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Abstract—In this paper, we employ a directed hypergraph model
to investigate the extent to which environmental variability influences
the set of available biochemical reactions within a living cell. Such
an approach avoids the limitations of the usual complex network
formalism by allowing for the multilateral relationships (i.e. con-
nections involving more than two nodes) that naturally occur within
many biological processes. More specifically, we extend the concept
of network reciprocity to complex hyper-networks, thus enabling
us to characterise a network in terms of the existence of mutual
hyper-connections, which may be considered a proxy for metabolic
network complexity. To demonstrate these ideas, we study 115
metabolic hyper-networks of bacteria, each of which can be classified
into one of 6 increasingly varied habitats. In particular, we found
that reciprocity increases significantly with increased environmental
variability, supporting the view that organism adaptability leads to
increased complexities in the resultant biochemical networks.
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I. INTRODUCTION

Many biological systems can be described in terms of their
interaction patterns [1]. These systems are typically modelled
as simple or directed graphs and consist of a set of nodes
representing the objects under investigation, e.g. metabolites,
proteins or genes, and a set of edges representing relationships
between node pairs. However, many biological processes have
more complex relationships involving more than two nodes
[2]. As an example, consider metabolic networks, which
consist of many reactions of the form A + B −→ C + D,
involving four (or more) different metabolites. In this case,
traditional network theory provides an inadequate description
of the full chemical reaction system in at least two ways: (i)
a chemical reaction system may be represented as a simple
graph in a variety of different ways [3], [4], the choice of
which accentuates different aspects of the metabolic process;
and (ii) information is inevitably lost when reducing the full
system to a simple graph [5], and so one risks oversimplifying
the system of interest in a potentially significant way.

Hypergraphs provide an attractive alternative since they al-
low for the description of more general interactions consisting
of more than two nodes. Metabolic networks are particularly
amenable to such an approach, with nodes representing differ-
ent metabolites and hyperedges, that is sets of nodes, repre-
senting chemical reactions. Moreover, for metabolic networks
it is useful to distinguish between directed and undirected
hypergraphs, as under normal physiological conditions many
reactions can be considered as being irreversible.

Whilst the topological characterisation of complex networks
has received considerable attention over the past decade [6],
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[7], the theory of complex hyper-networks is far less devel-
oped, which, coupled with the increased algorithmic complex-
ities that accompany such an approach, perhaps explain why
this more natural framework has not been more widely adopted
in the study of biological networks to date. Recently, however,
a number of studies have attempted to extend complex network
reasoning to this more complicated setting. For example,
the commonly used clustering coefficient, a measure of the
probability that any two neighbours of a given node are
also neighbours, has been extended to hypergraphs [8], [9].
In [9] in particular, it was shown that the inverse scaling
between network degree and clustering, typically reported
in standard network analyses of metabolism and considered
indicative of a hierarchical network structure [1], may actually
be an artefact due to misrepresentation. Another important
topological parameter that has been generalised to this more
complicated setting is the subgraph centrality [8]. Centrality
measures provide a measure of the relative importance of
each node within a network, and the generalisation given
in [8] provides such a characterisation for the nodes of a
hyper-network. Other notable works include the extension of
random graph models such as Erdös-Rényi and Barabási-
Albert to hyper-networks [10]; the use of random walks to
infer information flow and network architecture [11], [12];
and novel community detection algorithms for determining
modular hyper-network structure [13], [14].

In this work we extend the concept of reciprocity to complex
hyper-networks, and use it to study metabolism for a large co-
hort of bacterial species. Reciprocity measures the proportion
of directed links to the total number of links in a network
[15], and many real-world networks have been shown to
display non-random reciprocity [16]. In the case of metabolic
networks, reciprocity may be considered a proxy for how ‘far-
from-equilibrium’ the biochemical reaction system is, thus
enabling us to quantify the effect of environmental variability
on the ‘global reversibility’ of reactions. More generally, the
extension of complex network concepts, such as reciprocity,
promises to provide further insight and understanding into
the many complex biological systems for which a standard
network representation provides an inadequate description.

The paper is organised as follows. In §II we start with a
discussion of the necessary theoretical prerequisites regarding
hypergraphs, before introducing the concept of reciprocity for
complex hyper-networks. A description of the data and our
experimental results is given in §III. The paper conclusion is
given in §IV.

II. COMPLEX HYPER-NETWORKS

A. Preliminaries
A hypergraph is a pair of objects H = (V,E), where

V = {v1, v2, ..., vn} is the set of n nodes and E =



{E1, E2, ..., Em} is the set of m hyperedges. Each hyperedge
is made up of subsets of V , such that

⋃
i Ei = V and

Ei 6= ∅. For an undirected hypergraph, two nodes vi and vj are
considered adjacent to one another if there exists a hyperedge
k, such that vi ∈ Ek and vj ∈ Ek. If, as we do in this
work, one considers directed hypergraphs then each hyperedge
is further subdivided into two sets - the tail set X and the
head set Y , allowing us to distinguish between bidirectional
and unidirectional relationships. Directed hyperedges are more
precisely referred to as hyperarcs.

The number of hyperarcs containing a vertex, vi say, in the
tail set is called the out-degree of that vertex, dout(vi), and
the number of hyperarcs containing vi in the head set is called
the in-degree of that vertex, din(vi). More formally, we have

dout(vi) = |{Ek ∈ E : vi ∈ Xk}|
and

din(vi) = |{Ek ∈ E : vi ∈ Yk}|,
where |x| denotes the cardinality of the set x.

A directed hypergraph can be represented by a variety of
different matrices [17], the most popular of which is the
incidence matrix, an n × m matrix C(H) representing the
relationships between the n nodes and m hyperarcs. The
entries of the matrix C(H) are given by

Cij =





1, if vi ∈ Xj ,

−1, if vi ∈ Yj ,

0, otherwise,

that is, Cij equals 1 or −1 depending upon whether vi belongs
to the head set or tail set of the jth hyperarc, respectively
(see Figure 1(c) for an example). Alternatively, a directed
hypergraph can be represented by two incidence matrices
- the negative (or outer) incidence matrix C−(H) and the
positive (or inner) incidence matrix C+(H), representing the
tail sets and head sets of the hyperarcs respectively. That is, the
elements of C−(H) are equal to 1 if vi ∈ Xj and 0 otherwise.
The elements of C+(H), on the other hand, are equal to 1 if
vi ∈ Yj and 0 otherwise [11].

Another important matrix representation is that of the ad-
jacency matrix, A(H), whose ijth element is given by the
cardinality of the set of hyperarcs such that vi ∈ Xk and
vj ∈ Yk. Note that the adjacency matrix can be derived from
the inner and outer incidence matrices defined above as follows

A(H) = C−(H)C+(H)T ;

more formally, the elements of A(H) are defined as

Aij = |{Ek ∈ E : {vi ∈ Xk, vj ∈ Yk} ⊂ Ek}|.
In this work we set the diagonal elements all equal to zero
as hyper-loops are not allowed. An illustrative example is
provided in Figure 1(d).

Another useful concept for our purposes is that of a walk.
We define a walk of length l on a directed hypergraph as
any sequence of vertices v1, v2, ..., vl, vl+1, such that {vi ∈
Xk, vi+1 ∈ Yk} ⊂ Ek for some hyperarc k and for each i =
1, 2, ..., l. A closed walk (CW) is one for which the sequence

Reaction 1: A → B + C
Reaction 2: B + C → D
Reaction 3: D + E → F + G
Reaction 4: E → G
Reaction 5: B + C → A
Reaction 6: G → E
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(a) Reaction network

A
B

C
D F

E G
(b) Directed hypergraph

C(H) =




R1 R2 R3 R4 R5 R6

A −1 0 0 0 1 0
B 1 −1 0 0 0 0
C 1 −1 0 0 −1 0
D 0 1 −1 0 −1 0
E 0 0 −1 −1 0 1
F 0 0 1 0 0 0
G 0 0 1 1 0 −1




1

(c) Incidence matrix

A(H) =




A B C D E F G

A 0 0 1 1 0 0 0
B 1 0 0 1 1 0 0
C 1 0 0 0 0 0 0
D 0 0 0 0 0 1 1
E 0 0 0 0 0 1 2
F 0 0 0 0 0 0 0
G 0 0 0 0 1 0 0




1

(d) Adjacency matrix

Fig. 1: An example of a hypothetical reaction system and the
accompanying hypergraph model and matrix representations.

starts and ends on the same vertex, i.e. v1 = vl + 1. Note
that the vertices and hyperarcs involved in a walk are not
necessarily distinct.

Finally, we require the notion of the underlying directed
hypergraph, U(H), of a hypergraph, in which all hyperarcs
of H are considered as being bidirectional, that is, for each
hyperarc Ei there exists another hyperarc Ej whereby Xi =



Yj and Yi = Xj .

Reciprocity in Complex Hyper-networks

Reciprocity in standard graphs measures the proportion of
mutual relationships within the network, or, in other words,
the probability that an edge from B to A exists given that an
edge from A to B exists. More formally, reciprocity is defined
as

r =
L↔

L
, (1)

where L↔ is the number of bidirectional edges and L is the
total number of edges in the graph. Now, in order to extend
the above measure of reciprocity to directed hyper-networks
it is useful to recount the following theorem, which can be
found, for example, in [18].

Theorem 1: The number of walks (i 6= j) or closed walks
(i = j) of length k in a directed hypergraph are equal to the
(i, j)th element of the matrix Ak.

From the above it is straightforward to rewrite Equation (1)
in terms of the adjacency matrix and thus to generalise to the
case of directed hypergraphs.

r(H) =
trace(A2)

trace(U2)
(2)

Here A and U are the adjacency matrices of the directed
hypergraph and underlying directed hypergraph, respectively,
and the trace of a matrix is the sum of the diagonal elements.
Note that in the case of a standard graph equations (1) and
(2) are equivalent. Importantly, unlike the standard reciprocity
measure, Equation (2) includes information regarding the
number of mutual hyper-connections that exist between a pair
of vertices.

III. RESULTS

Metabolic Data

The metabolic data employed in this study was acquired
from the KEGG database on 12th October 2013 [19]. The
organism specific reaction lists were derived using the
reaction.lst file from the KEGG ftp site, which include
full chemical reaction equations (i.e., with stoichiometric
coefficients and currency metabolites). More specifically,
KEGG XML files were used to extract the set of reactions
for an organism, and then reaction.lst was used to obtain the
full chemical equations for these reactions. These reaction
lists are described with reaction ID’s, metabolic map ID’s
and the chemical equation whose compounds are represented
as the KEGG compound ID’s. The following is an example
from Butanoate metabolism:

R00212: 00620: C00024 + C00058 <=> C000010 + C00022

Note that these reaction lists have been derived by curating
several chemical pathway maps from the KEGG database.
Thus, since a reaction may be present within multiple
metabolic maps there exist some reactions that are repeated

Environment Nodes Hyperarcs
min median max min median max

Obligate (34) 224 441 979 197 443 1156
Specialised (5) 643 695 743 707 805 841

Aquatic (4) 754 851 1014 819 944 1146
Facultative (41) 244 947 1308 204 1155 1510
Multiple (28) 631 900 1226 712 1078 1468
Terrestrial (3) 890 942 955 1086 1205 1219

Total (115) 224 748 1308 197 895 1510

TABLE I: Network statistics for the reaction graphs of the
115 bacterial species studied in this work classified according
to environmental variability. According to the NCBI, obligate
bacteria have the most constant environment, followed by
specialised and aquatic, and then facultative, multiple and
terrestrial bacteria in that order. In the first column, numbers
in brackets denote the number of networks in each class.

within the list. Any repeat reactions with the same reaction
ID are thus removed from the reaction list. However, due to
errors within the KEGG database some of these repeats are
not identical. This is due to the fact that chemical equations in
different chemical pathways maps are catalysed by the same
enzyme and thus have the same reaction ID, yet sometimes
the reactions differ. These non-trivial cases, where we have
differences between either the metabolites involved or the
directionality of the reaction, were treated by taking the
most comprehensive equation. For example, reaction R00212
is present within Butonoate metabolism (map ID: 00650)
as reversible and Pyruvate metabolism (map ID: 000620)
as irreversible. Here, we include the reaction as reversible,
since this equation includes the most information and is thus
regarded as the most comprehensive out of the two.

Another problem arises due to condensation and poly-
merization reactions. These type of reactions often involve
compounds occurring as both a substrate and product in
the reaction, which can be problematic when representing a
reaction system in matrix form. The incidence matrix C(H),
for example, uses a −1 to represent the substrates and 1 to
represent the products of a reaction in order to distinguish
between the different sides of a reaction. Obviously, reac-
tions involving overlapping substrates and products cannot be
represented in this manner. For that reason, we exclude such
reactions. Several other studies, such as those using flux based
analysis [20], [21], have also excluded these reactions due to
them being imbalanced.

Metabolic networks as directed hypergraphs

We represent the metabolic networks as directed hyper-
graphs, that is, the n metabolites are represented by nodes and
the set of chemical equations are represented as hyperarcs.
Each hyperarc is subdivided into a tail set and head set to
correspond to the substrates and products of the reactions,
respectively. Reversible reactions are considered as two sepa-
rate reactions in this set-up, that is, a reaction of the form
A + B ↔ C + D is treated as A + B → C + D and
C + D → A + B (see Figure 1 (a)-(b) for a hypothetical
example). To simplify the analysis, we consider only the
largest connected component for each network.
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Fig. 2: Relationship between average hyper-network reci-
procity, 〈r〉, and environmental variability. The six bacterial
habitats along the x-axis are in order of environmental vari-
ability according to the NCBI classification scheme: Obligate,
Specialised, Aquatic, Faculative, Multiple and Terrestrial.
Here vertical bars denote the standard error of the mean.

We considered 115 metabolic networks, each being cate-
gorised according to their environmental habitat (see Table I).
The organisms can be found in a variety of conditions, ranging
from highly specialised (e.g. symbiotic bacteria living within a
host), to extremely heterogeneous conditions such as soil, and
thus have evolved under very different selective pressures.

Figure 2 shows a plot of the average hyper-network reci-
procity, r(H), versus environmental variability for the differ-
ent bacterial networks. Note that the average here is taken
over each of the 6 environmental classes: obligate, specialised,
aquatic, facultative, multiple and terrestrial. Importantly, we
found that the hyper-network reciprocity increased signifi-
cantly with environmental variability. The lowest value of
reciprocity is found for the bacteria within the obligate class,
followed by a slight increase for the specialised class, and
then again slightly higher for the aquatic class, there is then
a relatively steep increase to the facultative, multiple and
terrestrial classes with a relatively small increase between each
class. The group differences shown in Figure 2 are significant
by the Kruskal-Wallis (KW) test (p-value < 10−4).

This result supports the idea that habitat lifestyle plays
an important role in an organisms hyper-network topology,
and is consistent with a number of other recent studies that
found a relationship between genome size and variations in the
environment [22]–[25]. In the current context, the relationship
found in Figure 2 can be viewed as an evolutionary adaptation
caused by a larger amount of uncertainty present within a more
varied environment, and thus the ease by which metabolites are
returned is higher to enable greater adaptability to fluctuations
within the environment.

IV. CONCLUSIONS

This paper extends the concept of network reciprocity
to complex hyper-networks in order to study the role that
directionality relationships play in shaping these more general,
multi-faceted structures. These preliminary results on a large
cohort of metabolic networks show that the new measure
can be used to infer biologically relevant information. In
particular, we found evidence for increased complexities in
the metabolic hyper-networks of those organisms found in
more hostile environments, in the sense that they displayed
greater ‘global reversibility’. In future work in this area we
plan to expand the study performed here so as to include more
detailed information regarding the bacterial species studied, for
example, the effect of oxygen availability on hyper-network
structure.
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