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ABSTRACT

Bird populations are identified as important biodiversity indicators, so collecting reliable population
data is important to ecologists and scientists. However, existing manual monitoring methods are
labour-intensive, time-consuming, and potentially error prone. The aim of our work is to develop
a reliable automated system, capable of classifying the species of individual birds, during flight, using
video data. This is challenging, but appropriate for use in the field, since there is often a requirement
to identify in flight, rather than while stationary. We present our work, which uses a new and rich set of
appearance features for classification from video. We also introduce motion features including curva-
ture and wing beat frequency. Combined with Normal Bayes classifier and a Support Vector Machine
classifier, we present experimental evaluations of our appearance and motion features across a data set
comprising 7 species. Using our appearance feature set alone we achieved a classification rate of 92%
and 89% (using Normal Bayes and SVM classifiers respectively) which significantly outperforms a
recent comparable state-of-the-art system. Using motion features alone we achieved a lower-classifi-
cation rate, but motivate our on-going work which we seeks to combine these appearance and motion
feature to achieve even more robust classification.

c© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Bird species are recognised as useful biodiversity indicators
(Gregory, 2006; Harrison et al., 2014; Buckland et al., 2012).
They are reponsive to changes in sensitive ecosystems, whilst
populations-level changes in behaviour are both visible and
quantifiable. Data about bird populations is therefore an im-
portant tool for ecologists in a wide range of environments and
contexts, including farmland use, marine settings, and migra-
tion behaviour (Hammers et al., 2014; Johnston et al., 2014;
Goodenough et al., 2014).

Current monitoring systems use manual methods of count-
ing, or other more detailed observations which require trained
personel to be deployed in sometimes quite inaccessible or hos-
tile locations. This places practical limits on the quality and
quantity of population-level data which can be collected. The
objective of our work is to develop robust and reliable methods
of collecting such data automatically, using computer-vision
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techniques. The successful development and deployment of
such a system could enable collection of data on a scale not
currently possible using manual methods, potentially allowing
ecologists to conduct new types of scientific studies and inves-
tigations.

The work we present here focusses on the classification of
species, using video data of individual birds in flight. There is
some existing work which uses image analysis for species iden-
tification, but almost all (eg Marini et al. (2013)) use high-detail
individual images for classification. This is less useful in the
field, where automated systems are more likely to be deployed
to monitor flying birds, which will inevitably present with
poorer image quality (due to motion and distance). Flight pat-
terns are known to vary with different species of birds (Briggs
et al., 2012), so video data of flying bird also presents the op-
portunity to use motion features, and our longer-term objective
is to combine both appearance and motion features for robust
species classification.

In this paper we present our work to date, in which we have
used two separate but extended sets of features (appearance and
motion), with standard classifiers (Normal Bayes and Support
Vector Machine). On our data set, which comprises videos of 7
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Fig. 1. Segmented birds from our flying birds data set using the method in (Zivkovic and van der Heijden, 2006). From left to right: Wood Pigeon, Superb
Starling, Nanday Parakeet, Green Budgie and Cockatiel.

species in-flight, our proposed appearance classifier compares
very favourably with exiting state-of-the-art image-based clas-
sifiers, and our motion classifiers provide strong encouragement
that combined features will provide even more effective auto-
mated identification. The contributions of this paper are thus:

• We approach the challenging and unaddressed problem of
in-flight species identification, with a proposed framework
and data set.

• We present and evaluate a new set of appearance features,
which we show experimentally is more reliable for classi-
fying birds in flight than existing single-image based clas-
sifiers.

• We proposed a set of motion features we show to be effec-
tive, and which provide the basis for current ongoing work
(to combine appearance and motion features).

The remainder of our paper is organized into the following
sections. In Section 2 we review existing work on automated
bird species classification, followed by an overview of our pro-
cessing method in Section 3. We proceed in Section 4 to de-
scribe our feature extraction methods in detail (both appearance
and motion), and conclude with experimental work, results, and
discussion in sections 5 and 6 respectively.

2. Existing Work

A number of existing attempts to automate the identifica-
tion of birds have used audio rather than visual signals, such
as (Briggs et al., 2009; Neal et al., 2011; Lopes et al., 2011;
Bardeli et al., 2010). The use of audio signals has some attrac-
tive features; species typically have distinctive calls, and no line
of sight is necessary to detect audio. However, there is also sig-
nificant disadvantages. Audio signals are sparse (an individual
may emit no audio at all for extended periods), and it is not real-
istic to differentiate individuals in this way (e.g. for counting).

For this reason, a small but growing number of studies
have looked at computer vision and image-based techniques
which can potentially provide richer and more informative data
(continuous position, behaviour, and other physical features).
Works which use individual image-based identification include
(Marini et al., 2013; Duberstein et al., 2012; Wah et al., 2011a;
Duan et al., 2012; Berg and Belhumeur, 2013; Huang et al.,
2013; Branson et al., 2014; Wah et al., 2011b). For our later
evaluation we use the method proposed by Marini et al. (2013),
which uses colour features for species identification, which was
shown to be effective with a small number of classes. However,

recognition rates dropped significantly with increasing numbers
of classes, and this represents an ongoing challenge for robust
identification.

Work by Huang et al. (2013) used a graphical model with
saliency to classify 9 species of birds, by extracting Scale-
invariant feature transform (SIFT) and colour features, which
were train using different SVM classifiers and achieving 73.8%
classification rate. SIFT and colour features (Wah et al., 2011b)
works well in classification of bird species but again, is only
tested for a small number of classes. The work presented in
Welinder et al. (2010), classified bird species using size and
colour histogram with bin size of 10 but the classification rate
was also low, which was attributed to the fine-grained nature of
the dataset.

Other works, such as Wah et al. (2011b) used a parts-based
models and attribute-based learning. In this case, birds parts
were annotated with the aid of human intervention, which is
inappropriate for a fully-automated system for use in the field.
Other examples include Duan et al. (2012) which discovered
attributes automatically, but used human interaction to provide
semantic names for those discovered attributes. These methods
both provided good classification, but do require some degree
of human intervention to identify parts: a tedious process that
is also difficult to generalize to new species. In Berg and Bel-
humeur (2013); Yao et al. (2012) automated techniques were
used for fine grain categorization of birds species. A method
called Part-based one-vs-one features (POOF) was proposed in
Berg and Belhumeur (2013), where the selection of regions for
feature extraction was fully automatic, thus eliminating the hu-
man intervention. Yet this method still requires predefined birds
parts which will be used for classification. The work in Branson
et al. (2014), extracted object pose for fine-grained visual cat-
egorization to compute local image features, which were used
for classification, achieving 75% correct classification rate.

These part-based methods have shown some success, but in
all cases require some manual input, and also well-defined im-
ages in which the various parts present in a well-defined and
identifiable way. These requirements are less appropriate for
flying birds which may have less well defined object shapes, or
in which specific parts may be obscured from view. A more re-
cent work that was based on fine grain classification is the work
in Berg et al. (2014).This work resulted in an online applica-
tion called Birdsnap, which classifies various US bird species.
Again, this was based on the improved version of the dataset in
Wah et al. (2011b). Birdsnap uses a set of one-vs-most SVMs,
based on POOF (Berg and Belhumeur, 2013). The one-vs-most
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Fig. 2. Colour histogram from hue, saturation and value, which we extracted statistical featutres and concatenated with first order histogram probability
to form our colour feature set.

SVM helped boost the results of their classification as com-
pared to the work in POOF, which used a one-vs-one classi-
fier. This work however, also involved some manual interaction
from users, who marked the tail and eye of the bird species prior
to classification.

One further significant work that performed fine-grained
classification of bird species is that by Gavves et al. (2013).
This approach performed an unsupervised alignment of birds
images, and fitted an ellipse, which is used to obtain the birds
parts for classification. The method achieved a very good clas-
sification rate, however images were prone to segmentation er-
rors as they used the grab cut algorithm (which still requires
user interaction).

All of the above mentioned methods use single images
and appearance-based models for classification; however, bird
species also exhibit distinguishing behaviours (flying, moving,
poses, etc) which could also be used to help robust automated
identification. This is particularly relevant to the identification
of birds in flight, especially at distance where appearance-based
features such as colour tend to attenuate, whilst motion-features
remain discernible.

Motion-features associated with flight have not yet been
well-explored for automated visual identification. The only sig-
nificant relevant study is that of Duberstein et al. (2012) which
explores the wing beat frequencies and flight trajectories pat-
terns of bird species and also bats. However, this is limited
to the broad categoriation of flight patterns rather than robust
and specific species identification. This work using descrip-
tive statistics extracted from each flight path including the mini-
mum, maximum, mean, standard deviation, and quartiles of the
data distribution as well as the interquartile range; they were
able to achieve a coarse clustering of species. Atanbori et al.
(2013) also presents preliminary work on classification of the
flight trajectories of bats using similar analysis of wing-beat
frequencies.

Trajectory and motion-based classification has been used
more widely, however. For example, for the identification of
people, fish, and vehicles (Duberstein et al., 2012; Beyan and
Fisher, 2013, 2012; Anjum and Cavallaro, 2008; Li et al., 2006).
The work of Beyan and Fisher (2013) in particular was used

to classify the swimming trajectories of fish as normal or ab-
normal using statistical features extracted from 10 groups of
features, which were concatenated for classification. Li et al.
(2006) also investigated spatial and angular trajectory represen-
tations, using multi-features to classify vehicle trajectories.

One of the premises of our work is that the classification of
birds in-flight may be achieved using either appearance or mo-
tion features, and that the combination of both feature types
may achieve an overall more robust performance. No existing
work has thus far attempted to encompass both of these in a
robust or analytical way.

3. Material and Methods

3.1. Overview of Processing Method
The dataset used for this research is a video sequences of

flying birds from 7 different species, recorded using a Casio
Exilim ZR100 recording at 240 frames per second. The videos
were recorded over different days from three different sites and
species consist of more than ten individuals, apart from Superb
Starlings, which had three.

We extracted the birds’ silhouette (Fig 1.) using the back-
ground Gaussian mixture model proposed by Zivkovic and
van der Heijden (2006). To detect the connected components,
the contours where obtained from the binary image using the
contour algorithm proposed by Suzuki et al. (1985). An ori-
ented bounding box was fitted to each silhouette, and a selec-
tion of metrics (height, width and hypotenuse, centroid, silhou-
ette and contour points) were measured. For any bird j tracked
throughout n frames, our trajectory model is defined as the cen-
tre of the fitted bounded box (i.e. the centroid), given by the
equation:

T j = {(x1, y1) , (x2, y2) , ..., (xn, yn)} (1)

where T represents the trajectory and x and y are the co-
ordinates of the centroid. Because the trajectory is noisy, we
smoothen it by applying a box filter with 1 x 3 kernel.

Once the silhouettes are segmented, we extracted colour mo-
ments, shape moments, grayscale histogram, gabor filter and
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log-polar features. These features were concatenated to form
one feature vector for classification of bird species by colour,
shape and texture. For the trajectories and fitted curves, we
extracted curvature scale space (CSS), turn based, centroid dis-
tance, vicinity and curvature based on sine and cosine features.
These features together with wing beat frequencies were con-
catenated to form one feature vector for classification of bird
species by their trajectories (as detailed in the next section).

In most cases, features were represented as statistical fea-
tures, which provide information on the location, variability
and appearance of the distribution of data and also to ensure
classification can be performed in real time. The statistical fea-
tures computed include the mean, standard deviation, skewness,
kurtosis, energy, entropy, maximum, minimum, local maxima,
local minima and number of zero crossings (details in the next
section).

4. Feature Extraction

4.1. Appearance Features

To classify bird species, colour, shape and texture are impor-
tant features. We represent colour features by colour moments
and colour log-polar; shape features by shape moments; and
texture features by Gabor filters and grayscale histogram. In
this section, we present details of these features and what was
extracted to represent them.

4.1.1. Color Moments Features
Histogram features have been used widely to describe colour

images by extracting the histogram from various colour chan-
nels. To reduce the feature vector dimension and to make the
system run in real-time, statistical measurements can be used
to describe the colour histogram (Sergyan, 2008; Huang et al.,
2010). A popular way to identify birds from video is using
colour. Thus we deployed colour moments and calculated sta-
tistical features for speed of training and prediction.

To take advantage of colour we transform the colour im-
ages from RGB to HSV space before constructing the colour
histogram (Fig. 2.). The histogram was then built for each
colour channel separately and the first-order histogram proba-
bility (Sergyan, 2008) computed. After that, five statistical fea-
tures were obtained: Mean, Standard Deviation, Skewness, En-
ergy and Entropy for each of the colour channels. We concate-
nated the first-order histogram probability, to form the colour
moments. There were 35 features for hue, 37 each for satu-
ration and value. In total 109 statistical features were used to
represent the colour moments.

4.1.2. Shape Moments Features
One important feature for identifying birds is the shape of the

bird species. To describe the shape of an object various image
moments can be extracted from the image contours (Du et al.,
2007). An image moment is a weighted average of the image
pixels’ intensities. We used two moments in the extraction of
shape features for bird species classification, which include spa-
tial (raw) moments and Hu moments (Fig. 4). Hu moments are
invariant to some transformations, such as rotation, scaling, and

translation (Martı́n et al., 2010) and are therefore well suited for
flying bird species classification.

To represent shape information, we extracted seven features
from Hu moments and ten from spatial (raw) moments. In total
17 statistical features were used to represent shape moments.

4.1.3. Grayscale Histogram Features
Distributions of gray levels in images are commonly used in

image analysis and classification. This is often done by repre-
senting the gray level distribution as histogram. For example,
statistical moments of the gray scale histogram are used as fea-
tures for the classification of fish species in Spampinato et al.
(2010). In our work, we used Grayscale histogram features
as texture to complement Gabour fetaures, which gave infor-
mation about the spatial arrangement of intensities in the bird
species video. They can be used online and have been used by
many content based retrieval systems as features for classifica-
tion

For texture features we converted the segmented image into
a grayscale image and used it to form a histogram with 256
bins. We then calculated statistical moments features similar to
Spampinato et al. (2010) from the histogram, which were used
to form grayscale histogram features. In total eight features
including mean, standard deviation, skewness, kurtosis, energy,
entropy, Hu’s 2nd and 3rd moments, were extracted to represent
grayscale histogram features.

4.1.4. Gabor Wavelet Features
Gabor wavelets have been applied to many feature extraction

problems (Huang et al., 2010; Ou et al., 2010; Parvin et al.,
2012; Spampinato et al., 2010) due to its salient visual proper-
ties such as spatial localization, frequency characteristics and
orientation. Assume an image I given by I(x, y), the Gabor
wavelet transform is the convolution between the function g and
image I, given by equation.

g (x, y; θ, λ, ψ, γ, σ) = exp
(
−

x
′2 + γ2y

′2

2σ2

)
exp

(
i
(
2π

x
′

λ
+ ψ

))
(2)

where:

• x
′

= x cos θ + y sin θ

• y
′

= −x sin θ + y cos θ

• and θ , λ, ψ, γ and σ are orientation, wavelength, phase, aspect
ration and standard deviation respectively.

Gabor filter is scale invariant, as the size of the convolution
kernel does not affect the output image. Gabor filters provide
us with information about the spatial arrangement of intensities
in the bird species. They can be used online and have been used
by many content based retrieval systems.

To extract Gabor wavelets features, we used four orientations
with one scale, thus obtaining four processed images (as shown
in Fig. 3.). For each processed image we compute five statisti-
cal features including the mean, standard deviation, skewness,
energy and entropy. In total 20 statistical features were used to
represent Gabor wavelet features.



5

Fig. 3. Gabor filter features for four orientations. Five Statistical features were extracted from these and the results concatenated to form a feature vector.

Fig. 4. Hu (in middle) and Spatial (at right) Moments plots of a segmented Nanday Parakeet’s (at left)

4.1.5. Colour Log-Polar Features
Log-Polar transform can be used to eliminate effects of ro-

tation and scale in input image, by converting the image into a
log-polar image before processing (Pun and Lee, 2003). One
common problem with flying birds video is the rate at which
the angle of view and scale of the birds species changes rapidly
in the scene. To alienate these effects, we used log-polar trans-
form, by converting the image into a corresponding log-polar
image.

Considering an image src with cartesian coordinate denoted
by src( x, y) , this can be transformed into log-polar form in a
destination image dst as dst(θ,ρ) given by

dst (θ, ρ)← src (x, y) f or

ρ = log
√

x2 + y2

θ = arctan
(

x
y

)
i f x > 0

(3)

We extracted log-polar feature based on three channels hue,
saturation and value. This was used to complement our colour
moment features. The segmented image is converted into HSV
colour space and applied log-polar transformation separately to
each channel (see Fig. 5.). Five statistical moment features
were acquired from each channel including mean, standard de-
viation, skewness, entropy and energy. Similar as previous pro-
cess, these features were concatenated into a total of 15 features
to form a colour log-polar features for our bird species classifi-
cation. Our approach is different from existing approaches be-

cause we considered colour information whiles computing the
log-polar features.

4.2. Trajectory Features

Trajectories of some bird species varies significantly and may
therefore be used as features for classification of these species.
In this section, we present details of the selected features used
to represent bird species trajectory (motion).

4.2.1. Curvature Scale Space
Curvature scale space (CSS) is rotation and translation in-

variant and useful in distinguishing trajectories by their concave
and convex shapes (Beyan and Fisher, 2013; Mai et al., 2010;
Bashir et al., 2006). To have an affine representation of birds’
trajectories in the form of their constituent sub-trajectories, we
used the CSS features, which are robust representation of tra-
jectory shape even in the presence of noise. The curvature at
every point on the trajectory is calculated using the equation:

Ki =
x
′

i y
′′

i − y
′

i x
′′

i(
x′2i + y′2i

) 3
2

(4)

where x
′

i , x
′′

i , y
′

i and y
′′

i are first and second derivatives of xi and yi

respectively
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Fig. 5. Colour log-polar features obtained by extracting hue, saturation and value log-polars then extracting statistical features, which where concatenated
to form a colour log-polar feature vector.

Fig. 6. Flight trajectories (above) of wood pigeon and itś corresponding
CSS images (below).

Fig. 7. Flight trajectories (above) of house martins and itś corresponding
CSS images (below).

CSS is computed by applying a Gaussian smoothing kernel
iteratively with different standard deviations. At each level of
the standard deviation, a corresponding zero crossing from the
second derivative of the trajectory are recorded to form the CSS
image (Van De Sande et al., 2010). This process continues until
there are no zero crossings and the trajectory becomes a convex
curve.

The locations of CSS maxima in terms of their temporal or-

dering and the scale of concavity represent the trajectory. Each
of the maxima location corresponds to a concavity in the shape
of trajectory (Bashir et al., 2006).

We then extracted ten statistical features from the absolute
curvature computed from equation (4), the number of curves in
constructed CSS image (see Fig. 6 and 7), the total length of
curves in CSS image and ten statistical moments from the CSS
maxima. In total 22 features were used to represent CSS.

4.2.2. Turn Based Features
In order to obtain the shape of each bird flight trajectory, the

trajectory turnings were calculated. This was obtained by cal-
culating the slope of the bird trajectory between two consec-
utive frames as given in Li et al. (2006) for vehicle trajectory
classification and in Beyan and Fisher (2013) for fish trajectory
clustering. The calculation follows equation (5), where dx and
dy are the change along the x and y axis respectively.

θ (i) =
dy (i)
dx (i)

i f dx (i) , 0 (5)

Since we used 32 trajectory points, there were in total 30
features used to represent turn between trajectory points.

4.2.3. Wing Beat Frequency Based features
The periodic motion features associated with beating wings

vary among species (Lazarevic et al., 2008), and may provide
a useful discriminating feature for classification. This includes
both short-scale features (frequency while flapping), but also
others: for example some species characteristically mix flap-
ping and gliding. In Atanbori et al. (2013), we showed that for
bat species a bounding box fitted to the silhouette of a tracked
individual can be used to accurately measure such periodicity
features. We used this idea to extract the bird periodic motion
as a 1D signal broken into short overlapping windows to cover
the three metrics, height, width and diagonal of the bounding
box. We compute the Fast Fourier Transform (FFT) (eqn. 6)
for each of these time signals (f(x)) and extracted the first nine
frequencies of the FFT excluding the DC component. The fre-
quencies were then concatenated to form a feature vector of size
27 to represent the wing beat frequencies features of the birds.
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F(u) =
1
N

(N−1)∑
i=0

f (x) e−2πixu/N (6)

where k is frequency, f(x) is the signal in the spatial domain and
F(u) in the Frequency Domain (encoding both amplitude and phase).

4.2.4. Centroid Distance Function (CDF)
The centroid distance function (CDF) is an invariant repre-

sentation of the shape of data (Beyan and Fisher, 2013; Bashir
et al., 2006). Since the flying birds trajectory are subject to rota-
tional deformation, CDF representation is a good way to repre-
sent this information. We calculated CDF by finding the centre
point of the trajectory and calculating the distance of each tra-
jectory from this centre point.

CDFi =

√
(xi − xc)2 + (yi − yc)2 f or i = 0, 1, ...N − 1 (7)

where: N is the total number of trajectory points.

xc = 1
N

N−1∑
j=0

x j and yc = 1
N

N−1∑
j=0

y j

The computed CDF were normalized and their statistical mo-
ments used to represent CDF features. In total ten features in-
cluding mean, maximum, minimum, standard deviation, num-
ber of zero crossings, number of local minima and maxima,
skewness, energy and entropy of 2D CDF were extracted to rep-
resent the birds trajectory shape.

4.2.5. Vicinity
Vicinity was used in Liwicki et al. (2006) for handwrit-

ing recognition, and recently adopted for extracting features in
Beyan and Fisher (2013) to classify abnormal trajectories of
fishes by considering vicinity curliness, aspect, and linearity.
Since they consist of features extracted from each point and
take into consideration their neighbouring points and are very
robust to noisy data, they were very suitable for the fly birds
trajectories.

We computed vicinity features (Liwicki et al., 2006) for
curliness, aspect, slope and linearity, which were normalized
and used to calculate statistical moments. In total 40 vicinity
features including mean, maximum, minimum, standard devi-
ation, number of zero crossings, number of local minima and
maxima, skewness, energy and entropy were extracted to rep-
resent the birds trajectory shape.

4.2.6. Curvature
Curvature features used in Li et al. (2006); Anjum and Cav-

allaro (2008) can help represent the shape of birds’ trajectories.
It is computed as the cosine of the angle between the lines to
the previous and the next point. Assume a trajectory of points
Pi for i = 1 to n, where n is the total number of points in the tra-
jectory, then the cosine of angle between the lines |Pi−1Pi| and
||PiPi+1| is given by:

Ki = cos−1


(
|Pi−1Pi|

2 + |Pi−1Pi+1|
2 + |PiPi+1|

2
)

(2 |Pi−1Pi| |Pi−1Pi+1|)

 (8)

Where: |PiPi+1| =

√
(Pi x − Pi+1 x)2 + (Piy − Pi+1y)2

The computed normalized curvature values were used to cal-
culate statistical moments to represent curvature features. In to-
tal ten features including mean, maximum, minimum, standard
deviation, number of zero crossings, number of local minima
and maxima, skewness, energy and entropy of curvature were
extracted to represent the bird’s trajectory curves.

5. Experiments

We performed a series of experiments to evaluate the effec-
tiveness of our proposed appearance and motion feature sets.
We evaluated the appearance and motion sets independently,
and compared with the results obtained using the colour fea-
tures proposed by Marini et al. We tested all feature sets using
both a Normal Bayes classifier, and the Support Vector Machine
(SVM) used by Marini et al. (2013).

To facilitate evaluation, we used a simple cross-validation
scheme based on a 70% training set, and 30% test set. For all
experiments, we repeated the evaluation for four different test
sets, and averaged to obtain the results presented in this section.
For each experimental run we sampled individual image frames
(from the training and test set) for which we extracted corre-
sponding appearance and motion features. We used an average
of 16,400 image frames from each training set, and an average
of 7,221 from each test set. The entire dataset comprises 162
videos, each containing between 0.25 and 5 seconds of high
speed video. We also investigated, experimentally, the effect of
sample size on classification rates, using our appearance fea-
tures set and the Normal Bayes classifier.

The Normal Bayes classifier assumed a Gaussian mixture
model over the whole training data distribution, one compo-
nent per class, and estimated parameters from the training data.
Our SVM classifier is comparable to that used by Marini et al.
(2013), and implemented using a radial basis function kernel,
with the gamma and cost parameters optimized using a 5-fold
grid search for parameterisation and validation.

Firstly, we set up two Normal Bayes classifiers, one for our
concatenated appearance features and the other for the feature
set used by Marini et al. (2013), for a direct comparison. We
then repeated these experiments using the SVM classifier: as
a complete grid search is time consuming, we applied the ap-
proach used in Hsu et al. (2003), by performing a coarse grid
search first and after a good region on the grid was found, we
perform a finer grid search with that region. Finally we used
both the Normal Bayes and SVM classifiers with our motion
feature set, for comparison with our proposed appearance fea-
tures.

6. Results

6.1. Normal Bayes Classification Results

Tables 1 and 2 show the confusion matrices of results ob-
tained using our appearance features and those of Marini et al.
(2013) respectively, using the Normal Bayes classifier. The
overall average classification rate for our method was 92%,
which out-performed Marini et al. (2013) (68%) considerably.
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Table 1. confusion matrix of classification using our appearance features
on Normal Bayes Classifier (our method). These is the average of our four
different testings

House
Mar-
tin

Wood
Pi-
geon

Superb
Star-
ling

Nanday
Para-
keet

Cockatiels Black
Bird

Green
Budgie

(%)

House Martin 1192 1 12 1 16 1 3 97
Wood Pigeon 3 1136 1 20 3 1 10 97
Superb Starling 2 0 579 0 29 0 2 95
Nanday Parakeet 9 26 12 947 25 65 21 86
Cockatiels 84 14 27 6 820 13 15 84
Black Bird 0 5 0 2 1 551 14 96
Green Budgie 14 2 3 16 19 29 706 90
Total (%) 92

Table 2. Confusion matrix of classification using colour features on Nor-
mal Bayes classifier (method in (Marini et al., 2013))

House
Mar-
tin

Wood
Pi-
geon

Superb
Star-
ling

Nanday
Para-
keet

Cockatiels Black
Bird

Green
Budgie

(%)

House Martin 1098 0 77 0 5 4 41 90
Wood Pigeon 30 714 22 1 2 3 402 61
Superb Starling 8 10 572 0 8 1 13 94
Nanday Parakeet 216 145 38 166 11 110 420 15
Cockatiels 234 3 231 0 379 10 123 39
Black Bird 17 0 1 0 1 491 63 86
Green Budgie 44 0 5 0 3 19 717 91
Total (%) 68

From the four testings we performed, the maximum classifica-
tion rate was 95% and the minimum was 89% using our fea-
tures while that of Marini et al. (2013) was 76% and 64% re-
spectively. Based on the averages, using our features, the best
classification was obtained for House Martins (97%) whiles the
lowest was for Cockatiels (84%). Using Marini et al. (2013),
based on the averages, the best classification rate was obtained
for Superb Starling (94%) and the lowest for Nanday Parakeet,
at only 15%. Nanday Parakeets and Green Budgies have very
similar colour features (Fig. 1), and it appears that Nandy Para-
keets are typically misclassified as Green Budgies when rely-
ing on colour alone. Also using the features from Marini et al.
(2013), segmentation error can cause classification errors. In
table 2, Nanday Parakeets (green colour) and some bird species
which were filmed with green backgrounds (green grass and
trees) had contaminated segmentation, especially wood pigeons
(see Fig. 8.) and were therefore misclassified. Our method re-
mains robust to these specific errors.

Our features worked well with both classifiers than the one
used in Marini et al. (2013), however the data set performed
better on the Normal Bayes Classifier than the SVM. Misclas-
sification of bird species by observation was due to illumination
and similar colour patterns in some species.

6.2. SVM Classification Results

Tables 3 and 4 shows the confusion matrices of the results
using our method, and that in Marini et al. (2013), using the
SVM classifier. The overall classification rate obtained using
our method was 89%, out-performing Marini et al. (2013) again
(71%). In our method the highest classification was for Green
Budgies (94%) whilst the lowest was for Cockatiels (still good,
at 85%). For comparison, using (Marini et al., 2013), the high-
est classification rate was for Black Birds (93%) and the lowest

Table 3. Confusion matrix of classification using our appearance features
on SVM classifier (Our Method)

House
Mar-
tin

Wood
Pi-
geon

Superb
Star-
ling

Nanday
Para-
keet

Cockatiels Black
Bird

Green
Budgie

(%)

House Martin 1302 3 59 4 131 2 2 87
Wood Pigeon 0 1203 0 73 9 0 28 92
Superb Starling 9 0 625 0 26 0 4 94
Nanday Parakeet 2 19 4 1023 16 73 63 85
Cockatiels 59 13 28 0 817 12 35 85
Black Bird 5 2 1 6 0 535 71 86
Green Budgie 2 1 5 29 6 3 811 95
Total (%) 89

Table 4. Confusion matrix of classification using colour features on SVM
classifier (proposed in (Marini et al., 2013))

House
Mar-
tin

Wood
Pi-
geon

Superb
Star-
ling

Nanday
Para-
keet

Cockatiels Black
Bird

Green
Budgie

(%)

House Martin 1042 20 3 5 513 15 5 65
Wood Pigeon 8 1155 5 18 26 2 99 88
Superb Starling 9 27 584 3 31 1 9 88
Nanday Parakeet 8 654 57 297 135 7 42 25
Cockatiels 96 28 60 8 742 13 17 77
Black Bird 0 3 4 3 27 576 7 93
Green Budgie 12 119 7 25 71 80 543 63
Total (%) 71

again for Nanday Parakeet (25%). Again, this demonstrates the
weakness of using only colour-based features.

6.3. Motion Features Classification Results
Tables 5 and 6 show the confusion matrices obtained using

our motion feature set with both the Normal Bayes classifier
and SVM respectively. The classification using motion features
showed rather interesting results, with an overall correct clas-
sification rate of 37% based on the average of our four testing.
The highest rate was again obtained for Green Budgies (66%),
and the lowest for Black Birds (8%). We also observed that the
maximum classification rate from the four testings was 41%
and the minimum 33%. However, the overall classification rate
(from all four testings) for the majority of species were above
40% using the Normal Bayes classifier, which evidences the
ability of these features to provide additional differentiation.

6.4. Sample Size Per Class
We also observed that from a sample of 200 to 700 per class

that the classification rate increases sharply. Beyond 700 sam-
ples the improvement is less significant, but peaks at approxi-
mately 2000 samples per class (Fig. 9.).

Table 5. Confusion matrix of classification using motion features with
Normal Bayes Classifier

House
Mar-
tin

Wood
Pi-
geon

Superb
Star-
ling

Nanday
Para-
keet

Cockatiels Black
Bird

Green
Budgie

(%)

House Martin 347 61 60 160 200 34 138 35
Wood Pigeon 93 293 54 271 250 16 66 28
Superb Starling 28 2 185 17 21 1 140 47
Nanday Parakeet 107 121 70 320 220 14 67 35
Cockatiels 110 46 43 64 316 8 222 39
Black Bird 95 35 34 83 115 36 36 8
Green Budgie 29 3 61 26 43 3 314 66
Total (%) 37
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Fig. 8. Segmented Wood Pigeons contaminated with green background.

Table 6. Confusion matrix of classification using motion features with
SVM Classifier

House
Mar-
tin

Wood
Pi-
geon

Superb
Star-
ling

Nanday
Para-
keet

Cockatiels Black
Bird

Green
Budgie

(%)

House Martin 273 192 54 103 495 143 126 20
Wood Pigeon 39 426 63 146 428 39 48 36
Superb Starling 19 3 153 10 69 5 188 34
Nanday Parakeet 24 281 59 75 405 71 99 7
Cockatiels 47 87 18 21 422 32 182 52
Black Bird 79 77 13 54 182 71 20 14
Green Budgie 46 2 41 2 129 9 322 58
Total (%) 32

Fig. 9. Sample size per class against classification rate (%)

6.5. Performance Evaluation

In this section, we empirically compare the computational
performance of our proposed classifiers with those of Marini
et al. (2013), and determine whether they are capable of run-
ning in real-time on standard computational hardware. We per-
formed these experiments on a Mac book pro laptop running
OS X 10.9.5, with 2.5 GHz Processor and 4 GB Ram. The al-
gorithms and classifiers were all written in C++ with XCode
5.1.1 and OpenCV 3.0. We tested both the classification and
recognition phases, separately.

To compare performance for the training phase, we used a
software timing function (millisecond accuracy) and recorded
the time in seconds taken to build Bayes and SVM classifiers for
our appearance feature set, motion-feature set, and for Marini
et al.’s algorithm. The timings include both image feature ex-
traction and training phases, using 70% (16,400 image frames)
of our total data set (as according to our reported experimental
setup). We ran each timings for the same classifier 50 times so
that we could estimate a mean value, and also report the stan-

Table 7. Recorded times for classier training.
Appearance Motion Marini

Bayes SVM Bayes SVM Bayes SVM
Mean 157.51 152.10 202.65 202.72 85.74 87.45
Min 141.95 136.67 186.38 186.35 66.07 67.66
Max 202.33 196.31 238.03 238.31 157.71 159.54
σ 11.00 10.82 14.94 15.08 19.48 19.64

Table 8. Classification times for 1,500 birds in seconds and the estimated
classification times for a single bird in milliseconds.

Appearance Motion Marini
Bayes SVM Bayes SVM Bayes SVM

Mean/1500 Birds 13.43 13.43 18.01 18.07 7.67 7.72
Min/1500 Birds 12.05 12.05 16.56 16.61 5.91 5.96
Max/1500 Birds 17.37 17.36 21.16 21.25 14.05 14.16
σ/1500 Birds 0.96 0.96 1.33 1.34 1.73 1.75
Mean/Birds (in ms) 8.95 8.95 12.01 12.05 5.11 5.15

dard deviation, minimum, and maximum timings in each case.
Results are presented in table 7.

To compare performance for the classification phase, we per-
formed a similar set of experiments. For each classifier we took
a set of 1500 individual birds, and recorded the time taken to
classify the entire set. This includes both the feature extraction,
and the actual classification using Bayes and SVM and the ap-
pearance features, motion features, and Marini et al.’s feature
set. Again, we repeated our experimental runs 50 times, and
obtained an average time (for all 1500 birds), standard devia-
tion, minimum and maximum values, as shown in table 8. We
also divided the mean by 1500 to calculate an indicative time
for a single bird which represents in the field performance for
our system.

From table 7, it can be seen that using our appearance fea-
tures, training took on average 157.51 seconds with the Bayes
Normal classifier, and 152.10 with SVM. Marini et al. (2013)
was faster with 85.74 seconds and 87.45 seconds. Our motion
features took 202.65 seconds and 202.72 seconds respectively.
As expected, the training times are slower with our larger fea-
ture sets, but very acceptable for off-line training. Compari-
son of the two classifiers (Bayes vs SVM) shows little varia-
tion using the same features, and this illustrates clearly that it
is the feature extraction process, rather than the training pro-
cess, which dominates the time required for the training phase.
The training complexity of SVM is of the order O(nd) Keerthi
et al. (2006), and Normal Bayes training complexity has been
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shown similarly to be of order O(nd) Zheng and Webb (2005),
where n is the number of training samples and d is the feature
dimension. Given our set of defined features, we expect the
complexity of the training phase to be approximately linear in
the number of training samples, since both the dominant feature
extraction process, and training, are both linear.

From table 8, we observe that Marini et al. (2013) returns a
classification slightly faster than either our appearance-based or
motion-based classifiers (with either Bayes or SVM). The clas-
sification complexity of SVM and Normal Bayes are both also
of the order O(d) Zheng and Webb (2005); Keerthi et al. (2006),
which means that the time it takes to classify a bird is linearly
dependent on the feature dimension. However, our results in-
dicate that the choice of either Bayes Normal or SVM makes
relatively little difference to performance, which again is heav-
ily dominated by the feature extraction process. Crucially, and
despite an approximate factor of 2 increase in processing time
when compared with Marini et al. (2013), both our motion and
appearance-based feature sets are able to return a single clas-
sification in less than 10ms. Even combining both appearance
and motion feature sets, we expect a single bird classification
process to take around 20ms, which is more than suitable for
real-time application.

7. Conclusion

In this paper we have described our proposed feature sets
(appearance and motion) for automated species classification
of flying birds, and presented supporting experimental results
in which we compared our appearance features with those of
Marini et al. (2013) which uses only colour-based features. The
classification of flying birds is a particularly challenging con-
text for automated species identification, and no existing work
has yet addressed this problem directly.

We used both SVM and Normal Bayes classifiers to eval-
uate our feature sets experimentally, using our video data set
(which covers 7 species of flying birds). Our results show that
using both SVM and Normal Bayes classifiers, our proposed
feature sets out performs the recent state-of-art colour feature
classifier presented by Marini et al. (2013). Specifically, the
overall correct classification using Normal Bayes was found to
be 92% against 68%, and 89% vs 71% for SVM. Our results
demonstrate that the utility of shape and colour features in this
context, particularly for resolving ambiguities between species
with similar colouration.

We have further considered the use of motion features for au-
tomated bird species classification: again, a research area with
very little, if any, existing work. Using our proposed feature set,
across 7 species, we achieved a classification rate of 37% using
a Normal Bayes classifier, ranges from a 8% to 66% correct
classification across species. The majority of species had a cor-
rect classification rate of greater than 40% in all our testings.
We have consequently established the utility of such features,
and postulate that they will be most effective at distance, where
colour features are more likely to attenuate.

We have also evaluated the computational performance of
our feature set against that of Marini et al. (2013). Eventhough

Marini et al. (2013) returns a classification slightly faster, our
motion and appearance-based feature sets are able to return a
single classification in less than 10ms and 20ms when the fea-
ture sets are combined, thus making it more than suitable for
real-time application.

We have thus far presented separate experimental results for
motion and colour features, but our ongoing work seeks to
combine these feature sets to provide more robust automated
species classification capable of deployment in the field to sup-
port ecological studies or migration and other population-level
behaviours. This work includes not only extensions to encom-
pass other species, but also investigations of feature selection
and redundancy.
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