Table 5.5 Tuning approaches 

ID Observation Tuning approach Location in algorithm/ Reason for false 
alarm  

1 Trigger feature (E) which is the encryption 
condition leads to false positives. 

Remove condition from 
detection algorithm. 

Figure 5.6. Condition E tends to raise false 
positives due to the number of packets 
checked set to 5 or 10. For this to work, the 
number of packets checked has to be 
increased. This either calls for the condition 
to be dropped or have a separate number 
for packets checked. The former will be 
used as conditions C and D tend to detect 
an attack with packets checked set to 10 
even without condition E, thus eliminating 
redundant conditions. 

2 Trigger features A (Protocol) and B (Packet 
length) lead to false positives.  

Remove conditions from 
detection algorithm. 

Figure 5.6 and 5.7. Conditions A and B tend 
to raise False positives due to the number 
of packets checked set to 5 or 10. This 
number needs to be increased or entirely 
drop the conditions to solve the issue. The 
latter will be done to reduce redundancy in 
the algorithm as conditions C and D tend to 
detect the attack without conditions A and 
B. 

3 Trigger features C (Sequence no) and D (TCP 
flags) lead to true positives. 

Use them as trigger features in 
detection algorithm. 

Figure 5.8 and 5.9 

4 Packets checked “5” leads to false alarms Set packets checked to 10 Figure 5.5. Setting the packets to 5 tends to 
raise false positives which indicates that its 
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too low in comparison to when it is set to 
10 which yields better results. 

5.4.5 Final Testing and Validation 
The tuned detection and attack type indication algorithm is tested on the respective collected datasets 

from table 4.1 section 4. This will provide clear results in terms of the algorithms performance before 

and after tuning. Conditions A, B and E have been dropped from the algorithm as they are responsible 

for generating false positives as seen from the trigger feature column of tables 5.2 and 5.3. They were 

also found to be redundant as conditions C and D can flag the attack pattern even without A, B and E. 

Table 5.6 provides the results to this. The same performance metrics from table 5.2 and 5.3 are used 

to measure the performance for clear comparison. All datasets from table 4.1 in chapter 4 are tested 

in this stage to see the performance of the algorithm after tuning it. 

The results in table 5.6 clearly shows the respective tuned components have very much improved the 

performance of the detection and attack type indication system. We can see the accuracy achieved is 

much higher in terms of onset attack detection and attack type indication including unfamiliar (UDP 

fragmentation, RECOIL, SLOWLOIC) and mixed attacks. Normal data is also recognized as completely 

normal traffic except for one case, ID 21. The reason for this false positive is pointed out in the public 

dataset used [85]. The device that emanated this traffic was newly deployed to the network, thus it 

generated unusual DHCP traffic for connectivity establishment purposes. This is shown in figure 5.14. 

However, after that, the traffic flow became normal. The absence of TCP sequence numbers and TCP 

flags for more than 10 consecutive packets triggered this as seen from the figure. In the case of mixed 

attacks, only the predominant attack type in the first window of the attack is indicated as the system 

is designed to detect only at onset, which is a very crucial aspect in DDoS attack detection. 

Furthermore, the performance metrics used here gives much more precise and useful details 

compared to the traditional confusion matrix. The fact that early detection one of the most important 

aspects in dealing with DDoS attacks, the conventional performance metrics used do not provide this 

detail. Literature shows a system can provide high accuracy but not able to detect at onset or even 

provide details about the point at which attack was detected, which questions the efficiency of the 

system. The trigger features also show how effective the use of Sequence numbers and TCP flags are 

in attack traffic detection as their pattern deviates and reverses completely from the usual one. 

Furthermore, the normal traffic carries other protocols like DNS, ICMP, UDP among others as 

identified on table 4.1 in chapter 4. However, this has not identified these legitimate protocols as 

attack traffic but accommodates them. Even though the algorithm is designed for TCP/ HTTP based 

traffic, it still accommodates these legitimate protocols. This is due to the number of “packets checked” 

threshold which does not flag any protocol as attack unless it exceeds that number. Figure 5.15 shows 

a flow process of how the final version of the algorithm works.  
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Figure 5.14. New device joining network traffic 

Table 5.6 Final testing and validation results 

ID Dataset Attack 

present? 

Attack 

detected

? 

Attack 

classifi

ed? 

Pkt no 

attack 

started 

Pkt no 

attack 

detected 

Pkt no 

attack 

classified 

and type 

Trigger 

feature(s) 

Window 

attack 

started 

Window 

attack 

detected  

1 HTTP01.csv Yes Yes Yes 47 47 47,TCP C,D 2ND 2ND 

2 HTTP02.csv Yes Yes Yes 124 124 124,TCP C,D 6TH 6TH 

3 HTTP03.csv Yes Yes Yes 189 189 189,TCP C,D 9TH 9TH 

4 SLOWLOIC01.

csv 

Yes Yes Yes 209 209 209,TCP C,D 10TH 10TH 

5 SLOWLOIC02.

csv 

Yes Yes Yes 312 312 312,TCP C,D 15TH 15TH 

6 RECOIL.csv Yes Yes Yes 192 192 192,TCP C,D 9TH 9TH 

7 UDP01.csv Yes Yes Yes 11462 11462 11462,U

DP 

C,D 573RD 573RD 

8 TCPSYN01.csv Yes Yes Yes 2618 2618 2618,TCP C,D 130TH 130TH 

9 TCPSYN02.csv Yes Yes Yes 25295 25295 25295,TC

P 

C,D 1264TH 1264TH 

10 Mixed001.csv Yes Yes Yes 204 204 204,TCP C,D 10TH 10TH 

11 Mixed002.csv Yes Yes Yes 120 120 120,UDP C,D 6TH 6TH 

12 Mixed003.csv Yes Yes Yes 283 283 283,ICMP C,D 14TH 14TH 

13 FRAG001.csv Yes Yes Yes 129249 129249 129249,U

DP 

C,D 6462ND 6462ND 
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14 FRAG002.csv Yes Yes Yes 163740 163740 163740,U

DP 

C,D 8187TH 8187TH 

15 Normal001.cs

v 

No No No Null Null Null Null Null Null 

16 Normal002.cs

v 

No No No Null Null Null Null Null Null 

17 Normal003.cs

v 

No No No Null Null Null Null Null Null 

18 Normal004.cs

v 

No No No Null Null Null Null Null Null 

19 Normal005.cs

v 

No No No Null Null Null Null Null Null 

20 Normal006.cs

v 

No No No Null Null Null Null Null Null 

21 Normal007.cs

v 

No Yes Yes 1 1 1,DHCP C,D 1st 1st 

22 TCPSYN01.csv Yes Yes Yes 2402 2402 2402,TCP C,D 120th 120th 

23 TCPSYN02.csv Yes Yes Yes 272 272 272,TCP C,D 13th 13th 

24 TCPSYN03.csv Yes Yes Yes 38 38 38,TCP C,D 2nd 2ND 

25 TCPSYN04.csv Yes Yes Yes 19 19 19,TCP C,D 1st 1ST 

26 TCPSYN05.csv Yes Yes Yes 279 279 279,TCP C,D 13th 13th 

27 UDP01.csv Yes Yes Yes 196 196 196,UDP C,D 9th 9TH 

28 UDP02.csv Yes Yes Yes 304 304 304,UDP C,D 15th 15th 

29 UDP03.csv Yes Yes Yes 325 325 325,UDP C,D 16th 16th 

30 UDP04.csv Yes Yes Yes 202 202 202,UDP C,D 10th 10th 

31 UDP05.csv Yes Yes Yes 297 297 297,UDP C,D 14th 14th 

32 ICMP01.csv Yes Yes Yes 598 598 598,ICMP C,D 29th 29th 

33 ICMP02.csv Yes Yes Yes 509 509 509,ICMP C,D 25th 25th 

34 ICMP03.csv Yes Yes Yes 191 191 191,ICMP C,D 9th 9th 

35 ICMP04.csv Yes Yes Yes 181 181 181,ICMP C,D 9th 9th 

36 ICMP05.csv Yes Yes Yes 293 293 293,ICMP C,D 14th 14th 

37 Normal01.csv No No No Null Null Null Null Null Null 

38 Normal02.csv No No No Null Null Null Null Null Null 

39 Normal03.csv No No No Null Null Null Null Null Null 

40 Normal04.csv No No No Null Null Null Null Null Null 

41 Normal05.csv No No No Null Null Null Null Null Null 

 
The following are the results achieved from table 5.6. 

• Total number of test cases: 41 

• Actual True positives: 29, Attained True positives: 29 

• Actual True Negatives: 12, Attained True Negatives: 11 

• False positives: 1 

• False Negatives: 0 
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Table 5.7 shows which conditions (A TO E) from section 5.3 result in false positives and true positives. 

No false negatives have been attained, thus not addressed here.  

Table 5.7 Conditions and their outcomes 

Condition(s) Outcome 

A False positive 

B False positive 

C True positive 

D True positive 

E False positive 

A and B False positive 

A and E False positive 

A and B and E False positive 

C and D True positive 

 

Figure 5.15 shows a flow process of how the final version of the algorithm works. After capturing 20 

packets, the sequence number is checked, and condition C (section 5.3) is applied. If found true, the 

packets are labelled as “attack” and if found false they are labelled as “not attack”. The TCP flags are 

checked next and condition D (section 5.3) is applied. If found true, the packets are labelled as “attack” 

and if found false they are labelled as “not attack”. The highest protocol count of those labelled “attack” 

is taken, and the protocol name is used to further indicate the attack type. 

 

Figure 2.15 Algorithm Flow process 
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5.5 Comparison to literature and new findings 
This section compares the systems performance to existing solutions in DDoS detection in the smart 

home network. It is based on 12 comparison factors as presented on table 5.8 and 5.9 which are: 

✓ Features used: The respective features used in attack detection are listed and compared to 

the ones used in this research. We can see that majority of the features used are device 

dependent like IP address, ports and packet frequency which tend to make the solution device 

centric. However, this research uses generalized features applicable to all smart home devices 

thereby making the solution not device or user centric. In addition to that, we can see that 

existing solutions monitor 2-way traffic while our solution monitors one way which 

contributes to reduction of redundant traffic thereby making the system light weight. 

✓ Attacks covered: The various attacks the existing systems can detect are identified. We can 

see that existing solutions tend to be attack centric detecting between 1 to 4 attacks overall. 

However, our solution can detect and indicate the attack type of a wider range of DDoS attacks 

like volume, protocol and amplification based including unfamiliar attacks. This is due to the 

nature of the network features used which are generalized smart home features and not 

device specific. Furthermore, some generalized attack features (absence and range) are also 

used which makes the solution a hybrid one and robust enough to cater for all attacks and 

devices. 

✓ Problem solved: The problem solved by the existing solutions are compared to ours. We can 

see that current solutions focus on attack detection while ours both detects and indicates the 

attack type including unfamiliar and mixed attacks. 

✓ Data source: The various datasets or data sources used by existing solutions for 

testing/validation are compared. We can see that a reasonable number of existing works used 

only private simulated data. In addition to that some have used public datasets which are 

outdated like the DARPA99 [129]. Our solution stands out as it uses both private data 

generated from real smart home environment, not simulated plus making use of recent 

reputable public datasets for validation. 

✓ Focus: Areas where the existing solutions focus on are identified. Several existing works tend 

to be either attack, device, or user centric due to the detection features used. Our solution 

stands out as it is not user, attack, or device centric as detection features used a general smart 

home and attack traffic properties, thus catering for both device and attack perspectives. 

✓ Practicality: This indicates how feasible or practical deploying the system is in real life 

environments. We can see that some solutions tend to consume a lot of resources, while some 

are not fit for diverse environments. Some also require extraction of device behaviour which 
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doesn’t seem practical in a large or diverse network as this will be time consuming and 

requires device behaviour extraction each time a new device is added to the network. Our 

solution stands out in this aspect as it is not device or user pattern specific, so it doesn’t 

require any sort of training or extraction. This makes it ready to deploy at any environment. 

Our solution also tends to be suitable for diverse settings due to its accommodating features. 

✓ Performance metrics: The metrics used to assess a systems performance are identified here. 

From the table we can see that existing solutions use confusion matrix, memory utilization, 

CPU utilization, rejected packets, blacklisted addresses and the like. However, none of these 

metrics gives clear and precise details on whether the system was able to detect the attack at 

the very onset, which should be one of the most relevant details when it comes to DDoS 

detection performance measure. Some works have not assessed their performance at all as 

seen form table 5.8 and 5.9. Our work stands out as the performance metrics used clearly 

provides information on how early and accurately the system was able to detect and classify. 

✓ Onset detection: How early the existing solutions have been able to detect or classify the 

attacks are outlined. We can see that none of the reviewed works have provided this detail 

which should be at the top of the list when it comes to DDoS attack detection. Our solution 

has provided these details and each time it is able to detect and indicate attack type accurately 

from the very onset. 

✓ Validation: This indicates how a system has been validated to prove that it is reliable outside 

the private network or initial data source it is tested on. We can see that based on the papers 

reviewed in this work, solutions have not been validated on reputable public data. Our 

solution has been validated using recent and reputable public data as well as unfamiliar 

attacks on which it performed excellently well. This proves that the solution is applicable to a 

diverse range of devices and networks as well as attacks. 

✓ Approach: The detection approach used by existing works and how it affects their 

performance is compared. We can see that most of the approaches lead to the solutions being 

either device, user or attack centric due to the detection approach (mainly features) used 

while some lead to high False Positive alarms. Approaches that use real time entropy tend to 

miss the attack traffic when it starts at the very beginning of a window or at the very end of a 

window, so the attack is only detected if it starts at the middle of window. Our approach 

stands out as it uses feature absence, variance, and range to detect the attacks thereby not 

being centric and having no false positive alarms. Our approach has no issue missing any 

attack that starts at the very beginning of a window as a set of predefined rules and features 

are used for detection as opposed to the real time entropy method. 
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✓ Coverage: This shows the area a solution covers at a time during monitoring. Majority of the 

solutions monitor at device level while our work monitors at network level (router). This 

provides a central point of detection covering the entire network at once. 

✓ Counter spoof: This indicates if a solution is counter spoof in terms of port and IP spoofing. 

Majority of the existing works are not counter spoof as they use IP addresses and sometimes 

port numbers as detection features which can mistake a spoofed feature for a legitimate 

device and let it pass through as part of the whitelisted devices. Furthermore, if it gets 

blacklisted this can block legitimate IP’s. Our solution avoids this by not using features that 

can be spoofed as a basis for detection. 

Table 5.8 Comparison to literature 

ID Factor [20] [23] [43] [55] [79] Our solution 

1 Features and 
flow direction 

Communicati
on 
direction,dest
ination 
IP,port,protoc
ol,time 
interval of 
packets,numb
er of 
packets,packe
t sequence, 
DUD. 
2 way 

Packets/sec
, payload 
size. 
2 way 

Networked 
smart 
object(NOS
). 
2 way 

Attack 
signatures 2- 
way 

TCP SYN flags. 
2 way 

Protocol(for 
attack type 
identification),s
eq no,TCP flags 

2 Attacks 
covered 

UDP,SYN,ACK
,DNS,HTTP 

Not 
mentioned 

Not 
mentioned 

TCP,UDP,ICMP,I
RC 

TCP SYN, ICMP, DNS All DDoS 
flooding 
attacks and 
unfamiliar 

3 Problem 
solved 

Detection Detection Detection Detection Detection Detection & 
attack type 
identification 

4 Data source Private Private(sim
ulated) 

Private  ISOT,BOTIoT,IoT
23 

Private(simulated) Private(real 
network), 
IoT23,BOTIoT,B
UETDDoS2020 

5 Focus Device, user 
centric 

User/ 
device 
centric 

Not clear Not clear Attack centric Covers all 

6 Practicality Not feasible 
in large scale 
as you must 
extract each 
device 
behaviour. 

Features 
used will 
lead to FP 
in diverse 
environme
nts as they 
vary 
between 
devices 

High 
resource 
consumptio
n 

Resource 
consuming 

Analyses traffic from 
each device 
independently which 
can cause delays. 

Suitable for 
large scale and 
diverse 
networks. No 
false positive 
alarms. 

7 Performance 
metrics and 
rates 

Not clear 
Detection 
rate: 97-99% 

Memory 
and CPU 
utilization 

Latency, 
computing 
effort, 
attack 
recovery 
time 

Accuracy, 
detection time, 
CPU &memory 
usage 

Not used Packet attack 
started, 
detected,type 
indicated, 
Window attack 
started,detcted 

8 Onset 
detection 

Not 
mentioned 

No 
evidence 

Not 
mentioned 

Not mentioned Not mentioned Detects and 
indicates attack 
type at onset 
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9 Validation Not 
mentioned 

Not 
validated 

Validated 
using 1 
source 

Validated Not validated Validated 

10 Approach Change in 
device or user 
behaviour 
will cause FP. 

Detection 
approach 
problemati
c as 
features 
used will 
raise FP 

Not 
scalable as 
number of 
NOS 
determines 
how much 
attack it 
can handle 

Only known 
attacks are 
detected. 

Doesn’t provide 
detection approach 

Features used 
covers all 
devices and 
attacks and 
detects at very 
onset.  

11 Coverage Device level Device level Device level Device level Network level Network level 

12 Counter 
spoof 

No  No No No No No 

 

Table 5.9 Comparison to literature 

ID Factor [80] [81] [86] [87] [89] Our solution 

1 Features and 
flow direction 

IP 
address, 
interval 
between 
packets. 
2 way 

Packet 
sending rate, 
signal power. 
2 way 

Number of 
packet sent 
over a 
duration. 
2 way 

Source/destination 
IP & port. 
2 way 

 Protocol(for attack type 
indication),seq no,TCP 
flags 

2 Attacks 
covered 

Not 
mentione
d 

Hello 
flooding, 
version 
number 
modification 

TCPSYN TCPSYN,UDP TCP 
SYN,Sm
urf 

All DDoS flooding attacks 
and unfamiliar 

3 Problem 
solved 

Detectio
n 

Detection Detection Detection Detectio
n 

Detection & attack type 
indication 

4 Data source Private(Si
mulation) 

Private Private Private(simulated) 
and BOTIoT 

DARPA9
9 

Private(real network), 
IoT23,BOTIoT,BUETDDoS
2020 

5 Focus Not clear Attack, user 
centric 

Attack,user,de
vice centric 

Attack centric Attack 
centric 

Covers all 

6 Practicality Not 
feasible 
in diverse 
environm
ents as 
features 
used can 
raise 
false 
alarms 

Features used 
will raise FP 
in diverse 
environment 

Feature used 
will lead to FP. 

Not practical for 
large scale as 
system stops 
detecting when 
window gets too 
large. 

 Suitable for large scale 
and diverse networks. 
No false positive alarms. 

7 Performance 
metrics and 
rates 

No of 
whitelist
ed and 
black 
listed IP’s 
Accuracy:
99.1 

Not tested Rejected 
packets 

Detection 
rate,FP,mean,stan
dard deviation 
Detection rate: 
80%, 20%FPR 

Not 
used 

Packet attack started, 
detected,attack type 
indicated, Window 
attack started, and 
indicated 

8 Onset 
detection 

Not 
mentione
d 

Not 
mentioned 

Not mentioned Not mentioned  Detects and indicates 
attack type at onset 

9 Validation Not 
validated 

Not validated Not validated Validated Not 
validate
d 

Validated 

10 Approach Features 
used can 
lead to 
blocking 
legitimat
e IP’s 

Countermeas
ure can lead 
to blocking 
legitimate IP’s 

Not practical 
for diverse or 
large-scale 
environments. 

Attack starting at 
the beginning of a 
window or end of 
a previous window 
is not detected 

 Features used covers all 
devices and attacks and 
detects at very onset.  
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11 Coverage Network 
level 

Network and 
device 

Device level Network  Network level 

12 Counter 
spoof 

No No No No No Yes 

 

Several new findings have surfaced from this chapter. These include: 

➢ The use of absent features as a basis for attack detection including unfamiliar attacks. We 

have seen how absence of TCP flags and Sequence numbers gives a strong base for attack 

detection as well as encryption protocols in heavily encrypted networks. As these are 

predominant and frequent in normal traffic, their absence creates a deviating pattern. 

➢ The use of feature range as a basis for attack detection including unfamiliar attacks. We have 

seen how the sequence number range can be used to determine the very onset of attack 

traffic. Sequence numbers in normal traffic tend to be incremental and very dynamic while 

they get stalled at 0 or 1 during an attack. 

➢ The use of highest protocol count to indicate the attack type of both known and unfamiliar 

attacks. We have seen how effective using the predominant protocol from attack labelled 

packets lead to straightforward and accurate attack type indication, more interestingly for 

unfamiliar attacks. This provides timely information as to the protocol exploited during the 

attack which in turn can be used to decide what countermeasure to take. 

➢ Presentation of more relevant metrics in terms of evaluating the performance of a DDoS 

detection and classification system. We have seen how the performance metrics used in the 

testing phase of this chapter has provided more relevant and precise details as opposed to 

the conventional means of using confusion matrices and other statistics that don’t point out 

how early a proposed system is able to detect attacks. 

5.6 Summary 
This chapter has implemented and tested a hybrid anomaly and feature-based DDoS detection and 

attack type indication algorithm. This is based on general smart home traffic properties and attack 

signatures derived from the EDA in the previous chapter. The system has been tested on private attack 

and normal data and on public data including unfamiliar attacks. Rigorous testing has been carried out 

and the system performed well. The system has also proven the effectiveness and importance of using 

feature absence as a basis for attack detection. Performance metrics for DDoS detection and 

classification systems has also been presented which have proven to be more effective and relevant 

in terms of providing precise and accurate performance details as opposed to the traditional confusion 

matrix and other statistics that don’t say if a system can spot an attack at the very onset. 
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Chapter 6 

A Novel Hybrid Machine Learning Attack Type identification model 

using Domain Knowledge  

6.1 Introduction 
The previous chapter implemented a hybrid anomaly and feature-based DDoS detection and attack 

type identification system using a set of properties derived from the EDA. This chapter aims to apply 

the approach used in the previous chapter for attack type identification using a Supervised Machine 

Learning model. The network features used in detection as well as the highest protocol count attack 

type indication approach will be integrated into the ML model with the aim of achieving better 

performance in terms of attack type indication. Random Forest is the chosen model due to its 

promising performance after testing and comparing it to other ensemble models. It has also shown 

promising results on smart home traffic from literature [97] [98] [99] [100]. First, the model is trained 

and tested to see its performance in attack type indication. It is then coupled with the indication 

approach used in the previous chapter to compare which model (RF OR hybrid RF) performs better at 

attack type indication. This is trained and tested on 3 flooding attacks (TCP SYN, UDP, ICMP). The 

performance of the system is evaluated, and improvements are made to the classification algorithm 

after which it is further tested on unfamiliar flooding attacks (HTTP, Slow LOIC, RECOIL) and a mixture 

of all the attacks (TCP SYN, UDP, ICMP, HTTP, RECOIL, slow LOIC). It is also validated using public attack 

and benign data to eliminate biases and verify that it is not user, attack nor device centric. Finally, the 

trained and tested hybrid Random Forest detection and attack type identification model (Hybrid RF) 

is compared to other state of the art supervised DDoS attack type classification models like CNN [28] 

Gradient Boosting [133] and Ada Boost [136]. This chapter covers and achieves the following points: 

• A novel detection supervised learning model capitalizing on feature absence is presented. This 

is tested on both private and public data including unfamiliar attacks. 

• The supervised learning detection model is coupled with an algorithm-based attack type 

indication approach based on domain knowledge for more accurate attack type indication. 

This is also evaluated using both private and public data including unfamiliar attacks. 

The remaining sections in this chapter cover methodology used, how the proposed hybrid detection 

model works, an implementation of the model, its performance and results achieved, a comparison 

of the systems performance to literature, new findings, and finally a summary of the chapter. 
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6.2 Methodology 
The various processes and sub-processes followed to achieve a successful implementation of the 

proposed hybrid detection and attack type indication model is broken down in this section as shown 

in figure 6.1.  

 

Figure 6.1 Methodology 

This methodology consists of 8 main phases which are choosing model, coding, model training, model 

testing, tuning, validation, performance comparison and comparison to literature. The methodology 

is designed to be smooth and seamless in terms of transitioning from one phase to the next. It is 

manageable due to its segregated phases with having to complete one phase before moving onto the 

next as the results from the previous phase are used to commence working on the next phase. The 

model accommodates observations from the testing phase which will be used in tuning the system for 

better performance at the validation stage. Validation data includes unfamiliar attacks, mixed attacks, 

and public data for elimination of biases in terms of data source used and prove that the hybrid model 

is not user, device, nor attack centric, which works on zero day and mixed attacks which this 

methodology accommodates. A concise way to measure the systems performance in relation to how 

early and accurate the attack is detected and classified is also presented using more relevant metrics 

and factors. The methodology also lays out a comparison of the systems performance to other state 

of the art solutions based on several clear and critical factors. The factors based on which the systems 

performance is measured tends to be clearer and more scientifically sound which makes this 
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methodology stand out when compared with state-of-the-art methods. The various phases and what 

they entail are as follows: 

✓ Choose model: This phase involves reviewing literature to find the most suitable model 

(supervised ML model) in terms of attack detection and classification using smart home 

network traffic. Other ensemble models will also be tested and compared with the most 

suitable model found from literature. 

✓ Coding: This phase involves importing the required python libraries to be used during training 

and testing. These libraries will provide pre-built functions which will simplify the algorithm 

scripting process. This means pre-existing, tested and working code will be used for some tasks 

as this will reduce errors and inconsistencies. Helper functions will also be created to have an 

organized and modular code. The created functions will also be reusable in other parts of the 

code, thus eliminating the need for repetitive code. Updates made where these functions are 

used will also reflect throughout thereby saving time and avoiding inconsistencies. 

✓ Model training: Several stages are involved in this phase to ensure an effective model is 

achieved at the end. It consists of data collection, data pre-processing, splitting the datasets, 

and finally training the model using the datasets. 

✓ Model testing: The performance of the trained models is evaluated here. The testing bit of 

the split dataset is used for evaluating the model’s performance. The models will be tested 

based on attack detection accuracy. Observations will be made at this stage which will be used 

in the tuning stage. At this stage the best performing model will be coupled with the attack 

type indication module and the performance will be compared when it is hybrid and on its 

own. 

✓ Tuning: This phase involves making improvements to the hybrid model based on its 

performance at the testing stage. Potential issues to look out for include trying different 

sliding windows and tuning the attack type indication algorithm. 

✓ Validation: This phase involves using additional public datasets consisting of mixed (attack 

and benign) and purely benign traffic. Private data will also be used including unfamiliar and 

mixed attacks. This will provide bias free performance details at the same time ensuring 

rigorous testing and validation. 

✓ Performance comparison: The performance of the chosen model in attack type classification 

will be compared to its performance when coupled with the domain knowledge-based attack 

type indication approach. The important factors are how accurate and early the attack type is 

detected and classified. 
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✓ Comparison to literature: The performance of the hybrid detection and attack type 

identification model will be compared to existing solutions. This will prove or disprove how 

important domain knowledge is when dealing with attack detection and attack type indication 

when designing machine learning models. 

6.3 Proposed hybrid Machine Learning detection and attack type identification model 
The proposed hybrid detection and attack type identification model has two main functions. First it 

detects the attack based on what it learned from the training data and secondly it indicates the attack 

type from attack labelled packets based on the most predominant protocol. Figure 6.2 shows the flow 

process involved. 

 

Figure 6.2 Hybrid model flow process 

 After loading the dataset, the required features are then extracted with the appropriate flow direction 

(destination IP address). The features used in the previous chapter for the hybrid anomaly and feature-

based solution are used here, including the absent features. These include protocol, packet length, 
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TCP flags and sequence numbers in addition to packet inter-arrival times. After the extraction, the 

chosen model predicts what the traffic is, based on its learning knowledge of what differentiates an 

attack from normal traffic. The traffic is then labelled as either the predicted attack type or normal. 

The labelled packets both attack and normal are then stacked in an output location. The protocol 

column of the attack type labelled packets is inspected and the protocol with the highest count is used 

as the attack type label for those packets. This is also stacked, and the process starts over. Stacking 

refers to placing a window of labelled packet on top of the previously labelled ones. 

6.4 Implementation 
This section delves into the series of steps and processes carried out in selecting the best model which 

will be used in the implementation of the hybrid detection and attack type identification model. 

Several models were tested to get the best performing model. 

6.4.1 Coding 
As mentioned earlier several libraries were imported in Google Colab to start with. These include: 

• Pandas [130]: This is for data manipulation. It makes provision for structures like DataFrame 

which helps in analysing and cleaning organized data. 

• NumPy [130]: This is for mathematical operations like matrix operations and handling of large 

data sources that require complex computations. 

• Matplotlib [130]: This is for data visualization as it provides plotting and presentation tools. 

• Seaborn [130]: This is for more complex visualizations. It is an extension of Matplotlib. 

• Pickle [130]: This is for serializing and deserializing objects so they can be saved and loaded at 

later times like models that have been already trained. 

• Re [130]: This allows for use of regular expressions to search and manipulate text output in 

the data. 

• Scikit-learn [130]: This is for model development and evaluation. 

The next step is the creation of helper functions. The created functions are: 

• read_multifiles: For reading in several data sources at a time. 

• make_modeling_data: For data pre-processing steps like feature extraction and scaling and 

splitting into training and testing. 

•  make_attack_model: For fitting pre-processed and split data into Random Forest model for 

training and testing. 

• attack_detector: For unseen data source attack type classification. 

• extract_flow_metrics: For extracting flow features from each window. 

• get_tcp_flag: For extraction of TCP flags from the info column. 
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6.4.2 Model Selection 
The following ensemble models are trained and tested to find out the best performing one in terms 

of attack detection: 

• Random Forest (RF) [131]: This is an ensemble learning method used in regression and 

classification. It combines several decision trees at the training stage and takes the mode as 

output for classification tasks while using the mean for regression tasks.  

• Support Vector Machines (SVM) [132]: This is another supervised machine learning algorithm 

that does classification and regression. It works by finding a hyperplane which differentiates 

the data points there by assigning them to their respective classes. 

• Gradient Boosting [133]: This is another ensemble model that is used for classification and 

regression tasks. By combining predictions from multiple weaker models, it builds its own 

strong prediction model. 

• Ensemble by voting [134]: This is another ensemble model that uses several machine learning 

models that have been trained independently and using their combined predictions to arrive 

at a final prediction. In classification scenarios a majority vote is used for final prediction while 

the average is used for regression cases. 

• Stacked generalization [135]: This is another ensemble learning technique that uses 

predictions from several other base models by using a meta model. It combines the strengths 

of different models thus improving the overall performance. 

• Ada boost classifier [136]: This is another ensemble model used for classification tasks. It 

combines weak classifiers and improves an overall accuracy by merging their respective 

predictions. 

These models were trained and tested using the “make attack model function” as shown in figure 6.3. 

The private datasets from table 6.1 are used in training the models. Figure 6.4 shows the performance 

of these models compared. We can see that Random Forest scored highest in terms of Balance 

accuracy and F1 score. It is also the second fastest in terms of training time after Gradient Boosting. 

This makes Random Forest the selected model that will be coupled with the attack type identification 

module from the algorithm in chapter 5. 
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Table 6.1 Datasets 

ID Label Source IP Target IP  Public/Private Known/U

nknown 

 Count Composition 

1 TCPSYN01.csv 192.168.0.103 192.168.0.102 Private Known 5 Attack+benign 

2 UDP01.csv 192.168.0.103 192.168.0.102 Private Known 5 Attack+benign 

3 ICMP01.csv 192.168.0.103 192.168.0.102 Private Known 5 Attack+benign 

4 HTTP01.csv 192.168.0.103 192.168.0.102 Private Unknown 3 Attack+benign 

5 SLOWLOIC01.csv 192.168.0.103 192.168.0.102 Private Unknown 2 Attack+benign 

6 RECOIL01.csv 192.168.0.103 192.168.0.102 Private Unknown 1 Attack+benign 

7 Mixed01.csv 192.168.0.103 192.168.0.102 Private Unknown 3 Attack+benign 

8 Normal01.csv  192.168.0.101 Private  1 Benign 

9 TCPSYN001.csv 192.168.100.147-

150 

192.168.100.3 Public Known 1 Attack+benign 

10 UDP001.csv 192.168.100.147-

150 

192.168.100.3 Public Known 1 Attack+benign 

14 Normal001.csv  192.168.1.158 Public  5 Benign 

 

 

Figure 3.3 Trained models 

 

Figure 6.4 Comparing model performance 
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6.4.3 Chosen Model 
Random Forest was selected based on its performance among the tested models in section 6.4.2 and 

from reviewed literature. It was found to perform well on DDoS detection and classification using 

smart home traffic. It is an ensemble learning method comprising of several decision trees and 

collectively harnessing their prediction capabilities. This gives it a robust nature paving way for more 

accurate results. Studies have shown the Random Forest model to have performed well in DDoS attack 

detection in smart home networks and IoT in general [97] [98] [99] [100]. This is retrained using the 

same private datasets from table 6.1. 

The stages involved in this phase are as follows: 

• Create training data: The read_multiplefiles function is used to load in the numerous datasets 

to train the model. Background noises are filtered out. For the benign dataset the smart hubs 

IP address is used as destination address filter. This will leave only data flowing to the smart 

home device. For the attack dataset, the attack IP is used as source and smart home device IP 

as destination. This way only traffic flowing from the attack source to the smart device is left.  

The flow metrics are extracted next using the extract_flow_metrics function. Null values are 

replaced with empty strings. The considered features are then extracted which are TCP flags, 

protocol, packet interarrival time, time interval between first and last packet in a flow, packet 

length and sequence numbers. The window is set to 10 packets and after these flow metrics 

are extracted, the window slides by 2 packets to continue extraction until it exhausts the 

entire dataset. The flow data is then created which will be used in the training phase. Figure 

6.5 shows the output of the created flow data. The rest of the columns carry the dataset label 

and protocol counts. 

 

Figure 6.5 Flow data output 
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• Train model: This phase involves scaling the feature variables using the standard scaler from 

scikit-learn, splitting the data using train_test_split function, training the Random Forest 

classifier, testing, and saving the model for future use. Figure 6.6 shows the code responsible 

for these steps. 

 

Figure 6.6 Model training 

• Prediction: This phase involves filtering out the background noise, extract features from a 

rolling chunk of the data, and predict if that chuck is an attack or not. Once an attack is 

detected, the packet number of the start and end of the chunk is returned together with the 

attack type. Figure 6.7 shows the code responsible for background noise filter and feature 

extraction while figure 6.8 shows the code handling attack prediction, labelling and attack 

type indication using the highest protocol count (mode function) among the attack labelled 

packets. The output shows what the Random Forest model predicted as attack type and what 

the secondary classifier using the protocol mode predicts. 

• Evaluation: The trained Random Forest model is evaluated using confusion matrix. This shows 

the precision, recall and f1score. This is shown in figure 6.9. Looking at the confusion matrix 

in all scenarios the model correctly predicted all the attacks as attack. It also correctly 

identified all the normal data as normal. So, in terms of binary classification, it works well. 

However, it misclassified some of the attacks like where it identified 23 UDP attacks as ICMP. 

I202 ICMP as TCPSYN. This is where the strength of the Hybrid model will come in as it will 

help the RF classify the attack type correctly. 
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Figure 6.7 Filtration and feature extraction 

 

Figure 6.8 Prediction and labelling 

 

Figure 6.9 Random Forest confusion matrix 
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6.4.4 Model testing 
This phase involves testing the trained model on the test partition of the initially split dataset. This 

data is unseen by the model and comprises of unfamiliar attacks and mixed attacks. Table 6.2 shows 

the testing results achieved from both the Random Forest classifier and the Hybrid Random Forest 

model. 

Table 6.2 Testing results 

ID Dataset Attack 

present? 

Attack 

detected

? 

Attack 

classified 

by RF 

Attack 

classified by 

hybrid RF 

Pkt no attack 

started 

Window range attack detected 

1 HTTP01.csv Yes Yes TCPSYN TCP 47 48-63 

2 HTTP02.csv Yes Yes UDP TCP 124 122-134 

3 HTTP03.csv Yes Yes TCPSYN TCP 189 189-198 

4 SLOWLOIC01.

csv 

Yes Yes TCPSYN TCP 209 209-228 

5 SLOWLOIC02.

csv 

Yes Yes UDP TCP 312 309-322 

6 RECOIL01.csv Yes Yes TCPSYN TCP 192 211-232 

7 UDP04.csv Yes Yes UDP UDP 202 179-206 

8 UDP05.csv Yes Yes UDP UDP 297 278-305 

9 TCPSYN02.csv Yes Yes TCPSYN TCP 272 272-293 

10 TCPSYN03.csv Yes Yes ICMP TCP 38 38-53 

11 Mixed001.csv Yes Yes UDP TCP 283 265-324 

12 Mixed002.csv Yes Yes ICMP ICMP 120 72-130 

13 Mixed003.csv Yes Yes UDP TCP 204 197-237 

14 ICMP01.csv Yes Yes ICMP ICMP 598 581-610 

 ICMP05.csv Yes Yes ICMP ICMP 293 281-299 

14 Normal001.cs

v 

No No No Null Null Null 

 

From table 6.2 we can see that the hybrid Random Forest model has outperformed the Random Forest 

model in terms of attack type classification. The hybrid RF has classified all attack types correctly with 

no false positives. However, the Random Forest on its own classified the attacks wrong in 4 instances 

which have been highlighted in red. For the mixed attacks, the Hybrid RF takes the first attack protocol 

that appears in the mixed attack traffic as it is the predominant one at that point. The hybrid RF has 

classified even the unfamiliar attacks with high accuracy. On the other hand, the Random Forest was 

able to detect all attacks at the very onset as seen from the table. It detects at the very first window 

and sometimes at the very first packet too. This shows its excellent performance in detection. This 

proves that a hybrid model is strong in terms of covering the detection and classification aspects as 

each has where its strength lies. Figure 6.10 shows the raw result output. 
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Figure 6.10 Raw result output 

6.4.5 Tuning 
No tuning was carried out as the intended result was achieved. The Random Forest proved strong in 

detection while the hybrid Random Forest proved even stronger in classification. This dropped the 

need for tuning as there was no observation of concern. 

6.4.6 Validation 
This phase tests the Random Forest and the hybrid Random Forest on Public data to eliminate biases 

and prove that the solution is not user, device or attack centric. Table 6.3 presents the results. 

Table 6.3 Validation results 

ID Dataset Attack 

present? 

Attack 

detected

? 

Attack 

classified 

by RF 

Attack 

classified by 

hybrid RF 

Pkt no attack 

started 

Window range attack detected 

1 Normal002.cs

v 

No No No No None None 

2 Normal002.cs

v 

No No No No None None 
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3 Normal002.cs

v 

No No No No None None 

4 Normal002.cs

v 

No No No No None None 

5 SLOWLOIC02.

csv 

No No No No None None 

6 Normal002.cs

v 

No No No No None None 

7 Normal002.cs

v 

No Yes ICMP ICMP None 1-10 

8 UDP005.csv Yes Yes UDP UDP 11462 11463-11472 

9 TCPSYN001.c

sv 

Yes Yes ICMP TCP 11549 11550-11559 

 

The validation results from table 6.3 also show similar performance to the preceding test results. The 

hybrid Random Forest has outperformed the Random Forest in attack type classification. We can see 

that the Random Forest misclassified the TCPSYN attack as ICMP while the hybrid Random Forest 

classified it correctly as TCP. Nevertheless, the Random Forest showed excellent performance in attack 

detection at onset. There is a case of false positive highlighted in red. The same False Positive alarm 

was experienced on the same Normal dataset in the section 5.4.5 of chapter 5. This is due to the same 

reason as explained in the Final testing section (5.4.5) of chapter 5. The device in question was newly 

deployed and was establishing connection with its surroundings thereby sending and receiving pings 

which got mistook as ICMP attack. This tends to be a limitation in the system as accommodation for 

new devices has not been catered for. Nevertheless, this proves the hybrid Random Forest model to 

be effective regardless of the environment it is tested in as it has done well on public data as well as 

private. 

6.5 Comparison to literature and new findings 
Several literature sources have been consulted for performance comparison. However, this turned 

out to be difficult due to the nature of the Proposed hybrid RF model. These reasons are as follows: 

• Most existing Supervised ML solutions applied in the smart home network domain in DDoS 

detection [96] [97] [98] [99] are purely ML based and so this cannot be fairly compared with 

the proposed hybrid based Random Forest model.  

• The existing hybrid models [103] [105] tend to combine supervised and unsupervised Machine 

learning techniques as opposed to this proposed hybrid model that combines Supervised ML 

model and domain knowledge-based classifier. 

• The method of performance assessment in existing works [92] [93] [94] [95] [96] is different 

from the one used for the proposed approach. This is because the proposed approach is more 
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concerned with attack detection and attack type identification at the very onset and 

maintaining accuracy while existing works assess performance based on how many times their 

system detected correctly without looking into how early it detects.  

• Some existing works tend to carry out general attack type classification, like categorizing DDoS, 

MITM, and replay attacks [104] [107]. On the other hand, this work is concerned with DDoS 

attack type classification and no other attacks outside its scope.  

Due to the above-mentioned reasons a fair and straight forward comparison was not achieved. 

Nevertheless, the proposed hybrid RF model stands out in several aspects as follows: 

• It can detect and classify unfamiliar attacks which existing models have not been able to. 

• It covers a wider range of DDoS flooding attacks in terms of detection and classification as 

opposed to existing models that cover about 3-4 at a time as seen from chapter 2. 

• It has proven to detect and identify attack types at the very onset using the right metrics. 

• It has no False Positive alarms which is the first of its kind among existing works. 

• It uses metrics that point out how early and accurate it can detect and classify as opposed to 

existing works that give other statistics which don’t say much with regards to onset detection 

and classification. 

• It capitalizes on using absent or missing values as detection features as opposed to some 

existing solutions that drop or replace missing values with the most common surrounding 

value. A common practice in ML pre-processing is to drop or replace absent values. 

Table 6.4 compares this hybrid RF with some works from literature. 

Works Model and accuracy 

[96] RF (85.9) Ada Boost (86.6) DT 

(83.8) 

[97] RF (99.68) DT (99.68) GB 

(99.59) 

[99] RF (98) 

[102] LSTM (98.9) CNN (99.9) 

This work RF (99) 

 

6.6 Summary 
This chapter has trained and tested the performance of two models when it comes to attack detection 

and attack type indication. A Random Forest model and a hybrid Random Forest model using domain 

knowledge for attack type indication were compared. The Hybrid version outperformed the 
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independent Random Forest model in attack type indication. However, the independent Random 

Forest has proven to perform excellent with high accuracy in attack detection at the very onset. On 

the other hand, the hybrid model had the same accuracy in attack type indication. This has given rise 

to a more robust version due to the application of domain knowledge as each has where its strength 

lies. This proposed hybrid model has also proven to work perfectly on unfamiliar attacks and has been 

validated using public data achieving 99 % accuracy. 
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Chapter 7 

Research Contributions 

7.1 Overall contributions 
The respective contributions made by this research are presented here. These contributions will be 

linked to the various research questions raised at the beginning of this work. The respective gaps 

bridged will be discussed and the strategy applied that resulted in each of the systems benefits will be 

outlined. 

✓ Contribution 1: In the event of studying the smart home network behaviour and traffic 

patterns, unique traffic patterns attributed to each mode of device control was discovered. 

This discovery is new with regards to deriving a unique signature for each method or mode 

used to control the smart devices. The explored modes include manually operating the devices, 

automated/ scheduled, using Hive app, using Home kit app and using Google home app. The 

protocol and packet length sequence of each mode of control was found to be unique and 

uniform regardless of the platform (iPhone, iPad, Samsung smart phone) used to control it. 

These new findings can be used in forensic investigations to prove how someone controlled a 

particular device or devices and whether they were present at the scene during some specified 

times. For instance, if the evidence shows proof of manual mode of operation, then this ties 

one to physically being at the premises. Furthermore, as each operation mode has a unique 

traffic pattern (section 3.5.4 and 3.5.5), these patterns could be whitelisted on the smart 

home network to detect certain attacks relating to unauthorized control of device which might 

have a deviating pattern from the whitelisted ones. This contribution does not answer any of 

the research questions raised in chapter 1 as it was an unplanned discovery. Table 7.1 shows 

how the contribution was achieved. This contribution is addressed in chapter 3 section 3.5.4 

and 3.5.5 

ID Discovery How it was achieved 

1 Distinct mode of operation for devices Distinct protocol & packet length sequence (3.5.5) 

2 Distinct mode of operation for devices Distinct flow volume & duration (3.5.4) 

Table 7.1 How contribution 1 was achieved 

✓ Contribution 2: Normal smart home traffic pattern in comparison to when DDoS flooding 

attacks infiltrate the network are visualized using Exploratory Data Analysis in section 4.4 of 

chapter 4. This visualization is new as it clearly visualizes the benign and attack patterns based 

on smart home network features that get simultaneously affected during an attack. The 

visualized network features can be incorporated into data visualisation tools and Intrusion 

Detection Systems. This will provide clearer low-level statistics as to how the network is 
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deviating from its normal pattern during an attack. Table 7.2 presents how this contribution 

was achieved. This contribution covers RQ1, RQ2 AND RQ3.This is addressed in chapter 4 

(section 4.4). 

ID Discovery How it was achieved 

1 Attack traffic pattern EDA on protocol, packet length, sequence numbers, TCP flags (section 4.4) 

2 Benign traffic pattern EDA on protocol, packet length, sequence numbers, TCP flags (section 4.4) 

Table 7.2 How contribution 2 was achieved 

✓ Contribution 3: A new approach to DDoS attack detection has been presented. The approach 

uses feature absence and feature range in attack detection from the very onset. Some 

prominent network features (Sequence numbers and TCP flags) were found to be absent for 

the duration of certain attacks. The narrative needs to be changed from only focusing on 

present network feature statistics to detect attacks, rather features that are normally present 

but tend to be absent for a prolonged period also contribute to rapid attack detection as seen 

in this research. In addition to that, the sequence number range in normal traffic tends to be 

very wide, starting with a 0 or 1 at the beginning of a session and keeps incrementing to very 

high values. However, during an attack, the sequence numbers were found to stall at 0 or 1 

all through. This new finding led to contribution 4. Table 7.3 shows how this contribution was 

achieved. This covers RQ3. This is addressed in chapter 4 (section 4.5). 

ID Discovery How it was achieved 

1 Proposed detection approach Feature variance, absence, and range (Section 4.5) 

Table 7.3 How contribution 3 was achieved 

✓ Contribution 4: A hybrid anomaly and feature-based DDoS detection and attack type 

indication algorithm has been implemented and tested. This algorithm is based on the findings 

in contribution 3. After a grouped series of packets are flagged and labelled as attack, the 

protocol with the highest count among those flagged packets is used as the attack type 

indication label for each of the attack labelled packets. Both detection and attack type 

indication modules of the system performed excellently while always detecting and indicating 

the attack type at the very onset. In addition to that the solution is light weight, practical, 

centralized, and counter spoof that is not user, attack nor device centric covering unfamiliar 

and mixed attacks. Table 7.4 shows how this contribution was achieved. This covers RQ4, RQ5, 

RQ6. This is addressed in chapter 5. 

ID Discovery How it was achieved 

1 Light weight 2 features (sequence number & TCP flags), one way traffic monitoring 

2 Not user, device or attack centric Using smart home general characteristics and general attack signatures 

3 Network level coverage Monitoring at gateway (router) 
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4 Unfamiliar attacks General DDoS attack signatures used 

5 Onset detection Setting detection threshold to 10 consecutive packets 

6 Covers all DDoS attacks General DDoS attack signatures used 

7 Counter spoof Avoided using spoof prone features like IP address and port numbers 

8 Practical No training needed, no single packet inspection,  

9 Not biased Validated using public data 

10 Reliable Tested using relevant metrics 

11 Accurate attack type indication Using highest protocol count among attack labelled packets 

Table 7.4 How contribution 4 was achieved 

✓ Contribution 5: A hybrid Machine learning detection and attack type indication model is 

developed. The Random Forest model is trained based on the same network features used in 

contribution 4. The model was able to accurately detect the attack at the very onset and to 

some extent classify the attack type. However, the novel attack type indication approach used 

in contribution 4 which is based on highest protocol count among the attack labelled packets 

was applied to the RF model. After the RF model detects the attack, the indication module 

applies the highest protocol count check and labels the attack type using that. This hybrid 

model outperformed the RF’s ability to classify the attack type correctly including unfamiliar 

attacks. In all the testing and validation cases, the hybrid model performed better in indicating 

the attack type while the RF model on its own misclassified the attack type a couple of times. 

This proves that the hybrid model is more effective in terms of attack type indication. Table 

7.5 shows how this contribution was achieved. This covers RQ7. This is addressed in chapter 

6. 

ID Discovery How it was achieved 

1 Light weight 4 features (seq no, TCP flags, protocol, packet length),1 way traffic monitoring 

2 Not user, device or attack centric Using smart home general characteristics and general attack signatures 

3 Network level coverage Monitoring at gateway (router) 

4 Unfamiliar attacks Used features that are highly affected during attack. (Domain knowledge) 

5 Onset detection Feature choice (domain knowledge), sliding window by 2 packets, RF model 

6 Covers all DDoS attacks Used features that are highly affected during attack. (Domain knowledge) 

7 Counter spoof Avoided using spoof prone features like IP address and port numbers 

8 High accuracy in detection and attack type 

indication 

Hybrid model and domain knowledge 

9 Not biased Validated using public data 

10 Reliable Tested using relevant metrics 

11 Accurate attack type indication Highest protocol count among attack labelled packets (domain knowledge) 

Table 7.5 How contribution 5 was achieved 

✓ Contribution 6: A new approach to assessing the performance of a DDoS attack detection and 

attack type indication system is presented. This new approach is proven to be more relevant 

in terms of precisely measuring the system’s ability to detect and classify attacks at the very 
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onset and how accurate the prediction is. Currently the conventional method is the use of 

confusion matrix and other statistics. However, confusion matrix does not specify how early 

the attack is detected or classified rather it gives statistics on how much the solution was able 

to predict right. This proposed approach is used in this research and has proven to provide 

more relevant performance details. The metrics used to gauge the performance of the 

detection and attack type indication system on each data source in this new approach are: Is 

attack present, type of attack present, is attack detected, packet number attack started, 

packet number attack detected, packet number attack classified, attack type classified, 

window attack started, window attack detected. Table 7.6 shows how this contribution was 

achieved. This covers RQ8. This is addressed in chapter 5 section 5.4.3 and 6 section 6.4.5. 

ID Discovery How it was achieved 

1 Onset attack detection Packet no attack started, packet no attack detected 

2 Onset attack type indication Packet no attack started, packet no attack type indicated 

3 Accurate attack indicated Attack type present, Attack type indicated 

Table 7.6 How contribution 6 was achieved 

7.4 Summary 
This chapter has laid out the various contributions made by this research and linked them to the 

respective research questions they address. Furthermore, it has identified the various approaches 

used to achieve the gaps bridged by the contributions. 
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Chapter 8 

Conclusion 

8.1 Introduction 
This research has shown how effective data visualization is in terms of studying and identifying attack 

patterns. By employing this method via EDA, smart home traffic properties that get highly affected 

during DDoS attacks have been identified. This was used to produce a robust, light weight detection 

and attack type indication solution that is not user, attack, or device centric. The implemented and 

tested system has achieved excellent results even on unfamiliar attacks which have proven to be 

difficult to tackle by existing solutions. This is due to using generalized smart home traffic properties 

and generalized attack signatures which gave rise to a hybrid anomaly and feature-based detection 

and attack type indication system. 

The relevance of using feature absence cannot be underestimated as this has been discovered to 

highly contribute to attack detection at the very onset. The same goes for feature range. The narrative 

needs to be changed from only focusing on present network feature statistics to detect attacks, rather 

features that are normally present but tend to be absent for a prolonged period also contribute to 

rapid attack detection as seen in this research. 

This research has also proven how powerful some network features are, on their own in terms of 

attack detection. On the other hand, we have also seen how some conventionally used features by 

existing works lead to high false positive rate. This brings us back to the importance of data 

visualization to understand traffic patterns.  

A hybrid Supervised Machine Learning model has also been developed that has performed excellently 

well with no false positive rates, which is rare among exiting solutions. Furthermore, it can detect and 

classify unfamiliar attacks from the very onset which says a lot about its robustness. This is due to its 

hybrid nature of using a Supervised ML model coupled with a domain knowledge-based attack type 

indicator. In addition to that the features used in training the model were selected purposely due to 

the prospects they showed right from the EDA phase. From this, we can see how relevant the 

application of domain knowledge is when designing Machine Learning models for attack detection. 

 A more effective method of assessing the performance of DDoS attack detection systems has also 

been presented which tends to give more useful details in terms of a system’s ability to detect and 

classify attacks at the very onset accurately. This should change the narrative from using conventional 

methods like confusion matrices and other statistics in terms of performance assessment as they do 

not provide relevant information as to how early and accurate the system was able to detect or classify 
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an attack which is very crucial in the field of DDoS attacks. The effect is what you want to mitigate as 

early as possible not how much the attack is guessed right down the line when much of the damage 

has been done. This proposed method of assessment will help give birth to more reliable and robust 

solutions.  

8.2 Areas of improvement and future work 
The hybrid signature and anomaly-based system has some limitations, which will be part of the future 

work for improvement. The system is not able to detect or classify low stealth attacks as it mainly 

capitalizes on the static nature of most DDoS attack traffic, which low stealth attacks deviate from. 

Future work is looking at using the EDA technique to study the attack pattern of these low stealth 

attacks better and come up with a way to integrate a detection mechanism for them in the current 

system. 

The system also uses an attack threshold of 10 packets to determine an attack pattern. If this threshold 

is not reached the attack will be missed. However, this highly unlikely as the nature of DDoS flooding 

attacks is too overwhelming for it to be missed due to this fixed threshold. 

The visualised EDA images can be trained on a convolutional Neural Network (CNN) using ResNet. 

More so, attack type binary classification can be further carried out based on the predominant 

protocol derived from the statistics. It is well known that deep learning models especially CNN 

achieved high significance due to their outstanding performance in the image processing field. The 

potential of CNN can be used to detect DDoS attacks by converting the network traffic data into images. 

This an area of interest for future work. 

 

 

 
 

 

 

 

 

 

 

 



 
 

144 
 

Bibliography 
[1] K. Kostas, M. Just and M. A. Lones, "IoTDevID: A Behaviour-Based Fingerprinting Method for Device 

Identification in the IoT," arXiv Preprint arXiv: 2102.08866, 2021. 

[2] S. Notra, M. Siddiqi, H. H. Gharakheili, V. Sivaraman and R. Boreli, "An experimental study of security and 

privacy risks with emerging household appliances," in 2014 IEEE Conference on Communications and 

Network Security, pp. 79-84, 2014. 

[3] F. Loi, A. Sivanathan, H. H. Gharakheili, A. Radford and V. Sivaraman, "Systematically evaluating security and 

privacy for consumer IoT devices," in Proceedings of the 2017 Workshop on Internet of Things Security and 

Privacy, pp. 1-6, 2017.  

[4] L. Andrea, C. Chrysostomou and G. Hadjichristofi, "Internet of things: Security vulnerabilities and 

challenges," in 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 180-187, 2015 

[5] K. Moskvitch, "Securing IoT: In your smart home and your connected enterprise," Engineering & Technology, 

12(3), pp. 40-42, 2017.  

[6] N. Dhanjani, "Abusing the Internet of Things: Blackouts, Freakouts, and Stakeouts. " O'Reilly Media, Inc.", 

2015. 

[7] J. Fernandes and A. Prakash, "Security analysis of emerging smart home applications," in 2016 IEEE 

Symposium on Security and Privacy (SP), pp. 636-654, 2016  

[8] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac and P. Faruki, "Network intrusion detection for IoT 

security based on learning techniques," IEEE Communications Surveys & Tutorials, 21(3), pp. 2671-2701, 

2019. 

[9] F. Hussain, R. Hussain, S. A. Hassan and E. Hossain, "Machine learning in IoT security: Current solutions and 

future challenges," IEEE Communications Surveys & Tutorials, 22(3), pp. 1686-1721, 2020.  

[10] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray and I. Ray, "Behavioral fingerprinting of iot devices," 

in Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security, pp. 41-50, 2018. 

[11] O. Kupreev, E. Badovskaya, A. Gutnikov, “DDoS attacks in Q1 2020”, Kaspersky DDoS reports, 2020 

[Online]. https://securelist.com/ddos-attacks-in-q1-2020/96837/ [Accessed: 01- Jan- 2022]. 

[12] K. Brush, E. Burns, “Data Visualization”, Techtarget Business Analytics, 2022 [Online]. 

https://www.techtarget.com/searchbusinessanalytics/definition/data-visualization [Accessed 03-Nov-

2023]. 

[13] H. Huang, J. Chu and X. Cheng, “Trend analysis and countermeasure research of DDoS attack under 5G 

network”, In 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP), pp. 153-

160, 2021. 

[14] C. Wu, S. Sheng and X. Dong, “Research on visualization systems for DDoS attack detection”, In 2018 IEEE 

International Conference on Systems, Man, and Cybernetics (SMC), pp. 2986-2991, 2018. 

https://securelist.com/ddos-attacks-in-q1-2020/96837/
https://www.techtarget.com/searchbusinessanalytics/definition/data-visualization


 
 

145 
 

[15]  M. Cinque, D. Cotroneo, and A. Pecchia, “Challenges and Directions in Security Information and Event 

Management (SIEM),” In 2018 IEEE International Symposium on Software Reliability Engineering Workshops 

(ISSREW), Memphis, USA, pp. 95–99, 2018. 

[16] J. Miranda-Calle, V. Reddy, P. Dhawan and P. Churi, “Exploratory data analysis for cybersecurity”. World 

Journal of Engineering, 2021. 

[17] E. Anthi, L. Williams, M. Słowińska, G. Theodorakopoulos and P. Burnap, “A supervised intrusion detection 

system for smart home IoT devices” IEEE Internet of Things Journal, 6(5), pp.9042-9053, 2019. 

[18] Q. Niyaz, W. Sun and A. Javaid, “A deep learning based DDoS detection system in software-defined 

networking (SDN)”. arXiv preprint arXiv:1611.07400, 2016. 

[19] M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda and Y. Kato, “Anomaly detection in smart home operation from 

user behaviors and home conditions” IEEE Transactions on Consumer Electronics, 66(2), pp.183-192, 2020. 

[20] J. Wang, S. Hao, R. Wen, B. Zhang, L. Zhang, H. Hu and R. Lu, "IoT-praetor: Undesired behaviors detection 

for IoT devices," IEEE Internet of Things Journal, vol. 8, no. 2, pp. 927-940, Feb. 2021. 

[21] Y. Mon, M. Soe, C. Su, T. Tun and M. Mie, “IoT Security: “Simulation and Analysis of TCP SYN Flooded DDOS 

Attack using WireShark”, Transactions on Networks and Communications, 8(3), 2020. 

[22] R. Vinayakumar, M. Alazab, S. Srinivasan, Q. Pham, S. Padannayil and K. Simran, “A visualized botnet 

detection system based deep learning for the Internet of Things networks of smart cities”, IEEE Transactions 

on Industry Applications, 56(4), pp.4436-4456, 2020. 

[23] J. Bhayo, S. Hameed and S. Shah, “An efficient counter-based ddos attack detection framework leveraging 

software defined iot (sd-iot)”, IEEE Access, 8, pp. 221612-221631, 2020 

[24] Literature review and focusing the research. [Online].  https://www.sagepub.com/ sites/default/files/upm-

binaries/29986_Chapter3.pdf [Accessed: 10- Jan- 2022]. 

[25] T. Jebb, S. Parrigon, and E. Woo, “Exploratory data analysis as a foundation of inductive research”, Human 

Resource Management Review, Vol. 27 No. 2, available at: https://doi.org/10.1016/j.hrmr.2016.08.003, 

2017. 

[26] D. Miranda-Calle, V. Reddy, P. Dhawan and P. Churi, "Exploratory data analysis for cybersecurity", World 

Journal of Engineering, Vol. 18 No. 5, pp. 734-749. https://doi.org/10.1108/WJE-11-2020-0560, 2021. 

[27] J. Okesola, A. Ayodele, A. Owoade, O. Adeaga, A. Oluseyi, and I. Odun-Ayo. "Software requirement in 

iterative SDLC model." In Intelligent Algorithms in Software Engineering: Proceedings of the 9th Computer 

Science On-line Conference 2020, Volume 1 9, pp. 26-34. Springer International Publishing, 2020. 

[28] F. Hussain, S. Abbas, M. Husnain, U. Fayyaz, F. Shahzad and G. Shah, “IoT DoS and DDoS attack detection 

using ResNet”, In 2020 IEEE 23rd International Multitopic Conference (INMIC) (pp. 1-6). IEEE, 2020. 

[29] R. Khan, X. Zhang, R. Kumar and E. Aboagye, “Evaluating the performance of resnet model based on image 

recognition”, In Proceedings of the 2018 International Conference on Computing and Artificial 

Intelligence (pp. 86-90), 2018. 

https://doi.org/10.1016/j.hrmr.2016.08.003
https://www.emerald.com/insight/publication/issn/1708-5284
https://www.emerald.com/insight/publication/issn/1708-5284
https://doi.org/10.1108/WJE-11-2020-0560


 
 

146 
 

[30] A. Salih and A. Abdulazeez, “Evaluation of classification algorithms for intrusion detection system: A 

review”, Journal of Soft Computing and Data Mining, 2(1), pp.31-40, 2021. 

[31] Statista internet of things: The number of connected devices worldwide 2012-2025. [Online]. 

https://www.statista.com/statistics/471264/ iot-number-of-connected-devices-worldwide/. [Accessed: 25- 

June- 2022].  

[32] M.R. Alam, M. St-Hilaire, and T. Kunz, "Peer-to-peer energy trading among smart homes," Applied energy, 

vol. 238, pp. 1434-1443, 2019. 

[33] S.S. Gill, P. Garraghan, and R. Buyya, "ROUTER: Fog enabled cloud based intelligent resource management 

approach for smart home IoT devices," Journal of Systems and Software, vol. 154, pp. 125-138, 2019. 

[34] B. Alsinglawi, M. Elkhodr, Q.V. Nguyen, U. Gunawardana, A. Maeder, and S. Simoff, "RFID localisation for 

Internet of Things smart homes: a survey," arXiv preprint arXiv:1702.02311, 2017. 

[35] N. Balta-Ozkan, R. Davidson, M. Bicket, and L. Whitmarsh, "The development of smart homes market in the 

UK," Energy, vol. 60, pp. 361-372, 2013. 

[36] D. Marikyan, S. Papagiannidis, and E. Alamanos, "A systematic review of the smart home literature: A user 

perspective," Technological Forecasting and Social Change, vol. 138, pp. 139-154, 2019. 

[37] D. Geneiatakis, I. Kounelis, R. Neisse, I. Nai-Fovino, G. Steri, and G. Baldini, “Security and privacy issues for 

an iot based smart home,” in 2017 40th International Convention on Information and Communication 

Technology, Electronics and Microelectronics (MIPRO). IEEE, 2017, pp. 1292–1297 

[38] M. Bilal, "A review of internet of things architecture, technologies and analysis smartphone-based attacks 

against 3d printers," arXiv preprint arXiv:1708.04560, 2017. 

[39] M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, "Research on the architecture of internet of things," in 2010 

3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), vol. 5, pp. V5-484, 

IEEE, 2010. 

[40] F. Alghayadh and D. Debnath, "A hybrid intrusion detection system for smart home security," in 2020 IEEE 

International Conference on Electro Information Technology (EIT), pp. 319-323, IEEE, July 2020. 

[41] Z. K. Zhang, M. C. Y. Cho, C. Wang, C. Hsu, C. Chen, and S. Shieh, "IoT security: ongoing challenges and 

research opportunities," in 2014 IEEE 7th International Conference on Service-Oriented Computing and 

Applications, pp. 230-234, IEEE, 2014. 

[42] A. Acar, H. Fereidooni, T. Abera, A.K. Sikder, M. Miettinen, H. Aksu, M. Conti, A.R. Sadeghi, and S. Uluagac, 

"Peek-a-boo: I see your smart home activities, even encrypted!," in Proceedings of the 13th ACM 

Conference on Security and Privacy in Wireless and Mobile Networks, pp. 207-218, July 2020. 

[43] S. Sicari, A. Rizzardi, D. Miorandi, and A. Coen-Porisini, "Securing the smart home: A real case study," 

Internet Technology Letters, vol. 1, no. 3, pp. e22, 2018. 

[44] P. Pongle and G. Chavan, "Real time intrusion and wormhole attack detection in internet of things," 

International Journal of Computer Applications, vol. 121, no. 9, 2015. 



 
 

147 
 

[45] I. Andrea, C. Chrysostomou, and G. Hadjichristofi, "Internet of things: Security vulnerabilities and 

challenges," in Computers and Communication (ISCC), 2015 IEEE Symposium on, pp. 180-187, IEEE, 2015. 

[46] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, "Kalisaa system for knowledge-driven adaptable intrusion 

detection for the internet of things," in Distributed Computing Systems (ICDCS), 2017 IEEE 37th International 

Conference on, pp. 656-666, IEEE, 2017. 

[47] Web baby- monitoring cameras open to hacking. [Online] https://www.bbc.co.uk/news/technology-

34138480 [Accessed: 05- May- 2020]. 

[48] Santa hacker speaks to girl via Ring camera [Online] https://www.bbc.co.uk/news/technology-50760103 

[Accessed: 05- May- 2020]. 

[49] Mirai Botnet: Three admit creating and running attack tool [Online]  

https://www.bbc.co.uk/news/technology-42342221 [Accessed: 05- May- 2020]. 

[50] DDoS attack that disrupted internet was largest of its kind in history, experts say [Online] 
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet [Accessed : 01-
Nov-2023]. 

[51]  M. S. Al-Abri, A. Al-Badi, and A. Al-Badi, "A Review of Blockchain-Based DDoS Mitigation Solutions," in IEEE 

Access, vol. 9, pp. 107925-107942, 2021, doi: 10.1109/ACCESS.2021.3107645. 

[52] C. Douligeris, A. Mitrokotsa, DDoS attacks and defense mechanisms: A classification, in: Proceedings of the 

3rd IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2003, ISBN: 

0780382927, 2003, pp. 190–193. 

[53] P. Kumari, and A. Kumar: "A comprehensive study of DDoS attacks over IoT network and their 

countermeasures, Computers & Security p.103096, 2023. 

[54] D. Javaheri, S. Gorgin, J.A. Lee and M. Masdari, "Fuzzy Logic-Based DDoS Attacks and Network Traffic 

Anomaly Detection Methods: Classification, Overview, and Future Perspectives," Information Sciences, 

2023. 

[55] V. Bulavas, "Investigation of network intrusion detection using data visualization methods," 2018 59th 

International Scientific Conference on Information Technology and Management Science of Riga Technical 

University (ITMS), Riga, Latvia, 2018, pp. 1-6, doi: 10.1109/ITMS.2018.8552977. 

[56] S. Marchal, M. Miettinen, T. D. Nguyen, A. Sadeghi and N. Asokan, "Audi "Toward autonomous iot device-

type identification using periodic communication," IEEE J. Select. Areas Commun. , vol. 37, (6), pp. 1402-

1412, 2019 

[57] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vishwanath and V. Sivaraman, 

"Classifying IoT devices in smart environments using network traffic characteristics," IEEE Transactions on 

Mobile Computing, vol. 18, (8), pp. 1745-1759, 2018. 

[58] M. Mazhar and Z. Shafiq, "Characterizing smart home iot traffic in the wild," in 2020 IEEE/ACM Fifth 

International Conference on Internet-of-Things Design and Implementation (IoTDI), 2020, pp. 203-215. 

[59] Y. Amar, H. Haddadi, R. Mortier, A. Brown, J. Colley and A. Crabtree, "An analysis of home IoT network traffic 

and behaviour," arXiv Preprint arXiv: 1803.05368, 2018. 

https://www.bbc.co.uk/news/technology-34138480
https://www.bbc.co.uk/news/technology-34138480
https://www.bbc.co.uk/news/technology-50760103
https://www.bbc.co.uk/news/technology-42342221
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet


 
 

148 
 

[60] K. Xu, Y. Wan, G. Xue and F. Wang, "Multidimensional behavioral profiling of internet-of-things in edge 

networks," in 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS), 2019, pp. 1-10 

[61] S. Dong, Z. Li, D. Tang, J. Chen, M. Sun and K. Zhang, "Your smart home can't keep a secret: Towards 

automated fingerprinting of iot traffic," in Proceedings of the 15th ACM Asia Conference on Computer and 

Communications Security, 2020, pp. 47-59. 

[62] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O. Tippenhauer and Y. Elovici, "ProfilIoT: 

A machine learning approach for IoT device identification based on network traffic analysis," in Proceedings 

of the Symposium on Applied Computing, 2017, pp. 506-509 

[63] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas and J. Lloret, "Network traffic classifier with convolutional 

and recurrent neuralnetworks for Internet of Things," IEEE Access, vol. 5, pp. 18042- 18050, 2017 

[64] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wijenayake, A. Vishwanath and V. Sivaraman, 

"Characterizing and classifying IoT traffic in smart cities and campuses," in 2017 IEEE Conference on 

Computer Communications Workshops (INFOCOM WKSHPS), 2017, pp. 559-564 

[65] B. Copos, K. Levitt, M. Bishop and J. Rowe, "Is anybody home? Inferring activity from smart home network 

traffic," in 2016 IEEE Security and Privacy Workshops (SPW), 2016, pp. 245-251. 

[66] R. Trimananda, J. Varmarken, A. Markopoulou and B. Demsky, "PingPong: Packet-level signatures for smart 

home device events," arXiv Preprint arXiv: 1907.11797, 2019. 

[67] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu, M. Conti, A. Sadeghi and S. Uluagac, 

"Peek-a-boo: I see your smart home activities, even encrypted!" in Proceedings of the 13th ACM Conference 

on Security and Privacy in Wireless and Mobile Networks, 2020, pp. 207-218 

[68] N. Apthorpe, D. Reisman and N. Feamster, "A smart home is no castle: Privacy vulnerabilities of encrypted 

iot traffic," arXiv Preprint arXiv: 1705.06805, 2017. 

[69] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan and N. Feamster, "Spying on the smart home: Privacy 

attacks and defenses on encrypted iot traffic," arXiv Preprint arXiv: 1708.05044, 2017. 

[70] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves and A. Sadeghi, "HomeSnitch: Behavior 

transparency and control for smart home IoT devices," in Proceedings of the 12th Conference on Security 

and Privacy in Wireless and Mobile Networks, 2019, pp. 128-138. 

[71] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang and H. Zhu, "Homonit: Monitoring smart home apps from 

encrypted traffic," in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications 

Security, 2018, pp. 1074-1088. 

[72] K. Xu, F. Wang, S. Jimenez, A. Lamontagne, J. Cummings and M. Hoikka, "Characterizing DNS Behaviors of 

Internet of Things in Edge Networks," IEEE Internet of Things Journal, vol. 7, (9), pp. 7991-7998, 2020. 

[73] I. Đuric, B. Dusan, B. Zorica, L. Aleksandra and R. Bozidar, "Model of an intelligent smart home system based 

on ambient intelligence and user profiling." Journal of Ambient Intelligence and Humanized Computing 14, 

no. 5 pp. 5137-5149, 2023. 

[74] B. Hammi, Z. Sherali, K. Rida and N. Jamel, "Survey on smart homes: Vulnerabilities, risks, and 

countermeasures." Computers & Security 117 (2022): 102677, 2022. 



 
 

149 
 

[75] R. Fekolkin, "Intrusion detection & prevention system: overview of snort & suricata." Internet Security, 

A7011N, Lulea University of Technology (2015): 1-4. 2015. 

[76] H. Shaikha and W. Abdullah, “A Review of Intrusion Detection Systems,” Academic Journal of Nawroz 

University, vol. 6, no. 3, pp. 101–105, 2017, doi: https://doi.org/10.25007/ajnu.v6n3a90.  

[77] M. A. Alsheikh, M. A. Al-Qutayri, A. A. Alghamdi, and M. S. Al-Rodhaan, "Fuzzy Gaussian Mixture-based 

Correntropy for Host Anomaly Detection System," IEEE Access, vol. 8, pp. 174, 2020. 

[78] Y. Jia, F. Zhong, A. Alrawais, B. Gong and X. Cheng, "FlowGuard: An Intelligent Edge Defense Mechanism 

Against IoT DDoS Attacks," in IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9552-9562, Oct. 2020, doi: 

10.1109/JIOT.2020.2993782. 

[79] B. Al-Duwairi, W. Al-Kahla, M. A. AlRefai, Y. Abdelqader, A. Rawash, and R. Fahmawi, “SIEM-based detection 

and mitigation of IoT-botnet DDoS attacks,” International Journal of Electrical and Computer Engineering, 

vol. 10, no. 2, pp. 2182–2191, 2020, doi: 10.11591/ijece.v10i2.pp2182-2191. 

[80] M. Shurman, R. Khrais, and A. Yateem, “DoS and DDoS attack detection using deep learning and IDS,” 

International Arab Journal of Information Technology, vol. 17, no. 4A Special Issue, pp. 655–661, 2020, doi: 

10.34028/IAJIT/17/4A/10. 

[81] P. Ioulianou, V. Vasileios, M. Ioannis, and L. Michael. "A signature-based intrusion detection system for the 

internet of things." Information and Communication Technology, 2018. 

[82] M. H. Nasir, J. Arshad, and M. M. Khan, “Collaborative device-level botnet detection for internet of things,” 

Computer Security, vol. 129, p. 103172, Jun. 2023, doi: 10.1016/J.COSE.2023.103172. 

[83] University of Victoria, Isot botnet dataset 2010 [Online]. http://www.uvic.ca/ 

engineering/ece/isot/datasets/ [Accessed: 03- Mar- 2022] 

[84] S. Garcia, A. Parmisano and M. Erquiaga, ‘‘IoT-23: A labeled dataset with malicious and benign IoT network 

traffic (version 1.0.0),’’ Zenodo, vol. 20 pp.15, doi: 10.5281/zenodo.4743746, 2020 

[85] N. Koroniotis, N. Moustafa, E. Sitnikova and B. Turnbull, "Towards the development of realistic botnet 

dataset in the internet of things for network forensic analytics: Bot-iot dataset", Future Generation 

Computer Systems, vol. 100, pp. 779-796, 2019. 

[86] K. Al-Begain, M. Khan, B. Alothman, C. Joumaa, and E. Alrashed, “A DDoS Detection and Prevention System 

for IoT Devices and Its Application to Smart Home Environment,” Applied Sciences 2022, Vol. 12, Page 11853, 

vol. 12, no. 22, p. 11853, Nov. 2022, doi: 10.3390/APP122211853. 

[87] J. Galeano, J. Carmona, J. Valenzuela and F. Luna, “Detection and mitigation of dos and ddos attacks in iot-

based stateful sdn: An experimental approach”, Sensors, 20(3), p.816, 2020 

[88] J. Li, M. Liu, Z. Xue, X. Fan and X. He, “RTVD: A real-time volumetric detection scheme for DDoS in the 

Internet of Things” IEEE Access, 8, pp. 36191-36201, 2020. 

[89] D. K. Sharma et al., “Anomaly detection framework to prevent DDoS attack in fog empowered IoT networks,” 

Ad Hoc Networks, vol. 121, p. 102603, Oct. 2021, doi: 10.1016/J.ADHOC.2021.102603. 

[90] H. Christoph and E. Buchmann, "Fane: a firewall appliance for the smart home." In 2019 Federated 

Conference on Computer Science and Information Systems (FedCSIS), pp. 449-458. IEEE, 2019. 

https://doi.org/10.25007/ajnu.v6n3a90.


 
 

150 
 

[91] S. Kumar, S. Dalal and V. Dixit, “The OSI model: Overview on the seven layers of computer networks”, 

International Journal of Computer Science and Information Technology Research, 2(3), pp.461-466, 2014. 

[92] J. Liang and K. Yoohwan, "Evolution of firewalls: Toward securer network using next generation firewall." 

In 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0752-0759. 

IEEE, 2022. 

[93] A. Kumar, A. Kumar, R. Muhammad, S. Achyut and C. Xiaochun, "Intrusion detection and prevention system 

for an IoT environment." Digital Communications and Networks 8, no. 4 pp. 540-551, 2022. 

[94] B. Soewito and A. Charlie, "Next generation firewall for improving security in company and iot network." 

In 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 205-209. IEEE, 2019. 

[95] A. Feraudo, A. Diana, Y. Poonam, M. Richard and B. Paolo, "Mitigating IoT Botnet DDos Attacks through 

MUD and eBPF based Traffic Filtering." arXiv preprint arXiv:2305.02186, 2023. 

[96] P. Illy, K. Georges, K. Kuljeet and G. Sahil, "ML-based IDPS enhancement with complementary features for 

home IoT networks." IEEE Transactions on Network and Service Management 19, no. 2 pp. 772-783, 2022. 

[97] L. Qaddoori and A. Qutaiba, "An embedded intrusion detection and prevention system for home area 

networks in advanced metering infrastructure." IET Information Security, 2023. 

[98] B. B. Gupta, P. Chaudhary, X. Chang, and N. Nedjah, “Smart defense against distributed Denial of service 

attack in IoT networks using supervised learning classifiers,” Computers & Electrical Engineering, vol. 98, p. 

107726, Mar. 2022, doi: https://doi.org/10.1016/j.compeleceng.2022.107726, 2022. 

[99] H. Gordon, C. Batula, B. Tushir, B. Dezfouli and Y. Liu, "Securing Smart Homes via Software-Defined 

Networking and Low-Cost Traffic Classification," 2021 IEEE 45th Annual Computers, Software, and 

Applications Conference (COMPSAC), Madrid, Spain, 2021, pp. 1049-1057, doi: 

10.1109/COMPSAC51774.2021.00143, 2021. 

[100] R. Doshi, N. Apthorpe and N. Feamster, "Machine Learning DDoS Detection for Consumer Internet of 

Things Devices," 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 2018, pp. 29-35, 

doi: 10.1109/SPW.2018.00013, 2018. 

[101] A. A. Sallam, M. N. Kabir, Y. M. Alginahi, A. Jamal and T. K. Esmeel, "IDS for Improving DDoS Attack 

Recognition Based on Attack Profiles and Network Traffic Features," 2020 16th IEEE International 

Colloquium on Signal Processing & Its Applications (CSPA), Langkawi, Malaysia, 2020, pp. 255-260, doi: 

10.1109/CSPA48992.2020.9068679, 2020. 

[102] Y. Jia, F. Zhong, A. Alrawais, B. Gong, and X. Cheng, “FlowGuard: An Intelligent Edge Defense Mechanism 

Against IoT DDoS Attacks,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9552–9562, Oct. 2020, doi: 

https://doi.org/10.1109/jiot.2020.2993782, 2020. 

[103] F. Alghayadh and D. Debnath, “A Hybrid Intrusion Detection System for Smart Home Security Based on 

Machine Learning and User Behavior,” Advances in Internet of Things, vol. 11, no. 01, pp. 10–25, 2021, doi: 

https://doi.org/10.4236/ait.2021.111002, 2021. 

[104] E. Anthi, L. Williams, M. Slowinska, G. Theodorakopoulos, and P. Burnap, “A Supervised Intrusion 

Detection System for Smart Home IoT Devices,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 9042–9053, 

Oct. 2019, doi: https://doi.org/10.1109/jiot.2019.2926365,2019. 

https://doi.org/10.1016/j.compeleceng.2022.107726
https://doi.org/10.1109/jiot.2020.2993782
https://doi.org/10.4236/ait.2021.111002


 
 

151 
 

[105] K. J. Singh and T. De, “Efficient Classification of DDoS Attacks Using an Ensemble Feature Selection 

Algorithm,” Journal of Intelligent Systems, vol. 0, no. 0, Dec. 2017, doi: https://doi.org/10.1515/jisys-2017-

0472, 2017. 

[106] M. Aamir and S. M. A. Zaidi, “Clustering based semi-supervised machine learning for DDoS attack 

classification,” Journal of King Saud University - Computer and Information Sciences, Feb. 2019, doi: 

https://doi.org/10.1016/j.jksuci.2019.02.003, 2019. 

[107] T. Li, Z. Hong and L. Yu, "Machine Learning-based Intrusion Detection for IoT Devices in Smart 

Home," 2020 IEEE 16th International Conference on Control & Automation (ICCA), Singapore, 2020, pp. 277-

282, doi: 10.1109/ICCA51439.2020.9264406, 2020. 

[108] W. Li, S. Tug, W. Meng, Y. Wang Designing collaborative block chained signature-based intrusion 

detection in IoT environments Future Generation Computer Systems, 96 (2019), pp. 481-489, 2019. 

[109] A. Qureshi, L. Hadi, M.  Nhamoinesu, J. Abbas and A. Jawad, "RNN-ABC: A new swarm optimization-

based technique for anomaly detection." Computers 8, no. 3 pp. 59, 2019. 

[110] M. Ge, X. Fu, N. Syed, Z. Baig, G. Teo, A. Robles-Kelly, “Deep learning-based intrusion detection for IoT 

networks” 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing 

(PRDC), IEEE (2019), pp. 256-25609, 2019. 

[111] S. Ahn, H. Yi, Y. Lee, W.R. Ha, G. Kim, Y. Paek, “Hawkware: network intrusion detection based on 

behaviour analysis with ANN’s on an IoT device” 57th ACM/IEEE Design Automation Conference 

(DAC), IEEE (2020), pp. 1-6, 2020. 

[112] G. Raja, A. Ganapathisubramaniyan, G. Anand, “Intrusion detector for blockchain based IoT networks” 

2018 Tenth International Conference on Advanced Computing (ICoAC), IEEE (2018), pp. 328-332, 2018. 

[113] A. Diro, N. Chilamkurti, “Distributed attack detection scheme using deep learning approach for internet 

of things” Future Generation Computer Systems, 82 (2018), pp. 761-768, 2018. 

[114] Hive Home [Online] https://www.hivehome.com/ [Accessed: 05- July- 2020]. 

[115] GS308E -8- Port Gigabit Ethernet Plus Switch [Online] 

https://www.netgear.com/support/product/gs308e [Accessed: 05- July- 2020]. 

[116]  Jupyter Notebook [Online] https://jupyter.org/ [Accessed: 05- July- 2020]. 

[117] TL-WR940N [Online] https://www.tp-link.com/uk/home-networking/wifi-router/tl-wr940n/  

[Accessed: 05- July- 2020]. 

[118] M. Laner, N. Nikaein, P. Svoboda, M. Popovic, D. Drajic and S. Krco, "Traffic models for machine-to-

machine (M2M) communications: Types and applications," in Machine-to-Machine (M2M) Communications 

Anonymous Elsevier, pp. 133-154, 2015. 

[119] K. Xu, F. Wang, S. Jimenez, A. Lamontagne, J. Cummings and M. Hoikka, "Characterizing DNS Behaviors 

of Internet of Things in Edge Networks," IEEE Internet of Things Journal, vol. 7, (9), pp. 7991-7998, 2020. 

[120] Google Colab [Online] 

https://www.bing.com/ck/a?!&&p=8ad2fa96d733084eJmltdHM9MTcwMzExNjgwMCZpZ3VpZD0yMTg2YT

M2ZC0xZTUxLTZkZjktMzkwZi1iMjJkMWY3NjZjNWUmaW5zaWQ9NTIwOA&ptn=3&ver=2&hsh=3&fclid=21

https://doi.org/10.1515/jisys-2017-0472
https://doi.org/10.1515/jisys-2017-0472
https://doi.org/10.1016/j.jksuci.2019.02.003
https://www.hivehome.com/
https://www.netgear.com/support/product/gs308e
https://jupyter.org/
https://www.tp-link.com/uk/home-networking/wifi-router/tl-wr940n/
https://www.bing.com/ck/a?!&&p=8ad2fa96d733084eJmltdHM9MTcwMzExNjgwMCZpZ3VpZD0yMTg2YTM2ZC0xZTUxLTZkZjktMzkwZi1iMjJkMWY3NjZjNWUmaW5zaWQ9NTIwOA&ptn=3&ver=2&hsh=3&fclid=2186a36d-1e51-6df9-390fb22d1f766c5e&psq=google+colab&u=a1aHR0cHM6Ly9jb2xhYi5y%20ZXNlYXJjaC5nb29nbGUuY29tLw&ntb=1
https://www.bing.com/ck/a?!&&p=8ad2fa96d733084eJmltdHM9MTcwMzExNjgwMCZpZ3VpZD0yMTg2YTM2ZC0xZTUxLTZkZjktMzkwZi1iMjJkMWY3NjZjNWUmaW5zaWQ9NTIwOA&ptn=3&ver=2&hsh=3&fclid=2186a36d-1e51-6df9-390fb22d1f766c5e&psq=google+colab&u=a1aHR0cHM6Ly9jb2xhYi5y%20ZXNlYXJjaC5nb29nbGUuY29tLw&ntb=1


 
 

152 
 

86a36d-1e51-6df9-390fb22d1f766c5e&psq=google+colab&u=a1aHR0cHM6Ly9jb2xhYi5y 

ZXNlYXJjaC5nb29nbGUuY29tLw&ntb=1 [Accessed: 02- Jan- 2021]. 

[121] LOIC download [Online] https://sourceforge.net/projects/loic/ [Accessed: 03- Mar- 2021]. 

[122] Hping3 – Network auditing, DoS and DDoS [Online] https://www.kalilinux.in/2021/03/hping3-kali-

linux-dos-ddos-network.html [Accessed: 03- Nov- 2023]. 

[123] Kali Linux Penetration testing and ethical hacking Linux distribution [Online] https://www.kali.org/ 

[Accessed: 03- Nov- 2023]. 

[124] Wireshark [Online] https://www.wireshark.org/ [Accessed: 03- June- 20219]. 

[125] M. Hassan (via Mendeley Data) BUET-DDoS2020 2021 [Online]. https://doi.org/10.17632/bzgf9r36kp.2 

[Accessed: 03- Mar- 2022] 

[126] U. Saxena, J. Sodhi and Y. Singh, “An analysis of ddos attacks in a smart home networks”, In 2020 IEEE 

10th International Conference on Cloud Computing, Data Science & Engineering, pp. 272-276, 2020 

[127] S. Pokhrel, R. Abbas and B. Aryal, “IoT Security: Botnet detection in IoT using Machine learning”, arXiv 

preprint arXiv:2104.02231, 2021. 

[128] LOIC’s new flag help [Online] 

https://documentation.help/LOIC/recoil.html#:~:text=The%20ReCoil%20attack%20focuses%20on,to%20k

eep%20the%20socket%20alive. [Accessed: 03- Mar- 2022] 

[129] MIT Lincoln Laboratory 1999 Intrusion Detection evaluation dataset [Online] https://www.ll.mit.edu/r-

d/datasets/1999-darpa-intrusion-detection-evaluation-dataset  . [Accessed: 05- Jan- 2022] 

[130] Python standard library [Online] https://data-flair.training/blogs/python-libraries/ [Accessed: 03- Mar- 

2022] 

[131] Sklearn.ensemble.RandomForest classifier [Online] http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html [Accessed: 07- Mar- 

2023] 

[132] Support Vector Machines [Online] http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html [Accessed: 07- Mar- 

2023] 

[133] Gradient Boosting classifier [Online] http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html [Accessed: 07- Mar- 

2023] 

[134] Sklearn.ensemble.Voting classifier [Online] http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html [Accessed: 07- Mar- 

2023] 

[135] Sklearn.ensemble.Stacking classifier [Online] http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html [Accessed: 07- Mar- 

2023] 

[136] Sklearn.ensemble.Adaboost classifier [Online] http://scikit learn.org/stable/ 

modules/generated/sklearn.ensemble.RandomForestClassifier.html [Accessed: 07- Mar- 2023] 

https://www.bing.com/ck/a?!&&p=8ad2fa96d733084eJmltdHM9MTcwMzExNjgwMCZpZ3VpZD0yMTg2YTM2ZC0xZTUxLTZkZjktMzkwZi1iMjJkMWY3NjZjNWUmaW5zaWQ9NTIwOA&ptn=3&ver=2&hsh=3&fclid=2186a36d-1e51-6df9-390fb22d1f766c5e&psq=google+colab&u=a1aHR0cHM6Ly9jb2xhYi5y%20ZXNlYXJjaC5nb29nbGUuY29tLw&ntb=1
https://www.bing.com/ck/a?!&&p=8ad2fa96d733084eJmltdHM9MTcwMzExNjgwMCZpZ3VpZD0yMTg2YTM2ZC0xZTUxLTZkZjktMzkwZi1iMjJkMWY3NjZjNWUmaW5zaWQ9NTIwOA&ptn=3&ver=2&hsh=3&fclid=2186a36d-1e51-6df9-390fb22d1f766c5e&psq=google+colab&u=a1aHR0cHM6Ly9jb2xhYi5y%20ZXNlYXJjaC5nb29nbGUuY29tLw&ntb=1
https://sourceforge.net/projects/loic/
https://www.kalilinux.in/2021/03/hping3-kali-linux-dos-ddos-network.html
https://www.kalilinux.in/2021/03/hping3-kali-linux-dos-ddos-network.html
https://www.kali.org/
https://www.wireshark.org/
https://documentation.help/LOIC/recoil.html#:~:text=The%20ReCoil%20attack%20focuses%20on,to%20keep%20the%20socket%20alive
https://documentation.help/LOIC/recoil.html#:~:text=The%20ReCoil%20attack%20focuses%20on,to%20keep%20the%20socket%20alive
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://data-flair.training/blogs/python-libraries/
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html


 
 

153 
 

 

 

 

 

 

 

 

 

 

 
 

 

 


	Dedication
	Acknowledgement
	List of Publications
	Chapter 1
	Introduction
	1.1 Background
	1.2 Research Questions
	1.3 Aim and Objectives
	1.4 High level methodology
	1.5 Contributions
	1.6 Scope and limitations
	1.7 Thesis structure

	Chapter 2
	Literature review
	2.1 Introduction
	2.2 Smart home eco-system
	2.3 Challenges and risks concerning smart home network
	2.4 DDoS flooding attacks in the smart home network
	2.5 DDoS detection and classification in smart home networks
	2.5.1 Data visualization in cyber security
	2.5.2 Rule/ signature/ hybrid -based ID(P)S
	2.5.3 Supervised Machine learning based solutions for attack detection and classification

	2.6 Gaps identified and contributions
	2.7 Summary

	Chapter 3
	Smart home network behaviour
	3.1 Introduction
	3.2 Methodology
	3.3 Network setup
	3.4 Data collection
	3.5 Exploratory Data Analysis
	3.5.1 Traffic categorization
	3.5.2 Device Identification
	3.5.3 Protocols (idle & active states)
	3.5.4 Flow volume and duration
	3.5.5 Traffic pattern based on mode of operation

	3.6 Comparison to literature and new findings
	3.7 Summary

	Chapter 4
	Exploratory Data Analysis comparing attack and benign smart home traffic properties
	4.1 Introduction
	4.2 Methodology
	4.3 Attack data collection
	4.4 Exploratory Data Analysis
	4.4.1 Benign traffic
	4.4.2 Attack traffic

	4.5 Proposed novel detection method
	4.6 Comparison to literature and new contributions
	4.7 Summary

	Chapter 5
	A Novel Hybrid DDoS attack Detection and attack type indication system in the Smart Home Network
	5.1 Introduction
	5.2 Methodology
	5.2.1 Data preparation
	5.2.2 Algorithm drafting
	5.2.3 Testing
	5.2.4 Tuning
	5.2.5 Validation
	5.2.6 Comparison to literature

	5.3 How the detection and attack type indication algorithm work
	5.4 Implementation
	5.4.1 Data preparation
	5.4.2 Algorithm Drafting
	5.4.3 Initial Testing
	5.4.3.1 Observations

	5.4.4 Tuning
	5.4.5 Final Testing and Validation

	5.5 Comparison to literature and new findings
	5.6 Summary

	Chapter 6
	A Novel Hybrid Machine Learning Attack Type identification model using Domain Knowledge
	6.1 Introduction
	6.2 Methodology
	6.3 Proposed hybrid Machine Learning detection and attack type identification model
	6.4 Implementation
	6.4.1 Coding
	6.4.2 Model Selection
	6.4.3 Chosen Model
	6.4.4 Model testing
	6.4.5 Tuning
	6.4.6 Validation

	6.5 Comparison to literature and new findings
	6.6 Summary

	Chapter 7
	Research Contributions
	7.1 Overall contributions
	7.4 Summary

	Chapter 8
	Conclusion
	8.1 Introduction
	8.2 Areas of improvement and future work

	Bibliography
	[50] DDoS attack that disrupted internet was largest of its kind in history, experts say [Online] https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet [Accessed : 01-Nov-2023].

