
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.4, 2015

46 | P a g e

www.ijarai.thesai.org

Analysis of Security Protocols using Finite-State

Machines

Dania Aljeaid

School of Science and Technology

Nottingham Trent University

Nottingham, United Kingdom

Xiaoqi Ma

School of Science and Technology

Nottingham Trent University

Nottingham, United Kingdom

Caroline Langensiepen

School of Science and Technology

Nottingham Trent University

Nottingham, United Kingdom

Abstract—This paper demonstrates a comprehensive analysis

method using formal methods such as finite-state machine. First,

we describe the modified version of our new protocol and briefly

explain the encrypt-then-authenticate mechanism, which is

regarded as more a secure mechanism than the one used in our

protocol. Then, we use a finite-state verification to study the

behaviour of each machine created for each phase of the protocol

and examine their behaviours together. Modelling with finite-

state machines shows that the modified protocol can function

correctly and behave properly even with invalid input or time

delay.

Keywords—identity-based cryptosystem; cryptographic

protocols; finite-state machine

I. INTRODUCTION

Security protocols are becoming the core subject in
communication systems and verifying them has gained
significant attention by researchers and developers. Security
analysis aims to formally guarantee these protocols to satisfy
their specifications and they can function soundly. Security
evaluation is a fundamental step in the development of
security protocols. The methods used to analyse security
protocols can be categorised into two groups: methods based
on analytical approach and methods based on simulation. The
analytical approach offers accurate results and provides a clear
perception of the system characteristics. However, this
approach becomes unreliable when dealing with high complex
system. Therefore, the latter approach, simulation approach,
has become more popular in system analysis. Simulation tools,
such as finite-state machines and Petri nets, expose progress in
two directions: one related to the development of faster
methods during execution of mathematical algorithms [1], and
the other associated with the effectiveness simulation
presentations and results [2].

Protocol modelling is a crucial step in designing security
protocols. It contributes to diminishing ambiguity and
misinterpretation of protocol specifications. For example,
modelling a protocol using finite-state machine can help to
understand how it will interact with the changes and how it
will behave with invalid inputs. A Finite-State Machine
(FSM) is a powerful tool to simulate software architecture and
communication protocols. FSM can only model the control
part of a system and consists of a finite number of states, a
finite number of events, and a finite number of transitions.

Modelling with finite-state machine helps to understand
the behaviour of complex protocol. Also, it offers accurate
results and provides a clear perception of the system
characteristics. The analysis presented in this paper covers the
process of the three-way handshake used to negate the session
key and examine the behaviours of the protocol and
enumerates all possible states it can reach.

The structure of this paper is organised as follows. In
Section 2, we briefly review previous works on extended
finite-state machine and briefly discuss the weakness in our
new protocol and present modified version of it. In Section 3,
we model the modified protocol using EFSM. We then
provide a brief discussion on security analysis in Section 4.
Finally, the conclusions are given in Section 5.

II. REVIEW OF RELATED WORK

A. Extended Finite-State Machines

In order to model the complex behaviour of the proposed
protocol, an extended model of FSM is considered. According
to [3], EFSM helps to comprehend the state space complexity
of a system when the number of states and transitions
increases Also, they emphasise the importance of introducing
state variables in FSM models. State variable play a key role
in modelling because they can “define a range of arithmetic
and logical operators to manipulate state variables and trigger
transitions based on logical primitives” [3]. Moreover, EFSM
with variables can transfer variable values from one model to
another. Consequently, the produced output value from one
machine can be consumed by other machines. With the
introduction of variables, EFSM allows one to model a system
with conditions. Transitions may have guards and predicates,
which consist of operations or Boolean-valued expressions
that can depend on input variables [3].

A formal definition of an EFSM is as follows [3, 4]:

An Extended Finite State Machine (EFSM) M is a tuple (S, T, E, V) where,

S is a set of states,
T is a set of transitions,

E is a set of events, and

V is a store represented by a set of variables.

Transitions have a source state source(t) ∈ S, a target state target(t) ∈ S and a

label lbl(t). Transition labels are of the form e1[c]/a where e1 ∈ E, c is a

condition and a is a sequence of actions.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.4, 2015

47 | P a g e

www.ijarai.thesai.org

Fig. 1. The modified proposed protocol

B. Review of Proposed Protocol

In our previous work [5], we have developed a new
authentication protocol that allows remote mutual
authentication with key agreement. Our new protocol is based
on biometric verification and ID-based Cryptograph.
However, it is not secure against chosen-ciphertext attacks.

The new protocol needs modifications to initiate secure
authentication between the client and server.

The modified version of the proposed protocol should
improve security and provide users with better authentication
and data confidentiality. To address and correct the perceived
security weakness in the proposed protocol, authenticating the
ciphertext by applying encrypt-then-authenticate mechanism
is considered to be one of the secure methods for security

R
e
g

is
tr

a
ti

o

n

Client Ci Registration Centre Ri

(1) IDci, PWci, Bioci,

(3) IDC
i
, H4(.), Enc{}a/Dec{ }a,

MACK(), fi, ei, τ, Pr_K C
i

(2) Computes:

• fi = H4(Bioci)

• ei = H4(IDci||y)⊕H4(PWCi||fi)

• Pr_Kci = (x+ H4(IDc
i
))-1.P

L
o
g

in

Client Ci Server Si

(1) Enters ID’ C
i
 and PW’C

i

(3) Inputs Bio’C
i

(5) Computes:

• z’i = H4(PWC
i
 ||fi)

• M1=ei⊕z’i

• W1=r C
i
 . P

• M2= r C
i
 . Pr_K C

i

• M3= M1⊕rci
(6) C1 = Enc{IDC

i
, IDS

i
, TC

i
, W1, M2, M3}a

 (7) mac1 = MACk (IDC
i
, IDS

i
, TC

i
, W1, M2, M3)

(8) A1 = C1 || mac1

(2)Verifies the authenticity of ID’C
i
 and PW’C

i

(4) Verifies
 Accept if d(BioC

i
,

Bio*

C
i
) < τ

 Reject if d(BioC
i
,

Bio*

C
i
) ≥ τ

 Client Ci Server Si

A
u

th
e
n

ti
c
a

ti
o

n

(8) Checks the integrity of A2 = C2 || mac2
(9) Decrypts C2, then checks validity of IDS

i
 and

freshness of TS
i

(10) Verifies M7 ?= H4(M4||rC
i
)

Server Si is authenticated
(11) Computes:
• KC

i
 =rC

i
 . W2

• Sk = H3(IDC
i
, TC

i
, TS

i
, W1, W2, KC

i
)

• M8=M6⊕M1 =rS
i

• M9= H4(M6||M8)

(12) C3 = Enc{IDC
i
, IDS

i
, TC

i
, M9,}a

(13) mac3 = MACk (IDC
i
, IDS

i
, TC

i
, M9)

 (7) A2 = C2 || mac2

(14) A3 = C3 || mac3

(1) Checks the integrity of A1 = C1 || mac1

(2) Decrypts C1, then checks validity of IDc
i
 and

freshness of Tc
i

(3) Computes and verifie:

 2 = (x + H1(IDC
i
)-1. W1

 = Pr_KC
i
 . rC

i
 = M2

 (4) Computes:

• M4=H4(IDC
i
||y)

• W2=rS
i
 .P

• KS
i
=rS

i
.W1

• Sk=H3(IDC
i
, TC

i
, TS

i
 W1, W2, KS

i
)

• M5=M3⊕M4 = rC
i

• M6=M4 ⊕ rS
i

• M7 = H4(M3||M5)

(5) C2 = Enc {IDC
i
, IDS

i
, TS

i
, W2, M6, M7}a

(6) mac2=MACk (IDC
i
, IDS

i
, TS

i
, W2, M6, M7)

(15) Checks the integrity of A3 = C3 || mac3

(16) Decrypts C3, then checks validity of IDC
i
 and

freshness of TC
i

(17) Verifies M9?= H4(M6⊕rS
i
)

Client Ci is authenticated

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.4, 2015

48 | P a g e

www.ijarai.thesai.org

protocols. The previous message exchange in the proposed
protocol was constructed like this:

Encrypt (Message || MAC)

The new modification for the message exchange will be
constructed as this [7,8]:

Encrypt (Message) || MAC

This way the MAC is covering the entire ciphertext to
preserve the integrity of the cipher message. The MAC value
is then appended to the encrypted message. When the recipient
receives the authenticated encrypted message, the MAC
should be evaluated before attempting to decrypt the
ciphertext. If the MAC verification fails, the recipient will
terminate the session immediately. This process will be
efficient by eliminating the time spent to going through the
manipulated data. The enhancements for the proposed
protocol will only affect part of the registration phase and the
authentication and key agreement phase. Additionally,
enclosing the identity of the server along with the client’s
identity can mitigate the impact of masquerading attack. The
ID’s of entities must be unique in the network. Thus, the
entities that wish to communicate are aware of each other. The
modified protocol is summarised in Fig. 1. Based on the
investigation above, we need to modify the state machine
described in [5,6] according to the new enhancements.

IV. PROTOCOL MODEL AND STATE MACHINE

The EFSM is used to model the communication channel of
the proposed protocol between the Client Ci and the Server Si.
Since the exchange of packets follows a pattern defined by a
finite set of rules, each principal in the protocol has a
corresponding state machine: EFSMserver, EFSMregister and
EFSMclient.

A. Verifier EFSM

The EFSMverifier is an embedded machine within
EFSMclient and EFSMserver where states themselves can have
other machines. To be precise, it is a set of sub-states that are
integrated as a nested finite state machine which are inside the
states S5 and S6 in EFSMserver and state C6 in the EFSMclient .It
is only activated when the authentication and key agreement
have started. The FSMverifier is triggered when it obtains
authentication information from FSMclient or FSMserver. It
represents various transitions during the authentication and
validation process. This machine is modelled using 5 states
and 8 transitions. Table 1 describes the transitions
specifications and Fig.2 illustrates the verifier modelled by
EFSM.

 State V0: this state accepts the authentication
information that needs to be verified and sends an
authenticity-checking request to V1.

 State V1: the EFSMverifier verifies the integrity of the
received cipher message by recalculating the MAC
value of the received message and comparing it with
the attached MAC value. If the MAC values appeared
to be identical, the machine triggers itself to the next
state, V2, since the condition is fulfilled. However, if

the comparison shows a different result, this would
trigger to invalid state that then leads to termination.

 State V2: while in this state, EFSMverifier decrypts
the ciphertext since MAC integrity check has been
successful. After decryption is successful, the
EFSMverifier transitions to the state V3.

 State V3: the EFSMverifier checks the freshness of T via
 – TC

i
 ≤ ∆ . If the freshness is valid, the EFSMverifier

triggers itself to the next state. Otherwise, it produces
invalid input if the freshness of – TC

i
 ≥ ∆ and

changes to state V0.

 State V4: while in state V4, the EFSMverifier checks the
validity of ID and based on the result it changes to state
V0 either with event of valid ID or invalid ID.

TABLE I. THE TRANSITIONS SPECIFICATION OF THE VERIFIER EFSM

Fig. 2. The verifier machine modelled by EFSM

B. Server EFSM

The FSM at the server side represents the various on-going
communications with the client at any point in time. It is
modelled using 10 states and 24 transitions and one nested
EFSM as detailed below. Table 2 describes the transitions

Transition
Transition

Direction
Guards/Condition

Validate

C5  V0

S5  V0
S6  V0

Authenticity check V0  V1

Invalid V1  V0 Client_MAC != Server_MAC

Integrity checked V1  V2 Client_MAC== Server_MAC

Decrypted the

ciphertext
V2  V3

Freshness checked V3  V4 T – TC
i
 ≤ ∆T

Invalid V3  V0 T – TC
i
 > ∆T

ID valid V4  V0

ID invalid V4  V0 Invalid ID

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.4, 2015

49 | P a g e

www.ijarai.thesai.org

specifications Fig. 3 shows the transitions diagram for the
EFSMserver.

1) The EFSMserver will loop continuously while the server

is waiting for clients. The machine advances to the next state

once it is triggered by a login/enrol transition.

2) When the EFSMserver is in the state S1, it checks the

validity of the received ID. If ID is proved to be incorrect, Si

will request Ci to enter the valid ID for three times and

EFSMserver will loop until Ci enters the valid ID up to three

times. In the latter case, the Ci’s account will be blocked and

EFSMserver will change to state S4 from state S1. Generally,

three attempts are made through our protocol steps to allow

common errors.

3) When the EFSMserver is in the state S2, it is triggered by

a valid ID and it is now waiting for a valid PW. Once Si

receives PW, it verifies the validity of PW. If PW is proved to

be invalid, Si will request Ci to enter the valid PW for three

times and EFSMserver will loop until Ci enters the valid PW or

if the attempts exceed three times. In the latter case, the Ci’s

account will be blocked and EFSMserver changes state to S4

from state S2.

TABLE II. THE TRANSITIONS SPECIFICATION OF THE SERVER-SIDE EFSM

Fig. 3. The server machine modelled by EFSM

4) When the EFSMserver is in the state S3, it is triggered by

a valid PW and it is now waiting for a valid Bio. Once Si

receives Bio, it verifies the validity of Bio by comparing the

imprinted Bio with the template stored. If Bio does not match

the stored template, Si will request Ci to enter the valid Bio up

to three times and the EFSMserver will loop until Ci enters the

valid Bio or if the attempts exceed three times. In the latter

case, the Ci’s account will be blocked and the EFSMserver

changes state to S4 from state S3.

5) In state S5, the EFSMserver waits until it receives the

login request SYN = A1 = C1 || mac1 from the FSMclient to

establish a connection by performing three-way handshake.

6) While in state S5, the EFSMserver activates the nested

EFSMverifier and waits for the validation check result.

7) Once the validation has proved to be true. Si generates

a random number and timestamp, then Si replies with

authenticated SYN/ACK = A2 = C2 || mac2 to the EFSMclient,

which is a combination of C2 = Enc {IDC
i
, IDS

i
, TS

i
, W2, M6,

M7}a and Mac2 = MACk (IDC
i
, IDS

i
, TS

i
, W2, M6, M7).

8) In state S6, EFSMserver waits until it receives ACK from

the EFSMclient. Once the authenticated ACK = A3 = C3 || mac3

Transition
Transition

Direction
Guards/Condition

Waiting for clients S0  S0

Request to enrol S0  R0 ClientEnrol == True

Client is registered
S0  S1

R0S0
ClientReg == True

Enter ID S0  S1 ID Valid

Enter Password S1  S2 Password Valid

Submit Biometric S2  S3 Biometric Valid

Request client login

(SYN received)
S3  S5

Re-enter ID/Password/

Biometric

S2S2

S3S3

S4S4

ID_attempt < 3, ID_attempt =

ID_attempt +1

PW_attempt < 3, PW_attempt =

PW_attempt +1

Bio_Attempt == < 3, Bio_attempt

= Bio_attempt +1

Invalid

ID/Password/Biometric

S2S4

S3S4
S4S4

S5S4

S6S4

ID_attempt == 3
PW_attempt == 3

Bio_Attempt == 3
Invalid ID

Send SYN/ACK and

C2
S5S6 Validation check is valid

Client ACK and C3

received
S6S7 Validation check is valid

Terminate
S5S8

S6S8

Timeout
S1 S0
S2S0

S3S0

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.4, 2015

50 | P a g e

www.ijarai.thesai.org

is received, the EFSMserver activates the nested EFSMverifier and

waits for the validation check result.

9) Once the validation check is proved to be true, the

EFSMserver verifies M9≟H4 (M6 || rS
i
). At this point, Si

authenticates Ci as a legitimate user.

10) At state S5 and state S6, EFSMserver terminates the

current session if any of the following situations occurs:

 The client ID is invalid

 The freshness of T – TC
i
 ≥ ∆T

 A negative result when checking the integrity of mac1
and mac3

 M2 != (x + H1(IDC
i
)

-1
. W1

 M9 != H4 (M6 || rS
i
)

At any stage of EFSMserver activity, EFSMserver aborts the
current session and changes to state S9 if the timeout exceeds
the defined TIME_WAIT while waiting for packets. This
feature helps to prevent an infinite wait when the EFSMclient
fails to respond.

C. Client EFSM

The EFSM at the client side represents the various on-
going transmissions with the server at any point in time. It is
modelled using 9 states, 22 transitions, and one nested EFSM
as detailed below. Fig. 4 shows the transition diagram for the
EFSMclient and Table 3 describes the transitions specifications.

Fig. 4. The client machine is modelled by EFSM

TABLE III. THE TRANSITIONS SPECIFICATION OF THE CLIENT-SIDE EFSM

1) First, the EFSMclient is in the initial state C0. That is

when the request for register/login is initiated by itself. While

in state C0, the EFSMserver checks whether Ci is enrolled or

not. The next state will be determined according to the

condition ClientReg == True.

2) In state C1, C2, C3, the FSMclient is waiting for

validating ID, PW, and Bio. Once the client credentials are

validated, the EFSMclient triggers itself and changes to state

C5.

3) In states C1, C2, C3, the client may be required to re-

enter ID, PW, Bio in cases where they were incorrect.

However, the client’s account will be blocked if the number of

attempts exceeds three, which changes the above states to

state C4.

 ID_attempt < 3, ID_attempt = ID_attempt +1

 PW_attempt < 3, PW_attempt = PW_attempt +1

 Bio_Attempt < 3, Bio_attempt = Bio_attempt +1

4) In state C5, The EFSMclient generates a random number

and a timestamp to calculate the encrypted login request

{IDC
i
, IDS

i
, TC

i
, W1, M2, M3}a and then computes mac1 =

MACk (IDC
i
, IDS

i
, TC

i
, W1, M2, M3). It sends A1 = C1 || mac1 to

the EFSMserver. This request represents the SYN part in the

three-way handshake procedure.

Transition
Transition

Direction
Guards/Condition

Request to enrol C0  R0 ClientEnrol == True

Client is registered /

Enter ID
C0  C1 ClientReg == True

Enter Password C1  C2 ID valid

Submit Biometric C2  C3 Password valid

Send login request
SYN (C1)

C3  C5 Biometric valid

Re-enter ID/Password/

Biometric

C1C1

C2C2

C3C3

ID_attempt < 6, ID_attempt

= ID_attempt +1

PW_attempt < 3,

PW_attempt = PW_attempt

+1

Bio_Attempt < 3,

Bio_attempt = Bio_attempt
+1

Invalid

ID/Password/Biometri
c

C1C4

C2C4
C3C4

ID_attempt == 6

PW_attempt == 3
Bio_Attempt == 3

Client receives

SYN/ACK (C2)
C5C6

Client sends ACK
(C3)

C6C7 Validation check is valid

Authenticated by

server
C7C8

Terminate
C5C8

C6C8

Timeout
C1C0
C2C0

C3C0

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.4, 2015

51 | P a g e

www.ijarai.thesai.org

5) While in state C5, the FSMclient is waiting for the

EFSMserver to respond after sending the login request to

establish the connection. Once the authenticated SYN/ACK =

A2 = C2 || mac2 is received, the FSMclient changes to state C6.

6) In state C6, The EFSMclient activates the nested

EFSMverifier and waits for the validation check result. Once the

validation check is proved to be true, the EFSMclient is

validating the EFSMserver response M7 ≟ H4 (M4 || rC
i
). If Si is

proved to be honest, Ci authenticates Si at this stage.

7) While in state C6, the EFSMclient computes the shared

session key sk = H3(IDC
i
, TC

i
, TS

i
, W1, W2, KC

i
) and finalises

the handshake procedure by sending authenticated encrypted

ACK = A3 = C3 || mac3 to Si, which is a combination of C3 =

Enc{IDC
i
, IDS

i
, TC

i
, M9,}a and Mac3 = MACk (IDC

i
, IDS

i
, TC

i
,

M9).

8) In state C7, the EFSMclient is waiting to be

authenticated by Si.

9) In state C8, the client terminates the current session if

one of the following occurs:

 Negative result when checking the integrity of mac2

 T – TS
i
 ≥ ∆T

 The server ID is invalid

 M7 ≠ H4 (M4 || rC
i
)

D. Register EFSM

The EFSM at the registration side represents the various on-

going transmissions with the server and client at any point in

time. It is modelled using EFSM with 4 states and 7

transitions. Fig. 5 shows the states and transitions diagram for

the EFSMregister.

1) First, the EFSMregister is triggered if the client is not

enrolled at state R0. That is when the request for registration

is initiated by EFSMclient. While in state C0, the EFSMserver

checks whether Ci is enrolled or not.

2) Once Ci enters ID, EFSMregister changes to state R1 and

validates the format of ID. Then EFSMregister triggers itself

asking Ci to enter PW and changes to state R2.

3) In state R2, on receiving PW for the first time,

EFSMregister requires Ci to re-enter PW for confirmation. Then

it triggers itself and changes to the state R3.

4) In state R3, Ci is required to submit multiple scans of

the biometric data to increase accuracy. Once the acquisition

process is complete, EFSMregister triggers itself and sends a

message to EFSMregister, which indicates that the enrolment is

successful.

Fig. 5. The client machine is modelled by EFSM

III. SECURITY ANALYSIS

The capability to detect errors and vulnerability is
substantial in protocol design implementation. Since
communication protocols are partially specified, the finite
state approach provides a flexible way to handle invalid inputs
and ambiguous specifications, which are usually unspecified
or vague in protocol design. Testing the proposed protocol
with FSM helps to verify whether the protocol complies with
its specification or not. Modelling with FSM shows that the
proposed protocol can function correctly and behave properly
even with invalid input or time delay.

The state machine in Fig. 6 represents the result of
combing the three machines together. The composite model
executes efficiently and handles errors in a safe way and it
performs certain actions in case of unreliable state. Each valid
and reachable state generates a valid protocol state and the
transitions can be triggered by either events or guards. Based
on the equivalent behaviour, each machine may follow
nondeterministic behaviour and produce different outputs
according to the original input. For example, if EFSMclient
generates an illogical input for the authentication process then
EFSMclient rejects the session and goes to the terminate state.
Predicating and considering all possible combinations of both
desirable and undesirable states are one mean to fully
understand the complexity of the proposed protocol.

Note that the states S9 and C9 are defined in terms of a
timeout being reached with an inability to complete the mutual
authentication.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.4, 2015

52 | P a g e

www.ijarai.thesai.org

The states S4 and C4 are defined in terms of an invalid
input being injected due to invalid ID, wrong password, or
unmatched biometric. The states S8 and C8 are defined in the
case of unreliable actions being performed for example, if the
integrity or validity check failed. Furthermore, a state machine
hierarchy or hierarchical FSM is used to provide a more
concrete level of refinement; FSMregister can be refined by
introducing an “Enrol” feature. This state determines if the
client is pre-enrolled or not. The state R0 becomes a new
EFSM with three states R1, R2, R3 as described previously.

Fig. 6. The modified protocol modelled by EFSM

Based on the parallel behaviour, each machine goes
through stages until it reaches the final state. For example,
after successful authorisation, the EFSMclient switches to the
authorised state and proceeds to reach the next state, which is
authentication. This comprehensive analysis distinguishes
three types of errors that can be detected the protocol run:

 Type I: Timeout errors

This error occurs when the waiting time exceeds the
predefined time interval or it occurs when the freshness check
exceeds ∆T.

 Type II: Invalid errors

This error is generated in case of invalid inputs, for
example, invalid ID, invalid password, or invalid biometric.

 Type III: Terminate error

This error detects if something suspicious occurs in cases
where the values did not match. A typical example of this
error can be found in the integrity check, when the
recomputed MAC value does not match the received MAC

value. Another example is when there is a discrepancy in the
results of the following equations:

 M2 ≠ (x + H1(IDC
i
)

-1
. W1

 M7 ≠ H4 (M3 || rC
i
)

 M9 ≠ H4 (M6 || rS
i
)

This error can pose serious threat because it would occur if
the data has been modified or injected.

IV. CONCLUSIONS

This paper started by giving a brief definition of extended
finite state machines (EFSM). Then it elaborates the details of
the finite-state verification of the modified protocol and
identifies the functionality of each phase. Also, it studies the
behaviour of each machine created for each phase and how
they interrelate.

The composite model executes efficiently and handles
error in a safe way according to their types. The modified
protocol connection progresses from one state to another
based on the data pertained from the message exchanged.
EFSM helps to understand the behaviour of the protocol and
logs any unwanted behaviours. This mechanism is very useful
for determining the types of errors the protocol experiences
during running and it can be useful to later on investigate what
causes these errors and learn from them.

In future, an in-depth security analysis and evaluation will
be conducted via Petri Net (PN). PN will be used to simulate
the communication patterns between the server and the client
as well as to validate the protocol functionality. First, we will
model the protocol without an intruder. Then, we will add the
intruder to the model and implement a token-passing scheme.
At this stage, we will test different attacks, such as
impersonation attack, man-in-the-middle attack, and replay
attack against the modified protocol and verify the security
requirements. After analysis with PN, we will do a
comparison between the previous protocol [5] and the
modified version of it.

ACKNOWLEDGMENT

This research has been funded by Saudi Arabian Cultural
Bureau in London and King Abdul Aziz University in Saudi
Arabia.

REFERENCES

[1] Chiola, G. and Ferscha, A., 1993. Distributed simulation of Petri
nets. IEEE Concurrency, 1(3), pp. 33-50.

[2] Genter, G., Bogdan, S., Kovacic, Z. and Grubisic, I., 2007. Software tool
for modeling, simulation and real-time implementation of Petri net-
based supervisors, Control Applications, 2007. CCA 2007. IEEE
International Conference on 2007, IEEE, pp. 664-669.

[3] Androutsopoulos, K., Clark, D., Harman, M., Li, Z. and Tratt, L., 2009.
Control dependence for extended finite state machines. Fundamental
Approaches to Software Engineering. Springer, pp. 216-230.

[4] Alagar, V.S., 2011. Specification of software systems. 2nd edn.
England: Springer.

[5] Aljeaid, D., Ma, X. and Langensiepen, C., 2014. Biometric identity-
based cryptography for e-Government environment, Science and
Information Conference (SAI), 2014 2014, IEEE, pp. 581-588.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 4, No.4, 2015

53 | P a g e

www.ijarai.thesai.org

[6] Aljeaid, D., Ma, X. and Langensiepen, C., Modelling and Simulation of
a Biometric Identity-Based Cryptography. International Journal of
Advanced Research in Artificial Intelligence (IJARAI), 3(10),.

[7] KRAWCZYK, H., 2001. The order of encryption and authentication for
protecting communications (or: How secure is SSL?), Advances in
Cryptology—CRYPTO 2001 2001, Springer, pp. 310-331.

[8] KATZ, J. and LINDELL, Y., Introduction to Modern Cryptography
2007.

