
Monitoring Challenges and Approaches for P2P File-Sharing Systems

Danny Hughes
Computing, InfoLab21,
Lancaster University,

Lancaster, UK.
+44 (0)1524 510351

danny@comp.lancs.ac.uk

James Walkerdine
Computing, InfoLab21,
Lancaster University,

Lancaster, UK.
+44 (0)1524 510352

walkerdi@comp.lancs.ac.uk

Kevin Lee,
School of Computer Science,

University of Manchester,
Manchester, UK.

+44 (0) 161 2756132
klee@cs.man.ac.uk

Abstract

Since the release of Napster in 1999, P2P file-sharing has
enjoyed a dramatic rise in popularity. A 2000 study by
Plonka on the University of Wisconsin campus network
found that file-sharing accounted for a comparable volume
of traffic to HTTP, while a 2002 study by Saroiu et al. on
the University of Washington campus network found that
file-sharing accounted for more than treble the volume of
web traffic observed, thus affirming the significance of P2P
in the context of Internet traffic. Empirical studies of P2P
traffic are essential for supporting the design of next-
generation P2P systems, informing the provisioning of
network infrastructure and underpinning the policing of
P2P systems. The latter is of particular significance as P2P
file-sharing systems have been implicated in supporting
criminal behaviour including copyright infringement and
the distribution of illegal pornography.

1. Introduction
 Peer-to-Peer (P2P) applications take advantage of
resources such as storage, CPU cycles, content or human
presence available at the edge of the Internet [1] in order to
provide a service. P2P file-sharing, wherein users donate
content, storage space and network resources to provide a
distributed library of files, was the ‘killer’ application that
drove the emergence of P2P with Napster [2] in 1999 and
file-sharing has since remained the dominant P2P
application [3].
 The first generation of P2P file sharing systems largely
followed the client-server paradigm. However, legality and
scalability issues have driven the development of more
decentralized and anonymous file-sharing protocols. Today
these systems, which include FastTrack [4], Gnutella [5],
eDonkey [6], Direct Connect [7] and Bittorrent [8] have
millions of users worldwide.
 Empirical studies have shown that P2P file-sharing
systems account for a significant proportion of Internet
traffic. A 2000 study by Plonka [9] found that P2P file-
sharing accounted for 23% of Internet traffic on the

University of Wisconsin-Madison campus network. A 2002
study by Saroiu et al [10] on the University of Washington
campus network suggested that P2P traffic consumed 43%
of total network bandwidth. These studies confirm the
growing significance of P2P in the greater context of
Internet communications.
 Today’s P2P file-sharing systems difficult to monitor
due to the use of non-standard ports, a proliferation of
different P2P protocols and attempts by developers to
maintain user anonymity. Moreover, recent work has
suggested that users are migrating to systems which are
more difficult to monitor [11]. Despite these issues, high
quality empirical studies of P2P systems are critical for a
number of reasons:
 P2P traffic accounts for a large and growing proportion

of Internet traffic [11]. Understanding this traffic is
therefore important both for traffic engineering and for
provisioning network services.

 Meaningful evaluation of P2P systems can only be
achieved when informed by a realistic P2P workload.

 Emergent and often unpredictable issues such as file-
availability [12] and undesirable user behaviour [13]
[14] have been shown to have significant implications
for P2P systems.

 Monitoring P2P systems is therefore a difficult, yet
critical problem. Several studies have attempted to address
this issue and each has illuminated a subset of P2P traffic
characteristics, though none provides a complete picture.
This paper seeks to clarify the situation by introducing a
classification scheme for monitoring approaches and
performing an investigation into the current state of
research in the field of P2P traffic monitoring.
 The remainder of this document is structured as follows:
Section 2 presents a classification scheme for P2P
monitoring approaches. Section 3 describes significant
studies of P2P systems. Section 4 discusses the
shortcomings of existing P2P studies and finally, section 5
concludes.

2. Classifying P2P Monitoring Approaches
 Several significant empirical studies of P2P systems
have been performed. These studies vary in terms of their
duration, the systems they analyze and the characteristics
that they seek to monitor, however, they all follow one of
three discrete tracing methodologies: network-level tracing,
passive application-level tracing, or active application-
level tracing. Each class of tracing methodology is
described in detail below.
 Network-level traces are performed by deploying code
at suitable points in the network infrastructure to perform
IP-level packet monitoring. P2P traffic is identified from
the greater body of general Internet traffic by matching the
observed traffic with the known behaviour of P2P systems.
Network-level tracing is relatively transparent and traffic
from different P2P systems can be compared side-by-side
and with traffic from other domains, such as the web.
However, in order to gather a sufficient sample of traffic,
monitoring code must be deployed at a key point in the
underlying network infrastructure such as at the gateway to
a large private network (e.g. an academic network).
 Passive application-level traces are performed by
monitoring the messages that a P2P system routes at the
application level. Modern P2P file-sharing systems are
highly decentralized and each peer is expected to
participate in the system by routing resource discovery and
network maintenance messages. As each peer participates
in message passing, passive monitoring can be achieved
simply by deploying a modified peer on the P2P network to
log the messages that it is required to route. As with
network-level tracing, passive application-level tracing is
transparent to the underlying P2P network. Unlike network-
level P2P tracing, a passive trace can be performed without
the necessity for access to the underlying network
infrastructure.
 Active application-level traces address the
shortcomings of passive application level tracing. While
passive traces have advantages over network-level traces in
terms of their ease of deployment, passive monitoring will
typically gather a smaller body of data than a network-level
trace due to the ‘search horizon’ effect that arises from the
small-world properties of modern P2P networks [13].
Because of this issue, it would be infeasible to use passive
monitoring to trace a significant subset of a P2P network on
the scale of today’s popular systems [4] [5] [6] [7] [8]. One
way of addressing this shortcoming is to employ an
aggressive querying and connection policy where the
monitoring peer attempts to connect to and interrogate as
much of the application-level network as possible;
‘crawling’ the P2P network in order to maximize the size
and typicality of trace data. While this has the advantage of
increasing the size and typicality of data, it does so at the
expense of transparency due to the disruptive effect of
repeated reconnections and the generation of a large
number of resource-discovery messages.

3. Empirical Studies of P2P Systems
 This section presents significant P2P traffic monitoring
studies belonging to each of the classes introduced in
section 2, spanning a period from 2000 to 2005. The
specific methodology of each study is described alongside
its significant findings. Based upon this survey, the benefits
and limitations of each class of monitoring approach are
discussed along with the general limitations of current P2P
studies. While this survey is not exhaustive, it covers the
most significant and oft cited studies of P2P networks.

3.1 Network-Level Monitoring
 The first network-level study of P2P traffic was
performed by Plonka et al. [9]. This study analyzed the
bandwidth consumed by Napster [2] on the University of
Wisconsin-Madison network during March 2000. A seven
hour trace was gathered using a specially developed tool
called FlowScan to monitor Napster traffic. FlowScan first
identified nodes communicating with the napster.com
servers as potential P2P participants and then applied
simple heuristics to the node’s incoming and outgoing
traffic in order to identify Napster-related traffic. The
Plonka study found that as early as 2000, P2P applications
generated a comparable volume of traffic to the web at
23.1% of total bandwidth, compared to 20.9% for web
traffic. Unfortunately, it is difficult to assess the accuracy
of this study due to the lack of published details regarding
FlowScan’s traffic-catagorisation system. However, the
short duration of the trace is likely to have resulted in
inaccuracy, particularly as other studies have found
significant time-of-day variations [12]. Nevertheless, the
Plonka study was useful in highlighting the increasing
bandwidth consumption of P2P applications.
 The growing volume of traffic being generated by P2P
applications was corroborated by in June 2002 by a
University of Washington study conducted by Saroiu et al
[11] Their nine day trace found that P2P traffic consumed
43% of campus bandwidth, compared to just 14% for web
traffic - a significant increase since the Plonka study. The
Saroiu study identified traffic generated by the two
dominant P2P systems of the day; Gnutella 0.4 [15] and
Kazaa [4] based upon common port usage. In addition to
raw traffic data, the Saroiu study reported more fine-
grained information about the P2P work-load. This
included the finding that, on average, objects retrieved from
P2P networks were three orders of magnitude larger than
objects retrieved from the web and the finding that a small
subset of peers are responsible for the majority of P2P
traffic - a finding that corroborates the results obtained by
Adar et al [13] in their passive application-level study.
 Gummadi et al. continued P2P monitoring work at the
University of Washington with a 200-day trace of Kazaa
traffic in 2003 [16]. This was recorded using a similar
methodology to the 2002 trace, except that traffic was

identified based upon Kazaa-specific HTTP headers rather
than by port use. Uniquely Gummadi’s 2003 trace was long
enough to observe seasonal variations in P2P traffic and the
effect of changing network policies on P2P workloads.
Using this trace, Gummadi developed a detailed
parameterized model of P2P workloads, which can be used
by developers to generate realistic evaluation data.
 Accurate identification of P2P traffic is a vital
component of network-level P2P monitoring. In the case of
the Plonka trace [9], identification was simplified by
Napster’s semi-centralized architecture [2], while the
Saroiu [11] and Gummadi [16] trace identified traffic by
port number and header data respectively. However, recent
research [10] has demonstrated that users are increasingly
moving to P2P systems that are more difficult to monitor as
they use non-standard ports and encrypted header data. To
address this issue, Subhabrata et al. [17] have developed a
system for real-time network-level identification of P2P
traffic. This system was implemented as an extension to the
AT&T’s Gigascope [18] high speed traffic monitor.
Subhabrata et al. evaluated their traffic identification
approach using a 24 hour week-day trace and an 18 hour
weekend trace gathered in November 2003 on a major
internet backbone. This was augmented with a 6 day trace
of traffic on a VPN where administrators attempt to block
P2P traffic, also conducted in November 2003.
Subhabrata’s approach proved capable of identifying traffic
from today’s popular P2P systems in real-time for traffic
flows of up to 1gbps while maintaining misidentification
rates of less than 5%. While the trace data gathered for this
study was used to evaluate their traffic monitoring
approach, the authors did not attempt to further characterize
the P2P traffic that they observed. The extended version of
Gigascope used in this study is capable of identifying
traffic from Gnutella [5], Fasttrack [4], eDonkey [6], Direct
Connect [7] and Bittorrent [8]. It does not depend upon
identification by port and instead uses a more versatile
approach based upon application signatures, which can be
used to categorize traffic where identification data may be
at variable offsets in the header. Application signatures can
also be used to categorize traffic based upon functional
header data. For example in the case of eDonkey [6],
identification is based upon the presence of packet-size data
located at a known offset.
 In each of the studies discussed above, network-level
tracing was used to record the low-level characteristics of
P2P traffic flows on private networks. Network-level
tracing is potentially transparent, scalable and allows
comparison of traffic from multiple domains side-by-side.
However, this approach is dependent upon access to core
network infrastructure, which is not always feasible. While
researchers may have access to gateway infrastructure on
large private networks, such as academic networks, data
obtained from such sources should be viewed as potentially

biased due to differences between the characteristics of the
private network’s users and general Internet users.

3.2 Passive Application-Level Monitoring
 The first passive application-level trace of a P2P system
was performed by Adar and Huberman in 2000 on the
Gnutella 0.4 network [15]. This 24-hour trace logged
resource-discovery traffic which was then used to assess
the prevalence and characteristics of a problem known as
‘free riding’, wherein users download resources from, but
do not upload resources to a P2P file-sharing system. The
Adar trace was performed by modifying the open-source
‘Furi’ Gnutella client (no longer available) to monitor
search, response and peer discovery messages. Adar and
Huberman discovered that participation in Gnutella was
highly asymmetrical with 66% of peers sharing no files at
all and almost 50% of all files being served by the top 1%
of hosts. This finding was significant as it contradicted the
(then) conventional wisdom that user participation in P2P
file sharing systems is symmetrical. Adar’s result was later
corroborated by Saroiu’s 2002 network-level study [10].
 Hughes et al [19] revisited the results of the Adar trace
in 2004 on the Gnutella 0.6 network [4] based upon a one
week trace. The trace was performed using a specially
developed monitoring tool based on the Jtella base classes
[19]. The monitoring peer connected to the Gnutella
network as an Ultrapeer [4] and periodically reconnected in
order to maximize the size and typicality of its sample-
base. Hughes discovered that in the four years since the
Adar study, the proportion of free-riders had increased
from 66% to 85%, while corroborating Adar’s finding that
the top 1% of hosts serve almost 50% of all files. Hughes
speculated that the increase in free riding may be the result
of an increase in prosecution of copyright infringement.
 Hughes et al performed an additional month-long trace
in 2005 using a similar methodology in order to assess the
level of illegal pornographic material being distributed on
the Gnutella network [14]. The study found that an average
of 1.6% of searches and 2.4% of responses contained
references to illegal pornography and that this material is
distributed by a tiny subset of peers that typically share
nothing else.
 In each of the cases discussed above, passive
application-level monitoring is used to study application
level properties in an Internet-wide context. Like network-
level monitoring, passive application-level monitoring is
transparent, however, it does not require access to low-level
network infrastructure. Unfortunately, in cases where a
very large sample of network traffic is required, passive
monitoring would be unsuitable due to the small-world
properties of modern P2P networks [13].

3.3 Active Application-Level Monitoring
 Ripneau and Foster [21] performed the first active
application-level trace of the Gnutella network from
November 2000 to May 2001. This study attempted to map
the Gnutella network in terms of the average number of
links between hosts and the number of hops that these links
represent on the underlying IP network. To achieve this, a
specialized Gnutella peer known as a ‘crawler’ was
developed. The crawler connects via the normal Gnutella
boot-strapping system and uses Gnutella’s peer-discovery
mechanism [15] to find new peers. The IP address of these
peers is added to the list of those observed and the crawler
attempts reconnection in a new location, repeating the
process and gradually building a ‘map’ of the network. The
resulting map includes the total number of nodes, the total
number of links and average traffic data. Based upon the
findings of this study, Ripneau concluded that the emergent
structure of the Gnutella network was such that the
network’s bandwidth consumption would limit its
scalability, as predicted by Ritter [22]. Unfortunately,
Ripneau’s crawling approach is invasive, as repeated
reconnection affects the P2P network. It is also un-scalable
due to the computational and network expense incurred
when crawling the application-level network.
 Saroui et al. [23] extended Washington University’s
work on monitoring P2P systems to the application level
with a one month crawl of the Gnutella network in May
2001. The crawler used a similar methodology to Ripneau
and observed between 8,000 and 10,000 unique peers,
which at that time would have accounted for between 25%
and 50% of the Gnutella network. The 2001 Saroiu trace
recorded low-level data, including each peer’s IP address,
latency and bottleneck bandwidth between peers; along
with higher level data including each peers advertised
bandwidth and the number and size of files being shared.
These high-level properties were measured by logging
Gnutella’s resource discovery and network maintenance
messages, while bottleneck bandwidth was measured using
SProbe [24], a network tool that uses a TCP exploit to
accurately measure bottleneck bandwidth without the need
for remote cooperation.
 Chu et al [12] performed the first study that attempted to
quantify the availability of peers and files on the Gnutella
network using a forty day trace performed in early 2002.
This trace was gathered by a tool based upon the Jtella API
[20] that followed a similar methodology to the Ripneau
crawler [21]. Search-response messages were intercepted
by the crawler and unique peers were identified based upon
their advertised IP and port pairs. The crawler was used to
gather a list of 20,000 unique peers using the BearShare
[25] and SwapNut (no longer available) clients, at which
point a second program, known as the ‘tracking manager’
attempted to download each peer’s file-list using
proprietary BearShare and SwapNut extensions. Using this
methodology, the availability of peers and files was

monitored for a period of 40 days beginning on March
28th. Chu reported a strong correlation between time-of-
day and node availability and proposed a model to describe
peer availability. Additionally, Chu provided a breakdown
of relative file-type popularity and corroborated the finding
of Saroiu [15], that file popularity is highly skewed with
the top 10% of files accounting for more than 50% of
shared data. A clear limitation of Chu’s study lies in the use
of proprietary extensions to obtain file lists, which limits
the size of the trace and introduces possible bias due to the
limited user-group studied.
 In each of the cases discussed above, active application-
level monitoring has been used to study P2P traffic
properties in an Internet-wide context, where a very large
and typical body of trace data was required (e.g. mapping
the Gnutella network). Active application-level monitoring
is easy to deploy and should not contain local bias;
however, the aggressive reconnection and interrogation
approach employed makes this approach invasive and
limits its scalability.

3.4 Summary of Monitoring Approaches
 This paper introduced a classification scheme for
empirical studies of P2P file sharing systems based upon
the tracing methodology that they employ: network-level
monitoring, passive application-level monitoring or active
application-level monitoring. In the context of this
classification, significant empirical studies were reviewed
along with the benefits and drawbacks of each approach.
These are summarized below:
 Network-level monitoring is transparent to the network
and highly scalable. It is capable of comparing traffic flows
from multiple P2P systems side-by-side and is well suited
to characterizing P2P traffic on large private networks;
however, it is poorly suited for performing global
monitoring of P2P systems due to the possibility of local
bias. Moreover, network-level monitoring requires low-
level access to core network infrastructure, which is often
unfeasible. Examples of network-level monitoring studies
include [9], [10] and [16].
 Passive application-level monitoring is also scalable
and transparent to the network. It can be performed without
access to core network infrastructure, though it does not
provide as large a volume of trace data as network-level
monitoring or crawler-based application-level monitoring.
Furthermore, it is inherently protocol specific. Passive
application-level monitoring is thus best suited to instances
where network-level monitoring is impossible or where a
non-invasive approach is desirable. Examples of passive
application-level monitoring studies include [13], [14], [17]
and [19].
 Active application-level monitoring is less transparent
and scalable than either network-level or passive

application-level monitoring; however, it allows large
volumes of trace data to be gathered without low-level
access to the network infrastructure. It is thus the best
approach where global network information is required and
access to the underlying network infrastructure is not
possible. Examples of passive application-level monitoring
studies include [21], [23] and [12].

Figure 1 – Time Distribution of P2P Traces

P2P traces such as those presented in this paper have
proved invaluable in informing research in the field of P2P
systems, however, each of these studies provides only a
piece of the puzzle; describing a subset of P2P traffic
characteristics for a subset of protocols over the duration of

the trace. Often, papers which cite these studies fail to
adequately consider such limitations. For example, the
data-point provided by Adar’s 2000 study of free riding
[13] has been used in a significant body of research until
the present day, however, when this study was revisited by
Hughes et al. [19] in 2005, it was discovered that free
riding had increased, revealing a significant, and (until that
point), unidentified trend.
 Figure 1 illustrates the date and duration of each of the
P2P traces discussed in this paper. As figure 1 illustrates,
few of the P2P studies presented in this paper are of
sufficient duration to identify trends in P2P traffic, rather
they simply provide a data-point for the monitored
characteristics. The notable exceptions to this are
Gummadi’s 2003 Kazaa trace [16] which was long enough
to observe seasonal variations and Hughes’ 2005 study of
free-riding [19] which, by revisiting Adar’s 2000
experiment [13] was able to show an intervening trend in
user behavior.

4. Limitations of Existing Work
 There are a number of significant shortcomings in the
current body of research on P2P traffic monitoring. The
first and perhaps most significant of which is the wide-
spread use of closed data sets. As can be seen from Figure
1, P2P studies may require weeks or even months of P2P
traffic data. While it is understandable that after investing
significant time and effort in gathering a data set,
researchers may be reluctant to make this data public, this
prevents the findings of studies being verified using
different methodologies and prevents trace data being
revisited in new contexts.
 Another significant gap exists in the body of work on
P2P monitoring regarding the identification of underlying
trends. For example, the data-point provided by Adar’s
2000 study of free riding [13] was revisited by Hughes in
2004 [19] and a significant intervening trend was
discovered. It may be is possible that other equally
significant trends might be discovered by revisiting past
studies. For example, would the growing popularity of
digital video be reflected by an increase in the availability
of such files since Chu’s [12] 2002 study of file
availability? Despite the possibility of exposing significant
trends in user behaviour, few studies choose to revisit
earlier data-points.
 Most empirical studies of P2P file sharing systems are
concerned only with the technical characteristics of P2P
traffic (files shared, bandwidth usage etc.). While this
information is critical for simulation of P2P traffic and for
the development of approaches to encouraging positive
user behaviour, the next step, reasoning about the social
and psychological factors which produce this behaviour, is
rarely taken. Furthermore, most studies do not take into
account the real-world factors which may affect P2P traffic.
Notable exceptions to this are the studies by Adar [13] and

Saroiu 1
[10]

Gummadi
[16]

Plonka

[9]

Adar

[13]

Hughes 1

[14]

Hughes 2

[19]

Ripneau

[21]

Saroiu 2

[23]

Chu

[12]

Subhabrata
[17]

Hughes [14] [19], which explicitly consider the social
factors which are responsible for observed behaviour.

5. Conclusions
 This paper presents a classification scheme for empirical
studies of P2P traffic. Past studies using each class of
methodology were presented and the strengths and
weaknesses of each approach were discussed. Finally, we
discussed key shortcomings of existing work in this field
and made a number of recommendations designed to
address these shortcomings. These include: The use of open
data sets, revisiting data-points provided by past studies
and increased focus on the socio-technical factors that drive
user behaviour on P2P file-sharing systems.

6. References

[1] “What Is P2P”, Shirky C., published in Open P2P,
O’Reilly, 2000, available online:
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky
1-whatisp2p.html

[2] Napster: www.napster.com
[3] “Looking Beyond the legacy of Napster and Gnutella”,

Nagaraja K., Rollins S., Khambatti M., IEEE
Distributed Systems Online, vol. 7, no. 3, 2006, art. no.
0306-o3005

[4] Kazaa: www.kazaa.com
[5] “The Gnutella Protocol Specification v0.6”: http://rfc-

gnutella.sourceforge.net/src/rfc-0_6-draft.html
[6] eDonkey: http://www.edonkey2000.com
[7] Direct Connect: http://dcplusplus.sourceforge.net
[8] Bittorrent: http://www.bittorrent.com
[9] “Napster Traffic Measurement”, Plonka D., Univeristy

of Wisconcin-Madison, available online at:
http://net.doit.wisc.edu/data/Napster, March 2000

[10] “An Analysis of Internet Content Delivery Systems”
Saroiu S., Gummadi K., Dunn R. J., Gribble S. D.,
Levy H. M., published in the proceedings of the 5th
International Symposium on Operating Systems
Design and Implementation (OSDI) Boston, USA,
2002

[11] “Is P2P Dying or Just Hiding?”, Karagiannis, T.,
Broido, A., Brownlee, N., Faloutsos, M., In the
Proceedings of Globecom 2004, Dallas, U.S.,
December 2004.

[12] “Availability and locality measurements of peer-to-
peer file systems” Chu J., Labonte K., Levine N.,
published in ITCom: Scalability and Traffic Control in

IP Networks. July 2002, vol. 4868 of Proceedings of
SPIE.

[13] “Free Riding on Gnutella”. Adar, E., Huberman, B.,
First Monday, October 2000, available online at:
http://www.firstmonday.dk/issues/issue5 10

[14] “Is Deviant Behaviour the Norm on P2P File Sharing
Networks?” Hughes D., Gibson S., Walkerdine J.,
Coulson G., in press in IEEE Distributed Systems
Online, vol. 7, no. 2, February 2006.
http://csdl.computer.org/comp/mags/ds/2006/02/o2001
.pdf

[15] “The Gnutella Protocol Specification v0.4”:
http://www9.limewire.com/developer/gnutella_protoco
l 0.4.pdf, 2000

[16] “Measurement, Modeling and Analysis of a P2P File-
Sharing Workload”, Gummai K., Dunn R. J., Saroiu
S., Gribble S. D., Levy H. M., Zahorjan J., published
in the proceedings of the 19th symposium on
Operating Systems Principles (SOSP’03), Bolton
Landing, New York, October 2003.

[17] “Accurate, Scalable Network-level Identification of
P2P Traffic Using Application Signatures” Subhabrata
S., Spatscheck O., Wang D., published in the
proceedings of the thirteenth international world wide
web conference (WWW2004), New York, USA,
2004.

[18] Gigascope:
http://public.research.att.com/viewProject.cfm?prjID=
129

[19] “Free Riding on Gnutella Revisited: the Bell Tolls?”
Hughes D., Coulson G., Walkerdine J., published in
IEEE Distributed Systems Online, vol. 6, no. 6, June
2005.
http://csdl2.computer.org/comp/mags/ds/2005/06/o600
1.pdf

[20] “JTella”, http://jtella.sourceforge.net
[21] “Mapping the gnutella network,” Ripeani M.,

Iamnitchi A., Foster I., IEEE Internet Computing., vol.
6, no. 1, pp. 50-57, Jan./Feb. 2002.

[22] “Why Gnutella Can’t Scale, No Really” Ritter, J,
http://www.darkridge.com/~jpr5/doc/gnutella.html.

[23] “Measuring and Analyzing the Characteristics of
Napster and Gnutella Hosts” Saroiu S., Gummadi K.,
Gribble S. D., published in Multimedia Systems 9, pp
170-184, 2003.

[24] SProbe: http://sprobe.cs.washington.edu
[25] Bear Share: http://www.bearshare.com

