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Abstract 

Structural equation modelling (SEM) of neuroimaging data can be evaluated both for 

the goodness of fit of the model and for the strength of path coefficients (as an index of 

effective connectivity).  SEM of auditory fMRI data is made difficult by the necessary sparse 

temporal sampling of the time series (to avoid contamination of auditory activation by the 

response to scanner noise), and by the paucity of well-defined anatomical information to 

constrain the functional model.  We used SEM (i.e. a model incorporating latent variables) to 

investigate how well fMRI data in four adjacent cortical fields can be described as an auditory 

network.  Seven out of 14 models (2 hemispheres x (6 subjects and 1 group)) produced a 

plausible description of the measured data. Since the auditory model to be tested is not fully 

validated by anatomical data, our approach requires that goodness of fit must be confirmed to 

assure generalisability of connectivity patterns. For good-fitting models, connectivity patterns 

varied significantly across subjects and were not replicable across stimulus conditions.  SEM 

of central auditory function therefore appears to be highly sensitive to the voxel-selection 

procedure and/or the sampling of the time series.  

 

Key words: Structural Equation Modelling; Auditory fMRI, Model goodness of fit; Inter-

subject variability; Sparse temporal sampling. 
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Introduction 

Structural equation modelling (SEM) can quantify interactions among multiple brain 

areas (McIntosh and Gonzalez-Lima, 1993) and permit direct inferences to be drawn about 

the functioning of whole networks that can only be hypothesised from straightforward 

mapping results.  SEM of imaging data usually reports the results from either a group analysis 

(McIntosh and Gonzalez-Lima, 1991; McIntosh and Gonzalez-Lima, 1993; McIntosh and 

Gonzalez-Lima, 1994a; Horwitz et al., 1995; McIntosh and Gonzalez-Lima, 1995; Jennings et 

al., 1998; Bullmore et al., 2000), or an individual subject analysis (Büchel and Friston, 1997) 

and tends to seek confirmation of hypothesised patterns of task-specific connectivity rather 

than to test model generalisability.  There is more than one epistemological approach to SEM 

and  a greater body of neuroimaging data is required for a fair critical assessment between 

them. Most of the SEM applications in neuroimaging research have so far tested for 

condition-specific differences regardless of the model fit, since the true connections between 

the different neuroanatomical areas are assumed to be known (e.g., refMacIntosh 94).  

However, in cases where the neuroanatomical model is not well defined, one could equally 

adopt the  alternative strategy that has been widely applied in behavioural science. This 

approach seeks to confirm that a model accounts for as much of the variance as possible in 

order to confirm the proposed anatomical network, prior to evaluating changes in path 

connections with experimental condition.  This strategy is based on that described by Bentler 

(1992) and MacCallum (1995) for testing behavioural data and is the preferred way to test 

models that have not been independently validated.  In the present study, we take the position 

that good model fits are important for the interpretation of connectivity because current 

anatomical knowledge does not permit the prior full specification of the auditory cortical 

network.  Neuroimaging data provides a relatively recent application for the well-established 

statistical technique of SEM, yet SEM in functional magnetic resonance imaging (fMRI) has 

 
 

3



been applied to study human learning (Büchel et al., 1999), semantic decision (Bullmore et 

al., 2000) and the modulation of visual processing by attention (Büchel and Friston, 1997).  

All these studies use widely distributed networks over the brain, where there is prior 

functional anatomical knowledge to suggest the role each linked area might play.  Within less 

widely distributed networks, such as the visual system, there may be a similar opportunity, as 

functional distinctions are well mapped (Hadjikhani et al., 1998).  In principle, therefore, 

SEM should be useful in revealing inter-relationships between auditory areas.  However, in 

both the general and the particular context of SEM, auditory fMRI faces two major challenges 

not encountered in other domains.   

Firstly, the background scanner noise induces additional auditory activation that is 

unrelated to any stimulus or task manipulation of interest.  This acoustical interference can be 

eliminated by increasing the interscan interval to introduce a quiet period during which 

stimuli are presented.  However, such sparse temporal sampling generally permits the 

acquisition of rather few data points per epoch, usually in a fixed position relative to stimulus 

onset (Hall et al., 2000b).  Sampling relatively few fixed points on the response curve limits 

the variance of the response across which inter-correlations can be explored.  This decreases 

the temporal resolution of the fMRI time series and reduces the residual degrees-of-freedom 

required to support a model for effective connectivity. In turn, the likelihood of rejecting the 

model is increased because the approximations to the chi-square distribution may be 

unreliable (Bullmore et al., 2000). 

A second difficulty arises from the paucity of knowledge about the functional anatomy 

of human auditory cortex, especially for non-primary fields.  The critical issue is that the 

number, location, and inter-connections of the multiple non-primary fields have been little 

studied in humans (Galaburda and Sanides, 1980; Rivier and Clarke, 1997).  Moreover, the 

borders of these regions vary across individuals.  This lack of specific localisation hinders 
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both model definition and the appropriate selection of voxels to represent each functional field 

for fitting time-course data using SEM.  Any suggested auditory cortical network is only 

partly validated by anatomical information.  As a consequence, we adopt a confirmatory 

strategy (as defined by MacCallum, 1995) in which we first confirm that our model accounts 

for as much of the variance as possible, before we begin to make informative inferences about 

the model (i.e., the nature of the condition-specific connectivities).  

 In the present dataset, preferential responses to tone stimuli have been localised with 

reference to estimates of anatomically defined auditory areas (Hall et al., 2000a).  Frequency-

modulated (FM) tones activate dorsolateral regions of the superior temporal gyrus more than 

do static tones (Hall et al., 2000a).  Our hypothesis is that modulation should therefore also 

influence path connections among those areas that show response selectivity for modulation.  

Given the uncertainty about functional borders, we evaluate whether the voxel-selection 

procedure is critical for both the goodness-of-fit of the SEM and the interpretation of path 

coefficients, as one form of generalisation test.  We report the results for both group and 

individual voxel-selection procedures to determine the degree of consistency between 

subjects. 

 

Materials and Methods 

Subjects: We employed six subjects aged 28-49 (subjects 4 and 5 were female). Subject 4 was 

left-handed. All were neurologically normal, without hearing impairment, and gave informed 

written consent.   

Stimuli and Task Design: Four acoustical stimuli were defined by crossing two types of 

carrier tones with two types of modulation.  The carrier was either a single 500 Hz tone or a 

harmonic-complex tone with components at 186, 372, 558, 744, 930, and 1116 Hz.  Stimuli 

were 900-ms long, were either static or cosinusoidally frequency modulated at 5Hz.  They 
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were diotically presented over high-fidelity electrostatic headphones (Palmer et al., 1998).  

Tones were equated for loudness (Moore et al., 1997) by presenting at 94 dB SPL (single 

tones) and 84 dB SPL (harmonic-complex tones).  Each trial lasted 16 s and comprised a 

series of 15 tone bursts separated by 100 ms periods of silence.  To maintain attention, 

occasional tones were 1900 ms long and subjects were instructed to press a button whenever 

this occurred.  Tone conditions were presented in a counterbalanced order with a silent resting 

baseline occurring at every fifth trial.  Subjects were scanned in two 32-minute runs, each run 

containing 24 trials of each stimulus condition.  Thus, in total, 96 multi-image volumes were 

acquired per condition.  

fMRI scanning and data analysis: The experiment was performed on a 2 T Magnetom 

VISION (Siemens, Erlangen) whole-body MRI system equipped with a head volume coil.  

Image volumes were acquired in an oblique axial plane, aligned parallel to the Sylvian fissure 

(TR = 8 s; TE = 40 ms; 64 x 64 pixels; 3 x 3 x 2.5 mm voxel size; 0.5 mm inter-slice gap; 30 

images per volume; volume acquisition time = 2 sec).  A 5-cm wide coronal saturation band 

was applied across the eyeballs and frontal poles to null the high-variance MR signal from the 

eyes.  Image volumes were obtained at 8 and 16 s post-stimulus onset. 

Data were analysed using SPM99 software (http://www.fil.ion.ucl.ac.uk/spm/).  The 

first three volumes in each run were discarded prior to statistical analysis.  For each subject, 

the remaining volumes for the two runs were realigned to the first volume in the sequence.  A 

structural MRI scan (1 x 1 x 1.5 mm voxel size) was co-registered to the mean functional 

image and then images were transformed into standard brain space.  These normalised images 

were spatially smoothed using a Gaussian kernel of 8 mm width (FWHM) for the group 

analysis and of 4 mm for the individual analyses.  Low frequency respiratory and cardiac 

aliasing were removed by high pass filter at 0.38 cycles per minute. 
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Analyses were performed by modelling the five stimulus conditions using the General 

Linear Model.  The group analysis was computed as a conjunction of t-contrasts across all 

subjects (p < 0.01, uncorrected).  Each t-contrast was specified by a linear contrast of the 

parameter estimates for each tone condition relative to the baseline.  For each individual, the 

response to the four tone conditions relative to the silent baseline was tested using an F-

contrast of the parameter estimates.  Again, auditory activation was defined by those voxels 

that exceeded a probability threshold of p < 0.01, uncorrected. 

Model specification: The tones elicited bilateral auditory activation in all subjects (Hall et al., 

2000a).  These basic sounds were treated equally by the two hemispheres and, in primary and 

surrounding secondary auditory areas, generated symmetrical activation that was not affected 

by handedness or gender.  Therefore, we used the same model for both left and right 

hemispheres and for all subjects.  The anatomical model specified four key centres of 

activation in each hemisphere; (i) the primary auditory region on Heschl’s gyrus (HG), (ii) an 

area that was posterior and lateral to HG, located on the planum temporale (PT), (iii) a portion 

of the anterolateral superior temporal gyrus (alSTG), and (iv) the dorsal bank of the superior 

temporal sulcus (STS), inferior to these above auditory areas (see Fig. 1). Selected voxels for 

model testing were located within each of these four key areas.  

Anatomical tracing studies in non-human primates indicate that lateral areas, possibly 

including parts of PT and alSTG, receive connections from the primary area (Hackett et al., 

1996).  Thus, the model incorporates connections HG → PT and HG → alSTG.  STS is a 

multi-modal area that receives dense projections from adjacent lateral belt regions (Hackett et 

al., 1996) and so we include the connections PT → STS and HG → STS.  The inclusion of a 

further connection, alSTG → PT, significantly improved model fits. Anatomical studies 

suggest that callosal connections link one auditory field to its contralateral counterpart (e.g., 

Fitzpatrick and Imig, 1980).  However, for diotic sound presentation, where the same auditory 
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signal reaches both ears and hence both hemispheres, there will be little informative 

interaction between hemispheres.  This view of predominantly independent hemispheric 

processing was supported by the results of a unitary model, connecting both hemispheres, 

which showed that these callosal paths were not significantly different from zero for any 

individual subject or indeed the group analysis.  Therefore, we report the results for each 

hemisphere modelled separately.  

**Figure 1** 

Structural Equation Modelling: We used a latent variable model which implies that what is 

measured is a function of true brain activity, plus some measurement error (McIntosh and 

Gonzalez-Lima, 1994b).  Following Horwitz et al. (1995), activation in each area was 

summarised by the time course of the most significantly activated voxel and this defined the 

observed variables in the model.  These peak voxels were selected in two ways: using a 

group-based procedure (involving a conjunction of t-contrasts across subjects), and a 

procedure based on single subject analyses.  A latent variable was derived for each area using 

the peak voxel, by fixing the error term for the observed and latent variables each at 50% of 

the total variance (Hayduk, 1987; McIntosh and Gonzalez-Lima, 1994b).  The value of the 

error term determines how much of the variance in the data is to be explained by the model 

and can range from 35-80% (McIntosh and Gonzalez-Lima, 1994b; Bullmore et al., 2000).  

Four different error values (30%, 40% 50% and 80%) were tested, but no meaningful changes 

in the goodness-of-fit of the models or in the path coefficients were found relative to the 50%.  

The models for the 50% error term are reported here. Fixing error values at zero can reduce 

success in achieving a unique solution, whilst leaving the parameters free to vary can lead to 

indeterminacy in the final solution (McIntosh and Gonzalez-Lima, 1991; McIntosh and 

Gonzalez-Lima, 1994b).   
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The SEM models were applied to the inter-regional correlation matrices within each 

stimulus condition using the stacked model approach (McIntosh et al., 1994).  Stacking each 

stimulus condition provides a single model estimate.  Stacked modelling permits the 

evaluation of different models, and also improves the goodness of fit by increasing the 

degrees of freedom in the model (Hayduk, 1987).  For the group-based approach, the data for 

the six subjects were considered as one time course, so giving a generalised model fit.   

Model fits and path coefficients for each of the inter-connections, based on the 

correlations among brain areas, were calculated using maximum likelihood estimation (MLE) 

implemented in AMOS (Version 4, James L. Arbuckle).  Goodness-of-fit was assessed on the 

fully unconstrained models using χ2, Akaike Information Criterion (AIC) and Root Mean 

Square Error of Approximation (RMSEA) (Raykov and Widaman, 1995; Haugton et al., 

1997).  These three measures express different criteria for model goodness of fit (Jaccard and 

Wan, 1996).  The χ2 index is based on the difference between predicted and observed 

covariances.  RMSEA also reflects differences in covariance, whilst penalising for lack of 

parsimony; AIC is based on parsimony within a wider view of information theory. 

Given that the meaning of significant path coefficients in poorly-fitting models is 

unclear (MacCallum, 1995), we required the fully-unconstrained model to first be a good fit 

according to the above three measures.  To assess the significance of condition-specific 

changes in path coefficients, we tested the model, with the constraint of interest, against the 

fully unconstrained model, by taking the difference of their χ2 criteria (denoted χ2
diff).  This 

statistic allowed us to determine which of the path coefficients were either equal or different 

between stimulus conditions (McIntosh and Gonzalez-Lima, 1994b).  A bootstrapped 

standardised solution with replacement was used to evaluate whether the path coefficients 

differed significantly from zero.  The standardised solutions facilitate the between-stimuli and 

between-subjects comparison, since the magnitudes range from zero to one.  The bootstrapped 
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sample size was the same as the original sample.  Bootstrapping defines the 95% confidence 

intervals for the path coefficients, and offers a way to assess the stability of Maximum 

Likelihood Estimates for the original sample.  Pre-processing with a partial correlation 

procedure for removing within-subjects variation due to multiple observations (McIntosh and 

Gonzalez-Lima, 1991; McIntosh and Gonzalez-Lima, 1994a) did not give significantly 

different results from the above method. 

 

Results 

 

Location of peak voxels: Individual analyses revealed inter-subject variation in the locations 

of the peak of activation.  In HG in both hemispheres, the mean variation in the peak locations 

among subjects was 11 mm (range = 4 to 21 mm).  Shifts in the peak were slightly greater for 

the larger areas, alSTG and PT, where the peak locations were 15 mm and 17 mm apart 

respectively (ranges for alSTG = 5 to 36 mm, and for PT = 4 to 34 mm).  Peak locations for 

STS activation displayed the greatest inter-subject variability (e.g. 46 mm between subjects 4 

and 5).  Given that the group analysis summarises the data from the 6 subjects, it was 

unsurprising that peak coordinates identified by the group-based analysis differed slightly 

from those identified by each individual analysis, but fell within their range. 

Model fits: For the group-based voxel selection approach, a good model fit (χ2 = 2.05, p = 

0.84) was obtained for the right hemisphere data for the fully-unconstrained model.  For the 

left hemisphere, the data differed from the unconstrained model (χ2 = 77.11, p < 0.01), thus 

yielding a poor fit.  For the individual-based voxel selection procedure, the data for five 

subjects fit the model well (p > 0.05) in at least one hemisphere (subjects 3, 4 and 6 in the 

right hemisphere and subjects 2, 4 and 5 in the left hemisphere).  The RMSEA and the AIC 

agreed with the χ2 indices. 
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Condition-specific effects: Table 1 shows the condition-specific, bootstrapped, standardised 

path coefficients for well-fitting models.  The significance of condition-specific connectivities 

was assessed relative to all other conditions.   

The group-based modelling approach indicated that for the right hemisphere, path HG 

→ PT was higher for the static harmonic-complex condition (χ2
diff,1 = 5.09, p = 0.02) and that 

path PT → STS was lower for the static harmonic-complex and single tone conditions (χ2
diff,1 

= 15.36, p < 0.01) than for the other conditions.  

**Table 1** 

The individual-based approach indicated some inter-subject differences in condition-

specific connectivities.  For subject 2, HG → PT was higher in the static single tone condition 

(χ2
diff,1 = 4.79, p = 0.03), while PT → STS was lower in the static harmonic-complex 

condition (χ2
diff,1 = 9.74, p < 0.01).  For subject 3, alSTG → PT was higher in the FM 

harmonic-complex condition (χ2
diff,1 = 3.72, p = 0.05).  For subject 4, in the right hemisphere, 

HG → PT was lower in the static harmonic-complex and baseline conditions (χ2
diff,1 = 6.27, p 

= 0.01), while in the left hemisphere, alSTG → PT was marginally lower in the FM harmonic-

complex and baseline conditions (χ2
diff,1 = 2.99, p = 0.08).  Condition-specific effects were 

found for PT → STS in both hemispheres, but for different conditions.  On the right, PT → 

STS was higher for the static harmonic-complex and baseline conditions (χ2
diff,1 = 5.33, p = 

0.02) and, on the left, for the FM single tone condition alone (χ2
diff,1 = 3.86, p = 0.05).  

Subject 5 showed higher path strengths for HG → STS (χ2
diff,1 = 9.35, p < 0.01) in the static 

harmonic-complex and baseline conditions, and lower path strengths for alSTG → PT (χ2
diff,1 

= 4.65, p = 0.03) in both static tone conditions.  Finally, subject 6 showed a marginally higher 

connection for HG → alSTG in the FM harmonic-complex and baseline conditions (χ2
diff,1 = 

2.98, p = 0.08), and for PT → STS in the static tone and baseline conditions (χ2
diff,1 = 4.15, p 
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= 0.04).  Thus, while some significant condition-specific paths could be demonstrated, they 

were neither replicable across the two voxel selection approaches, nor across subjects.  For 

completeness, we also relaxed the constraints for the path connections for ill-fitting models 

and report the resulting path coefficients in Table 2.  If we consider all the models (both good- 

and ill-fitting) still no consistent pattern of condition-specific connectivities emerges.  This 

heterogeneity cannot be ascribed to differences in gender or in handedness across the subjects. 

 

**Table 2** 

 

Discussion 

The models in which the data fitted well suggest significant connections between the 

primary area (HG) and non-primary areas, including PT and alSTG.  Several significant 

condition-specific effects occurred within these paths.  However, the precise pattern of effects 

and model goodness-of-fit were not consistent across subjects nor was it consistent between 

the group- and individual-based analyses. The inconsistencies in the SEM results may reflect 

individual differences in the way that the auditory stimuli are processed as the absolute 

pattern of activation in the fMRI analysis and the path coefficients in the SEM analysis both 

varied across subjects. However, on the basis of the current data, it is not possible to 

determine the extent to which the differences in activation patterns and path connectivities 

reflect processing differences or differences in the noise of the MR signal that contributes to 

the variance in the data. One would expect that the group-based analysis might reflect some of 

the features shown by the individual-based analyses. However, given that this was not the 

case in this experiment, we do not wish to place a strong interpretation on the results of the 

group-based analysis.  The inconsistencies in condition-specific connectivities generate 

difficulty in interpreting the observed patterns of stimulus-evoked connectivities.  Below, we 
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further discuss three possible classes of explanation for the lack of reproducibility in the 

model fits and in the pattern of connectivities for well-fitting models. 

Anatomical model: Lack of generalisation in the condition-specific connectivities across 

subjects may arise if the anatomical model is incorrectly specified.  Although our model is 

informed by primate neuroanatomy, the architecture of human and primate brains may not be 

directly analogous.  Given that sulcal morphology is a poor marker for functional boundaries, 

there is also an opportunity for inaccuracies in estimating the locations of functional areas. 

The anatomical model defined in the present study reflects our best estimation using current 

neuroanatomical knowledge, but, given the variability in the goodness-of-fit indices, it is 

unlikely to reflect the true anatomical network, which is likely to be much more complex. 

Voxel selection played an important role for the success of modelling, because changes to the 

voxel selection had material effects on the goodness-of-fit of the model and the strength of 

path coefficients.  The effect of voxel selection within the four areas of the SEM result may 

indicate the presence of functional sub-divisions within each of the areas modelled.  For 

example, PT may encompass at least three different fields (Rivier and Clarke, 1997).  

Difficulties in the precise attribution of voxels to small functional areas are likely to be met in 

other sensory cortices where such specific within-modality processing is studied. 

Experimental design: The main focus of the current study was on the evaluation and mapping 

of differential responses within areas of the auditory cortex to basic acoustical features such 

as harmonicity and FM.  Peak voxels selected were those that displayed the greatest response 

to all tone stimuli relative to the baseline (using the t-contrast) and so the auditory network 

was activated by all tone stimuli to a greater or lesser extent.  The SEM may therefore 

evaluate connectivity differences between those voxels having the strongest non-specific 

auditory functional activation rather than between those having a strong differential stimulus 

response.  Consequently, the ability to demonstrate stimulus-evoked changes in the effective 
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connectivity within this network is likely to rely on subtle differences in the correlation 

matrix.  

Necessity for a good model fit: A good-fitting unconstrained model indicates that the proposed 

anatomical network provides an appropriate explanation for the data and provides a 

conservative basis for seeking condition-specific connectivities. Evaluation of condition-

specific differences in the path coefficients are based on finding a significant difference 

between the fit indices for the unconstrained (assuming equality across conditions) and the 

constrained (assuming a difference across conditions) models. Constraining a model generally 

improves model fit, but its significance depends on the magnitude of the change in the χ2
diff 

value. Paradoxically, an ill-fitting unconstrained model, with a high χ2 value, provides much 

more scope for freeing model parameters and hence for significantly improving the model fit 

in the constrained version of the model. Consequently, for an ill-fitting unconstrained model, 

condition-specific effects are more likely, but may not be robust. In contrast, for an 

unconstrained model that already provides a good fit to the data, there is less scope for further 

improvement to the model fit by allowing the path coefficients to vary across conditions. 

Thus, any condition-specific effects that emerge are more likely to be genuine. While some 

researchers continue to interpret the parameters and to infer functional significance for 

stimulus-specific connectivities in models that do not give good overall fit, our more cautious 

approach would be to reject models that do not consistently fit the data well across subjects.  

Although by rejecting ill-fitting models we do not interpret all statistically significant path 

coefficients (elevating the risk of Type I error), this conservatism prevents us from drawing 

conclusions about stimulus-induced connectivity that are more appropriately attributed to 

subject-specific effects (Type II error).  
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Conclusion 

Using SEM, the fMRI data reported here provided a good fit to the anatomical model in seven 

out of the 14 cases studied.  Model interpretations were variable across subjects depending on 

the analysis used (group or individual) and on the voxel selection procedure.  Other 

differences in the correlation structure may arise from the sparse temporal sampling of the 

response.  Despite these specific obstacles, our finding of 50% good model fits leads us to be 

cautiously optimistic about the future contribution of connectivity analyses to hearing 

research.   
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Figure 1 - Representation of four key centres of activation in each hemisphere in the anatomical 

model. HG, the primary auditory region on Heschl’s gyrus; PT, the planum temporale; 

alSTG, anterolateral superior temporal gyrus; STS, the dorsal bank of the superior 

temporal sulcus.  White arrows denote the hypothesised links between these areas.  

The anatomical model shown here is for the left hemisphere, but applies equally to the 

right. 



 

Table 1 - Strength of the standardised path coefficients between anatomical areas for the good- 

fitting, unconstrained models. 

 

Coefficients are reported for the group-based modelling (right hemisphere only) and for the 

individual-based modelling (subjects 2-6, left and right hemispheres where appropriate).  

Coefficients were tested for significance against all other conditions (p < 0.1) with the exact 

significance of these condition-specific connectivities being reported in the Results.  The nature of 

these differences are denoted by the superscripted labels, described below. 

1Higher path coefficient for right HG → PT in the static harmonic-complex condition for the 

group model. 

2Lower path coefficient for right PT → STS in both static single tone conditions for the group 

model. 

3Subject 2, higher path coefficient for left HG → PT in the static single tone condition. 

4Subject 2, lower path coefficient for left PT → STS in the static harmonic-complex condition. 

5Subject 3, higher path coefficient for right alSTG → PT in the FM harmonic-complex condition. 

6Subject 4, lower path coefficient for right HG → PT in the static harmonic-complex and baseline 

conditions. 

7Subject 4, lower path coefficient the left alSTG → PT in the FM harmonic-complex and baseline 

conditions. 

8Subject 4, higher path coefficient for right PT → STS in the static harmonic-complex and 

baseline conditions. 

9Subject 4, higher path coefficient for left PT → STS in the FM single tone condition. 

10Subject 5, higher path coefficient for left HG → STS in the static harmonic-complex and 

baseline conditions. 

  



11Subject 5, lower path coefficient for left alSTG → PT in both static tone conditions. 

12Subject 6, higher path coefficient for right HG → alSTG in the FM harmonic-complex and 

baseline conditions. 

13Subject 6, higher path coefficient for right PT → STS in the static single tone and baseline 

conditions. 

 

  



Table 2 - Strength of the standardised path coefficients between anatomical areas for the poor- 

fitting, unconstrained models. 

 

Coefficients are reported for the group-based modelling (left hemisphere only) and for the 

individual-based modelling (subjects 2-6, left and right hemispheres where appropriate). 
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