
 
Market Efficiency in Person-to-Person Betting 

 
 

August 2005 
 
 

Michael A. Smith 
Senior Lecturer in Economics 

Canterbury Christ Church University 
North Holmes Road, 
Canterbury CT2 8DN 

United Kingdom 
Tel: +44 1227 76 7700 
Fax: +44 1227 47 0442 

Email: Mas34@Canterbury.ac.uk 
 
 

David Paton* 
Professor of Industrial Economics 

Nottingham University Business School 
Wollaton Road 

Nottingham NG8 1BB 
United Kingdom 

Tel: +44 115 846 6601 
Fax: +44 115 846 6667 

Email: David.Paton@Nottingham.ac.uk 
 

and 
 

Leighton Vaughan Williams 
Professor of Economics and Finance 

Nottingham Business School 
Nottingham Trent University 

Burton Street 
Nottingham NG1 4BU 

United Kingdom 
Tel: +44 115 848 6150 

Email: Leighton.Vaughan-Williams@ntu.ac.uk 
 
* corresponding author 
 
 
Acknowledgements 
We would like to thank an anonymous referee, participants at the 2005 International Equine 
Industry Program Academic Conference in Louisville, at the 2004 Western Economic 
Association Conference in Vancouver, at the 2003 Money, Investment and Risk Conference 
in Nottingham, and at a staff seminar at Nottingham Trent University for many helpful 
comments and suggestions.



 
Market Efficiency in Person-to-Person Betting 

 

Abstract 

Established gambling operators have argued that person-to-person wagering on Internet 

‘betting exchanges’ represents unfair competition.  In this paper we suggest that, in fact, 

betting exchanges have brought about significant efficiency gains by lowering transaction 

costs for consumers.  We test this hypothesis using matched data on UK horse racing from 

betting exchanges and from traditional betting media.  In contrast to traditional betting media, 

we find that betting exchanges exhibit both weak and strong form market efficiency. 

Further, we find evidence that an information based model explains the well documented 

favourite-longshot bias more convincingly than traditional explanations based on risk 

preferences. 
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Market Efficiency in Person-to-Person Betting 
 

1. Introduction 

The growth in importance of person-to-person wagers on the Internet (‘betting exchanges’) 

represents an interesting phenomenon for researchers studying the efficiency of financial 

markets.  Having been introduced as recently as 2000, Internet betting exchanges, which give 

bettors the opportunity to bet directly with each other, have grown rapidly in terms of 

turnover.  Betfair currently claim to match about 500,000 bets per day 

(http://www.betfairpromo.com/1soccer/index.asp?rfr=235&sid=35). 

Existing gambling operators have lobbied strongly for tougher regulation of betting 

exchanges on the grounds that they permit traders on the exchanges to act as bookmakers 

without having to register and pay tax as such.  Because of their much lower margins, the 

current betting tax structure, which is levied on margins, also benefits the exchanges 

disproportionately, it is argued, compared with traditional bookmakers. 

An alternative perspective is that betting exchanges represent an innovation that has 

improved information flows to consumers and lowered barriers to entry for producers.  We 

might expect that, in this environment, the implied reduction in transaction costs would lead 

to an increase in both productive and allocative efficiency relative to other wagering markets. 

There is, in fact, a long and established literature examining the efficiency of betting 

markets, much of it focusing on the existence of weak form inefficiencies such as the 

‘favourite-longshot bias’ whereby bets placed at shorter odds (‘favourites’) tend to yield a 

higher expected return than bets at longer odds (‘longshots’) - see Sauer (1998), Vaughan 

Williams (1999) for surveys of the literature. 

Hurley and McDonough (1995) offer a theoretical model of the favourite-longshot 

bias based on the existence of positive transaction and information costs faced by bettors. 

Sobel and Raines (2003) go further, seeking to test an information model empirically against 
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the risk preference alternative, using an extensive dataset of prices drawn from nearly three 

thousand races at two US greyhound tracks.  We test this information model using new data 

from betting exchanges and traditional betting markets, and in so doing compare the bias in 

these two competing markets. 

 First, however, we explain (in Section 2) more fully the operation of betting 

exchanges.  In Section 3, we consider explicitly the importance of transaction costs and 

information in market efficiency.  We introduce our data and empirical methodology in 

Sections 4 and 5 respectively and present our empirical results in Section 6.  We make some 

concluding remarks in the final section. 

 

2. Internet Betting Exchanges 

Betting exchanges exist to match people who want to bet on a future outcome at a given price 

with others who are willing to offer that price.  The person who bets on the event happening 

at a given price is the backer.  The person who offers the price is known as the layer. 

The advantage of this form of betting for the bettor is that, by allowing anyone with 

access to a betting exchange to offer or lay odds, it serves to reduce margins in the odds 

compared to the best odds on offer with traditional bookmakers.  Exchanges allow clients to 

act as a backer or layer at will, and indeed to back and lay the same event at different times 

during the course of the market. 

The way in which this operates is that the major betting exchanges present clients 

with the three best odds and stakes which other members of the exchange are offering or 

asking for.  For example, for England to beat Australia at cricket the best odds on offer to 

those wishing to back England might be 3 to 1, to a maximum stake of £80, 2.5 to 1 to a 

further stake of £100 and 2 to 1 to a further stake of £500.  This means that potential backers 

can stake up to a maximum of £80 on England to beat Australia at odds of 3 to 1, a further 
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£100 at 2.5 to 1 and a further £500 at 2 to 1.  These odds, and the staking levels available, 

may have been offered by one or more other clients who believe that the true odds were 

longer than they offered. 

An alternative option available to potential backers is to enter the odds at which they 

would be willing to place a bet, together with the stake they are willing to wager at that odds 

level.  This request (say £50 at 4 to 1) may be accommodated by a layer or layers at any time 

until the event takes place. 

The margin between the best odds on offer and the best odds sought tends to narrow 

as more clients offer and lay bets, so that in popular markets the real margin against the bettor 

(or layer) tends towards the commission levied (normally on winning bets) by the exchange. 

 

3. A Cost-based Model of the Favourite-longshot Bias 

Early models of the favourite-longshot bias suggested that bettors are ‘risk loving’ (see, for 

example, Rosett 1965; Weitzman 1965).  More recent studies, however, have attributed the 

bias to the existence of transactions and information costs. In particular, Hurley and 

McDonough (1995) suggest that the extent of any bias may be positively related to the 

transaction costs faced by bettors as a class in acquiring information concerning the true 

probabilities of runners, as well as by the magnitude of the ‘take’ or deductions, i.e. the profit 

margin or administrative costs of market operators. 

In their model, Hurley and McDonough consider the case of risk-neutral bettors 

occupying a parimutuel betting market.  In the absence of transactions or information costs, 

bettors are able to calculate the ‘true’ probabilities of each outcome, so that the subjective 

probabilities about each potential outcome (as contained in the odds) will equal the objective 

probabilities about each outcome, i.e. no bias.  The presence of positive transactions and 

information costs, however, causes the subjective probability that the ‘favourite’ (defined as 
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the horse with the highest objective win probability) wins to diverge systematically from the 

objective probability.  In the limit, bettors will be totally uninformed and so will bet equal 

amounts on each outcome, regardless of the objective probabilities, i.e. they will bet 

relatively too much on the options with a low probability of success and too little on those 

with a high probability of success.  This is the classic favourite-longshot bias and the bias 

will exist insofar as transactions and information costs discourage bettors from becoming 

totally informed.  It follows also that the bias would increase as these costs increase. 

Although the Hurley and McDonough proposition was not supported by their 

experimental evidence, there is, in fact, an emerging body of empirical evidence gathered 

from horse race markets that is consistent with their hypothesis.  For example, Vaughan 

Williams & Paton (1997) find that the favourite-longshot bias is more pronounced in low-

grade races than in high class races.  This finding is consistent with a reasonable assumption 

that the cost of acquiring information relevant to the race outcomes is higher for low-grade 

races than high class contests, because there is likely to be less public and media scrutiny of 

low grade runners. 

Sobel and Raines (2003) offer further supporting evidence for an information-based 

explanation, identifying a lower bias in high volume betting markets, assumed to be better 

informed, than low volume markets, assumed to be proportionately more heavily populated 

by casual bettors.  The starting point for building their information model is to show that in 

the absence of any information regarding race outcomes, the expected proportion of public 

bets made on each runner in a pari-mutuel market will be 1/N, where N is the number of race 

entrants.  This represents the limiting case of extreme bias.  To the extent that the betting 

public acquire race specific information to inform their assessment of the true chances of 

individual runners, the actual degree of bias will depart from this limiting case and the 

proportions bet will approach more closely the distribution of objective probabilities.  The 
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degree of bias is therefore largely a function of the amount of information available to bettors 

and the number of runners in the race.  Using a substantial dataset of greyhound racing pari-

mutuel prices, Sobel and Raines measure the bias in a subset of races associated with a high 

proportion of ‘serious’ bettors (weekday races), and compare with a subset associated with a 

high proportion of ‘casual’ bettors (weekends), in order to test the model.  They find evidence 

of a conventional favourite-longshot bias associated with a high proportion of casual bettors, 

and of an opposite favourite-longshot bias (due to over-reaction to information) in the 

presence of a high proportion of ‘serious’ bettors, substantiating their information model. 

Sobel and Raines also demonstrate a clear relationship between the degree of bias and 

the number of race entrants, and show that this finding is at odds with the predictions of risk 

preference models.  They usefully specify testable models of risk and information 

explanations of bias as functional relationships between subjective and objective 

probabilities, enabling empirical arbitration between the two models.  Their tests of the 

models, including controls for race grade, time of day, and bet complexity, suggest that the 

information model explains the markets they examine better than the risk preference 

alternative. 

In this paper we seek to build upon the work of Hurley and McDonough and Sobel 

and Raines in order to examine the influence of transactions and information costs on the 

existence of the favourite-longshot bias.  We use Shin’s methodology (Shin 1991, 1992, 

1993) to calculate the bias for a sample of races, firstly in respect of prices from traditional 

bookmaking markets, and secondly in respect of betting exchange prices for the same races.  

The Shin approach has been employed in other recent papers studying the structural and 

behavioural characteristics of betting markets (see, for example, Cain, Peel and Law, 2001a, 

2001b, 2003).  Shin developed a systematic theoretical model that accounts for the bias by 

reference to insider activity, specifying an informational hierarchy comprising of insiders 
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(who are assumed to have certain knowledge of race outcomes), price setters (bookmakers, 

who are monopoly price setters) and outsiders (relatively casual recreational bettors).  Shin 

models the behaviour of bookmakers, arguing that they engineer the favourite-longshot bias 

to pass the cost of losses due to insider activity on to outsiders (for a concise, formal 

summary of the Shin model, see Law and Peel 2002, appendix). 

The level of commission levied across markets in the betting exchange that we 

consider (Betfair, the world’s largest betting exchange) is normally set at a maximum of 5% 

of winnings.  This is considerably less than the notional profit margin of bookmakers implied 

in the ‘over-round’, i.e. the sum of probabilities implied in the odds minus 1, which averages 

at 25.63% in our 700 race sample (based on mean bookmaker prices).  If the costs-based 

explanation of the bias is correct, therefore, we should expect the favourite-longshot bias to 

be more pronounced in the bookmaker data. 

In addition we test the effects of information costs associated with race class, adopting 

a procedure similar to that used by Vaughan Williams and Paton (1997), whereby races are 

classified by betting volume/grade as a proxy for information intensity.  In particular, we 

measure the favourite-longshot bias for each information class within the exchange data, and 

separately within the bookmaker data.  The null hypothesis is that the degree of bias across 

information classes is equal.  Finally, we seek to arbitrate between information and risk 

preference explanations of bias by employing the Sobel and Raines methodology, testing 

functional relationships between subjective and objective probabilities associated with these 

alternative models against our data. 

 

4. Data used in this study 

The first set of prices collected were those offered by bookmakers.  Unlike pari-mutuel 

prices, these odds are fixed, regardless of subsequent fluctuations in the market; the only 
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exception to this is when there are withdrawals of runners in the race, in which case a 

differential reduction is applied, based on the probability of success of the withdrawn runner 

or runners. 

Bookmakers’ prices were gathered for 799 horse races run in the UK during 2002.  

Sample races were drawn from the second half of the 2001-02 National Hunt season, the 

2002 Flat season, and the beginning of the 2002-03 National Hunt season. In order to 

minimise liquidity issues, sampling was restricted to Saturdays and other days where overall 

betting turnover was likely to be vigorous.  One advantage of sampling over the full calendar 

year 2002 is that our data should not suffer in aggregate from seasonal bias.  Prices were 

taken from the Internet site of the Racing Post, the major daily publication dealing with horse 

racing and gambling in the U.K.  Taking prices from the Internet site allows for a real-time 

comparison with betting exchange data, also acquired online. 

Our aim was to establish as complete a set of prices as possible as early in the market 

as possible.  To ensure that prices were not merely nominal, a trial was conducted whereby 

bets were placed to establish that the prices stated could be obtained.  Actual bets were small 

(ranging from £5 to £20), but enquiries were also made with individual bookmakers as to 

whether much larger bets would be accepted.  There was evidence of some limits to bet size 

set by bookmakers on occasions, but not frequently enough to raise concerns about the 

integrity of prices in general or to suggest a lack of liquidity that might require qualification 

of the results presented here. 

We calculated the mean of bookmakers’ prices for each runner in each race, to enable 

us to develop a measure of bias that could be compared directly with that of previous studies.  

In addition, we identified the most favourable price for each horse (the outlier), as this is an 

important competitive benchmark against which betting exchange prices are compared by 

bettors.   
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The bookmaker data were matched with corresponding betting exchange prices, 

collected at the same time each day, 10.30 a.m.  Bet limits on betting exchanges are explicit, 

and evidenced by the amounts layers state that they are prepared to accept in bets on 

individual runners (as outlined above).  Where bet limits were small, the prices offered were 

ignored, and races where overall betting volume was trivially low were excluded from the 

sample of races, on the grounds that the market did not have sufficient liquidity to warrant 

treating such observations as representative1.  A minimum acceptable aggregate turnover 

threshold (£2000 per race, by 10.30 am) was applied as a filter to the races in the sample in 

respect of Betfair prices; races where this turnover threshold was not met were screened out 

of the analysis.  After exclusion of races on grounds of turnover or recent withdrawals, we 

were left with exactly 700 races for the analysis. 

As a measure of information intensity, we divided our information classes according 

to betting volume, which is highly correlated with other relevant qualitative criteria such as 

racecourse grade, information on runners, media coverage, and prize money. The 

classification, including typical associated qualitative race criteria, was as follows: 

Class 1: Races with low betting volume. These are mostly at low grade racetracks 

and for small monetary prizes; often unexposed or unknown form for a number of 

runners; minimal media coverage. 

Class 2: Races with moderate betting volume. These usually attract middle ability 

horses; form is more exposed than Class 1 races; average prize money. 

                                                 
1 To avoid sample bias, we were careful to exclude only races where turnover was low with both 

Betfair and bookmakers, as evidenced explicitly on the Betfair website, and by inference from bet sizes in trade 
press results sections in the case of bookmakers, and enquiries made with bookmakers as to bet limits. 
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Class 3: Races with higher than average betting volume. These are competitive 

races with a high degree of betting interest, generated by characteristics of the race or 

its contenders likely to attract public interest and enhanced media coverage; higher 

than average reported betting volumes in the press. 

Class 4: Races with very high betting volume. High profile and top class races; high 

profile contending horses; high degree of competition and media interest, speculation 

on runners often extending weeks before the contest. 

These classes are not official race categories.  They are primarily distinguished by 

betting turnover, as a proxy for the degree of media publicity and other qualitative aspects 

outlined in the class descriptions above.  Official industry race classes were not used for our 

purpose, as it is far from clear that these are closely correlated to the amount of public 

information about runners.  Many horses in high-class two-year old races, for example, are 

relatively unexposed to prior public scrutiny.  Table 1 summarises the distribution of races in 

our sample between the four information categories. 

 In order to distinguish between information and risk preference explanations of the 

observed market structures, we needed a further classification of prices to facilitate 

estimation of the functional relationship between subjective and objective probabilities in our 

data.  We employed a method of classification traceable to Weitzman (1965), whereby 

normalised odds probabilities are categorised according to a measure of the monetary return 

to a nominal winner at given odds to a unit bet, including stake.  This largely solved the 

problem of specifying classes having an insignificant number of runners, especially in the 

shortest odds categories.  Table 2 summarises the normalised odds probabilities of horses in 

our sample, categorised by Weitzman category. 
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5. Empirical Methodology 

Our measure of the favourite-longshot bias is derived from the model constructed by Shin 

(1993, pg.1148), which explains the favourite-longshot bias as a result of bookmaker 

behaviour in the face of insider trading.  Shin shows that, in equilibrium, the sum of price 

probabilities offered by bookmakers will exceed 1, such that: 

Di = z(n-1)i + ∑ aknikVar (p)i + ∑ bknik [Var (p)]2
i    (1) 

where D is the sum of prices in race i, expressed as probabilities minus one; n is the number 

of runners; and Var (p) is the “variance” of price probabilities for the runners in the race2. 

The coefficient of n-1, z, is the measure of insider trading, and the higher the value of 

z, the greater the degree of bias.  For his sample of 178 races in the early 1990s, Shin 

estimated z to be 0.025, i.e. 2.5% of betting turnover could be attributed to insiders. 

 Shin uses an iterative ordinary least squares method to estimate z in his sample of 

races, beginning the process with an initial estimate of z from the observed variance of prices 

within the races, used as a proxy for variance of probabilities.  The value of z is re-estimated 

by using this initial value, and the iterative process is repeated until convergence is achieved. 

This estimating procedure, replicated in the later studies by Vaughan Williams and Paton 

(1997), and by Cain, Law and Peel (2001a), is also adopted here.  In each case, we restrict the 

polynomial in equation (1) to k = 2.  In accordance with Shin (1992) and Vaughan Williams 

and Paton (1997), using higher values of k has very little impact on our results. 

Shin’s z offers a robust method of analysing the degree of bias in specific races and 

has the further useful property that it does not require an estimate of true probabilities based 

on results, permitting application to a much smaller set of races. 

                                                 
2 Shin does not use the term variance in its usual sense; rather, Var (p) is a measure of distance of vector p from 
the vector 1/n. 
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 We wish to obtain estimates of the value of z in equation 1 for the three different 

prices.  The prices all pertain to the same set of races.  Given this, we exploit potential 

correlations in the residual terms by estimating equation 1 for each set of prices using the 

seemingly unrelated regression (SUR) technique.  SUR enables us to achieve gains in 

efficiency in the presence of correlations in error term across the three models.  A further 

advantage of the SUR approach is that it enables us to test directly the equality of coefficients 

(in our case, the estimate of z) across the three equations. 

 Recall that the cost based model predicts that the level of bias will be systematically 

higher in cases when transaction costs are higher.  In terms of the Sobel and Raines model 

this is because fewer ‘serious’ bettors will wish to be involved when transaction costs are 

high. The first empirical consequence of this proposition is that the estimated value of z for 

the outlier bookmaker prices should be lower than that for the mean bookmaker prices.3.  

Secondly, the estimated value of z for the Betfair prices should be lower than for either set of 

bookmaker prices.  To the extent that our classification of races into different classes proxies 

for the costs to consumers of obtaining information about form, a third empirical 

consequence is that the estimated value of z should be lower, the higher is the class of race. 

 In addition to testing the transaction cost/information based model we wish to 

consider the adequacy of the alternative risk preference explanation of the favourite-longshot 

bias in relation to the same data, employing the methodology of Sobel and Raines. 

 Building on Rosett (1965), Sobel and Raines specify the risk model as: 

 log (ρi) = α + βlog(πi)        (2) 

                                                 
3 The outlier prices may also offer ‘quasi-arbitrage’ trading opportunities for the bettor, i.e. opportunities to 
trade at prices better than the objective probabilities, assuming that the mean of the prices on offer is a good 
reflection of the true chances of the runners (see Paton and Vaughan Williams, 2005; Smith, Paton and Vaughan 
Williams, 2005). 
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where ρi is the subjective probability of horse i winning, and πi  is the corresponding objective 

probability.  Further, they derive an information model using a process of Bayesian updating, 

specified as: 

 ρi  =  α + βπI         (3) 

 In both cases β is a measure of the favourite-longshot bias, with 0 < β < 1 indicating 

over betting of longshots relative to runners at short odds, and β > 1 indicating an opposite 

favourite-longshot bias. 

In estimating these models for the data in our sample, we adopt normalised mean 

bookmaker prices for each horse as the observed values of ρi. We exploit our finding of very 

little bias in the betting exchanges (see next section) to estimate objective probabilities, 

utilising normalised betting exchange prices for runners as a proxy for πi.  Mean values for ρi 

and πi are established for the Weitzman categories, as summarised in Table 2, and 

subsequently used in a weighted least squares regression to estimate equations (2) and (3). 

A further test performed by Sobel and Raines is to establish the point at which the 

subjective and objective probability lines cross; they demonstrate that for the information 

model this crossing point is at π = 1/N, whereas for the risk preference model the 

corresponding crossing point is at π = λ1/1-β, suggesting that the degree of bias is independent 

of the number of entrants in a race. 

 Should the estimation of equation (3) fit the data in our sample better than a similar 

estimation of equation (2), this would provide empirical support for the proposition that the 

information model better explains the favourite-longshot bias than the risk preference model. 
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Further, if the crossing point of subjective and probability lines corresponding to our data is 

close to 1/N, this will also provide empirical support for the information model. 

 

6. Results and discussion 

In respect of the Shin z estimates, our results are reported in Table 3 to 8.  In all cases, the 

Breusch-Pagan test rejects the null that the residuals in the three equations are independent 

and this provides support for our use of the SUR methodology. 

We report the SUR results of equation 1 with the three different sets of prices for the 

whole sample in Table 3. Recall that the bias (Shin’s z value) is given by the estimated 

coefficient on the variable n-1.  For the mean fixed odds data, the bias is estimated to be 

2.17%, a figure broadly comparable with the estimates derived from starting prices by Shin 

(1993) and Vaughan Williams and Paton (1997), using a similar methodology4.  When we 

use the outlier fixed odds data, the bias reduces to 1.19%.  These values are significantly 

higher than the corresponding figure for the betting exchange data, where the bias is just 

0.9%, offering support for the Hurley and McDonough proposition that the degree of 

favourite-longshot bias will be more pronounced when trading costs are higher.  In terms of 

the Sobel and Raines model, a lower conventional bias in the exchanges relative to traditional 

betting markets is consistent with a higher proportion of ‘serious’ bettors on the exchanges 

than with bookmakers5.  The formal tests that pairs of these coefficients are equal (reported 

in Table 8), confirm that the estimated bias in the exchange data is significantly lower than 

both the mean and outlier fixed odds data. 

                                                 
4 An alternative approach to that of Shin in which the favourite-longshot bias is estimated directly is suggested 
in Schnytzer and Shilony (1995).  Using this approach led to a very similar ordering of the bias across each of 
the three price formats to that reported here. 
 
5 We have no empirical data to suggest that the proportion of casual bettors is greater with bookmakers than the 
exchanges but recent evidence submitted to a UK parliamentary committee considering gambling legislation 
suggests a significant degree of non- recreational trading on the betting exchanges. 
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We now consider the degree of bias associated with the four information classes.  As 

discussed above, an important implication of the Hurley and McDonough and the Sobel and 

Raines hypotheses is that there will be a positive relationship between costs involved in 

acquiring race specific information, and the degree of favourite-longshot bias. We therefore 

expect the values of Shin z to decrease as we progress from the subset of races associated 

with the least public information (Class 1) through to that associated with most public 

information (Class 4).  This proposition is borne out by the Shin z values across information 

sets for all three price formats (reported in Tables 4-7 and in Figure 1).  Unequivocal support 

for this element of the hypothesis would require that z decreases monotonically from Class 1 

to Class 4.  Whereas only for the betting exchange data is this strict condition met, the overall 

trends in z for the bookmaker data are also clearly decreasing.  The tests of equality of 

coefficients across the three sets of prices (summarised in Table 8) give confidence in the 

systematic nature of these overall structural trends.  The only exception is the Betfair/outlier 

test of equality at Class 1.  As Class 1 in our information hierarchy coincides with lower 

turnover races, it is likely that this anomaly is caused by a reduced degree of price 

competition between layers on the exchange, with a number of prices filtered out by our 

turnover rule; this lack of competitive pricing would not be as apparent in respect of outliers 

as bookmakers may feel obliged to offer a full set of competitive prices, despite low public 

interest, to maintain credibility.  In these circumstances one could expect to encounter a 

liquidity limit to further reductions in the degree of bias in the betting exchange.  

Nonetheless, exchange prices remain competitive with outliers, emphasising the importance 

of the latter as a benchmark for exchange layers. 

The evidence is, therefore, consistent overall with an information and cost-based 

modelling of the favourite-longshot bias. 
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Intuitively, it may seem paradoxical that the extent of insider trading should be lowest 

in the exchanges, where traders possessing inside information have arguably the greatest 

opportunity to exploit this knowledge by, for example, laying high odds against non-triers 

winning.  Our results are not inconsistent with this intuitive reasoning, although they do 

suggest that insider trading is not as commonplace on exchanges as sometimes portrayed in 

the media.  To demonstrate this consistency, if we consider the standard errors of the 

estimates of Shin z presented in Tables 4-7, they are without exception highest for the betting 

exchange values, despite lower estimates of z.  This implies that although the degree of bias 

is overall less in the structure of exchange prices, the impact of specific items of insider 

information is likely to be more evident and exaggerated in particular races than is the case 

for the bookmaker data.  In other words, our results do not deny the existence of isolated 

cases of insider activity in the exchanges – rather, they suggest that such activity is not 

widespread. 

A further implication of the interpretation of the favourite-longshot bias suggested 

here is that it would be unwise to attribute the observed bias in bookmaker prices solely to 

bookmaker insurance against asymmetric information, as in the Shin model.  The transaction 

cost and information models explain the observed pattern of bookmaker prices equally well.  

A question arises as to whether it is legitimate to use a measure of bias (Shin’s z) explicitly 

derived from a model of bookmaker behaviour, to propose a model not based on this initial 

premise.  Shin models bookmaker competition, whereas the person-to-person exchange 

consists of individuals who do not need to maintain a credible market structure embracing all 

runners.  Aside from the degree of bias and level of transaction costs, however, the 

competitive structure of exchange markets resembles that of Shin’s bookmaking market quite 

closely.  For example, the dynamics of the market are such that, for individual runners, 

exchange layers have to offer competitive prices to attract bettors, with the sum of price 
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probabilities usually exceeding one by only a few percent.  On the other hand, the occasions 

when the sum of probabilities falls below one are extremely rare (these characteristics are 

confirmed by observation of our sample races).  We feel justified, therefore, in applying the 

Shin z measure in this non-bookmaker betting medium. 

 In judging whether an information model explains the favourite-longshot bias better 

than a risk preference model, we estimated the Sobel and Raines specifications expressed in 

equations (2) and (3) above.  The coefficients α and β corresponding to each equation, 

estimated from observed values of ρ (based on bookmaker mean prices), and π (exchange 

prices employed as a proxy), are summarised in Table 9.  Figure 2 shows fitted and actual 

values of ρ plotted against π for the risk model, whilst Figure 3 plots the corresponding 

values for the information model.  The information model appears to fit the data much more 

closely than the risk alternative.  Figure 3, in fact, suggests an almost perfect fit. This 

empirical finding corresponds very closely to the Sobel and Raines result, supporting their 

conclusion that an information based explanation of the favourite-longshot bias is more 

robust than one based on risk preference. 

 Finally, we consider the crossing points of the subjective and objective probability 

functions (in Figures 2 and 3 the latter would be represented by a 45% line through the 

origin). Recall that the information model predicts that the crossing point will be at π = 1/N. 

As the mean number of race entrants in our sample is 11.8, we therefore expect the lines to 

cross at a value of 1/11.8 = 0.0847.  Substituting ρ = π into equation (3) gives a resulting 

crossing point at π = α /(1- β), which from Table 9 yields a value of 0.0849.  This is virtually 

identical to 1/N, offering further empirical support for the information model. 
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7. Conclusions 

In this study we have shown that the established favourite-longshot bias is demonstrably 

lower in person-to-person (exchange) betting than in traditional betting markets.  As these 

exchange betting markets are characterised by relatively low transactions costs, our findings 

are consistent with models in which such costs can help to explain the favourite-longshot 

bias.  We further find that, in both exchange and traditional betting markets, the level of bias 

is lower the greater the amount of public information that is available to traders. Additional 

empirical support for an information based model is found by employing an alternative 

methodology which enables us to arbitrate between information based and risk preference 

models of the favourite-longshot bias in relation to our data.  Our results suggest that an 

information model explains the favourite-longshot bias better than a risk preference model. 
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Table 1: Distribution of races by information class 

Information class Races 
1 171 
2 265 
3 137 
4 127 

Total 700 
 
 
 
Table 2: Normalised odds probabilities (Weitzman classes) 

 Return(i) 
No. of 

horses(ii) 
Subjective 

probability(iii)
Objective 

probability(iii) 
1 13 0.5512 0.5933 
2 49 0.4481 0.4666 
3 134 0.3272 0.3391 
4 261 0.2492 0.2571 
5 305 0.1991 0.2064 
6 344 0.1672 0.1732 
7 364 0.1434 0.1481 
8 373 0.1253 0.1295 
9 356 0.1113 0.1129 
10 376 0.0999 0.1030 
11 321 0.0911 0.0923 
12 306 0.0835 0.0848 
13 421 0.0756 0.0751 
15 496 0.0668 0.0668 
17 667 0.0574 0.0563 
21 856 0.0476 0.0452 
26 721 0.0380 0.0340 
34 629 0.0300 0.0256 
41 429 0.0241 0.0184 
51 361 0.0196 0.0135 
67 233 0.0146 0.0095 
101 124 0.0102 0.0060 

151 and over 119 0.0054 0.0036 
N 8258   

Average no. of 11.8   
race entrants (N)    

 1/N 0.0848   
Notes: 
(i) Return to a unit stake bet on a nominal winner, inclusive of stake. 
(ii) Categorised according to mean bookmaker odds. 
(iii) Mean value for all horses in the category. 
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Table 3: SUR Estimates of the Shin over-round function D: all races 
  Mean Outlier Betfair 
n-1 0.0217*** 0.0119*** 0.0090*** 
 (0.0003) (0.0003) (0.0005) 
V -26.856*** -18.042*** -11.366*** 
 (2.189) (2.170) (2.718) 
Nv 8.095*** 4.662*** 3.758*** 
 (0.4282) (0.4300) (0.5233) 
n2v -0.4276*** -0.2380*** -0.2625*** 
 (0.0217) (0.0221) (0.0264) 
V2 1111.340*** 622.428*** 632.404*** 
 (115.761) (109.765) (138.865) 
Nv2 -310.588*** -160.578*** -196.288*** 
 (34.453) (32.554) (41.824) 
n2v2 16.135*** 8.256*** 13.017*** 
 (2.584) (2.442) (3.048) 
R2 0.9698 0.9042 0.6049 
N 700 700 700 
Independence 760.52*** 

Notes: 
(i) Estimates are from the final stage of the iterative process as described in the text. 
(ii) The dependent variable is D = sum of price probabilities minus one (equation 1). 
(iii) Figures in brackets are standard errors.  *** indicates significance at the 1% level; ** at the 5% level; * at 
the 10% level. 
(iv) Independence indicates the Breusch-Pagan test that the equations are independent.  The test statistic is 
distributed as χ2(3). 
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Table 4: SUR Estimates of the Shin function D: Class 1 races 

  Mean Outlier Betfair 
n-1 0.0258*** 0.0132*** 0.0182*** 
 (0.0007) (0.0008) (0.0016) 
V -4.709 -6.809 14.978 
 (5.458) (6.412) (10.953) 
Nv 2.851** 1.078 -2.086 
 (1.118) (1.317) (2.204) 
N2v -0.2092*** 0.0149 -0.1087 
 (0.0560) (0.0665) (0.1063) 
V2 272.314 -47.958 196.135 
 (240.570) (268.694) (458.517) 
nv2 -115.416 71.602 -181.077 
 (81.873) (94.806) (166.986) 
N2v2 8.102 -10.122 24.533 
  (7.488) (8.812) (15.652) 
R2 0.9828 0.9278 0.7548 
N 171 171 171 
Independence 94.40*** 
See Table 3, notes (i) to (iv) 
 
 
 
 
Table 5: SUR Estimates of the Shin function D: Class 2 races 

  Mean Outlier Betfair 
n-1 0.0261*** 0.0147*** 0.0124*** 
 (0.0006) (0.0006) (0.0009) 
V -21.045*** -14.684*** -6.920 
 (3.575) (3.625) (4.608) 
Nv 6.981*** 4.115*** 2.611** 
 (0.8128) (0.8308) (1.033) 
N2v -0.4641*** -0.2767*** 0.2547*** 
 (0.0483) (0.0500) (0.0600) 
V2 1020.799*** 564.807** 539.283* 
 (230.061) (232.228) (273.593) 
nv2 -312.503*** -170.358** -181.400* 
 (72.273) (73.450) (85.851) 
N2v2 20.298*** 12.243** 14.491* 
  (5.677) (5.786) (6.635) 
R2 0.9755 0.9156 0.6907 
N 265 265 265 
Independence 312.86***  
See Table 3, notes (i) to (iv) 
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Table 6: SUR Estimates of the Shin function D: Class 3 races 

  Mean Outlier Betfair 
n-1 0.0186*** 0.0105*** 0.0052*** 
 (0.0005) (0.0006) (0.0008) 
V -20.879*** -14.002*** -9.025 
 (4.850) (5.314) (6.013) 
Nv 7.165*** 4.031*** 2.803*** 
 (0.8985) (0.9918) (1.075) 
N2v -0.2767*** -0.1670*** -0.1351*** 
 (0.0424) (0.0473) (0.0502) 
V2 1154.01*** 755.033* 152.903 
 (407.163) (412.894) (446.454) 
nv2 -280.511** -181.760 -21.920 
 (124.598) (123.729) (137.868) 
N2v2 2.368 4.443 -3.203 
  (9.189) (9.200) (10.561) 
R2 0.9856 0.9414 0.6891 
N 137 137 137 
Independence 116.76*** 
See Table 3, notes (i) to (iv) 
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Table 7: SUR Estimates of the Shin function D: Class 4 races 

  Mean Outlier Betfair 
n-1 0.0173*** 0.0089*** 0.0038*** 
 (0.0006) (0.0006) (0.0007) 
V -38.961*** -20.106** -16.812** 
 (8.283) (8.995) (7.210) 
Nv 8.981*** 4.191*** 3.312*** 
 (1.912) (1.318) (1.029) 
N2v -0.3580*** -0.1546*** -0.1442*** 
 (0.0447) (0.0502) (0.0396) 
V2 787.121*** 342.393 454.209** 
 (245.831) (251.637) (205.910) 
nv2 -154.164** -54.260 -105.455 
 (78.255) (78.174) (66.063) 
N2v2 2.995 0.2528 5.517 
  (5.893) (5.855) (4.947) 
R2 0.9725 0.8966 0.5333 
N 127 127 127 
Independence 104.14*** 
Notes: 
See Table 3, notes (i) to (iv) 
 

 

Table 8: Results of null hypotheses tests: equality of z values across price formats 
Classes 1 to 4 (information sub-sets) 

H0: Mean = Outlier Mean = Betfair Betfair = Outlier 
All races 1848.38*** 960.68*** 42.26*** 
Class 1 946.27*** 348.26*** 0.09 
Class 2 1291,36*** 715.75*** 29.48*** 
Class 3 1191.89*** 853.05*** 79.28*** 
Class 4 1007.80*** 670.06*** 60.10*** 
Notes: 
(i) Tests are of the null hypothesis that the value of z (i.e. the coefficient on n-1) is the same for the respective 
samples. 
(ii) *** indicates significance at the 1% level. 

 25



Table 9: Coefficients for the Risk Preference and Information based models 
 Risk model Information model 

α  -0.3103*** 0.0050*** 
 (0.0399) (0.0004) 
β 0.8655*** 0.9405*** 
 (0.0132) (0.0038) 

R2 0.9976 0.9998 
N 23 23 

Note: 
*** indicates significance at the 1% level. 
 

 

 

 

Figure 1: Shin z coefficients for bookmakers mean, bookmakers outlier, and betting 
exchange prices 
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Notes: 
(i) The y axis shows the coefficient of n-1, or Shin’s z, multiplied by 100. The interpretation of this value is that it indicates 
the percentage of insider trading volume in the market concerned, and also acts as a direct proxy measure of the degree of 
bias. 
(ii) Class 1 = least public information; Class 4 = most public information. 
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Figure 2: Estimated relationship between subjective and objective probabilities: the risk 
preference model 
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Figure 3: Estimated relationship between subjective and objective probabilities: 
the information model 
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	As a measure of information intensity, we divided our information classes according to betting volume, which is highly correlated with other relevant qualitative criteria such as racecourse grade, information on runners, media coverage, and prize money. The classification, including typical associated qualitative race criteria, was as follows:
	Class 1: Races with low betting volume. These are mostly at low grade racetracks and for small monetary prizes; often unexposed or unknown form for a number of runners; minimal media coverage.
	Class 2: Races with moderate betting volume. These usually attract middle ability horses; form is more exposed than Class 1 races; average prize money.
	Class 3: Races with higher than average betting volume. These are competitive races with a high degree of betting interest, generated by characteristics of the race or its contenders likely to attract public interest and enhanced media coverage; higher than average reported betting volumes in the press.
	Class 4: Races with very high betting volume. High profile and top class races; high profile contending horses; high degree of competition and media interest, speculation on runners often extending weeks before the contest.
	A further test performed by Sobel and Raines is to establish the point at which the subjective and objective probability lines cross; they demonstrate that for the information model this crossing point is at ( = 1/N, whereas for the risk preference model the corresponding crossing point is at ( = (1/1-(, suggesting that the degree of bias is independent of the number of entrants in a race.
	Further, if the crossing point of subjective and probability lines corresponding to our data is close to 1/N, this will also provide empirical support for the information model.
	6. Results and discussion

