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Abstract—Execution of unknown or malicious software on an embedded system may trigger harmful system 

behaviour targeted at stealing sensitive data and/or causing damage to the system. It is thus considered a potential and 

significant threat to the security of embedded systems. Generally, the resource constrained nature of Commercial off-

the-shelf (COTS) embedded devices, such as embedded medical equipment, does not allow computationally expensive 

protection solutions to be deployed on these devices, rendering them vulnerable. A Self-Organising Map (SOM) based 

and Fuzzy C-means based approaches are proposed in this paper for detecting abnormal program behaviour to boost 

embedded system security. The presented technique extracts features derived from processor’s Program Counter (PC) 

and Cycles per Instruction (CPI), and then utilises the features to identify abnormal behaviour using the SOM. Results 

achieved in our experiment show that the proposed SOM based and Fuzzy C-means based methods can identify 

unknown program behaviours not included in the training set with 90.9% and 98.7% accuracy. 

 
Index Terms—Embedded system security, abnormal behaviour detection, intrusion detection, Self-Organising Map. 

I. INTRODUCTION 

e are in the midst of a digital revolution where small, battery-operated and resource-constrained embedded 

devices can be seen deployed in a wide range of applications. These ubiquitous embedded devices have 

drastically transformed the manner in which the information is created, destroyed, shared, processed and managed. 

An example of this is the healthcare sector where embedded medical devices are utilized extensively on daily 

basis for processing sensitive medical data and for performing critical functions for multiple patients. Since these 

embedded systems usually handle sensitive information, it is desirable to have some security mechanism deployed 

on these devices, either in the form of software or the hardware. However, security of embedded devices is a 

challenging task and considered an open research issue due to the resource-constrained nature of these devices 

[1]. For example, these devices typically have strict limitations on the amount of memory, computational units 

and power consumption. Indubitably, security has been extensively explored in the context of general purpose 

computing and communications systems, such as cryptographic algorithms and security protocols [2]. However, 

such security solutions are often incompatible with many embedded architectures and cannot be utilized due to 

custom firmware (or operating systems), limited power budgets and highly constrained computational resources. 

Consequently, conventional protection software such as antivirus (AV) programs, which are widely used on 

general-purpose computers, are difficult to implement on these small, low-power embedded systems.  

Indeed, researchers have explored both the hardware- and software-based solutions for securing embedded 

devices. Physical Unclonable Function (PUF) [3] or hardware intrinsic security [4], is a hardware-based security 

mechanism that was proposed to secure embedded devices physically. Integrated circuits are first identified by 

utilising manufacturing process variation and then the identities are further used for cryptography. There has also 

been research work focusing on detecting software failure, tampering and malicious codes in embedded 

architectures [1, 5]. A major drawback of these techniques is the storage of sensitive information in the system as 

“valid” samples or templates. For example, a basic-block control-flow graph (CFG) is usually stored and used to 

examine the running programs. 

Although embedded devices are deployed in a wide range of application scenarios, they generally perform a 

small number of repetitive functions or operate in a simplified state space. The execution space may include 

activities such as actuating an electrical relay, controlling a pump, processing medical data, and collecting sensor 
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readings [6]. As opposed to computation intensive conventional antivirus, detection of compromised activities 

through deviation in normal program execution is a promising solution, which is light-weight and arises from the 

intrinsic behaviour of these embedded devices. There are currently alternative solutions that may secure 

vulnerable embedded architectures [7] [8], where machine learning and pattern recognition algorithms are 

employed on human-machine interaction. Another potential technology that can be utilized for embedded systems 

security is ICMetrics (Integrated Circuit metrics) [9], which relies on the unique trace generated on the embedded 

architecture by its regular user or environment. The concept of ICMetrics is analogous to biometrics in humans.  

Fig. 1 exhibits a typical embedded system and ICMetrics system. The ICMetric system is designed to be employed 

on previously unseen devices and to faithfully reproduce encryption keys for such devices on further application 

to them by examining a pre-defined set of measurable features of such devices. However, the system does require 

detailed knowledge of the likely distribution of such features within their domain of possible values for typical 

devices. Therefore, a significant calibration phase is required for each application domain for which the ICMetric 

system is to be employed prior to its employment in the generation of encryption keys. This calibration phase 

operates on samples taken from typical example devices which may or may not include devices for which 

encryption keys will subsequently be required. Although the system is, subsequent to the calibration phase, 

designed to operate on previously unseen devices, this is governed by the restriction that the measured features 

will behave approximately as predicted by analysis of the sample devices. The ICMetrics is therefore a two phase 

system: the calibration phase is applied only once per application domain employing a number of known circuits 

as a calibration set, while the operation phase is applied each time an encryption key is desired for a given circuit. 
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Fig. 1. A typical embedded system and ICMetrics system. 
 

 

Importantly, the ICMetrics based system does not need to store any user data or template and does not require 

support from operating system, thus offering multiple benefits over traditional static AV approaches like scanning 

executable, instruction sequences and CFG of an application. Irrespective of the type of application scenario, our 

approach is suitable for any resource-constrained embedded device that performs repetitive tasks, and thus is a 

generic method of securing embedded systems. As an example, such devices are predominantly used in the 

medical and automation industry, which have limited cost and resource in the system. 

In our pervious paper [10], we use Cycle per Instruction (CPI) to extract corresponding Program Counter (PC) 

values, and use it as ICMetric for correct program identification allowable to execute on the embedded 

architecture. In this paper, instead of using only unsupervised Self-Organising Map (SOM) [11] for the 

identification, both SOM and a Fuzzy C-means  [12] based approaches are separately used to classify the ICMetric 

behaviour of the embedded system. Results achieved in our experiment show that the proposed SOM based and 

Fuzzy C-means based methods can identify unknown program behaviours not included in the training set with 

90.9% and 98.7% accuracy respectively. 

The remainder of the paper is structured as follows: An overview of the related work in this domain is given in 

Section II. Abnormal program behaviour detection algorithms are proposed in Section III, which are based on 

SOM and Fuzzy C-means algorithms. Section IV details the experimental design and results performed on an 

ARM Cortex-M3 embedded processor to demonstrate the utility of the proposed method. Finally, the conclusions 

are presented in Section V. 

II. RELATED WORK 

This section provides a brief overview of the previous work related to embedded systems security. As 



mentioned in Section I, information digitization to facilitate quick access has rendered digital privacy an important 

issue in protecting personal data [13]. While we believe our work to be the first demonstration of how on-chip 

debug information [14] can be used to identify anomalies in embedded system program execution, previous 

research has investigated the behaviour and prevalence of code modified with the intent of harming a system or 

its user. Arora et al [1] addressed secure program execution by focusing on the specific problem of ensuring that 

the program does not deviate from its intended behaviour. In their work, properties of an embedded program is 

extracted and used as the basis for enforcing permissible program behaviour.  

Software piracy has enormous economic impact [15], making it important to protect software intellectual 

property rights. Software watermarks, unique identifier embedded in a protected software to discourage 

intellectual property theft is presented by Collberg and Thomborson [16]. In [17], Kolbitsch et al proposed a 

malware detection system to complement conventional AV software by matching automatically generated 

behaviour models against the runtime behaviour of unknown programs. Similar to [1], Rahmatian et al [5] used a 

CFG to detect intrusion for secured embedded systems by detecting behavioural differences between the correct 

system and malware. In their system, each executing process is associated with a finite state machine (FSM) that 

recognizes the sequences of system calls generated by the correct program. An attack is detected, if the system 

call sequence deviates from the known sequence. The system promises the ability to detect attacks in most 

application-specific embedded processors. Wang et al [15] proposed a system call dependence graph (SCDG) 

birthmark software theft detection system. Software birthmarks have been defined as unique characteristics that a 

program possesses and can be used to identify the program. Without the need for source code, a dynamic analysis 

tool is used in [18] to generate system call trace and SCDGs to detect software component theft.  

Yang et al [19] presented an interesting approach for detecting digital audio forgeries mainly in MP3. Using a 

passive approach, they are able to detect doctored MP3 audio by checking frame offsets. Their work proves that 

frame offsets detected by the identification of quantization characteristics are good indication for locating 

forgeries. The experiment conducted on 128 MP3 speech and music clips shows a 94% rate of correctly detecting 

deletion and insertion using frame offset. Panagakis and Kotropoulos [20] proposed the random spectral features 

(RSFs) and the labelled spectral features (LSFs) as intrinsic fingerprints suitable for device identification. The 

unsupervised RSFs reduce the dimensionality of the mean spectrogram of recorded speech, while the supervised 

LSFs derives a mapping between the feature space, where the mean spectrograms lie on the label space. 

Experimental result shows that RSFs and LSFs are able to identify telephone handset with up to 97.58% accuracy.  

Information hiding can be used in authentication, copyright management as well as digital forensics [21]. 

Swaminathan et al [21] proposes to enhance computer system performance with information hiding in the 

compiled program binaries. The system-wide performance is improved by providing additional information to the 

processor without changing the instruction set architecture. The proposed system employs look-up-tables for data 

embedding and extraction, which is subsequently stored in the program header and loaded into run-time memory 

at the beginning of program execution. In [22], Boufounos and Rana demonstrate with the use of signal processing 

and machine learning techniques, how to securely determine whether two signals are similar to each other. They 

also show how to utilize an embedding scheme for privacy-preserving nearest neighbour search by presenting 

protocols for clustering and authenticating applications. 

As mentioned above, software birthmarks are a unique characteristic that a program possesses and can be used 

to identify the program [15]. Similarly, ICMetrics can be defined as a unique characteristic that a program 

possesses when running on a particular embedded device and can be used to identify the program and hardware. 

Let p, q be programs. Let f (p) be a set of characteristics extracted from p when running on hardware f. We say f 

(p) is the ICMetrics of p, only if the following two conditions are satisfied: 

1) f (p)is obtained from p running on f. 

2) Program q is a copy of p => f (p) = f (q). 

The limitations with the use of system calls for program identification [1], [5] have been pointed out in [15] 

and are more prevalent in embedded systems settings, which typically to not employ operating systems. The 

mentioned limitations are: 

1) Programs with little or no system calls such as programs solely based on arithmetic operation, and 

2) Programs which do not have unique system call behaviours may fail to exhibit a birthmark. 

Using an unsupervised SOM to reduce the dimensionality of PC values, we introduce an offset rule similar to 

that presented in [19] to detect compromised programs. Thus using machine learning techniques [22] we are able 

to determine whether two PC values are similar to each other, with the use of the program binaries [21] and no 

prior knowledge of the source code. Our main contributions of this paper can be summarised as follows: 

1) We introduce two anomaly detection systems which can be used to combine with ICMetrics system in the 

embedded devices, predominantly adopted in the medical and automation industry, one uses a SOM based 



classifier and another one uses a Fuzzy C-means based classifier. A comparison of the two classifiers is also 

given to show the improvement. 

2) Our approach introduces a way to extract and analyse the useful low level hardware information, and uses 

them as a feature to identify an embedded system’s abnormal behaviour, which allows our system to be 

employed in a wider range of embedded systems, as it is independent of the high level software environments 

(e.g. Operating system, source programs). 

III. METHODS FOR DETECTING COMPROMISED PROGRAMS 

This section provides details on the method for detecting compromised programs in an embedded device. Most 

processors found in embedded devices execute their programs with three structural levels [1]:  

1) Function call relationships used to represent function calls within a program. 

2) A basic-block CFG used to represent internal control flow and  

3) Instruction stream within each CFG.  

This is true for a single processor program, which comprises of a number of micro operations. Micro operations 

are very dependent on the instruction set architecture of the processor of the embedded system. The number of 

clock cycles for each instruction is dependent on the hardware architecture used, the type of instruction and the 

task to be executed. Typically, most modern pipelined processor architecture instructions such as Load, Store and 

Jump, only require a clock cycle to execute, as they need access to memory during processing. In particular, these 

multi-cycle instructions indicate where the function call or conditional branching occurs [4]. Multiprocessor SoCs 

are increasingly deployed in embedded systems with little or no security features built in. But the order of 

instructional execution on single processor architecture is not comparable to that of multi-processor architecture. 

For multi-processor embedded systems, one approach is to use a dedicated security (monitor) processor to oversee 

the application at runtime. Each processor communicates with the monitor processor through a FIFO queue, and 

is continuously checked [23]. 

For a single processor embedded systems, we can approximately detect the function call or condition branch 

based on the variance of the processor’s performance. In addition, the value of PC register shows the instruction 

stream of a program, which is also a suitable source for monitoring changes at the instruction level. By monitoring 

the processor’s performance, we detect changes in the function call and CFG, and then analyse the PC values 

within each CFG. Again, an overall evaluation could indicate whether the program is compromised or not. In this 

work, we measure the average CPI as the parameter of a processor’s performance. A block diagram of our 

proposed program monitoring systems is presented in Fig. 2. 

 

 

PC Register

Average CPI 

Calculator

Clock Cycle 

Counter
Mean Filter

Peak 

Detector

 Function Calls 

and Branches 

Locations

Similarity 

Analyser

Overall 

Evaluation

Critical point 

localiser

Phase localiser

PC Information of Phases and Peaks 

fmean

d(n) 

Phases 

Information

Peak 

Information

f(n) 

 
 

Fig. 2. Overall block diagram of the proposed monitoring system.  
 

The average CPI calculator in Fig. 2 is first used to calculate the average Cycles per Instruction (CPI) value, 

and it continually reads clock cycle and PC data from the time counter and PC register. This information can be 

accessed through non-intrusive debug support interface of the processor. Also the phase localiser and peak point 

detector blocks are used to obtain the function call and conditional branch location information from average CPI 

profile respectively, and then the obtained information used to extract features for the SOM and Fuzzy c-means 

classifiers. The final evaluation is based on the results of the output of the various classifiers. 

A. CPI Analysis 

The complexity of instructions executed within a particular period of time represents the CPI. A good 



description of the average CPI for a processor and how it can be calculated is given in [24]. Fig. 3 shows an 

average CPI profile while a program is running in an ARM cortex-M3 processor based embedded platform, where 

instruction counter and  processor’s running frequency are set to 211 and 120 MHz respectively. 

 

 

Fig. 3. Example of average CPI diagram.  
 

In Fig. 3, the program mainly consists of five phases, and there are also many variances (i.e. peaks) within each 

phase. A method for obtaining the positional information of the phases and peaks will be presented in the following 

sections.  

1) Phase localiser block 

There are two main sub-blocks in the phase localiser block, these are the mean filter and critical point localiser. 

The mean filter is first used to smooth the original CPI diagram, the critical point localiser is then used to localise 

the positions of each phase. 

2) Mean filter 

A 1×w rectangular window is used as a mask in the mean filter, the local average value within the mask is then 

calculated. Let f(n) denote the CPI value at position n which is always the centre point of a window of size w. The 

window mean value fmean(n) is calculated by (1): 

( ) ( ) /mean

n B

f n f n w


                                                    (1) 

Fig. 4 shows the resulting diagram after applying the mean filter on the original CPI diagram (i.e. Fig. 3), where 

w is set to ‘5’. As can be seen from Fig. 4, the variances within each phase have been significantly suppressed, 

and the boundaries of each phase still stay intact. 

 

 
 

Fig. 4. Resulting CPI diagram after applying the mean filter.  

3) Critical point localiser 

As the values of two adjacent points at the boundary are normally significantly different, the proposed method 

is to localise the high variance points, and then select the best candidates based on pre-defined criterion. 



Let fmean denote averaged CPI, absolute differences between adjacent elements of fmean can then be calculated by: 

( ) ( 1) ( )mean meand n f n f n                                                        (2) 

where1 ,n N   N is the total numbers of elements in array fmean, d(n) is nth element in an array of absolute 

differences between adjacent elements of  fmean(n).  

A threshold t1 is first used to select the high variance elements from array d , where the indices of the elements 

are greater than t1 they are stored in array d1. After that, absolute differences between adjacent elements of d1 are 

calculated to form d2. Finally, a threshold t2 is used to select the boundary candidates, where elements greater than 

t2 are selected as the candidates. Values of t1 and t2 are fixed based on experimental results. In this work, t1 and t2 

are set to 0.03 and 9 respectively. Fig. 5 shows resulting diagram after applying the critical point localiser on 

Fig.4. 

 

 
 

Fig. 5. Resulting diagram after applying the critical point localiser. 

4) Peak detector block  

In order to obtain positions of peaks and valleys, we apply the peak detector on array d rather than the original 

array fmean. Pseudo-codes for detecting the peaks are summarised as follows: 

 

Peak detection procedure: 

Input: i
d is an array of absolute differences between adjacent elements of 

mean
f in the ith phase. 

Output: 
1 2 3

{ , , ,..., }
i

P p p p p where 1
p is a set of locations for the ith phase.  

for all samples in id do 

    if  ( 1) ( )
i i
d n d n  and  ( ) ( 1)

i i
d n d n  then 

     '( )
i
d j = ( )

i
d n ; /* record the amplitude in array '( )

i
d j */ 

    end  

end 

ti=mean( '( )
i
d j );  /*t is mean of all the elements in '

i
d */ 

for all samples in '
i
d do 

    if '( )
i i
d j t  then 

      pi = j;  /*mark j
th element as a peak*/ 

    end  

end 

 

Fig. 6 shows resulting diagram after applying the peak detector on array d. 

 



 
 

Fig. 6. Diagram following the application of the peak detector.  

 

5) Similarity analyser  

The similarity analyser has three different parts, each with a measure to ascertain the originality of the program 

in execution. The three parts are the phase, peak and classifier. The first part is used to verify if the number of 

known phases is the same as the number of phases in the executed program. Any mismatch shows that the number 

of function calls differ, signifying an insertion or deletion. The second part compares the number of identified 

peaks within each phase. It must be noted that any difference in the number of peaks does not necessarily mean 

the program is compromised, however a variation in CPI has taken place. The first two parts of the analyser 

become useful when the system has completed a cycle. The final part of the analyser uses the SOM/Fuzzy C-

means to measure similarity between known programs and programs currently executed. 

 

SOM based classifier 

The basic principle of the SOM is to adjust the weight vectors until the neurons represent the input data, while 

using a topological neighbourhood update rule to ensure that similar prototypes occupy nearby positions on the 

topological map. PC values extracted from the program execution trace, corresponding to the peaks in the trace 

are used as inputs to the SOM during training and testing. For a given network with k neurons and N-dimensional 

input vector Ki, the distance from the jth neuron with weight vector wj (j<k) is given by 

  
2

2

1

N
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j l jl

l
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     (3) 

where wjl is the lth component of weight vector wj. The vector components of the winning neuron wk with 

minimum distance Dk are updated as follows, where (0,1) is the learning rate. 

  i

k kw K w      (4) 

Updates are only carried out during the training phase. Additionally, for every neuron in the network we 

maintain two extra parameters; the minimum and maximum distances of all input vectors associated with any 

particular neuron. 

After training, the next step is to associate each of the network neurons with the corresponding program or sub-

program. In this work, we use Vector Quantization (VQ) [11] to assign labels to the trained neurons in the network 

as follows: 

 Assign labels to all the input training data. The label is an identifier for the program from which the training 

data has been extracted from. 

 Find the neuron in the network with the minimum distance to the labelled input data. 

 For each input data maintain the application label, the corresponding neuron and the distance measured. The 

distance is maintained as a tie breaker for applications that share similar address space. 

For each network neuron, we estimate the number of programs that are associated with that neuron. If only one 

program is associated with a neuron and the number of data points exceeds 5% of the total number of program 

data points, the neuron is exclusively assigned to that very program. For all programs with more than 5% of data 

points associated with a neuron, we create a codebook with an entry for the neuron, and the corresponding 



programs, each with its distance range (i.e. minimum distance and maximum distance). 

 

Fuzzy C-means based classifer 

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to belong to two or more 

clusters [12]. This method is based on minimisation of the following function: 
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       (5) 

where 1 m  , uij is the degree of membership of xi in the cluster j, xi is the ith of d-dimensional measured 

data, cj is the d-dimension centre of the cluster, and ||*|| is any norm expressing the similarity between any 

measured data and the centre. 

 

Fuzzy partitioning is carried out with aim of optimization of the objective function shown in (5), every iterative 

optimisation update membership uij and the cluster centres cj by: 
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Similar to the SOM based classifier, the Fuzzy C-means based classifier will also record associate each of the 

cluster centre with the corresponding program or sub-program. In addition, assign labels to all the input training 

data with the minimum distance to the labelled input data. For each phase of program, the minimum and maximum 

distances to the corresponding centre of peak are also recorded. The information is maintained as a reference for 

testing unknown programs. 

IV. EXPERIMENTAL RESULTS 

In this  work, we use a Keil MCBSTM32F200 evaluation board equipped with an ARM 32-bit Cortex-M3 

processor-based microcontroller for our experimental testing [25]. The ARM 32-bit Cortex-M3 processor-based 

microcontroller comes with 128KB of on-chip RAM and 2MB of external SRAM, which is widely used in many 

high-performance low-cost embedded applications (e.g. industrial control systems and wireless networking and 

sensors). We also use a combination of KEIL µVision IDE, and ULINKpro Debug and Trace Unit [26] to 

download the program and trace the instructions executed in the microcontroller, where high-speed data and 

instruction trace are streamed directly to the host computer allowing off-line analysis of the program behaviour 

[26]. It is worth noting that the experimental platform is a typical low cost ARM-based embedded development 

board, but it has very limited memory space, especially when the tracing port is enabled, there is only 1MB 

external SRAM can be used by users. Thus we can only analyse a limited number of programs at a time, and the 

complexity of the tested programs are also limited. These limitations fall within the scope of our initial embedded 

architecture, expected to have minimal memory, power and computational resources. The concept presented here 

is scalable; as the available resources increase, the complexity of applications can also be increased. In this work, 

MATLAB implementation is used for proof of concept prior to hardware implementation. Since the proposed 

method could use the debug interface of the processor together with a dedicated hardware module providing the 

classifier’s functionality to extract data and identify the system behaviour, it is independent of the processor’s 

architecture or Operating System’s kernel.   

A. Benchmark Test Suite 

In the proposed work, five algorithms from the automotive package of the MiBench benchmark suite [27] are 

selected, those five algorithms are used to train and test the proposed analysers and also there is a unknown 

program is only used in the testing. Details of the used benchmarks are presented in Table I. 

As can be seen from Table I, the six benchmarks are set with different parameters and performing various 

functions. For instance, the benchmark “angle conversion” is used to perform radians and degree conversion, 

where “NUM_TEST” indicates the number of sets of input test data stimuli. Overall, they do not only have 

different complexities and characteristics, but also contain similar sub-functions, which make them suitable test 

candidates for the proposed experiments.  



In order to train with all five benchmarks, they are mixed together to form a new program, where each 

benchmark is treated as a separate function call. The new program is executed twice in order to generate enough 

training samples. For testing, a random function call generator is used to switch between benchmarks form the 

test samples. Various combinations of the five algorithms are used as compromised program, where AC, BC, CF, 

RN, and SR are executed twice in each combination. In addition to the above, we also use an “unknown” algorithm 

“Fibonacci Series (FS)” to replace AC, BC, CF, RN, and SR to represent another five compromised programs for 

testing. Since the FS algorithm consists of some similar sub-functions to the known algorithms, this experimental 

setup is more suitable for evaluating the proposed system. At the beginning of the test, we run the original program 

five times separately in the embedded platform, and all the program execution trace profiles are stored into five 

different files respectively. One of the files (i.e. the training file) is used for training the classifiers and the 

remainder are used for testing. 

 

 

 
TABLE I 

DETAILS OF THE USED BENCHMARKS 

Benchmarks Description Parameters 

angle 

conversion 

(AC) 

Radians and Degree 

Conversion 

Degree range: [0 360] 

Radians range: [0 2π] 

bit count 

(BC) 
Bit Counter NUM_TESTS: 500 

cubic 

function 

(CF) 

Solve a cubic polynomial NUM_TESTS: 8 

random 

numbers 

(RN) 

Random Number Generator NUM_TESTS: 3000 

square roots 

(SR) 
Square Root Calculation NUM_TESTS: 10000 

Fibonacci 

Series (FS) 
Fibonacci Series Generator NUM_TESTS: 232 

 

B. SOM classifier 

The start and end locations of each peak can be used to select a series of PC addresses, and this forms an input 

vector with 1×2048 elements, the vector values are then normalised before fed into the SOM-based classifier. The 

maximum number of nodes and iterations for the SOM are set to 20 and 1000 respectively. The outputs of the 

training are network weights, a record of each phase, the corresponding neuron(s), and associated minimum and 

maximum distance for the phase. A statistical table for each phase and estimated outputs for each peak are 

generated after the training process. The same process is repeated during the testing.  

C. Fuzzy C-means classifier 

Similar to the SOM classifier, the same PC addresses of each peak are used as the input vector of the Fuzzy C-

mean classifier, where each input vector contains 1×2048 elements. At beginning of the processing, the expected 

the number of clusters is set to 5, and the initial centres of each cluster are randomly initialised. The maximum 

number iterations and minimum amount of improvement are set to 100 and 10-5 respectively. The outputs of the 

training are matrix of final cluster centres, where each row provides the centre coordinates and final fuzzy 

membership function matrix, and values of the objective function during iterations. Records of each phase, the 

cluster, and associated minimum and maximum distance to its centre. A statistical table for each phase and 

estimated outputs for each peak are generated after the training process. The same process is repeated during the 

testing.  

D. Evaluation metric 

The measurements of the evaluation mainly includes correct recognition rate (true positive (Tp) and true 

negative (Tn)), rate of misclassified samples (false positive (Fp)), and rate of samples incorrectly classified as 



unknown (false negative (Fn)). Based on the measurements, accuracy, precision and recall rates for the proposed 

system can be calculated.  

Accuracy 

It is the rate of correctly labelled samples, which can be calculated by (Tp+ Tn) / total number of samples. 

Precision 

It is the rate of positively labelled samples whose labels are correct, which measures the classifier’s resistance 

to false positives and can be calculated by Tp / (Tp +Fp). 

Recall 

It is the rate of samples that should have been positively labelled that are correctly positively labelled, which 

measures the classifier’s resistance to false negatives and can be calculated by Tp  / (Tp +Fn). 

 

A classifier’s precision and recall results provide insight into what types of errors the classifier tends to make, 

rather than only reporting the number of misclassified samples. 

E. Experimental results 

In this experiment, the proposed system classifies the programs’ peaks and phases into different categories, 

where the known peaks and phases will be assigned their corresponding names and unknown ones will be labelled 

as ‘-1’. For testing, each of the test files (27 files in total) is fed into the trained classifier to generate individual 

output files, and the 27 files are divided into three categories: 1) programs with original function call sequence; 

2) programs with various function call sequences (including only known benchmarks); 3) Programs with various 

function call sequences (include known and unknown benchmarks). 

 

1) Programs with original function call sequence 

In this category, there are total 5 programs, which include 1144 peak samples. Overall, the proposed SOM and 

Fuzzy C-means based systems have 95.6% and 100% successful identification rates for the peaks respectively. 

Results of accuracy, precision and recall rates for each program are illustrated in Fig. 7. 

 

 
 

Fig. 7. Results of accuracy, precision and recall rates for category 1. 

 

2) Programs with various function call sequences (including only known benchmarks) 

In this category, there are total 10 programs, which include 2070 peak samples. Overall, the proposed SOM 

and Fuzzy C-means based systems have 90.9% and 99% successful identification rates for the peaks respectively. 

Results of accuracy, precision and recall rates for each program are illustrated in Fig. 8. 
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Fig. 8. Results of accuracy, precision and recall rates for category 2. 

 

3) Programs with various function call sequences (include known and unknown benchmarks) 

In this category, there are total 12 programs, which include 2661 peak samples. Overall, the proposed SOM 

and Fuzzy C-means based systems have 90.7% and 97% successful identification rates for the peaks respectively. 

Results of accuracy, precision and recall rates for each program are illustrated in Fig. 9. 

 

 

 
 

Fig. 9. Results of accuracy, precision and recall rates for category 3. 

 

In general, as the complexity of the test categories are varied, both algorithms in the first category have the best 

accuracy, precision and recall rates. In contrast, the accuracy, precision and recall rates of both algorithms in the 

second and third categories are relatively lower than the first one. As the types and the lengths of each tested 

program in the last two categories are different, which causes the resulting rates of each program have relatively 

higher variance than the first one. The reason of most failure cases is due to the fact that some of the extracted PC 

patterns in the testing programmes are different to the patterns in the training programme, which further causes 

the misidentification of the similarity analysers. Especially, when the patterns of the unknown programme are 

very similar to the known programme (i.e. scenario 3 in the testing database), the recognition rate is further 

decreased. Overall, when comparing the performance of the Fuzzy C-means based algorithm with the SOM based 

algorithms, the former has better performance than the later. Overall, the Fuzzy C-means based algorithm has 

achieved 98.7% accuracy; however, the SOM based algorithm only can achieved 90.9% accuracy. This is due to 

SOM based classifier being much affected by the number of variables and clusters in the input data, whereas, the 

Fuzzy C-means based classifier is less affected by these factors. 

It is worth noting that unlike other software-based [17] [18] and hardware-based [1, 5] approaches, our work is 

independent of the processor’s architecture or operating system’s kernel, thus making it compatible with most 

modern embedded systems. In  [1],  the  hash-checking  of  all  CFG  significantly degrade  the  processor’s  

performance.  However,  our  scheme maintains the  original length  of  critical  path  of  the processor and  

monitors the  executing programme  in parallel through the debug interface, without performance  penalty.  

Although  the  fastest  intrusion detection system is proposed in [5], only system call sequence is  used  for  the  

comparison  of  correct    and  compromised systems. In contrast, our system does not only monitor system call 

sequence, but also checks instruction sequence within the system  call,  which  captures  both  coarse-grained  and  
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fine-grained programme behaviour in a hierarchical manner. Hence, the proposed work is particularly suitable for 

providing possible security solutions to commercial off-the-shelf (COTS) products, where the products have many 

restrictions on modifying their internal programs or hardware architectures. The proposed system can be run on a 

non-intrusive debug facility, a non-intrusive infrastructure that is generally used during device software 

development at present in all production devices, that connects to the targeted embedded device through a debug 

interface [28, 29], which means that the proposed system would not affect the performance of the monitored 

embedded system in terms of additional memory and processor usage. In one of the authors’ previous works [30], 

an implementation of the conventional SOM on a Xilinx Virtex-4 with 40 neurons required only 22.1% of the 

available 5,184 Kb Block RAM. Again, the Virtex-4 design implementation clocked at 25MHz could train with 

approximately 10,000 patterns per second. As a result of this, the hardware implementation of the SOM produces 

a significant speed improvement, which is 30 times faster than the original SOM implemented on a state-of-art 

PC [30]. Hence, the preferred implementation is to follow a hardware acceleration approach that facilitated rapid 

identification processing suitable for real-time execution. 

V. CONCLUSION 

In this paper, we have presented an approach for detecting compromised programs by analysing CPI and PC 

from an embedded system. Through monitoring the processor’s CPI, we detect changes in the function call and 

CFG, and then analyse the PC values within each CFG using SOM and Fuzzy C-means based classifiers 

separately. The experimental results demonstrate that the proposed algorithm can be used to detect abnormal 

behaviour in embedded devices. Results achieved in our experiment show that the proposed SOM and Fuzzy C-

means based systems can both be employed to identify unknown behaviours not in the training set, with 90.9% 

and 98.7% accuracy respectively. The proposed work provides protection at different levels for embedded 

architectures such as function call sequence, internal control flow and instruction stream within each function. 

Since the main aim of this research work is to implement a real-time security solution for complex embedded 

computer architectures, more evaluation on realistic attacks for the proposed algorithms will further be 

investigated. For evaluation parameters of real-time detection system, the proposed algorithm can also be 

implemented with a soft-core processor on FPGA as part of an on-line protection system. The online 

implementation will have the capability of extracting execution trace from customised tracing interfaces directly 

located on the processor, determine the behaviour in real-time, and subsequently halting the program to prevent 

any harmful effect on the embedded system architecture. The idea of this work can be extended to detect abnormal 

behaviour of multi/many-core processor based embedded system by applying the proposed system on the each 

core. 
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