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This study aimed to determine whether subject-specific individual muscle models for the ankle plantar flexors 
could be obtained from single joint isometric and isovelocity maximum torque measurements in combination 
with a model of plantar flexion. Maximum plantar flexion torque measurements were taken on one subject at 
six knee angles spanning full flexion to full extension. A planar three-segment (foot, shank and thigh), two-
muscle (soleus and gastrocnemius) model of plantar flexion was developed. Seven parameters per muscle were 
determined by minimizing a weighted root mean square difference (wRMSD) between the model output and 
the experimental torque data. Valid individual muscle models were obtained using experimental data from only 
two knee angles giving a wRMSD score of 16 N m, with values ranging from 11 to 17 N m for each of the 
six knee angles. The robustness of the methodology was confirmed through repeating the optimization with 
perturbed experimental torques (±20%) and segment lengths (±10%) resulting in wRMSD scores of between 13 
and 20 N m. Hence, good representations of maximum torque can be achieved from subject-specific individual 
muscle models determined from single joint maximum torque measurements. The proposed methodology 
could be applied to muscle-driven models of human movement with the potential to improve their validity. 
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Computer simulation models are widely used to study 
neuromuscular aspects of human movement. The models 
are commonly muscle-driven in which the force gener­
ating capacity of the muscle is described by a Hill-type 
model using muscle parameters scaled from the literature 
based on an individual's anthropometrics and maximum 
isometric torque, for example, Jacobs et al. (1996). Litera­
ture parameters typically originate from animal or human 
cadavers, that is, quite different populations to those of 
interest, and a wide range of values have been reported. 
Several studies have highlighted the sensitivity of muscle 
force prediction to the parameter values selected, for 
example, Scovil & Ronsky (2006). Hence, although 
muscle-driven computer simulation models have strong 
potential for the assessment of human performance (e.g., 
in estimating internal forces), uncertainty in the accuracy 
of the individual muscle models that contribute to these 
simulation models can result in their poor evaluation 
and threaten the validity of the simulation model outputs 
(Yeadon & Challis, 1994). 
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A n alternative is to use torque-driven models in 
which all the muscles crossing a joint are lumped together 
to form a single torque generator, for example, King et 
al. (2006). The advantage is that subject-specific torque 
functions can readily be obtained from maximum torque 
measurements on an isovelocity dynamometer (Yeadon 
et al., 2006); the disadvantage is limitations in the type of 
questions that can be addressed since individual muscle 
contributions cannot be resolved. This study aimed to 
determine whether the established approach to obtain 
subject-specific torque profiles could be extended to 
provide subject-specific individual muscle models for 
use in muscle-driven models of human movement with 
the potential to improve their validity. 

Methods 

Individual muscle parameters for the ankle plantar flex­
ors, (the monoarticular soleus and biarticular gastrocne­
mius) were obtained from maximum torque measure­
ments at a single joint. As knee angle is varied, the ability 
of the gastrocnemius to generate plantar flexion torque 
also varies while that of the soleus remains constant. 
Thus, the individual muscle parameters can be resolved 
by measuring ankle plantar flexion strength at different 
knee angles and using this data in a systematic optimi­
zation approach applied to a musculoskeletal model of 
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plantar flexion. The number of knee angles required to 
gain valid individual muscle models, and the robustness 
of the methodology to perturbations in the experimental 
dataset were investigated. 

One male athletic subject (age 36, height 1.78 m, 
mass 91 kg) with no history of neural or musculoskeletal 
injuries to the lower leg gave written informed consent as 
approved by Loughborough University Ethical Advisory 
Committee. A CON-TREX Multijoint System (CMV 
AG, Switzerland) isovelocity dynamometer was used to 
measure plantar flexion torques for maximal isometric, 
eccentric and concentric contractions. The subject was 
positioned supine on the dynamometer with his hips 
and upper body strapped tightly down, the foot of his 
dominant leg strapped tightly to the dynamometer and 
his lateral malleolus aligned with the crank arm axis 
of rotation. A series of isometric and isovelocity ankle 
plantar flexion trials were collected at six knee angles 
(168°, 145°, 135°, 125°, 110° and 45°, where 180° cor­
responded to a straight leg). These angles did not include 
the very extremes in the subject's range of motion to 
avoid possible neural inhibition effects (Forrester & 
Pain, 2010). For each knee angle, trials were performed 
at six isometric ankle angles covering the full range of 
motion and six repeated concentric-eccentric contrac­
tions at angular velocities between 50 and 300 7s. The 
isovelocity trials involved two to five repetitions of a 
concentric-eccentric cycle where the initial repetition 
was designed to provide the preactivation necessary to 
ensure that the central cycles were maximal (Yeadon et 
al., 2006). Knee angle was measured using a mechanical 
goniometer and ankle angle was assumed to be the same 
as crank angle. The subject was given a rest interval of at 
least 90 s between trials and 5 min between knee angles 
and he was verbally encouraged to maximally perform 
plantar flexion throughout. Finally, an isometric and an 
isovelocity trial from the first knee angle were repeated 
to test for reliability and fatigue. 

The dynamometer data were sampled at 512 Hz and 
low pass filtered at 8 Hz using a fourth-order zero-lag 
Butterworth filter. For each isometric trial, the maximum 
torque value was determined. For each isovelocity trial, 
the concentric contraction and eccentric contraction 
with highest isovelocity torques were selected and the 
torque-angle data fitted using quintic splines (Wood & 
Jennings, 1979) to give values every 1°. This process 
resulted in a three-dimensional array of ankle plantar 
flexion torque-angle-angular velocity data for each of 
the six knee angles and provided the experimental input 
to the muscle parameter optimization process. 

A planar three rigid segment (foot, shank, thigh; 
Figure 1) model of plantar flexion was developed with 
segment lengths obtained from anthropometric mea­
surements. The soleus (SOL) and gastrocnemius (GAS) 
were assumed to provide plantar flexion torque with the 
gastrocnemius also crossing the knee. A Hill-type model 
comprising a contractile element and series elastic ele­
ment described the behavior of each muscle. Maximum 
voluntary muscle force (F) and total plantar flexion torque 
(Tpf) and were calculated from 

F = act xFo xfL xfv 

T = F x r +F x r 
±PF 1 GAS ^ 'GAS ^ 1 SOL ^ 'SOL 

(1) 

(2) 

where voluntary activation was assumed to be maximal 
throughout (act = 1), Fa was maximum isometric force, 
the normalized force-length function fL was modeled 
as a quadratic (Jacobs et al., 1996), and the normalized 
tetanic force-velocity function fv was described by two 
hyperbolae representing the concentric and eccentric 
phases respectively (Yeadon et al., 2006). The series 
elastic element was assumed to have linear stiffness over 
the experimental range and a stretch of 5% at maximum 
isometric force (Finni & Komi, 2002). Moment arm r was 

THIGH 
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Figure 1 — Schematic of the planar three-rigid-segment (foot, shank, thigh), two-muscle (soleus and gastrocnemius) model for 
ankle plantar flexion. Ankle angle (9pF) is measured from the neutral position; dorsiflexion is positive and plantar flexion is negative. 
Knee angle (QK) is measured as the internal angle between the shank and thigh. 
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modeled as a quadratic function of joint angle (Visser et 
al., 1990; Rugg et al., 1990) and the total length of the 
muscle-tendon unit was obtained from Friederich and 
Brand (1990). Both moment arm and muscle-tendon 
unit length were scaled to the subject segment lengths. 

The force production model for each muscle was 
described by seven parameters. The force-velocity 
relationship was defined by the following: maximum 
eccentric force, maximum isometric force, maximum 
shortening velocity and curvature of the concentric 
hyperbola (the ratio of slopes at zero angular velocity 
was taken to be 4.3; Huxley, 1957). The force-length 
relationship was defined by the width of the curve and 
optimal length. Behavior of the series elastic element 
was defined by a single parameter: slack length. These 
fourteen muscle parameter values were optimized to 
minimize the difference between experimental and model 
plantar flexion torques. The optimization used a genetic 
algorithm (Chipperfield et al., 1994), which is known as 
a robust means for obtaining a global optimum in mul-
tivariable problems with complex cost surfaces (Haupt 
& Haupt, 2004). The cost function was a weighted root 
mean square difference (wRMSD), which forced 90% of 
the experimental data to lie beneath the model strength 
surface. The weighting was in recognition that experi­
mental torque can underestimate maximum torque. The 
genetic algorithm required an upper and lower bound for 
each parameter, which were selected to encompass the 
range of literature values (Table 1). 

To investigate the validity of the resulting muscle 
models and the robustness of the methodology, optimi­
zations were conducted for the following conditions: (1) 

using only the experimental data from a reduced number 
of knee angles (from all six down to only one); (2) per­
turbing the experimental data through changing torques 
by ±20% and segment lengths by ±10%. 

Results 

Optimizations using the experimental torque data from 
between one and six knee angles gave wRMSD scores 
ranging from 9 to 16 Nm, corresponding to 5-8% of 
maximum isometric torque at the most extended knee 
angle (Figure 2 and Table 2). Optimizations using two or 
more knee angles gave similar and consistent wRMSD 
values across all six individual knee angles regardless 
of whether they had been included in the optimization. 
However, for the single knee angle optimization, the 
wRMSD values were over a factor of 10 higher at knee 
angles distant from that used in the optimization. 

Based on the above results, the optimizations for 
the perturbed experimental torques and segment lengths 
used only the data from two knee angles (most extended 
and most flexed). These gave wRMSD scores ranging 
from 13 to 20 Nm, corresponding to 7-8% of maximum 
isometric torque at the most extended knee angle (Figure 
3 and Table 3). Furthermore, the wRMSD values across 
all six individual knee angles were consistently in the 
range 8-23 Nm. 

The repeated trials gave peak torque measurements 
within 5% of the original values, confirming that fatigue 
effects were small. 

Table 1 Upper (UB) and lower (LB) bounds used for each muscle parameter in the optimizations 

Optimization 

Isometric 

Dynamic 

Parameter 

Ltd (m) 

Width (-) 

Lopt (m) 

F„(N) 

Ltd (m) 

Width (-) 

L„pt (m) 

F„(N) 
y max V-L'opt S ) 

^ecc ' "o V ) 

V / V (-) 
y c ' y max V ) 

SOL GAS 

LB UB LB 
0.26 0.38 0.35 

0.28 1.12 0.28 

0.029 0.077 0.034 

2430 6470 840 

Isometric optimization value, ±5% 

Isometric optimization value, ±5% 

Isometric optimization value, ±5% 

Isometric optimization value, ±15% 

3.0 12.0 3.0 

1.0 1.6 1.0 

0.15 0.50 0.15 

UB 
0.51 

1.12 

0.090 

2250 

12.0 

1.6 

0.50 

Literature Source 
Bohm et al. (2006) 

Winters & Woo (1990) 

Bohm et al. (2006) 

Winters & Woo (1990) 

— 
— 
— 
— 
Winters & Woo (1990) 

Yeadon et al. (2006) 

Yeadon et al. (2006) 

Note. Ltd = tendon slack length; width = width of force-length curve; L o p t = optimal fiber length; F 0 = maximum voluntary isometric force; V m a I 

= maximum shortening velocity; F ^ = maximum voluntary eccentric force; - V c = vertical asymptote of concentric hyperbola. The optimizations 
were performed in a two-stage process (isometric followed by dynamic) as described in Forrester et al. (2011). 



754 Conceigao et al. 

Table 2 Soleus and gastrocnemius muscle parameters obtained 
from the optimizations using the experimental data from different 
combinations of knee angles 

Muscle 

SOL 

GAS 

w R M S D 

Parameter 

Ltd (m) 

Width (-) 

L0pt (m) 

Fo(N) 

'max V-L ôpt S ) 

i~ecc ' ^ o \ ) 

* c ' * max \ ) 

Ltd (m) 

Width (-) 

L„pt (m) 

F 0 (N) 

*max \t^opt ^ ) 

tecc ' ^ o V / 

V / V (-) ' c ' ' max V / 

score (N-m) 
(i.e., included 8 K only) 

w R M S D (N-m) 

for the 

individual 6K 

168° 

155° 

145° 

135° 

110° 

45° 

Overall w R M S D (N-m) 
(i-e., all 6 6K) 

Experimental 

6 x 6 K 

0.276 

0.936 

0.0773 

3051 

11.9 

1.39 

0.338 

0.418 

0.437 

0.0513 

1728 

10.8 

1.13 

0.155 

16 

17 

12 

14 

16 

13 

23 

16 

2ax6K 

0.279 

0.919 

0.0728 

3502 

11.7 

1.10 

0.423 

0.424 

0.436 

0.0447 

1686 

11.9 

1.13 

0.254 

16 

17 

11 

13 

15 

11 

16 

14 

2bx6K 

0.286 

0962 

0.0680 

3849 

11.7 

1.18 

0.394 

0.447 

0.776 

0.0469 

2079 

11.8 

1.13 

0.253 

9 

13 

8 

11 

14 

10 

15 

12 

1 X 6 K 

0.293 

0.624 

0.0485 

3084 

12.0 

1.42 

0.290 

0.437 

1.201 

0.0699 

1927 

12.0 

1.55 

0.415 

10 

10 

31 

31 

23 

153 

389 

50 

Note. (1) Experimental: 6 x 9K = 168°, 155°, 145°, 135°, 110° and 45°; 2a x 9K = 168° and 45°; 2b x 9K = 
155° and 110°; 1 X 9K = 168°. (2) In the third block of numbers, the gray boxes contain w R M S D values for 
knee angles that were not included in the optimization, and the white boxes contain values for knee angles 
that were included. 

Discussion 

This study aimed to determine whether subject-specific 
individual muscle models for the ankle plantar flexors 
could be obtained from single joint isometric and isove-
locity maximum torque measurements in combination 
with a model of plantar flexion, and whether the meth­
odology was suitable for application to muscle-driven 
models of human motion. It was shown that a robust set 
of muscle parameters could be obtained from strength 
measurements at only two knee angles, giving a wRMSD 
score of 16 N-m and values for the individual knee angles 
of between 11 and 17 N-m. These individual knee angle 
scores include the two angles used in the optimization 
process and a further four knee angles not used in the 
optimization, supporting the validity of the muscle 

models obtained. The optimizations performed with the 
experimental torques and segment lengths perturbed 
resulted in similar wRMSD scores to the unperturbed 
case, of between 13 and 20 N-m, supporting the robust­
ness of the proposed methodology. The requirement for 
plantar flexion measurements at only two knee angles 
suggests that this is a realistic and robust methodology for 
obtaining subject-specific individual muscle models for 
application in muscle-driven models of human motion. 

For the neutral ankle position and two most flexed 
knee angles (110° and 45°), the gastrocnemius did not 
contribute to ankle plantar flexion as the muscle fibers 
were too short. Thereafter, the gastrocnemius contribution 
increased toward knee extension, which resulted in an 
approximately 65% increase in total plantar flexion torque 
between the most flexed and extended knee angles (45° 
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Table 3 Soleus and gastrocnemius muscle parameters obtained from 
the optimizations with perturbations of ±20% in experimental strength 
and ±10% in segment lengths. All optimizations are based on the 
experimental data from the two extreme knee angles (2a in Table 2). 

Muscle Parameter 

Ltd (m) 

Width (-) 
L„pt (m) 

SOL F0 (N) 

'max V-L ôpt S ) 

"ecc ' "o V ) 

V / V (-) 
y c ' y max V ) 

Ltd (m) 

Width (-) 
L„pt (m) 

GAS F0 (N) 
y max V-L ôpt S ) 

^ecc ' ±0 \ ) 

y c ' y max \ ) 

wRMSD score (N-m) 
(i.e., included 8K only) 

168° 
wRMSD 

155° 
(N-m) 

145° 
for the l 3 5 o 

individual 11 „ 0 

9K 450 

Overall wRMSD (N-m) 
(i.e., all 6 6K) 

Experimental 
Original 120% 80% 110% 90% 
2a x 8K Strength Strength Length Length 
0.279 0.279 0.277 0.327 0.236 
0.919 0.920 0.881 1.052 0.799 
0.0728 0.0687 0.0797 0.0767 0.0694 
3502 3891 2989 3526 3601 
11.7 12.0 11.7 11.9 12.0 
1.10 1.13 1.10 1.10 1.21 

0.423 0.409 0.344 0.397 0.414 
0.424 0.425 0.425 0.481 0.373 
0.436 0.439 0.436 0.543 0.437 
0.0447 0.0461 0.0443 0.0495 0.0389 
1686 2179 1417 1604 2144 
11.9 11.8 11.9 11.9 11.3 
1.13 1.34 1.13 1.10 1.12 

0.254 0.251 0.241 0.278 0.201 

16 20 13 17 17 

17 
11 
13 
15 
11 
16 

19 
12 
14 
17 
16 
23 

13 
8 
10 
12 
9 
13 

16 
11 
13 
15 
11 
17 

17 
11 
13 
15 
12 
17 

14 16 11 14 14 

Note. (1) Experimental: 2a X 8K = 168° and 45°. (2) In the third block of numbers, the gray boxes contain 
w R M S D values for knee angles that were not included in the optimization, and the white boxes contain values 
for knee angles that were included. 

and 168°). This increase is similar in magnitude to previ­
ous studies that have measured plantar flexion torques at 
different knee angles; Cresswell et al. (1995) reported a 
68% increase in plantar flexion torque over a knee angle 
range of 60° to 180° and Shinohara et al. (2006) reported 
a 43% increase between knee angles of 90° and 180 . It is 
perhaps unsurprising that the optimization for the single 
(extended) knee angle, reflecting what is commonly used 
to obtain plantar flexion strength in torque-driven models, 
gave a reasonable fit to the experimental data for the four 
most extended knee positions but a much poorer fit for the 
two most flexed knee positions (110° and 45°) where the 
gastrocnemius contribution becomes negligible (Table 2). 

The muscle parameter values fell within the range 
reported in the literature (Cresswell et al., 1995; Muraoka 
et al., 2005). Maximum shortening velocities were 
similar to those currently used in simulation modeling 
(10-14 optimal fiber lengths per second) but higher 
than those obtained from in vitro measurements (Cook 
& McDonagh, 1996). The ratio of maximum isometric 
forces, (F0

S0L / F0
GAS) was between 1.7 and 2.2 (Tables 

2-3), which is similar or slightly higher compared with 
typical PCS A ratios reported in literature based on in vivo 
measurements; for example, Albracht et al. (2008) mea­
sured the ratio to be 1.6 ± 0.4 and Oliveira & Menegaldo 
(2010), 1.7 ± 0.5. The ratio of maximum eccentric force 
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Figure 2 — Results from the optimizations using the data from all six knee angles. Maximum torque-angle-angular velocity and 
cross-sections through maximum torque-velocity and isometric torque-angle for knee angles of (a) 168°, (b) 135°, (c) 45°. The 
graphs illustrate the model predictions of total plantar flexion torque (thick solid line) and individual contributions of the soleus 
(thin solid line) and gastrocnemius (thin dashed line), and the corresponding experimental data (open circles). 

to maximum isometric force (1.1-1.4) was lower than 
that reported in the literature from in vitro measurements 
(1.5-1.8), which is unsurprising since in vivo measure­
ments include neural inhibition (Westing et al., 1991). 
Soleus fiber length was greater than that of the gastroc­
nemius, in contrast to in vivo measurements reported in 
the literature (e.g., Maganaris et al., 1998; Chow et al., 
2000); however, the paucity of in vivo measurement data 
on athletic subjects suggests that these deviations are not 
sufficient to indicate major concern. Furthermore, these 
comparisons should recognize the errors associated with 
both cadaver and in vivo direct measurements of muscle 
parameters (Cutts, 1988; Redl et al , 2007). Notably, 
although this study included validation of the individual 
muscle models obtained, there was no direct validation 
of the parameter values. Hence, the muscle parameters 
reported are not necessarily subject specific, only their 

combination in the form of the torque-angle-velocity 
muscle models. One option would be to use MRI to 
determine and/or validate some parameter values, as 
has been done in previous studies (Hasson et al., 2008). 

A number of the individual muscle model assump­
tions require discussion. Firstly, it was assumed that 
the triceps surae generated the entire plantar flexion 
moment; that is, contributions from the other plantar 
flexors and antagonist muscle activity were neglected. 
The triceps surae accounts for approximately 90% 
of the total positive plantar flexion torque capacity 
(Spoor et al , 1990; Ward et al , 2009), while previ­
ous EMG measurements during maximal voluntary 
dynamometer strength testing have reported antagonist 
muscle activity to be negligible provided that the sub­
ject is accustomed to maximal dynamometer testing 
(Winter & Challis, 2008; Forrester and Pain, 2010). 



eK = 168° eK = 45° 

400 

300 

200 

100 

400 

300 

200 

100 

0 

«PF<°s-1> 

400 

300 

300 

103 

0 

"^CO 

400 

300 

200 

100 

0 

0 __ " 

-40 -20 

o 

> 

400 800 

—VL 
0 400 800 

«PF(°s"1) 

»PF<° S > 

=7"̂  

400 800 

20 

300 

E 
5. 200 

Ll. 

1-
100 

s* 

s. 
stT 

£>^ 

j ^ * " " 
S^ 

-40 -20 0 20 

300 
E 
£• 200 

LL 
•_?• 

100 

*****^ ^ ' -— 
-40 -20 

V " 

300 

E 
5. 200 
It 

1-
100 

y* 
J & ^ 

^s*^ 
*s^ 

_^ 
s«^ z~—-

V<i 

300 

E 
5. 200 

LL 

H 
100 _ . 

-40 -20 0 20 

400 

300 

200 

100 

0 

0 ( ̂ £ 0 ^ 
^ i ^ 

400 0 400 

»PF(*s-1) 

400 

300 

200 

100 

0 
-400 0 400 

»PF(°s-1) 

400 

303 

200 

103 

- P P C O 
400 

300 

200 

100 

0 
-400 0 400 

»PF('s-1l 

«i:n 

oo . 

o < * ^ % 

800 

o - • ; > < l ^ o ^ ^ 

0 "• 
* ^ o 

Figure 3 — Results from the perturbed optimizations using only the experimental data from the two extreme knee angles. Maximum torque-velocity and isometric torque-angle for knee 
angles of 168° (left hand column) and 45° (right hand column) for (a) original optimization; (b) and (c) ±20% in experimental torques; (d) and (e) ±10% in segment length. The graphs illustrate 
the model predictions of total plantar flexion torque (thick solid line) and individual contributions of the soleus (thin solid line) and gastrocnemius (thin dashed line), and the corresponding 
experimental data (open circles). 
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Secondly, the medial and lateral heads of the gastroc­
nemius were combined. Both heads have very similar 
flexion-extension plane moment arms over the working 
knee angle range (~175° to 55°; Buford et al., 1997) and 
to separate the heads would have required the use of lit­
erature data for their relative contributions, compromising 
the subject-specific nature of the resulting muscle models. 
Thirdly, scaling moment arms and muscle-tendon unit 
lengths based on subject segment lengths is reported to 
work well for some joints (elbow: Murray et al., 2002) 
but not others (knee extensors: O' Brien et al., 2009) with 
the situation for the plantar flexors unclear. In this study, 
the subject had similar anthropometrics to the data from 
which the values were scaled, suggesting that any errors 
associated with the scaling method are likely to have been 
small. However, when this is not the case, then alternative 
means for estimating moment arms and muscle-tendon 
unit lengths may need to be investigated, such as by using 
M R I (Sheehan, 2007). 

The methodology was developed from measure­
ments on a single subject. From previous work it is 
expected that very similar experimental maximum 
torque-velocity-angle relations would be obtained from 
other subjects (Anderson et al., 2007). Hence the results 
from the range of optimizations in this study support the 
robustness of the proposed methodology and applicabil­
ity to a wider population. Additional subjects would add 
little to the current study, but in future work it may be of 
interest to compare intersubject variability in individual 
muscle models. 

The results presented herein support the robustness 
of the proposed methodology for determining subject-
specific individual muscle models for the ankle plantar 
flexors. Furthermore, this methodology can realistically 
be applied in muscle-driven computer simulation models 
of human movement and has the potential to improve 
their validity. The proposed approach generates individual 
muscle models that provide maximum strength (at the 
joint and muscle level) that is specific to that subject, in 
contrast to literature-based muscle models, which may 
not provide accurate maximum strength representation for 
the subject. This is particularly relevant when applying 
computer simulation modeling to maximal movements 
where strength and power limitations are likely to affect 
the outcome of a simulation and optimization. 
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