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ABSTRACT 
 

The effects of Parkinson’s Disease mimetics on the proteasomal  and the neurofilament 

systems in SH-SY5Y cells 

 

Mitochondrial impairment, glutathione depletion and oxidative stress have been implicated in 

the pathogenesis of Parkinson’s disease, linked recently to proteasomal dysfunction. This study 

analyses how these factors influence the various activities of the proteasome in SH-SY5Y 

human neuroblastoma cells treated with the PD mimetics MPP+ (a complex I inhibitor) or 

dopamine. Treatment with these toxins led to dose and time dependent reductions in ATP and 

glutathione levels and also chymotrypsin-like and postacidic-like activities; however, trypsin-

like activity was unaffected. Antioxidants blocked the effects of dopamine but not MPP+, 

suggesting that oxidative stress was more important in the dopamine-mediated effects. With 

MPP+, ATP depletion was a pre-requisite for loss of proteasomal function. 
 

This study also shows that addition of MPP+ or dopamine to purified samples of the human 

20S proteasome also reduced proteasomal activities; with dopamine being most damaging. As 

was the case with toxin-treated cells chymotrypsin-like activity was the most sensitive and 

trypsin-like activity, the least sensitive. The direct effect of both compounds on proteasomal 

activity was, at least, partly due to oxidative damage to the proteasome, since the antioxidant 

vitamin C could partially alleviate the proteasomal impairment. Indeed, Western blot analyses 

showed that some of the β- and α-subunits of the proteasome were modified by dopamine 

treatment. 
 

One of the hallmarks of Parkinson’s disease is the appearance of Lewy bodies, which are 

protein inclusions containing α-synuclein, neurofilament proteins and ubiquitinated proteins. A 

growing body of evidence suggests that the UPS might be involved in the formation of these 

aggregates. This thesis, reports that neurofilaments can undergo proteasomal degradation and 

that MPP+ and dopamine alter the expression/phosphorylation and distribution of these 

cytoskeletal proteins in SH-SY5Y cells. Therefore aberrant changes in both neurofilament 

profiles and proteasomal degradation may influence inclusion formation in dopaminergic 

neurons. 
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1. GENERAL INTRODUCTION 

1.1 PARKINSON’S DISEASE 

Parkinson’s disease (PD) is a severe, progressive motor disorder of the central nervous 

system, which was first described by the English physician, James Parkinson in 1817. It 

is reported to be the second most common neurodegenerative disease, the occurrence of 

which increases with age, affecting about 1 % of the population over 65. PD is mostly 

presented as a sporadic form, although in rare instances genetic forms of the disease 

also exist (5-10 % of all cases; reviewed by Wood-Kaczmar et al., 2006; see section 

 1.1.2.4 for further information). Whilst the aetiology of sporadic PD remains 

unresolved, its pathogenesis is understood to be a consequence of a multifactorial 

cascade of deleterious events (Prezedborsky, 2005). 

1.1.1 Disease pathology and clinical features 

It is widely accepted that PD primary pathology is due to the degeneration of the 

dopaminergic neurons of the substantia nigra pars compacta (SNpc). This results in low 

levels of brain dopamine (DA) in the striatum, responsible for the motor symptoms. 

Although it is commonly thought that the neuropathology of PD is characterised solely 

by dopaminergic neuron loss, the neurodegeneration extends well beyond dopaminergic 

neurons. Indeed, non-nigral lesions lead to cognitive and psychological impairments ie. 

dementia, sometimes seen in PD (reviewed by Blum et al. 2001 and Dauer and 

Przedborsky, 2003).  

Another neuropathological feature of the disease is the appearance of Lewy bodies 

(LB), which are prominent intracytoplasmic inclusions of proteinaceous material 

containing mainly lipids, neurofilaments, α-synuclein, ubiquitinated proteins and 

proteasome subunits (Forno, 1996; Floor and Wetzel, 1998; Good et al. 1998; Kowal et 

al 2000; Lopiano et al. 2000; McNaught and Ollanow, 2006). However, the role of 

Lewy bodies in the parkinsonian brain remains controversial (Chung et al., 2001a; Mc 

Naught et al., 2001; Barzilai and Melamed, 2003; Dauer and Pzredborsky, 2003; 

Shoesmith and Paulson, 2003; see section  1.1.3 for further details). 

The mechanisms responsible for the specific death of dopaminergic neurons remain 

unresolved; however, age, genetic factors and the action of environmental and intrinsic 
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The clinical manifestations of PD include bradykinesia (slowness of movement), gait 

abnormalities, resting tremor, postural instability and muscular rigidity (reviewed by 

Beal M.F. 2001 and Wood-Kaczmar et al., 2006). Symptoms appear only after loss of 

50-70% of nigral DA neurons; this can be explained by the fact that the brain contains 

an excess of DA fibers (reviewed by Blum et al. 2001 and Barzilai and Melamed, 

2003).  

Disease is normally treated by administration of the DA precursor L-dopa (L-3, 4-

dihydroxyphenylalanine) which can cross the blood-brain barrier boosting DA synthesis 

in the cells that remain alive in the substantia nigra, thus alleviating most of the 

symptoms (Beal, 2001). Unfortunately, over the years L-dopa provokes involuntary 

movements (termed “dyskinesias”) in patients, which significantly impair their quality 

of life.  All current treatments for PD address the symptoms, although present research 

is focused on the prevention of DA neuron degeneration. However, it is a difficult goal 

due to the ignorance of the specific molecular events that provoke neurodegeneration in 

PD (Dauer and Przedborsky, 2003). 
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Figure  1.1. Overview of the potential mechanisms involved in the development of PD. 
Based on Betarbet et al., (2002) with modifications. 

 

1.1.2 Factors involved in the disease 

1.1.2.1 Mitochondrial dysfunction 

Mitochondria are central to the life of eukaryotic cells (Bernardi et al., 1999). Their 

primary function is to support aerobic respiration and to provide energy substrates (such 

as ATP) for intracellular metabolic pathways. Mitochondria also play an important role 

in the pathways to cell death, mainly apoptotic cell death (Bernardi et al., 1999; 

Shapira, 2006).  

The link between PD and mitochondria was first established with the identification of a 

deficiency in the activity of complex I (NADH: ubiquinone oxidoreductase) in PD 

SNpc and subsequently in peripheral tissues of patients (Schapira et al. 1989; Parker et 

al. 1989). Indeed, a 25-30 % loss in complex I activity has been reported in PD brains 

(Schapira et al. 1989; Parker et al. 1989; Gu et al. 1998; Conn et al. 2001).  

Further evidence has strengthened the hypothesis of mitochondrial dysfunction playing 

a key role in the pathogenesis of PD since exposure to neurotoxins linked to complex I 
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inhibition, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone, 

can lead to parkinsonism in humans or animal models (Beal, 2001, Betarbet et al., 

2000). 

Complex I is the largest of the electron transport chain macrocomplexes and consists of 

46 subunits, seven of which are coded for by mitochondrial DNA (mtDNA). The 

remaining 39 subunits are coded by nuclear genes, imported into mitochondria, and 

assembled with the mtDNA-encoded subunits in a complicated process (Keeney et al., 

2006). Decreased complex I activity primarily results in ATP depletion in cells but also 

in an increase of free radicals which may be responsible for the oxidative mediated 

damage observed in PD. Reciprocally, free radicals may also damage the mitochondria 

(reviewed by Schapira, 2006). 

Recent studies from Keeney and co-workers (2006) provide further understanding of the 

nature of mitochondrial dysfunction in PD since  they report that reduced complex I 

activity in PD brain mitochondria appears to arise from oxidation of its catalytic 

subunits from internal processes (reproduced by using NADH to drive electrons through 

complex I and blocking the transfer of electrons with rotenone at the quinone reduction 

site), not from external oxidative stress (reproduced by exposure to H2O2), and this 

correlates with complex I misassembly. They argue that complex I auto-oxidation may 

derive from abnormalities in mitochondrial or nuclear encoded subunits, assembly 

factors, rotenone-like complex I toxins or some combination (Keeney et al., 2006).  

1.1.2.2 Oxidative stress: role of DA and loss of glutathione 

As introduced earlier, oxidative stress accompanied by a reduction in glutathione 

content are also believed to contribute to PD pathogenesis (Jenner and Olanow, 1996; 

Schulz et al., 2000; Jha et al., 2002; Mytilineou et al., 2002). Floor and Wetzel (1998) 

found that oxidative stress is elevated in SNpc in comparison with other regions 

resulting in elevated oxidative damage which may contribute to the degeneration of 

nigral dopaminergic neurons in ageing and in PD. 
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1.1.2.2.1 Antioxidant defence systems in the brain 

ROS are generated in the brain as products of normal cell metabolism (eg. normal 02 

intake, aerobic respiration and oxidative metabolism of DA and other substrates) but 

also in response to internal and external toxins (reviewed by Prasad et al., 2000).  

Particularly, the electron transport chain is an important source of ROS derived from 

oxidative phosphorylation (Hughes et al., 2005). 

Cellular damage occurs when production of ROS exceeds the available antioxidant 

defence system. The antioxidant defence system of cells include the enzymes 

superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH Px) and 

glutathione reductase (GRD). An overview of the generation of ROS and the action of 

the antioxidant enzymes (AOEs) is included in Figure  1.2. Since energy production in 

neurons (ie. ATP) depends mainly on oxidative phosphorylation, and the brain contains 

lower amounts of antioxidant molecules and AOEs than other tissues, neurons are 

usually more exposed to oxidative damage (reviewed by Mytilineou et al., 2002).  

Electron Transport Chain  →  4 free e- + 4O2  →   4 O2
-• 

                                                                                                                    
                Lipid peroxidation             
                DNA hydroxylation 
                                                  

                                                    2H2O + O2                            2H2O + O2     

                                                      GSSG                               2GSH                    

CATALASE 

GRD 

GSH Px 

←  2OH•    ←  2H2O2 + 2O2 
2 Fe2+ 

DA 
         MAO                  SOD + 4 H+   

 

Figure  1.2. Reactive oxygen species produced by the mitochondria and associated 
antioxidant defence systems (taken from Cassarino and Bennett, 1999 with 
modifications). Normal aerobic respiration produces ROS, some of it is caused by 
leakage of partially reduced O2 within the electron transport chain.  Leakage of 
electrons (e-) onto molecular O2 produces the superoxide anion (O2

-•). Superoxide 
dismutase (SOD) can react with O2

-• to form H2O2 and O2. H2O2 can also be formed 
from the oxidation of DA via the enzyme monoamine oxidase (MAO; see  1.1.2.2.2).  
Iron can react with H2O2 to give a highly reactive hydroxyl radical (OH•). Glutathione 
peroxidase (GSH Px) detoxifies H2O2 produced from O2

-• by oxidising reduced 
glutathione (GSH), which also acts as an antioxidant enzyme. Oxidised glutathione 
(GSSG) is then reduced back to GSH by glutathione reductase (GRD). Alternatively 
H2O2 is detoxified by catalase, a peroxisomal enzyme. 
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1.1.2.2.2 Role of DA in ROS formation in PD 

Increased oxidative stress in PD may be initiated by a decline in the antioxidant defence 

system (mainly a depletion in glutathione within SNpc; see next section) but may also 

be due to the fact that DA-containing neurons are believed to be more prone to 

oxidative stress due to DA oxidation (either through its auto-oxidation or via the 

enzyme monoamine oxidase (MAO)), which subsequently generates free radicals and 

other ROS within SNpc (Jha et al., 2000; Schulz et al., 2000; Stokes et al., 2000; Yoo et 

al., 2003).  

Indeed, auto-oxidation of DA leads to the formation of neuromelanin and can generate 

quinone and semiquinone species and other ROS, whilst MAO-mediated DA oxidation 

can generate H2O2, as well as deaminated DA metabolites such as 3,4-dihydroxybenzoic 

acid (DOPAC) and homovanillic acid (HVA). DA-quinone formation can also be 

formed through the action of enzymes like tyrosinase, cyclooxygenase or peroxidase, as 

well as by metals (Mn or Fe; Stokes et al., 2000). Detoxification of cytosolic and 

mitochondrial peroxides depends predominantly on glutathione peroxidase and 

reductase since catalase is compartmentalised into peroxisomes (reviewed by Schulz et 

al., 2000; Mytilineou et al., 2002). H2O2 can react with ferrous iron (Fe2+) to form 

highly reactive hydroxyl radical (OH•) via the fenton reaction. Interestingly, iron levels 

are increased in the SN of PD patients along with elevations in various indices of 

oxidative damage (Jha et al., 2000; Berg et al., 2001).  Hydroxyl radicals can damage 

proteins, nucleic acids and membrane phospholipids (Jha et al., 2000; Schulz et al., 

2000).  Indeed, Schulz et al. (2000) discussed that in PD, the loss of dopaminergic 

neurons, which results in decreased DA levels, may lead to a compensatory increase in 

DA turnover, with increased formation of H2O2 and increased demands on glutathione 

synthesis in the remaining neurons. This hypothesis is supported by experimental 

studies showing that enhanced DA turnover is associated with increased formation of 

oxidised glutathione (GSSG) which in turn can be prevented by inhibitors of DA 

metabolism (Spina et al., 1989).  
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1.1.2.2.3 Glutathione level is reduced in PD brains 

The most significant alteration in the antioxidant defence in PD is a reduction in GSH 

levels in SNPc of patients (30-40% reduction compared to controls; Sofic et al., 1992; 

Dringen, 2000; Schulz et al. 2000) and it has been reported that the degree of the disease 

correlates with the extent of GSH loss (Riederer et al., 1989). Since glutathione is an 

important natural antioxidant, a deficiency of GSH in the SN could make this region 

more vulnerable to oxidative injury (Perry et al., 1982). However, in the brain most of 

the glutathione is localised in the glia, so the decrease in GSH levels in SNpc may not 

only occur in dopaminergic neurons, which only make up 1-2 % of the total cell 

population, but also in glial cells (Schulz  et al., 2000). 

Depletion of GSH in PD substantia nigra, as for the complex I deficiency, appears to be 

selective for this brain area (Gu et al. 1998) and may occur early in the development of 

PD causing a cascade of events, which ultimately result in cell death (Dringen, 2000; 

Schulz et al. 2000). The cause of the loss of GSH in PD is not clear but since it is not 

accompanied by the corresponding increase in GSSG it may not be wholly the 

consequence of oxidative stress (Sofic et al., 1992). The activity of γ−glutamyl-cysteine 

synthetase (an enzyme involved in glutathione synthesis; see Figure 1.3) is normal in 

PD, thus it would seem that no failure of glutathione synthesis occurs. Indeed, an 

increase in the activity of this synthetase has been reported in PD brains; this may be an 

attempt of dopaminergic neurons to compensate GSH depletion (Sian et al., 1994; 

Schulz et al. 2000).  

Studies show that an early event following glutathione depletion in mesencephalic cell 

cultures is the release of arachidonic acid (AA), whose metabolism may contribute to 

cell damage and death via the generation of oxygen free radicals (Mytilineou et al. 

2002; Kramer et al.; 2004).  Indeed, Kramer et al. (2004) suggested that the release of 

AA is phospholipase-2-dependent, thus involving inflammation processes.  

Furthermore, decreases in glutathione availability and oxidative stress in the brain are 

also believed to promote mitochondrial damage via increased ROS and produce a toxic 

cellular environment capable of attacking a variety of biomolecules as well as inhibiting 

energy production (Materson et al., 1991; Schapira et al., 1994). Indeed, Jha et al. 

(2000) found that in PC12 cells depletion of glutathione levels results in selective 

inhibition of mitochondrial complex I.  
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Figure  1.3. Synthesis of glutathione. Glutathione is a tripeptide synthesised in vivo by 
the consecutive action of the enzymes: γ-glutamylcysteine synthetase which uses 
glutamate and cysteine as substrates to form γ-glutamylcystein and glutathione 
synthetase which catalyses the addition of glycine to the dipeptide γ-glutamylcystein to 
form glutathione. ATP hydrolyses is required in both enzymatic steps (Dringen. 2000).   

 

1.1.2.3 Environmental factors 

Environmental factors have also been linked to PD aetiology, combined with genetic 

susceptibility (reviewed by Moyal-Segal and Soreq, 2006; Betarbet et al., 2006) but the 

relative contributions of environmental versus genetics factors are still being debated 

(Langston, 2002; Moyal-Segal and Soreq, 2006). Despite the increase in the number of 

genes implicated in PD, recent twin studies suggest that genetics do not have a major 

role in PD aetiology and that non-genetic risk factors, like prolonged exposure to 

environmental toxins, are more important (discussed by Di Monte, 2003). Data from 

epidemiologic studies linked residence in rural areas and thus, exposure to pesticides to 

higher risk of developing PD (Di Monte 2001, 2003; Dauer and Przedborsky, 2003). 

Indeed, most of these studies agree that pesticides have a dose and time dependent 

effect, with a higher risk of developing PD in agricultural workers exposed to the 

pesticides over the long term (reviewed by Di Monte, 2003). Paraquat, a commonly 

used pesticide has been strongly associated with PD risk in a study performed in Taiwan 

(Liou et al., 1997). However, epidemiologic studies are controversial and report 

different degrees of association between pesticide exposure and risk in developing PD, 

probably due to the different methodology utilised (Di Monte, 2003). The 

environmental hypothesis for PD is supported by in vitro studies which show that 
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certain pesticides including paraquat, dieldrin and maneb can cause degeneration of the 

DA neurons (Mc Cornmack et al., 2002; Uversky, 2004). Moreover, exposure to 

transition metals (e.g.  iron and copper) can also cause nigrostriatal damage and 

subsequently, contribute to PD. These metals can accumulate in the SNpc and catalyse 

harmful chemical reactions which can generate free radicals (Dexter et al., 1989; Di 

Monte, 2001, 2003). 

However, not all environmental factors increase the risk of developing PD. Coffee 

drinking and smoking are inversely associated with the risk of developing PD (Ascherio 

et al., 2001; Hernan et al., 2002; Tanner et al., 2002). Indeed, several compounds 

present in the tobacco might inhibit MAO reducing both the formation of hydrogen 

peroxide, a product formed from MAO-mediated DA oxidation, and the metabolic 

activation of toxicants like MPTP (Fowler et al., 1996).  

1.1.2.4 Genetic factors 

Although PD is generally idiopathic the discovery of some rare familial cases linked to 

genetic mutations has revealed novel clues about the aetiology of PD (Vila et al., 2001; 

McNaught et al., 2001; Chung et al., 2001a; Shimura et al., 2001).  

To date, ten genetic markers have been identified in familial cases of PD (named 

PARK1-10). Some of these mutations have been extensively characterised and are 

associated with protein aggregation and degradation (reviewed by Huang et al., 2004 

and Le and Appel, 2004). Other mutations are associated with mitochondrial 

components including, phosphatase and tensin homologue (PTEN)-induced kinase-2 

(PINK1) and Leucine-rich repeat kinase-2 (LRRK2), or with proteins involved in 

oxidative stress response (eg. DJ-1 and HtrA serine peptidase 2 (HTRA or OMI)). Table 

 1.1 summarises some of the most relevant PD- linked mutations for this study.   

For example, mutations in the gene coding for α-synuclein, one of the major 

components of Lewy bodies, lead to an autosomal dominant form of PD. Three point 

mutations A53T, A30P and E46K have been reported (Polymeropoulos et al., 1997; 

Kruger et al., 1998, 2002; Zarranz et al., 2004) alongside duplications and triplications 

of the gene in familial PD (reviewed by Abou-Sleiman et al., 2006). The function of α-

synuclein is still uncertain; however it has been reported to be involved in synaptic 

vesicle formation (Abou-Sleiman et al., 2006). Several proteins have been described as 
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At least ten mutations have been reported in the gene that encodes parkin resulting in an 

autosomal recessive form of early-onset PD referred as autosomal recessive juvenile 

Parkinsonism (AR-JP; reviewed by Wood-Kaczmar et al., 2006). Except for one 

positive case (Pramstaller et al., 2005), the consensus is that parkin mutations do not 

lead to LB formation (Hyun et al., 2002; Shimura et al., 2001, McNaught et al., 2002a).  

Parkin is expressed primarily in the nervous system and has been reported to function as 

an ubiquitin protein ligase (E3) within the UPS (Kitada et al., 1998; Zhang et al., 2000; 

Shimura et al., 2001; Barzilai and Melamed, 2003; Huang et al., 2002). Several proteins 

have been described to act as regular substrates for parkin, including parkin-associated 

endothelial-receptor-like receptor called Pael receptor (Imai et al., 2001), a synaptic 

vesicle-associated protein termed CDCrel-1 (Zhag et al., 2000), a 22-KD glycosylated 

form of α-synuclein referred as αSp22 (Shimura et al., 2001) and synphilin-1 (Chung et 

al., 2001b) both of which are proteins that are involved in PD (Wood-Kaczmar et al., 

2006). Of interest is that parkin is found in LBs and has been reported to colocalise with 

α-synuclein in the brain (Schlossmacher et al., 2002).  Moreover, parkin is reported to 

undergo proteasomal degradation, so parkin also ubiquitinates itself and promotes its 

own proteasomal degradation, and the turnovers of mutant-parkins are slower than the 

wild-type equivalent (Hyun et al., 2002). Therefore, parkin mutations may impair 
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proteasomal degradation and lead to a dysfunction in neuronal homeostasis. 

Interestingly, in vivo recent studies have shown that parkin protects against α-synuclein-

induced toxicity in drosophila (Haywood and Staveley, 2004), rats (Yamada et al., 

2005) and also against 6-hydroxyldopamine (6-OHDA) in an in vivo rat model 

(Vercammen et al., 2006).  

Another autosomic dominantly inherited case of PD is due to a missense mutation 

(Ile93Met) in the gene coding for ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1; 

Leroy et al., 1998). UCH-L1 is involved in the conversion of polyubiquitin chains back 

into ubiquitin monomers within the ubiquitin-dependent protein degradation pathway. 

This mutation has been found to decrease the activity of the enzyme. How this is linked 

to PD is not clear but decreased UCH-L1 activity may impair the ubiquitin UPS and, as 

in mutant α-synuclein cases, may provoke a reduction in protein metabolism (Barzilai 

and Melamed, 2003; Chung et al., 2001b; McNaught et al., 2001). UCH-L1 has been 

found to also have an ubiquitin ligase activity, which takes place when the enzyme is 

present as a dimer and attaches ubiquitin via K63 and not the typical K48 linkage that 

promotes ATP dependent proteasome degradation. The genetic evidence for its 

pathogenicity is weak as only a single mutation has been identified in one family 

(Abou-Sleiman et al., 2006). A common polymorphism (S18Y) in the same gene was 

later found linked to a decreased susceptibility to PD (Maraganore et al., 1999: Facheris 

et al., 2005). This S18Y variant has reduced ligase activity but comparable hydrolase 

activity as the wild enzyme. The UCH-L1 S18Y polymorphism encodes a UCH-L1 

which is unable to form dimers, thus favouring proteasomal degradation, event which 

might explain the fact that S18Y mutations reduce susceptibility to PD (Liu Y.C et al., 

2002).  

In conclusion, although it is not clear how mutations in α-synuclein, parkin or UCH-L1 

genes cause DA cell death, these mutants support the premise that the ubiquitin 

proteasomal system (UPS) may play an important role in the pathogenesis of idiopathic 

PD due to a reduction in protein catabolism (McNaught et al., 2001; Alves-Rodrigues et 

al., 1998; David et al., 2002; Davies 2001; Ding et al., 2001b; Le and Apple, 2004). In 

addition to this, it is evident that several of these mutations also point to the role of 

oxidative stress in PD pathogenesis (eg. PARK6 and PARK7, see Table 1.1). 
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Interestingly, an increasing number of mutations in several genes are being identified in 

sporadic PD cases. Some of these genes are associated with DA transmission and 

metabolism and with the metabolism of xenobiotics. However, the positive or negative 

linkage of these mutations with PD in these studies vary depending on the ethnic origin 

of the patients (reviewed by Moyal-Segal and Soreq, 2006). Also, several authors have 

discussed the possible relation between abnormalities in mtDNA and defects in 

mitochondrial function in at least a proportion of PD patients (Gu et al. 1998; review by 

Schapira 2006 and Abou-Sleiman et al 2006).  

 

 

Locus Location Inheritance Function Onset LB 

PARK 1/ 4 α-synuclein AD Involved in synaptic 
vesicle formation 30-60 years + + 

PARK 2 Parkin AR An E3 ligase ~ 30 years - / + in 
one case 

PARK 5 UCH-L1 AD Ubiquitin hydrolase 
and ligase Late ? 

PARK 6 PINK1 AR Mitochondrial 
kinase 30-50 years ? 

PARK 7 DJ-1 AR 
Involved in 

oxidative stress 
response 

20-40 years ? 

PARK 8 LRRK2 AD A protein kinase 40-60 years + variable 
pathology 

Unmapped HTRA2 or OMI AD? 
predisposition 

A serine protease 
and/ or involved in 

stress response 
44-70 years ? 

Table  1.1. Summary of the PD-associated genes. The table shows some of the most 
studied mutations associated with familial PD. AD=autosomal dominant; AR= 
autosomal recesive ++= fulminant LB pathology; +=  LB are present; ?= unknown. 
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1.1.2.5 Defects in protein degradation and neurodegeneration 

Normal cellular functions generate significant levels of abnormal proteins. This is a 

particularly important event within the central nervous system (CNS), where high levels 

ROS and other free radicals are generated due to the enzymatic and auto-oxidation of 

several neurotransmitters, including DA, which is relevant to PD (McNaught and 

Olanow, 2006). It is essential to the cell to tightly regulate the production and clearance 

of these abnormal proteins, since they are prone to misfold and aggregate and are 

detrimental to the cell (Kopito, 2000). Indeed, proteolysis declines with age (Szweda et 

al., 2002; Terman and Brunk, 2004) and in certain neurodegenerative disorders (Carrard 

et al., 2002; Szweda et al., 2002).  

Mammalian cells possess two major systems for general protein degradation, lysosomal 

proteases and the UPS (Ding and Keller, 2001; Ciechanover, 2005). The UPS is 

involved in the degradation of abnormal and soluble intracellular proteins within the 

cytosol, nucleus or endoplasmic reticulum (for further details see section  1.1.3). This 

system has been reported to be impaired in SNpc from PD patients (Mc Naught and 

Jenner, 2001; Mc Naught et al., 2001). Indeed, as earlier introduced, mutations in 

several genes encoding for components of the UPS are linked to several forms of 

inherited PD (Le and Appel, 2003; Krüger et al., 2002) and several toxins or pesticides 

which induce parkinsonism have been reported to impair proteasomal function (Keller 

et al., 2000; Elkon et al., 2004; Höglinger et al., 2003; Shamoto-Nagai et al., 2003; 

Betarbet et al., 2006; Wang et al., 2006; Zeng et al., 2006). All these findings suggest 

the involvement of the UPS in PD (further discussed in sections 3.1.1 and 3.1.2). 

On the other hand, lysosomal degradation involves cathepsins, which degrade 

membrane and extracellular components following endocytosis into the lysosome 

(Nakanishi, 2003; Ciechanover, 2005; McNaught and Olanow, 2006). Cathepsins are 

also involved in cellular destruction during cell death (necrosis and apoptosis). Aspartyl 

(cathepsin D) and cysteinyl (cathepsin B, H and L) proteases are the most implicated 

lysosomal enzymes in neurodegeneration (reviewed by Artal-Sanz and Tavernarakis, 

2005). 

Other proteases have also been linked to neurodegeneration, for instance caspases and 

calpains (Artal-Sanz and Tavernarakis, 2005). The latter are cytosolic calcium-activated 

cysteine proteases, which exist mainly as two isoforms: μ-calpain (also known as 
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calpain I) or m-calpain (calpain II). These isoforms are respectively activated by low 

(micro-molar) and high (milli-molar) levels of calcium (Mendhi, 1991; Goll et al., 

2003; Costelli et al., 2005). Calpains are involved in cell proliferation, differentiation, 

migration and apoptosis (Nixon, 2003) and in neurons in growth cone motility and 

guidance (Artal-Sanz and Tavernarakis, 2005). They activate or alter the regulation of 

certain enzymes, including key protein kinases and phosphatases, and regulate 

cytoskeleton organisation (Saido et al., 1994; Gryspan et al., 1997). Indeed, calpains 

can degrade several cytoskeletal proteins (e.g. spectrin, tau or NFs) and several 

constituents of myelin (Stys and Jiang, 2002).  Both calpain activity and intracellular 

calcium levels have been reported to increase with ageing (Costelli et al., 2005). 

Moreover, calpains have been linked to several neurodegenerative conditions (Chard et 

al., 1995; Moldoveanu et al., 2002). For example, calpains have been reported to be 

increased in Alzheimer’s disease (AD; Gryspan et al., 1997) and in animal models of 

Huntinton´s disease (Bizat et al., 2003 a, b) and PD (Crocker et al., 2003). Interestingly, 

α-synuclein, the major component of LBs, has recently been reported to be a substrate 

for calpains (Mishizen-Eberz et al., 2005). In addition to this, the implication of 

calpains in PD is further supported by the fact that overexpression of m-calpain has 

been detected in brain of PD patients (Mouatt-Prigent et al., 1996). 

1.1.3 Lewy bodies 

One of the pathological hallmarks of PD is the presence of neuronal cytoplasmic 

filamentous inclusions known as LBs. However, LBs are not specific for PD and are 

also found in AD, dementia with LBs and even in normal individuals of advanced age at 

a higher frequency than the prevalence of PD (Dauer and Przedborsky, 2003). These 

inclusions were first described by the German neuropathologist Frederich H. Lewy in 

1912 (Wakabayashi et al., 2005). LBs are widely distributed in the CNS, and in cases of 

idiopathic PD are found within the brain stem nuclei, which includes SN, locus 

coeruleus and dorsal motor vagal glanglus, and to a lesser extent within the cerebral 

cortex (Gai et al., 2000). LBs are spherical cytoplasmic protein aggregates that are 

mainly composed of α-synuclein and its interacting partner synphilin-1 but also parkin, 

ubiquitin, neurofilaments (Forno et al. 1996; Spillantini  et al.  1998; Gai et al., 2000) 

and also proteasomal subunits and other components (Alves-Rodrigues et al., 1998; 

McNaught and Jenner, 2001; Mc Naught and Olanow, 2006). LBs are located within the 
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perikarya or within neurites (Wakabayashi et al, 1992). Morphologically, LBs are 

concentric inclusions that typically possess a dense eosinophilic core and peripheral 

halo of radially arranged filaments comprised of fibillar α-synuclein and neurofilaments 

(Forno et al., 1986; Wakabayashi et al, 1992 Spillantini et al., 1998).  

1.1.3.1 Protein aggregation and LB formation in PD 

Defects in protein handling could be a crucial factor in the pathogenesis of PD (Alves-

Rodrigues et al., 1998; Chung et al., 2001a; Shoesmith-Berke and Paulson, 2003). 

Indeed, abnormal proteins which are constantly produced due to normal cell 

metabolism, are normally cleared by the UPS in association with molecular chaperones, 

thus avoiding their accumulation (Betarbet et al., 2005; McNaught and Olanow, 2006). 

However, ageing and impaired proteasomal function (McNaught and Jenner, 2001, 

Carrard et al., 2002) accompanied by high levels of oxidative stress (Keller et al., 

2004), may lead to the accumulation of these proteins which eventually may be 

damaging to the cell (McNaught et al., 2002; Chung et al., 2001a,b). Moreover, 

intrinsic features of certain proteins such as α-synuclein might make them more prone 

to aggregation and more resistant to proteasomal degradation (Alves-Rodrigues et al., 

1998). Indeed, several authors report that proteasomal inhibition results in accumulation 

of α-synuclein, the main component of LBs and a substrate for the UPS (Tofaris et al., 

2003; Mc Naught et al., 2002a; Demasi and Davies, 2003; Sawada et al., 2004). In 

addition to this, the high occurrence of ubiquitinated protein species within the LBs and 

the observation that parkin functions as an E3 ubiquitin-ligase make it plausible that 

proteins within the LBs are objects of parkin mediated ubiquitination so, the UPS 

appears to be an intersection of whether a toxic protein is degraded or it is packaged into 

an inclusion (Chung et al., 2001b). At the same time protein aggregates have been 

reported to impair proteasomal function since heavily oxidised and cross-linked proteins 

present in these aggregates are poor substrates for the proteasome that prefers unfolded 

proteins as substrates (Wojcik and DeMartino, 2003; Grune et al., 2004). 

The current consensus points to LB formation as an aggresome-related process (Olanow 

et al., 2004). Indeed, oxidised and damaged proteins are relatively resistant to 

degradation by normal proteolytic mechanisms and therefore are transported to 

centrosomes (i.e. perinuclear microtubule-organising centres) where they become 

associated with components of the UPS and are encapsulated by intermediate filaments 
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(IF’s) to form large structures called aggresomes. Aggresomes are sites of enhanced 

proteolysis whose formation may serve to protect the nucleus and other organelles from 

exposure to the cytotoxic effects of abnormal proteins. By this means, LBs could be 

specialised aggresome-related structures that are formed in DA neurons as a way of 

sequestering and compartmentalisating those proorly degraded proteins and, ultimately, 

as a means of controlling excessive levels of abnormal proteins. Therefore, LBs may 

play a cytoprotective role that delays the onset of neuronal degeneration (reviewed by 

the following authors: Kopito, 2000; Olanow et al., 2004; McNaught and Olanow, 

2006). This idea is supported by the relatively severe neurodegeneration and early onset 

of symptoms in patients suffering from mutant-parkin-linked-PD, which lack LBs 

(Chung et al., 2001b; McNaught et al., 2001). Although the current theories point to a 

protective role of LBs some authors suggest that LBs are cytotoxic, at least in the later 

stages of the disease (reviewed by Ardley et al., 2005; Harrower et al., 2005; Mc 

Naught and Olanow, 2006).  

Interestingly, Meredith et al. (2004) suggest that lysosomes might also be involved in 

LB formation based on α-synuclein accumulation in a MPTP animal model. These 

authors hypothesise that since ATP levels and UPS activity are decreased in damaged 

neurons, accumulated proteins are translocated to the lysosomes, a process assisted by 

molecular chaperones, for degradation. In the lysosome lipofucsin granules, lipids and 

neuromelanin accumulate until the lysosome collapses resulting in release of its 

contents into the cytoplasm where lipofucsin granules might provide nucleation centres 

for LB formation (Meredith et al., 2004). 

1.2 THE UBIQUITIN PROTEASOMAL SYSTEM (UPS) 

The UPS plays an essential role in the degradation and clearance of short-lived, mutant, 

misfolded or damaged proteins in eukaryotes and ultimately in the regulation of crucial 

processes such as the cell cycle, transcription, antigen processing or signal transduction 

(Goldberg et al 1995; Ding and Keller, 2001). In neurons, the UPS plays an essential 

role in the control of normal neuronal function and homeostasis through the selective 

degradation of neuronal proteins (Ehlers, 2003). This system is soluble, has a slightly 

alkaline optimum pH and is ATP dependent, thus requiring magnesium as a cofactor 

(Ding and Keller, 2001b). Speese et al., (2003) show that the UPS tightly controls levels 
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of presynaptic proteins and that the rate of UPS-dependent protein degradation is a 

primary determinant of neurotransmission strength.  

Figure 1.3 illustrates the successive enzymatic steps involved in the UPS; firstly, 

ubiquitin, a heat stable 76-residue polypeptide, is activated by ubiquitin-activating 

enzyme (E1) in an ATP-dependent manner (Hersko and Ciechanover, 1998; Pickart, 

2001). E1 forms a thiol ester linkage between a cysteine residue and carboxyl-terminal 

glycine in ubiquitin. Activated ubiquitin is then transferred to an ubiquitin-conjugating 

enzyme (E2; via another thiol linkage), which in conjunction with E3, an ubiquitin-

protein ligase, identifies and mediates the attachment of polyubiquitin chains to the 

substrate. This process is referred to as ubiquitination and is the signal for degradation 

of the tagged protein by the 26S proteasome. The polyubiquitin chain is recognised by 

the proteasome, and the proteasome complex then rapidly degrades the labelled protein 

in an ATP dependent manner. This process produces short peptide fragments that are 

further degraded by peptidases to single aminoacids that can be recycled for new protein 

synthesis (Saric et al., 2004). 

Polyubiquitinated chains are attached via an isopeptide bond between the conserved C-

terminal glycine residue of ubiquitin and the ε-amino group of the lysine (Lys or K) 

residue of the substrate (Hersko and Ciechanover, 1998; Verma and Deshaies 2000). 

However, there are also reports of proteins that are ubiquitinated without the 

requirement of Lys residues (Bloom et al., 2003). Polyubiquitinated chains are formed 

by the sequential addition of mono-ubiquitin to a Lys residue of ubiquitin (isopeptide 

bonds between Gly76 and Lys48) which is already bound to the substrate (Chau et al., 

1989). A chain elongation factor (E4) may be required for the polyubiquitination of 

some proteasome substrates (Hartmann-Petersen et al. 2003).  

Ubiquitin has seven lysine residues each of which can potentially bind the C-terminal 

glycine of the next ubiquitin moiety in the multi-ubiquitin chain, however, not all these 

linkages occur naturally (Chung. et al., 2001a,b; Hartmann-Petersen et al. 2003). The 

most common ubiquitin linkage for targeting proteins for degradation by the proteasome 

is through Lys48 (Chau et al., 1989), although Lys29-linked chains may also serve as 

degradation signals (Johson et al., 1995). Other  alternative linkages, for example at 

Lys63  are not recognised as a signal for proteasomal degradation, instead regulating 
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processes such as DNA repair, endocytosis or translational regulation (Hicke, 2001; 

Welchman et al., 2005).  

There is a range of different E2 enzymes that can associate with a variety of E3 

enzymes, incorporating substrate specificity to the process (Ferrel et al., 2000; Chung et 

al., 2001a; Hartmann-Petersen et al., 2003). Indeed, since the number of E3 ligases 

exceeds the number of E2s, substrate specificity is mostly mediated by ligases (Ross 

and Pickart, 2004; Pines and Lindon, 2005). Multi-polyubiquitination is a reversible 

process. Several deubiquitinating enzymes appear to take part in the regulation and 

selectivity of the substrate targeted for degradation (Chung. et al., 2001b; McNaught 

and Jenner, 2001; Hartmann-Petersen et al., 2003).   

Although the proteasome was initially characterised for its role in ATP and ubiquitin 

dependent proteolysis there is a significant amount of evidence that an ATP and/ or 

ubiquitin independent version of the proteasome also exists (Alves-Rodrigues et al., 

1998). Indeed, the first protein shown to be degraded by the 26S proteasome in an 

ubiquitin independent manner was ornithine descarboxylase (Murakami et al., 1992). 

Other examples of proteins degraded in an ubiquitin-independent manner by the 

proteasome are c-Jun, calmodulin, troponin and p53 (reviewed by De Vrij et al., 2004). 
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Figure  1.4. The Ubiquitin-Proteasome System (Taken from Betarbet et al. (2005) with 
modifications). Ubiquitin is activated by E1 and covalently linked to the substrate with 
the help of E2 and E3 which is then degraded by the 26S proteasome in an ATP-
dependent manner to generate small peptides around 4-10 aminoacids in length. Once 
the protein undergoes degradation the ubiquitin chain is released. Small oxidised 
proteins can undergo ATP-independent degradation by the 20S proteasome. 

 

1.2.1 Proteasome structure 

The 26S proteasome is a ~2.5 MDa multicatalytic protease that is present in the 

cytoplasm and nuclei of all eukaryotic cells, which is responsible for the majority of 

intracellular proteolysis. As Figure  1.5 shows, two subcomplexes, the 20S catalytic core 

and the 19S regulatory particle (also known as PA700), make up the whole complex 

(Ferrell et al., 2000; Ding and Keller, 2001).  The 26S is involved in the ATP-dependent 

degradation of ubiquitinated and deubiquitinated proteins (Ciechanover, 1998). The 

proteasome is a very highly selective and specific proteolytic complex, involving both 

the 19S, that selectively recognises the substrates, and the 20S core, which can only 

degrade proteins that are unfolded. The barrel-shaped structure of the 20S core 

sequesters the active sites into the inner chambers (Wolf and Hilt, 2004). 
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The 20S proteasome can also be associated with one or two 11S (or PA28) particles, 

composed α− and β−subunits, that can be induced by interferon-γ to form the 

“immunoproteasome” (Chu-Ping et al., 1992). 
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Figure  1.5. 26S proteasome complex (from Kloetzel; 2001 and Groll et al., 1997 with 
modifications). The 26S proteasome is composed of 14 α- and 14 β-subunits arranged 
in 4 separated rings consisting of either 7 α- or 7β-subunits. The core particle has 
multiple catalytic centres located in the β-subunits that comprise the two inner rings of 
the 20S proteasome. Either end of the 20S core particle can cooperatively bind 2 
regulatory cap subunits referred to as 19S. The regulatory subunits are involved in 
substrate recognition, unfolding and translocation to the catalytic site. 

 

1.2.1.1 20S catalytic core 

The 20S catalytic core is composed of 14 α− and 14 β−subunits arranged in 4 separated 

rings consisting of either 7 α− or  β−subunits which form a hollow cylindrical structure 

where proteolysis occurs (DeMartino and Slaughter, 1999; Jäger et al., 1999). The core 

particle has multiple catalytic centres located in the β−subunits that comprise the two 

inner rings of the 20S proteasome. The best characterised proteolytic activities of the 

20S proteasome are known as chymotrypsin-like (CLA), trypsin-like (TLA) or 
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postacidic-like activity (PLA; also known as peptidyl glutamyl peptide hydrolase or 

caspase-like activity) which preferentially recognise and cleave tyrosine or 

phenylalanine (hydrophobic residues), arginine or lysine (basic residues) and glutamate, 

respectively. Some biochemical data demonstrate that each catalytic activity is linked 

with a specific  β−subunit.  Thus three of the different  β−subunits (present as 

duplicates) are presumably catalysts whereas the remaining subunits are of unknown 

function (De Martino and Slaughter, 1999; Brooks et al.  2000; Ferrell et al. 2000). In 

higher eukaryotes each of these three catalytic subunits are termed as β1 (PLA), β2 

(TLA) and β5 (CLA). However, mutational studies on the different β-subunits 

suggested that each of the three active sites is formed by two subunits, the active 

subunit and a complementary non-catalytic subunit, whose inactivation results in 

reductions of the proteolytic activities. Therefore β4 and β5 form the CLA site, β2 

together with β6 form the TLA site, and β1 and β7 form the PLA site (further 

information in table 4.3; Dick et al., 1992; Hilt et al., 1993; Arendt and Hochstrasser, 

1997; Heinemeyer et al., 1997). On the other hand, the two outer rings of the catalytic 

barrel, composed exclusively of α−subunits, which form two axial pores, ensure that 

only unfolded substrates can entry the catalytic chamber (Groll et al., 2000) and play 

important roles in maintaining 20S stability and provide scaffolding for 20S binding 

proteins (De Martino and Slaughter, 1999; Brooks et al., 2000; Ferrell et al., 2000).   

Structural and genetic studies identified the proteasome as an N-terminal nucleophile- 

hydrolase (Ntn) with a threonine (Thr) residue acting as the catalytic nucleophile 

(Fenteany et al., 1995). Activation of the hydroxyl group of the Thr requires a proton 

acceptor at the active site. The surrounding area of the Thr contains a conserved lysine 

group, which at the neutral pH conditions in the active site environment of proteasomes 

is likely to be in a charged state, thus making it an unsuitable candidate for accepting a 

proton. Instead Lys is thought to lower the pKa of the N-terminal amino group of Thr1 

by its electrostatic potential, so that this group can act as the proton acceptor in 

proteolysis (Groll et al., 1997; Groll and Huber, 2003). 

Proteolysis of substrates by the proteasome occurs in a sequential manner and substrates 

are cut at many sites to yield small oligopeptides of between four and fourteen amino 

acids (Wolf and Hilt, 2004). This progressive mode of degradation might help to ensure 

that proteins are rapidly eliminated without retaining any biological function that could 
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be deleterious for the cell (Kisselev et al., 1999). Even though the precise mechanism 

involved in such degradation is unclear it may involve conformational changes in the 

proteasome resulting in the opening of its central cavity and/or allosteric modifications 

of the catalytic sites (DeMartino and Slaughter, 1999, Ding and Keller, 2001b). Indeed, 

allosteric interactions between CLA and PLA have been described since substrates for 

the PLA appear to non-competitively inhibit CLA via binding non-catalytic sites 

(Kisselev et al., 1999; Myung et al., 2001). Proteasome allosterism is not fully 

understood but might be a very precise and diverse form of proteasomal regulation 

(reviewed by Gaczynska et al., 2006). The proteasome subunit composition and the 

spacing between the individual proteolytic sites dictate the length and type of peptides 

generated by the proteasome (DeMartino and Slaughter, 1999, Ding and Keller, 2001b). 

Interestingly, genetic studies revealed that the chymotrypsin-like activity (harboured by 

β5) is the most important proteolytic activity for proteasomal function and also for cell 

growth, followed by trypsin-like (β2) and postacidic-like (β1) activities, since β5β1 and 

β5β2 double mutants of yeast are viable, whilst β2β1 mutants are not (Jäger et al., 

1999). 

Initial studies suggested that the 20S proteasome rarely functioned as an isolated 

enzyme, the 26S proteasome being the major form in vivo. However, subcellular 

localization and stoichiometry of the different complexes showed that free 20S particles 

exceed the 19S or 11S (free or bound to 20S) over 3 to 4-fold (Rivett, 1998; Brooks et 

al., 2000). Moreover, the 20S proteasome itself can degrade proteins without ubiquitin 

or ATP (Davies K.J.A., 2001; Grune et al., 2003). Indeed, the 20S proteasome plays a 

major role in the degradation of mildly oxidised soluble proteins in the cytoplasm, 

nucleus and endoplasmic reticulum, a process which is ATP and ubiquitin independent 

(Davies, 2001; Grune et al., 2003). The mechanism by which oxidised proteins are 

recognised by the 20S protesome involves the partial denaturation and unfolding of the 

protein which will lead to the exposure of hydrophobic patches of aminoacids at the 

surface of the oxidised proteins. These hydrophobic patches are able to bind to the α-

subunits at the entrance of the core particle which in turn will result in the opening of 

the pores in the 20S particle helping it access into the catalytic chamber (Davies, 2001; 

Grune et al., 2003). This is supported by Ding et al. (2003) who found that low levels of 

oxidative stress increased the amount of protein oxidation without affecting proteasome 



CHAPTER I- GENERAL INTRODUCTION 

 

 24

activity. Of interest is the fact that the 20S complex has been reported to be 4-fold more 

resistant to oxidative stress than the 26S (Reinheckel et al., 1998). 

1.2.1.2 The 19S regulatory particle 

Either end of the 20S proteasome can bind, in a cooperative and ATP dependent 

manner, an additional cap-like structured regulatory protein, known as 19S or P700, to 

form the 26S. The binding of the regulatory subunit to the catalytic 20S core enhances 

the ability of the proteasome to degrade both ubiquitinated proteins and non-

ubiquitinated peptides (DeMartino and Slaughter, 1999; Ferrell et al., 2000). 

The 19S complex is universally composed of two different subcomplexes referred to as 

“lid”, of unknown structure, and “base”. The latter consists of a hexameric ring of 6 

different non-redundant ATPases and three additional non-ATPase subunits whilst the 

lid is built up from eight different non-ATPase subunits (see figure 1.4; Chu-Ping et al., 

1994; Ferrell et al., 2000; Glickman and Raveh, 2005). The 19S particle is involved in 

several ATP-dependent functions including (a) substrate recognition (recognition of the 

ubiquitin chain of the substrates) and unfolding, (b) disassembly of polyubiquitin chains 

from the substrate, (c) opening of the gates formed by the 20S α-subunits and (c) 

translocation of the unfolded sustrate to the catalytic chamber via the reverse-chaperone 

activity present in the base of the particle (reviewed by Hartmann-Petersen et al., 2003).  

Molecular chaperons also cooperate with the UPS, facilitating and enhancing the correct 

folding and placement of the protein, as well as preventing proteins to aggregate or 

missfold (Imai et al., 2003; Muchowski and Wacker, 2005).  

These ATP dependent functions are not required for the hydrolysis of short peptides and 

the regulatory complex may activate that process by allosteric modification of the active 

centres (DeMartino and Slaughter, 1999; Ferrell et al., 2000; Ding and Keller, 2001).  
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1.3 TOXINS USED IN PD MODELS 

Certain pharmacological agents and environmental toxins cause lesions in specific cell 

populations and thereby mimic the pathological and symptomatic features of some 

neurodegenerative disorders. Such experimental models are useful for understanding the 

pathophysiology of PD and thus for assessing and developing new therapeutic strategies 

(Beal, 2001; Sanchez-Pernaute et al., 2005; Shimohama et al., 2003). Some of the most 

common toxins used in PD models include MPTP/ MPP+, rotenone, 6-OHDA and DA. 

The structure of these compounds is illustrated in figure 1.5. 

 

                                               

                           MPTP                      MPP+                             Rotenone 

                                       

                             Dopamine                                                  6-OHDA 

 

 

Figure  1.6. Chemical structures of MPTP, MPP+, rotenone, 6-OHDA and dopamine. 

                  

1.3.1 MPTP model 

One of the best-studied models of PD, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) model, was first described to induce a human parkinsonism state after being 

injected as a narcotic analgesic (Davis et al., 1979). Its use was later reported in a group 

of north-Californian drug addicts who developed strong parkinsonism symptoms after 

intravenously injecting a MPTP-contaminated “synthetic heroin” (Langston et al., 

1983). To date MPTP is one of the best experimental models of PD (Przedborski and 
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Vila, 2001). Indeed, many models exist for investigation of MPTP toxicity which range 

from whole animals to cell culture systems (Forno et al., 1988).  

1.3.1.1 Bioactivation and toxicity of MPTP 

MPTP toxicity is believed to be mediated by at least two metabolic steps (see figure 

1.6). Firstly, MPTP, which is highly lipophilic, readily crosses the brain blood barrier 

and can be taken up non-specifically by glial cells where it is oxidised, via monoamine 

oxidase B (MAO-B), to an intermediate, 1-methyl-4-phenyl-2, 3-dihidropyridium ion 

(MPDP+), which is then auto-oxidised (non-enzymatically) to 1-methyl-4-

phenylpyridinium ion (MPP+), the active neurotoxin (Langston et al., 1983; D’Amato et 

al., 1986; Vidaluc, 1996; Speciale, 2002; Beal, 2001). Once produced, MPP+ is taken up 

selectively by the DA transporter into DA neurons and can either (a) enter the 

mithochondria and inhibit the mitochondrial electron transport chain (Ramsay and 

Singer, 1986), (b) be sequestered into cytoplasmic vesicles by actions of the vesicular 

monoamine transporters (VMAT; Del Zompo et al., 1993) or (c) remain in the cytosol 

where it can interact with different cytosolic enzymes (Klaidman et al., 1993). MPP+ 

toxicity is inversely proportional to the capacity of the cell to sequester the toxin via the 

VMAT (Takahashi et al., 1997).   

Mitochondrial dysfunction is mainly caused by direct inhibition of the electron transport 

enzyme NADH: ubiquinone oxidoreductase, also known as complex I; however MPP+ 

has also been reported to inhibit complex III and IV of the electron transport chain. 

Blockage of mitochondrial function leads to decreased ATP levels, loss of 

mitochondrial membrane potential and possibly the formation of ROS, all of which may 

be contributing to the selective degeneration of the DA containing neurons (Langston et 

al., 1983; Song et al., 1998; Vidaluc, 1996; Bernardi et al., 1999; Cassarino and 

Bennett, 1999; Conn et al., 2001; Sherer et al., 2001).  
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Figure  1.7. Summary of the mechanisms involved in MPTP toxicity (taken from 
Blum et al., 2001 with modifications). MPTP can cross the blood brain barrier and be 
taken up by glial cells were it is bioactivated via MAO to MPP+, where upon it is 
transported inside the DA neuron via the DA transporter. Once inside the cell, MPP+ is 
accumulated inside the mitochondria where it inhibits complex I activity and thus ATP 
synthesis. MPP+ also releases DA from the endogenous stores. Both events result in 
increased ROS which together with complex I inhibition increases cytoplasmic calcium 
levels and provokes the release of cytochrome c. All these events ultimately result in cell 
death. 

 

1.3.1.2 Role of oxidative stress in MPTP toxicity 

Johannessen et al., (1985) were the first authors to suggest that oxidative stress may 

contribute to MPP+ toxicity. This hypothesis is supported by several authors. Indeed, it 

has been reported that MPP+ induces the release of DA from endogenous stores, which, 

as detailed in previous sections, can be subsequently oxidised generating hydrogen 

peroxide, superoxide (O2
-•), quinone species and hydroxyl radicals (OH•) which are able 

to modify cellular macromolecules (Graham, 1978; Chiueh et al., 1992; Vidaluc, 1996). 

The deleterious effects of DA release might actually precede mithochondrial 

dysfunction (Chan et al., 1991). Indeed, Lotharius and O’Malley (2000) propose that 

the formation of ROS following MPP+ treatment of mesencephalic cultures is not 
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initiated in the mitochondria but results from DA vesicular displacement within the 

cytoplasm that results in its oxidation. Another source of O2
-• comes from the 

autooxidation of MPDP+ which can be further catalysed to OH• (Zang and Misra, 1992) 

and also from the leakage of reducing equivalents onto molecular oxygen due to 

mitochondrial dysfunction. Involvement of oxidative stress in MPTP neurotoxicity is 

further supported by the protection of several antioxidative agents (Lai et al., 1993; 

Gonzalez-Polo et al., 2004). For instance, Cassarino et al., (1997) showed that MPP+ 

induced ROS formation and increased the activity of the antioxidant enzymes 

superoxide dismutase (SOD) and catalase in SH-SY5Y cells and in an in vivo model. 

However other researchers place in doubt this hypothesis. Indeed, Lee et al. (2000a) 

suggested that MPP+ toxicity is not primarily driven by oxygen free radicals in human 

neuroblastoma SH-SY5Y cells although it may exacerbate the vulnerability of the cells 

to oxidative damage. This was concluded after finding that toxic concentrations of 

MPP+ did not increase lipid peroxidation and co-treatment with antioxidants did not 

attenuate MPP+ toxicity. Consistently, MPP+ toxicity was also found to be primarily due 

to the impairment in energy metabolism and not due to oxidative stress in a rat cell 

model (PC12 cells). As in the human cell line, MPTP/MPP+ did not increase lipid 

peroxidation and again antioxidant administration did not protect the cells from toxic 

insult (Fonck and Baudry, 2001).  

MPP+ has also been shown to affect calcium homeostasis. Inhibition of complex I and 

subsequent ATP depletion can impair the plama membrane Ca2+-ATPase which is 

involved in removing Ca2+ from the cell; this results in increased levels of free cytosolic 

calcium (Chen et al., 1995). However, calcium can also accumulate in the cytosol via an 

impairment of the mitochondrial transition pore (MTP). MTP is a non-selective, high 

conductance pore which facilitates the passage of solutes between the mitochondrial 

matrix and cytoplasm (Cassarino and Bennet, 1999). The involvement of the MTP in 

MPP+ toxicity was confirmed by Kass et al. (1988) who reported increased calcium 

levels after MPP+ treatment of isolated hepatocytes with no involvement of the plama 

membrane Ca2+-ATPase suggesting that the MTP was involved in the process. Indeed, 

MPP+ via complex I inhibition is reported to induce the opening of brain MTPs, an 

event that results in the release of calcium but also cytochrome c (Cassarino et al., 

1999). Release of calcium may lead to the activation of kinases, proteases and nitric 

acid synthase which contribute to cell death (reviewed by Blum et al., 2001). 
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Interestingly, MPP+ binds with high affinity to neuromelanin, which is present in high 

concentrations in the SNpc of primates; this can provide partial explanation to 

selectivity of the toxicant towards DA neurons (D’Amato et al., 1986). 

1.3.1.3 Species differences and formation of insoluble aggregates 

The MPTP model is performed in a wide range of species including vertebrates and 

invertebrates (eg. frogs, leeches or planaria) but it has also been used in cell cultures 

(reviewed by Shimohama et al., 2003). Differences in species susceptibility to the toxin 

have been observed. For instance, rodents show variable sensitivity to MPTP; rats are 

resistant to the toxin whilst mice show different susceptibility and behavioural effects 

dependent on the strain utilised (Brownell et al., 1998; Hamre et al., 1999). In contrast, 

in humans and other primates MPTP causes a severe irreversible PD-like syndrome due 

to the degeneration of nigral DA neurons (Kopin and Markey, 1988; Langston and 

Irwin, 1986). Although there is only limited evidence for the presence of insoluble 

inclusions in MPTP models, this may be because chronic treatment has not been 

intensely studied (Beal, 2001). Indeed, chronic exposure of the toxin performed in 

macaques reproduced all the symptoms of PD but without the appearance of LB 

(Brownell et al., 1998; 2003). Recently, Shimoji et al. (2005) also report the absence of 

inclusion body formation in adult wild-type C57BL6 mice following acute, semi-

chronic and chronic exposure to MPTP. On the other hand, some proteinaceous 

inclusion bodies have been reported in MPTP-treated aged-monkeys although these 

inclusions were structurally different to the typical LB (Forno et al., 1988). In addition 

to this, Meredith et al. (2002) report that chronic treatment of mice with MPTP and 

probenceid (a compound that retards MPTP and its metabolites clearance) results in the 

formation of LB-like inclusions which are immunoreactive for α-synuclein. This is 

consistent with Fornai et al. (2005) who report the formation of nigral inclusions 

following continous administration of MPTP in a mouse model, a process which was α-

synuclein-dependent. 
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1.3.2 Rotenone 

Epidemiologic studies give evidence of the involvement of pesticide exposure in PD 

pathogenesis. Moreover some pesticides, like rotenone or paraquat are currently used in 

in vivo and in vitro PD models and have been useful tools in giving a better 

understanding of the causes of the disease (Betarbet et al., 2006; Brown et al., 2006).  

Rotenone is a naturally occurring compound derived from the roots of certain plants, 

which is commonly used as an insecticide. Its hydrophobic nature allows it to readily 

cross biological membranes (Perier et al., 2003). Chronic exposure to rotenone in a rat 

model has been shown to specifically inhibit complex I of the electron transport chain, 

to produce selective nigrostriatal degeneration with the appearance of cytoplasmatic 

inclusions similar to Lewy bodies, which contained α-synuclein and ubiquitin. 

Moreover, exposure to this insecticide led to motor symptoms characteristic of PD 

(Betarbet et al., 2000).  

1.3.3 6-hydroxydopamine (6-OHDA) 

6-OHDA, the hydroxylated analogue of DA, was the first agent used in an animal 

model of PD (Ungerstedt, 1971). This toxin selectively accumulates in DA neurons, 

leading to their death (Lotharius and O’Malley, 2000; Beal, 2001). 6-OHDA can not 

cross the blood brain barrier therefore, DA cell loss can only occur after direct 

intracerebral administration; in PD models injections are preferably given into the 

striatum or SN (Blum et al., 2001). Since 6-OHDA can be generated by non-enzymatic 

reactions between DA, hydrogen peroxide and free iron, all present in the brain, this DA 

derivate can be considered as an endogenous neurotoxin (Jellinger et al., 1995). 

As with DA, free radical generation is involved in 6-OHDA toxicity (Blum et al., 2001, 

Betarbet et al., 2002). This is supported by the protection that antioxidants conferred 

against the toxin (Blum et al., 2000). 6-OHDA lesions do not result in Lewy body 

formation and can produce non-specific damage to other neurons (Beal, 2001). 

However, this toxin can reproduce the motor deficits seen in PD and has in the past 

been considered useful as a PD model for screening therapeutic strategies (Ungerstedt, 

1971; Beal, 2001). A recent study suggests that 6-OHDA abolished both aerobic and 

anaerobic cell functions. Moreover, its autooxidation produces H2O2 which may 
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contribute to loss of anaerobic glycolysis likely via inhibition of lactic acid 

dehydrogenase (Mazzio et al., 2004). 

1.3.4 DA  

DA is a natural neurotransmitter of the brain whose concentration in DA neurons 

oscillates from 0.1 to 1 mM. However, within dopaminergic neurons DA is normally 

sequestered into vesicles, which regulates its concentration in the cytoplasm and also in 

the synaptic cleft. Increased DA levels can be deleterious to the cell and have been 

reported in conditions like hypoxia or ischemia (reviewed by Blum et al., 2001). As 

indicated earlier, loss of DA due to a loss of the DA neurons within the SNpc occurs in 

PD and is responsible for most of its motor symptoms (Barzilai and Melamed, 2003; 

Beal, 2001; Blum et al., 2001). 

DA itself is believed to be directly involved in the initiation of DA cell 

neurodegeneration (Zilkha-Falb et al., 1997). As introduced earlier, DA is a source of 

ROS generation unique to DA neurons through its oxidation (reviewed by Blum et al., 

2001).  

DA neurotoxicity has indeed been reported in vivo, in primary cultures and in several 

cell lines (Michel and Hefti, 1990; Filloux and Townsend 1993; Junn and Mouradian, 

2001; Gomez-Santos et al., 2003) and can cause cell death via both apoptotic and non-

apoptotic mechanisms (Blum et al., 2001). DA has also been reported to inhibit 

mitochondrial complex I (Ben-Shachar et al., 2004). Interestingly extracellular 

concentrations of DA ranging from 100-500 μM have been reported to induce death of 

SH-SY5Y cells and to increase α-synuclein expression, a major component of LB 

(Gomez-Santos et al., 2003). 

1.4 THE NEURONAL CYTOSKELETON 

The cytoskeleton is a dynamic and complex network of filamentous proteins that 

extends throughout the cytoplasm. In higher eukaryotes the cytoskeleton is composed of 

three distinct interacting filamentous systems known as microtubules (MTs), 

microfilaments (MFs) and intermediate filaments (IFs) formed from tubulin, 

neurofilament (NF; in the case of neuronal cells) and actin proteins respectively (Alberts  

et al., 1994; Siegel 1999, Janmey, 1998). MTs and MFs, are composed of 
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phylogenetically very conserved proteins, whilst IFs are differentially expressed in 

different tissues (Nixon and Lewis, 1986). The cytoskeletal network is involved in 

many cellular processes, it provides mechanical strength to the cell, and is also involved 

in movement, adhesion, polarity and intracellular trafficking. Several proteins also 

associate with the cytoskeleton helping to organise and accomplish specialised roles of 

the individual filament systems (Yang  et al., 1999). 

1.4.1 Microfilaments 

MFs are composed of filamentous actin (F-actin) and a complex set of actin binding 

proteins (ABPs), which regulate the intrinsic polymerisation capacity of actin (Alberts 

et al., 1994; Sayas et al., 2002).  F-actin results from the polymerisation of monomeric 

subunits of globular actin (G-actin), a process, which requires ATP as well as both 

monovalent and divalent cations (usually K+ or Mg 2+; Alberts et al., 1994; Carlier et 

al., 2001).  Polymerisation requires ATP binding but not ATP hydrolysis; in fact, ATP 

hydrolysis on F-actin results in weakening the bonds in the polymer and promotes 

depolymerisation (Carlier, 1991).  MFs are polar structures composed of two 

structurally different ends, a slow-growing (“minus”) end and a fast growing (“plus”) 

end. MFs are also dynamic structures, indeed, actin molecules are continuously added 

and removed to and from the “plus” and “minus” end, respectively. Thus, no net change 

in the filament length occurs. This process is known as “Treadmilling” (reviewed by 

Alberts et al., 1994).  

1.4.2 Microtubules 

MTs are composed of α- and β-tubulin heterodimers which align end to end to form 

protofilaments. α- and β-tubulin are ~ 450 amino acids highly homologous proteins. In 

vivo, usually, 13 protofilaments join laterally to form a hollow cylinder with an outer 

diameter of 25 nm. As with MFs, binding of GTP but not its hydrolysis, is necessary for 

MT polymerisation (reviewed by Siegel 1999; Carvalho et al., 2003). A variety of MT- 

associated proteins (MAPs) can bind the microtubule wall (Alberts et al., 1996; Siegel 

1999; Downing and Nogales 1998).   

Microtubules are constantly undergoing polymerisation/depolymerisation (a process 

known as dynamic instability; Mitchison and Kirschner, 1984) and are intrinsically 

polar structures. This means that the two ends of the MT exhibit different properties. 
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Indeed, this polarity is important to the cellular functions of MTs, which include cell 

movement, vesicle transport and chromosome segregation during mitosis (Downing and 

Nogales 1998; Dammerman et al., 2003). In neuronal cells, MTs, in combination with 

MAPs are involved in neurite outgrowth and axon stabilisation (Nixon, 1998), and in 

intracellular transport (Shea and Flanagan, 2001).  Also motor proteins can bind MTs, 

these proteins belong to two families: kinesins and dyneins. Each type of MT-depedent–

motor protein carries a distinct cargo with it as it moves (Alberts et al., 1996). MT 

polarity is also central to the ability of motor proteins to move unidirectionally on the 

polymer lattice and accomplish their diverse functions (Dammerman et al., 2003). 

MTs, but not free tubulin molecules can be covalently modified (e.g. acetylation or 

detyrosination). MTs modification gives an idea of the time that has elapsed since a 

particular MT polymerised, thus post-translational modifications mark MTs as mature. 

Although, the function of these modifications remains unresolved, it is thought that they 

provide sites for the binding of specific MAPs that further stabilise mature MTs 

(Laurent and Fleury, 1993; reviewed by Alberts et al., 1996; Liao and Gundersen, 

1998). 

1.4.3 Neurofilaments 

1.4.3.1 Neurofilament structure and assembly 

There are six different classes of IFs classified according to amino acid sequence 

similarity and the intron structure of their genomic sequence (Xiao et al., 2006). 

Neurofilaments (NFs), which are specific for neurons, belong to the fourth group of IFs 

and are composed of three subunit proteins: NF-L, NF-M and NF-H (Hirokawa and 

Takeda, 1998; Nixon R.A. 1998; Yabe et al., 2001). The NF-L molecular weight (MW) 

corresponds to 61 kDa; however due to postranslational modifications (ie. 

phosphorylation and glycosylation) NF-L is detected at 68 kDa, when separated by SDS 

electrophoresis. Similarly, although the MWs of NF-M and NF-H are 102.5 and 111 

KDa, respectively, phosphorylation of the carboxyl terminal tail domains, make NF-M 

and NF-H run at 150 and 190-210 kDa  in polyacrylamide SDS gels (reviewed by 

Petzold, 2005).  

Neurofilaments are composed of a short amino-terminal head domain rich in arginine 

and serine, a coiled-coil rod domain of approximately 310 amino acids, and a carboxyl-
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terminus of varying length (see Figure 1.8). NFs in nerve axons are composed of a 

parallel array of 10-nm filaments with frequent crossbridges between NFs or between 

NFs and MTs or membranous organelles (Xu et al., 1996; Hirokawa and Takeda, 1998; 

Nixon, 1998; Yabe et al., 2001).  The formation of the 10 nm IF results from the correct 

assembly of the NF-L, NF-M and NF-H subunits. The coiled-coil rod domain is mainly 

relevant for NF assembly, whilst variable head and tail domains are mainly responsible 

for protein-protein interactions, with the head domain also contributing to assembly 

(reviewed by Petzold, 2005). NF-H and NF-M have long hypervariable COOH-terminal 

tails containing from 40 to 60 KSP (lysine-serine-proline) repeats that are targets of 

phosphorylation (Hirokawa and Takeda, 1998; Yabe et al., 2001). 

The central rod domain is a very conserved region that consists of an extended α-helical 

region containing long tandem repeats of seven distinctive amino acids (called the 

heptad repeat) which promotes the formation of coiled-coiled dimers between two 

parallel α-helices (Alberts et al., 1994; Xu et al., 1996; Xiao et al., 2006). Two dimers 

can then associate in an antiparallel manner to form a tetrameric subunit. Soluble 

tetramers are found in cells suggesting that they are the fundamental subunit from which 

IFs assemble. The antiparallel arrangement of dimers implies that the tetramer, and 

hence the IF that it forms is a non-polar symmetrical structure. This distinguishes IFs 

from actin filaments and MTs. The final step of NF assembly is less well-known but it 

appears that tetramers add to an elongating NF in a simple binding reaction in which 

they align along the axis of the filament and pack together in a helical pattern (Alberts et 

al., 1994; Goldman et al., 1999).  Cross-bridging between NFs and other axoplasmic 

components is required for their association in parallel arrays (Nakagawa et al., 1995; 

Leterrier et al., 1996). This is accomplished by the carboxyl-terminal domains of both 

NF-M and NF-H which form side-arms which project from the core of the filament 

(Brownlees et al., 2000). These filaments assemble in vivo as obligate heteropolymers 

of NF-L, which is indispensable for assembly, with sub-stoichiometric amounts of NF-

M and/ or NF-H (Xu et al., 1996; Goldman et al., 1999). The molar ratios of these 

subunits are approximately 5:2:1 for NF-L, NF-M and NF-H, respectively (Xiao et al., 

2006).  
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Figure 1.8 Structure of NF proteins. NF-L, NF-M and NF-H share a tripartite 
structure composed of an amino terminal head domain, a highly conserved coiled-coil 
rod domain and a carboxyl terminus tail of varying length. NFs undergo post-
translational modifications. Indeed, the carboxyl- tail domain of NF-M and mainly NF-
H contain several KSP repeats that are target to phosphorylation (taken from Schmidt 
et al. 1991 with modifications).  

 

1.4.3.2 Post-translational modifications of NFs 

It was first suggested by Gard and Lazarides (1982) that neurofilament function might 

be regulated by phosphorylation. The steady-state phosphate content of each NF subunit 

is regulated by a dynamic balance between the processes of phosphorylation and 

selective dephosphorylation. This balance is regulated differently in various sites within 

the neuron (Hirokawa and Takeda, 1998; Nixon, 1998; Yabe et al. 2001).  

Indeed, NF-M and NF-H are some of the most highly phosphorylated proteins in the 

nervous system (Xiao et al., 2006). As introduced earlier, the extensively 

phosphorylated carboxyl-tail domains project outward from the filament core in a way 

that phosphates are exposed on the surface of the NFs, thereby, suggesting that 

phosphorylation may regulate not only NF functions and assembly but the different 

interactions between the different cytoskeletal components during neurogenesis and 

axon radial growth (Nixon and Sihag, 1991; Hirokawa and Takeda, 1998; Grant et al., 

2001; Yabe et al. 2001).  



CHAPTER I- GENERAL INTRODUCTION 

 

 36

NFs are phosphorylated at the Ser and Thr residues in both the amino-terminal domain 

and the KSP repeats in the carboxyl-tail domain. Phosphorylation and 

dephosphorylation are regulated by several protein kinases and phosphatases which are 

tightly regulated and interconnected (Petzold, 2005). N-terminal head phosphorylation 

is performed by secondary messenger-dependent kinases (PKA and PKC) whilst 

secondary–messenger independent kinases (proline-directed kinases eg. cyclin-

dependent kinase-5, glycogen synthase kinase-α3; extracellular signal regulated kinases 

ERK 1 and ERK 2, stress activated protein kinases p38α, c-jun N-terminal kinase 1 

(JNK 1) and 3 (JNK3)) are responsible for phosphorylation of the carboxyl-tails 

(reviewed by Xiao et al., 2006). Phosphorylation of the carboxyl-tail domain of NFs is 

associated with axonal development and maturation (Shea et al., 2003). Studies seem to 

agree in the fact that phosphorylation of NFs can occur in the cell perikaryon but also as 

they travel along the axon, consequently promoting incorporation into the cytoskeleton 

(Shea et al., 1990, 1998). Although the serine residues of the KSP repeats within the 

carboxyl-terminal domain are heavily phosphorylated in axons, they are largely non-

phosphorylated in perikarya and more proximal regions of axons (Sternberger and 

Sternberger 1983). Of importance is the fact that NF subunits express different levels of 

phosphorylation, even in the same axon but also between different axonal bundles and 

nerve tracks.  

NF-L and NF-M head domain and NF-H KSP repeats can also suffer glycosylation 

(linked to serine and threonine residues). The role of this post-translational modification 

is not fully understood, however it might be implicated in NF trafficking and function 

(reviewed by Petzold, 2005). 

1.4.3.3 The role of NFs in axons  

During maturation axons elongate to establish a physical contact with their target 

followed by radial growth (up to 10-fold in diameter; Xu et al., 1996). Axons are 

enriched with NFs, which extend along their length and form the primary cytoskeletal 

component, especially in mature nerve cells. The major function of NFs is to provide 

mechanical stability to neurons (reviewed by Alberts et al., 1994; Nixon, 1998). In fact, 

NFs in conjunction with MTs, MAPs, actin and associated motor proteins constitute the 

dynamic axonal cytoskeleton (Grant et al., 2001). The relative proportion of NF 

subunits varies during neuronal development. During embryonic neurogenesis NF-L 



CHAPTER I- GENERAL INTRODUCTION 

 

 37

and NF-M are co-expressed whilst NF-H expression occurs later in development (Nixon 

and Sihag, 1991; Shea and Beermann, 1994; Julien 1999).  

NFs determine axonal calibre, which in turn is responsible for determining the 

conduction velocity at which nerve impulses are propagated along the axon (Xu et al., 

1996; Hirokawa and Takeda, 2003). This was proven with two animal models in which 

a lack of NFs resulted in severe inhibition of radial growth (Ohara et al., 1993; Eyer and 

Peterson, 1994). Indeed, phosphorylation of NF-H and NF-M side arms (Xu et al., 

1996; Siegel, et al.; 1999) and cross bridges between NFs are thought to be crucial in 

determining and maintaining axonal calibre (Nakagawa et al., 1995). However, it is 

now proposed that NF-L and NF-M stoichiometrics are more important for axonal 

growth than NFs phosphorylation. Indeed, NF-M is the “preferred” subunit for NF-L 

copolymerisation and main regulator of axonal calibre (Elder et al., 1998; Rao et al., 

1998).  

Of importance is the fact that NFs may also bind actin filaments, thus associating MFs, 

NFs and MTs with the cell membrane (Leterrier et al., 1996).  Indeed, Shea and 

Beermann (1994) suggested that NFs role in stabilising the axonal cytoskeleton results 

from interactions between NFs and MTs, which are mediated by NF-H and MAPs.  

1.4.3.4 Transport of NF proteins 

NFs, as all the cytoskeleton components, are synthesised within the neuronal perikaryon 

and then delivered to the axon by a process known as axonal transport, which can be 

divided into “fast axonal transport” and “slow axonal transport”. The first one includes 

the transport of membranous organelles and the second, the transport of the cytoskeletal 

proteins (such as, NFs, MTs and associated proteins; Yabe et al., 1999). In fact, the MT 

system in association with its complementary motor proteins is required to transport the 

cellular components (Terada, 2003). Roy et al., (2000) reported that NFs spend a 

maximum of 20 % of the time moving and the rest of the time are paused. Thus, these 

findings suggest that slow and fast transport may involve a unique system in which 

proteins simply spend different lengths of time associated with their motors (Shea and 

Flanagan, 2001).  

For a long time, the form in which NFs were transported along the axon (ie. monomers 

or polymers) remained unclear; however, it is now accepted that NFs are transported in 
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different formats, including insoluble hetero-oligomers, short filaments as well as 

subunits (Lasek et al., 1993; Roy et al., 2000; Terada, 2003; Yuan et al., 2006). 

Transport is most rapid during neurogenesis and slows into the adults as axons undergo 

radial growth and myelination; this is when NF-H phosphorylation is maximal (Grant et 

al., 2001). 

It is been suggested that phosphorylation/dephosphorylation of the carboxyl-terminal 

domains of NF-H and NF-M determines axonal transport rate (Prahlad et al., 2000; Roy 

et al., 2000; Shea  et al.,  2003) and also regulates the interactions between NFs and the 

anterograde and retrograde axonal motor proteins kinesin and dynein  (Shea and 

Flanagan, 2001;  Shea  et al.,  2003; Jung  et al., 2005). However, two studies by the 

same research group challenges the “classical” hypothesis that carboxyl-terminal tail 

phosphorylation of NFs regulates axonal transport, since they show that axonal 

transport rate along the optic nerve of mice lacking the hyperphosphorylated tail domain 

NF-H was unaltered (Rao et al., 2002; Yuan et al., 2006).  

It is of interest the fact that normal segregation of highly phosphorylated NFs in axons 

has been found to be disrupted in some neurons in pathological states associated with 

perikaryal accumulation of neurofilaments (Hirokawa and Takeda, 1998; Nixon R.A. 

1998; Yabe et al. 2001). This is further discussed in section 5.1.1 and 5.1.2. 

1.5 AIMS OF PROJECT 

Mitochondrial impairment, glutathione depletion and oxidative stress have been 

implicated in the pathogenesis of Parkinson’s disease, linked recently to proteasomal 

dysfunction (reviewed by Betarbet et al., 2005). The initial aim of this study was to 

investigate how these factors influence the various activities of the proteasome in 

human SH-SY5Y neuroblastoma cells treated with the PD mimetics MPP+ or DA. The 

project also investigated the effects of glutathione depletion on proteasome activity of 

human neuroblastoma cells either following or not toxin treatment. It is worth noting 

that most of previous work in that area was performed in rodent cells. Moreover, little 

information is available on PD mimetics on the three proteasomal activities. 

Another aim was to determine whether treatment with neurotoxins caused a direct effect 

on proteasome activity of commercial, purified 20S proteasome or in the cell extracts. 

The effect of antioxidants on proteasomal activity of both toxin-treated cells and 
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purified 20S, was also studied. Moreover, modifications or losses of several 

proteasomal subunits have been reported with ageing (Bulteau et al., 2001) and in PD 

(McNaught et al., 2003), thus possible changes on the individual 20S proteasomal 

subunits following treatment with MPP+ and DA were also investigated.  

Finally, given that NFs, ubiquitinated proteins and proteasomal subunits are found in 

proteinaceous inclusions, such as LBs and, the UPS activity is impaired in SNpc of PD 

brains (McNaught and Jenner, 2001), this project also aimed to investigate whether NFs 

can undergo proteasomal degradation. Additionally, the post-translational modifications 

and distribution of the NF network after toxin treatment of SH-SY5Y cells were also 

studied. 
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2. MATERIALS AND METHODS 

2.1 MATERIALS 

2.1.1 Cell culture 

2.1.1.1 Reagents 

Dulbecco´s Modified Eagle’s medium (DMEM; 12-614F), foetal bovine serum (14-

801-F), penicillin/ streptomycin (17-603E), L-glutamine (17-603E), trypsin/EDTA 

solution (02-007E), were all purchased from Cambrex, Berkshire, UK. 

DMEM/HAM´s F12 medium (D6421), MEM non-essential amino acids solution 

(M7145), Trypan blue solution 0.4 % (v/v; T8154), from Sigma-Aldrich Chemical 

Company, Poole, UK 

2.1.1.2 Plastic ware 

All sterile plastic were supplied by Sarstedt, Leicester, UK. 

- Cryotube vials (Nunc brand products), Merk Ltd., Leicester, UK. 

- Microtitre plates, 96-well flat-bottomed non sterile, black (015-210190W), Fisher 

Scientific UK. 

- Nunc Lab-Tech CC chamber slides (permanox, 177445), Scientific Laboratory 

Supplies, Ltd., Nottingham, UK. 

2.1.2 Specialised laboratory reagents 

- Acrylogel 3 solution Electran (containing 2.5% NN´-methylenebisacrylamide, final 

ratio 29:1:0.9; 443735T), VWR International Ltd., Poole, UK. 

- Adenosine 5’-triphosphate (ATP; A3377), Sigma-Aldrich Chemical Company, Poole, 

UK. 

- Ascorbic acid (vitamin C; A5960), Sigma-Aldrich Chemical Company, Poole, UK. 

- Bio-Rad protein assay dye reagent concentrate (500-0006), Bio-Rad Laboratories Ltd., 

Hemel Hempstead, UK. 

- 5-Bromo-4-chloro-3-indolyl-phosphate (di-sodium salt; BCIP; MB1018), Melford 

Laboratories Ltd. Ipswich, UK. 
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- L-buthionine-[S,R]-sulfoximine (BSO; B2515), Sigma-Aldrich Chemical Company, 

Poole, UK. 

- Cycloheximide (C-7698), Sigma-Aldrich Chemical Company, Poole, UK. 

- Dimethlsulfoxide (DMSO; D/4120/PB08), Fisher Scientific UK Ltd., Loughborough, 

UK. 

- 5,5’- Dithio-bis(2-nitrobenzoic acid), (DTNB; D-8130), Sigma-Aldrich Chemical 

Company, Poole, UK. 

- 2D gel starter kit- (163-2105), Bio-Rad Laboratories Ltd., Hemel Hempstead, UK. 

- ECL Western Blotting detection Reagents (RPN2109), GE Healthcare Bio-Sciences, 

Bucks, UK. 

- Folin-Ciocalteu´s phenol Reagent (J/4100/08), Fisher Scientific UK, Leicester, UK. 

- GBX developer/replenisher (P7042), Sigma-Aldrich Chemical Company, Poole, UK. 

- GBX fixer/replenisher (P7167), Sigma-Aldrich Chemical Company, Poole, UK. 

- Glutathione (G-4251), Sigma-Aldrich Chemical Company, Poole, UK. 

- Glutathione reductase (EC 1.6.4.2; G3664), Sigma-Aldrich Chemical Company, 

Poole, UK. 

- Igepal CA-630 (I3021), Sigma-Aldrich Chemical Company, Poole, UK. 

-  MPP+ Iodide (D048), Sigma-Aldrich Chemical Company, Poole, UK. 

- 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; M2128), Sigma-

Aldrich Chemical Company, Poole, UK. 

- N-acetyl cysteine (A7250), Sigma-Aldrich Chemical Company, Poole, UK. 

- β- nicotinamide adenine dinucleotide phosphate, reduced form (β- NADPH; N1630), 

Sigma-Aldrich Chemical Company, Poole, UK. 

- Nitro Blue Tetrazolium (NBT; MB1019), Melford Laboratories Ltd., Ipswich, UK. 

- Nitrocellulose 0.22 μM pore size (WP2HY00010), Genetic Research Instrumentation, 

Essex, UK. 

- Precision Plus protein dual colour standards (161-0374), Bio-Rad Laboratories Ltd., 

Hemel Hempstead, UK. 
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- Pre-stained SDS molecular weight standard mixture (SDS-7B), Sigma-Aldrich 

Chemical Company, Poole, UK. 

- Ready IPG strip, pH 3-10, non-linear, 7cm (163-2002), Bio-Rad Laboratories Ltd., 

Hemel Hempstead, UK. 

- Silver staining kit, Protein (17-1150-01), GE Healthcare Bio-Sciences, Bucks, UK. 

- ± α- Tocopherol (vitamin E; T3251), Sigma-Aldrich Chemical Company, Poole, UK. 

- XAR-5 Kodak Film (F5388), Sigma-Aldrich Chemical Company, Poole, UK. 

- Vialight bioassay  kit (HS Plus; RT07-221) , Cambrex, Berkshire, UK. 

Enzymes 

- 20S proteasome (mammalian; EC 3.4.25.1; PW8729), Biomol International, Exeter, 

UK. 

- Trypsin (EC 3.4.21.4) Type II-S, porcine pancreas, Sigma-Aldrich Chemical 

Company, Poole, UK. 

- Calpain-2 (EC 3.4.22.53), rat, recombinant, high purity, E. coli (208718), Calbiochem, 

Nottingham, UK.   . 

Fuorogenic substrates 

- Boc-Leu-Arg- Arg-AMC·HCl (I1585), Bachem, Merseyside, UK. 

- Suc-Leu-Leu-Val-Tyr-AMC, (I1395), Bachem, Merseyside, UK. 

- Z-Leu-Leu-Glu-AMC (539141), CN Biosciences, Nottingham, UK. 

Protease Inhibitors 

- MDL 28,170 (208722), Calbiochem, Nottingham, UK. 

- Lactacystin Proteasome inhibitor (sc-3575), Autogen Bioclear UK Ltd., Calne, UK. 

- Protease Inhibitor cocktail (P8340), Sigma-Aldrich Chemical Company, Poole, UK. 
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2.1.3 Antibodies 

2.1.3.1 Primary Antibodies 

- Anti-ERK (K23) antibody (sc-94), Santa Cruz Biotech, Santa Cruz, California, USA. 

- Neurofilament 200KDa monoclonal antibody (clone N52) (N0142), Sigma-Aldrich 

Chemical Company, Poole, UK. 

- SMI 31 anti-phospho-neurofilaments, Sternberger Monoclonals Inc, Maryland, USA. 

- Proteasomal subunit β4, Rabbit polyclonal antibody (PW8890), Biomol International, 

Exeter, UK. 

- Proteasomal subunit β5, Rabbit polyclonal antibody (PW8895), Biomol International, 

Exeter, UK. 

- Proteasomal subunit β6, Rabbit polyclonal antibody (PW900), Biomol International, 

Exeter, UK. 

- Proteasomal subunit β2, mouse monoclonal antibody (clone MPC168; PW8145), 

Biomol International, Exeter, UK. 

- Proteasomal “core subunits” (α5/α7/β1, β5,β5i,β7), Rabbit polyclonal antibody 

(PW8155), Biomol International, Exeter, UK. 

- Proteasome subunits α 1, 2, 3, 5, 6 and 7 mouse monoclonal antibody (clone MPC231; 

PW8195), Biomol International, Exeter, UK. 

2.1.3.2 Secondary Antibodies 

- Goat anti-mouse immunoglobulins alkaline phosphatase conjugated (D0486). 

- Goat anti-mouse immunoglobulins horseradish peroxidase conjugated (P0447). 

- Goat anti-rabbit immunoglobulins alkaline phosphatase conjugated (D0487). 

- Goat anti-rabbit immunoglobulins horseradish peroxidase conjugated (P0448). 

- Rabbit anti-mouse immunoglobulins FITC conjugated (F0261). 

- Rabbit anti-mouse immunoglobulins alkaline phosphatase conjugated (D0487). 

All purchased from DAKO Ltd., Cambridgeshire, UK. 
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2.1.4 Specialised equipment 

- Bio-Rad mode 680 microplate reader, Bio-Rad Laboratories Ltd., Hemel Hempstead, 

UK. 

-  Bio-Rad protean IEF Cell System, Bio-Rad Laboratories Ltd, Hempstead, UK. 

- Bio-Rad power Pac 300, Bio-Rad Laboratories Ltd., Hemel Hempstead, UK. 

- Bio-Rad Trans-Blot electrophoretic transfer system, Bio-Rad Laboratories Ltd, 

Hempstead, UK. 

- Cell scraper (C2808), Sigma-Aldrich Chemical Company, Poole, UK. 

- Leica CLMS confocal laser microscope, Leica, Germany. 

- Fluostar optima plate reader, BMG Labtech Ltd., Bucks, UK. 

- Fujifilm FLA-5100 gel scanner, Fujifilm Life Sciences Products, Sheffield, UK. 

- Fujifilm intelligent dark box, Fujifilm Life Sciences Products, Sheffield, UK. 

- MIKRO 22R microfuge, Hettich, Germany. 

- Mini- PROTEAN III system, Bio-Rad Laboratories Ltd., Hemel Hempstead, UK. 

- Nikon Eclipse TS 100 inverted microscope, Nikon, Japan. 

- Neubauer double cell clear sight haemocytometer (AC1000), Weber Scientific 

International (Division of Hawksley Technology), West Sussex, UK. 

- Sanyo CO2 incubator MCO-17AIC, Sanyo Gallenkamp PCL, Leicestershire, UK. 

- Sanyo Harrier 18/80 refrigerated centrifuge, Sanyo Gallenkamp PCL, Leicestershire,    

UK. 

-  Soniprep 150, MSE scientific instruments, UK. 

-  Tecan SPECTRA Fluor plate reader, Tecan, UK Ltd., Reading, UK. 

- Walker class II microbiological safety cabinet, Walker safety cabinets Ltd., 

Derbyshire, UK. 
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2.1.4.1 General laboratory reagents 

All general laboratory reagents were of the highest grade and purchased from Sigma-

Aldrich Chemical Company, Poole, UK, unless otherwise specified in the text. 

2.2 METHODS 

2.2.1 Cell culture 

A clone of human SH-SY5Y neuroblastoma cell line was obtained from European 

Collection of Animal and Cell Cultures (ECACC).  

2.2.1.1 Maintenance of SH-SY5Y cells 

Cell culture was carried out in a class II safety cabinet using aseptic technique. Cells 

were cultured in 25 cm2 (T25), 75 cm2 (T75) and 175 cm2 (T175) flasks in Dulbecco´s 

Modified Eagles Medium (DMEM)/HAMS F12 (1:1) containing: 10% (v/v) heat 

inactivated foetal bovine serum (heat inactivated at 60 ºC for 30 min), 2mM L-

glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin and 1 % (v/v) non essential 

aminoacids (“growth medium”). 

Cells were maintained as a monolayer and incubated at 37 oC in a humidified 

atmosphere of  95 % (v/v) air / 5 % (v/v) carbon dioxide until 70-90 % confluent. 

2.2.1.2 Sub-culture 

When cells required subculturing, growth medium was removed using a Pasteur pipette 

and the cell monolayer was washed twice with pre-warmed DMEM (37 oC). Cells were 

detached from the growing surface using trypsin (100 μg/ml) / Ethylenediamine 

(EDTA; 40 μg/ml) in DMEM at 37 oC (trypsinisation). Trypsin activity was quenched 

by the addition of growth medium (ten times the volume of trypsin solution). The 

suspension was transferred to a sterile centrifuge tube and centrifuged at 150 x g for 5 

min. The supernatant was removed and the pellet re-suspended in 1ml of fresh growth 

medium. Following cell count, a volume of cell suspension (dependent on the number 

of cells required) was transferred to an appropriate sterile flask containing fresh growth 

medium. Cells were then incubated as described in section  2.2.1. 
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2.2.1.3 Viable cell counting and seeding 

To seed cells at a given density a volume (typically 20 μl) of cell suspension was 

diluted 1:10 in Trypan blue solution (0.4% (v/v)). A viable cell count was performed in 

five fields of Neubauer haemocytometer using light microscopy. Cell density was 

calculated as follows: 

 Cell/ml = average cell number (from five fields) x 104 x dilution factor 

This was then used to calculate the volume of cell suspension required to achieve a 

specific cell density in a known volume of fresh growth medium. Once seeded cells 

were incubated as described in section  2.2.1. 

2.2.1.4 Cryo-preservation of cells 

Long-term storage of cells was achieved in the gaseous phase of liquid nitrogen in 

freezing medium containing, 95 % (v/v) FBS and 5 % (v/v) sterile dimethyl sulphoxide 

(DMSO). Cells were grown as described in section  2.2.1, harvested by trypsinisation, a 

viable count performed (see section  2.2.1.3) and cells resuspended in ice-cold freezing 

medium at a density of 2 x 106cells/ml. The suspension was immediately transferred to 

cryovials on ice (1 ml aliquots) and stored at -80 oC overnight before transferring to 

liquid nitrogen for long term storage. 

2.2.1.5 Resuscitation of cryo-preserved cells 

Cryovials were removed from liquid nitrogen storage and rapidly thawed in a   37 oC 

water bath. Cell suspensions were immediately transferred to a sterile centrifuge tube 

containing 10 ml of fresh growth medium. Suspensions was centrifuged 150 x g for 5 

min. The supernatant was removed and cells re-suspended in 1 ml fresh growth medium 

using a Pasteur pipette before transfer to a sterile T25 flask containing 10 ml of growth 

medium. Cells were incubated as described section  2.2.1  and sub- cultured as described 

in section  2.2.1.2.  

2.2.2 Assessment of cell viability: MTT tetrazolium salt assay for 

anchorage dependent cells 

3-[4-5-Dimethylthiazol-2-y1]-2,5-diphenyl tetrazolium bromide (MTT) is a substrate 

that is taken up by cells and reduced by mitochondrial and endoplasmic reticulum 
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dehydrogenase enzymes, to a purple formazan product that accumulates within viable 

cells (Cookson et al., 1995). In general, cell viability was assessed in 96-well plates. 

Typically, 10 μl of 5mg/ml MTT in DMEM were added to the culture medium of 

growing cells and incubated at 37 oC in a humidified atmosphere of 95 % (v/v) air / 5 % 

(v/v) carbon dioxide for 1 hour. After this time medium was carefully removed from the 

cells and the formazan product solubilised in 100μl DMSO. The plate was agitated on 

an orbital shaker to aid dissolution of the formazan product prior to reading the 

absorbance at 570 nm. Absorbance results were expressed as mean percentage cell 

viability compared to controls ± standard error of the mean (SEM). 

2.2.3 ATP assay 

The ViaLight HS plus kit was used according to the manufacturer´s guidelines. The kit 

is based upon the bioluminescent measurement of ATP that is present in all 

metabolically active cells. The method utilises an enzyme, luciferase, which catalyses 

the formation of light from ATP and luciferin according to the following reaction: 

 

                                    LUCIFERASE 

ATP + Luciferin + O2              Oxyluciferin + AMP + PPi + CO2 + LIGHT  

                                        Mg++                                                                                                        

 

Cells were cultured in 96-well plates as described in section  2.2.1. To assay ATP, 50 μl 

of cell lysis reagent was added to each well (containing 100 μl of medium). After 10 

min, 100 μl of extracts or ATP standards (containing 0, 12.5, 50, 250, 500, 5000, 5000, 

25000 pmols) were transferred to a white walled microtitre plate where 100 μl of ATP 

monitoring PLUS reagent were added to each well. The emitted light intensity 

(directlyproportional to ATP concentration) was measured (365nm) and the ATP 

content calculated from the ATP calibration graph. The assay was conducted at ambient 

temperature (18-22 ºC). Results were calculated as pmols ATP/ μg protein and 

converted to mean % of ATP (in comparison to control samples) ± SEM. 
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2.2.4 Preparation of cell lysates 

2.2.4.1 Total protein extraction from cells for detection of neurofilament 

proteins in response to protease inhibitors and toxins 

Cells (1.5x106) were seeded in T25 flasks and left 24 h to allow attachment and 

recovery. Medium was carefully removed from each flask and replaced with 5 ml of 

fresh growth medium supplemented with or without different treatments depending on 

the specific experiment. After the required time (normally 24, 48 and 72 h) cells were 

detached by trypsinisation (see section  2.2.1.2) and the resultant pellet lysed in 250 μl 

extraction buffer (50 mM Tris, pH 6.8; 150 mM NaCl; 5 mM EDTA; 1 % sodium 

dodecyl sulphate (SDS); 0.2 % (v/v) protease inhibitor cocktail) and transferred to an 

eppendorf tube on ice. For experiments where a significant number of cells were 

floating, these were harvested and included in the extraction; medium and DMEM 

washes were collected and centrifuged at 150 x g for 5 min. The resultant pellet was 

added to the adherent cell extract. Total extracts were sonicated (6 x 3 seconds) on ice 

and heated at 100oC for 5 min. Aliquots of samples were stored at -20 ºC prior to 

protein estimation by the Lowry method (see section  2.2.5.1) 

2.2.4.2 Protein extraction from cells for measuring 26S/20S proteolytic 

activity 

Cells were seeded at a density of 500,000 cells/well in 6-well plates and incubated for 

24 h to allow attachment and recovery. Medium was carefully removed from each well 

and replaced with 2 ml of fresh growth media supplemented with the treatment. After 

the required time period,  cells were washed twice with 1ml of DMEM and detached 

using a cell scraper in 250 μl ice-cold homogenisation buffer [20 mM Tris/HCl, pH 7.2; 

0.1 mM EDTA; 1 mM 2-mercaptoethanol; 5 mM ATP; 20 % (v/v) glycerol; 0.04 % 

(v/v) Igepal CA-630]. Cell lysates were transferred to an eppendorf tube on ice. For 

experiments where a significant number of cells were floating, these were harvested and 

included in the extraction; medium and DMEM washes were collected and centrifuged 

at 150 x g for 5 min. The resultant pellet was added to the adherent cell extract. Finally, 

total extracts were vigorously vortex mixed and kept on ice for immediate analysis of 
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2.2.5 Estimation of protein in cell extracts 

2.2.5.1 Mini-Lowry method 

The protein content of samples was estimated using the Lowry method (Lowry et al., 

1951, with modifications). A calibration graph was constructed using bovine serum 

albumin (BSA) to represent 0-80 μg protein. Equal volumes of extraction buffer used in 

the samples were added to each standard (typically 10-30 μl) and standards made up to 

a final volume of 100 μl in distilled water.  

The working Lowry reagent [1ml; 2 % (w/v) NaCO3, 0.01 % (w/v) CuSO4,  0.027 % 

(w/v) NaK tartrate in 0.1 M NaOH] was added to each standard and sample, vortex 

mixed and incubated at room temperature for 15 min. The reaction was developed over 

30 min at room temperature by adding 100 μl Folin Ciocalteu´s phenol reagent diluted 

1:1 in distilled water. All samples were vortex mixed and absorbance measured at 750 

nm.  

2.2.5.2 Bio-Rad protein assay 

The Bio-Rad protein assay was used in accordance with the manufacturer´s guidelines. 

A calibration graph ranging from 0-50 μg was prepared from BSA as detailed in section 

 2.2.5.1) Samples and standards were diluted to 800 μl in distilled water. 200 μl of Bio-

Rad dye reagent were added to each standard and sample, vortex mixed and after an 

incubation period of 5 min, absorbances were read at 595 nm. 

2.2.6 Fluorogenic peptide assay for protease activity. 

2.2.6.1 20S/26S proteasomes activity 

Proteasome specific substrates are typically three to four amino acid residue peptides 

with a fluorogenic tag at the C terminus. The proteasome cleaves an amido bond 

between an amino acid and the fluorogenic tag, resulting in the realease of a highly 

fluorescent product. From the different fluorophores used in these substrates, 7-amino-

4methylcoumarin (AMC) has the highest fluorescence and is the most commonly used 
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fluorogenic reporter group in proteasome substrates. Substrates chosen for the assay 

were Suc-LLVY-AMC (50 μM), Boc-LRR-AMC (100 μM) and Z-LLE-AMC (37.5 

μM) for chymotrypsin-like (CLA), trypsin–like (TLA) and post acidic-like (PLA) 

proteasomal activities, respectively. (Canu et al. 2000; David et al. 2002, Kisselev and 

Goldberg 2005). 100μl of SH-SY5Y cell lysates (∼ 20-30 μg protein; see section 

2.2.4.2) or 0.05 μg of purified human 20S proteasome were incubated at 37oC with a 

fluorogenic substrate in assay buffer (50 mM HEPES, 5mM EGTA pH 8.0) in a total 

volume of 200μl. Readings were taken every 5-10 min for 3h (360nm excitation; 465 

nm emission). Results were calculated as ΔFU/s/ μg protein and then converted to % 

activity in comparison to control samples. 

2.2.6.2 Fluorogenic peptide assay for calpain activity. 

Calpain activity was measured with the method described by Sasaki et al. (1984) with 

modifications. Rat, recombinant calpain-2 was utilised in this fluorogenic assay. 0.36 

μg/μl of calpain-2 were pre-incubated at 37oC in assay buffer (60 mM imidizole pH 7.3, 

5 mM L-cysteine, 2.5 μM 2-mercaptoethanol, 5 mM CaCl2 and 4 % (v/v) DMSO) for 

15 min before the addition of the fluorogenic substrate Suc-Leu-Tyr-AMC (1 mM) in a 

100 μl total assay buffer volume. Fluorescence was measured (360 nm excitation; 465 

nm emission) every min for 20 min. Results were calculated as ΔFU/s/μg protein and 

then converted to % activity in comparison to control samples.  

2.2.7 Measurement of total glutathione levels  

Total glutathione levels were determined using the DTNB-GSSG reductase-recycling 

assay, based on the method of Anderson (1985) with minor modifications. The assay 

works on the basis of the following reactions: 

2 GSH + DTNB → GSSG +TNB 

↑                        ↓ 

2 GSH + NADP+← GSSG + NADPH + H+ 

 

 Cells were plated out in T25 flasks at 80 % cell density, incubated overnight for 

recovery, then medium was removed and treatments were added. Following treatment, 
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2.2.8 Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

2.2.8.1 Preparation of polyacrylamide resolving gels 

The Bio-Rad mini protean III apparatus was assembled according to the manufacturer´s 

guidelines. In brief two glass plates were held, typically 1.5mm apart, by vertical 

spacers. 

For each gel, 10 ml gel mix were prepared as detailed in Table 2.1 and degassed under 

vacuum for 10 min. For each 10 ml gel mix, 100μl 10 % (w/v) ammonium persulphate 

(APS) and 10 μl N, N, N’, N’-tetramethyl-ethylenediamine (TEMED) were used as 

polymerisation agents and added immediately before the gel was poured. 

Gels were poured with a 2.5 cm space at the top of the glass plates to allow the addition 

of a stacking gel and covered with a layer of distilled water. The gel mix was allowed to 

polymerise at room temperature for 30-45 min. 

Table 2.1 details the methods for preparation of polyacrylamide resolving gels. 

Separation of proteins within a sample can be varied depending on the percentage of 
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acrylamide within the resolving gel. For greater separation of high molecular weight 

proteins, a lower percentage acrylamide gel would be used and vice versa. 

 

REAGENT 

7.5% (w/v) 

polyacrylamide 

gel 

40% Acrylamide stock 1.9 ml 

1.5 M Tris buffer pH 8.8 2.5 ml 

10 % SDS 100 μl 

Millipore (distilled) water 5.50 ml 

Table  2.1. Preparation of 7. 5 % acrylamide resolving gels for SDS-PAGE. 
 

2.2.8.2 Preparation of stacking gel 

Typically, 3 ml of 4 % (w/v) acrylamide stacking gel mixture were used per gel and 

degassed under vacuum over 10 min. The volumes of reagents required to prepare 100 

ml of stacking gel mix are shown in Table 2.2. To polymerise 3 ml of the stacking gel 

stock, 12 μl TEMED and 30 μl of APS were added immediately before pouring the 

stacking gel on top of resolving gel to the top of the glass plates. Combs were 

positioned (10 wells) within the gel to form individual wells. The gel was allowed to 

polymerise for 30 min at room temperature before removal of the combs and transfer of 

the gel to an electrophoresis running chamber to be submerged in SDS-PAGE buffer 

(Tris 25 mM pH 8.3, 192 mM glycine, 01 % (w/v) SDS). 
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REAGENT 
Volume ( to make 

100ml) 

40% (w/v) Acrylamide 

stock 
10 ml 

0.5 M Tris buffer pH 6.8 25 ml 

10 % (w/v) SDS 1ml 

Millipore (distilled) water 64 ml 

Table  2.2.   Preparation of 100 ml stock 4 % polyacrylamide stacking gel. 
 

2.2.8.3 Preparation of samples for SDS-PAGE  

Samples (typically 20-50 μg protein) were diluted 1:1 in 2 x concentrated reducing 

electrophoresis sample buffer (4 % (w/v) SDS; 20 % glycerol; 0.1 M Tris- HCl pH 6.8; 

100 mM DTT; 0.01% (w/v) Bromophenol blue). Samples were heated to 100 oC for 5 

min then microfuged at high speed for 10 seconds to recover all the sample prior to 

loading and separation at a constant current of 200 V. Current was stopped as the dye 

front approached the bottom of the gel. 

2.2.8.4 Acetone precipitation of protein 

Acetone precipitation was used when samples required the concentration of protein. The 

required sample volumes were transferred to an eppendorf tube and vortex mixed with 5 

times its volume of ice-cold acetone prior to incubation at -20 oC for a minimum of 2 h. 

Protein precipitate was then harvested at 14000 x g for 10 min. The supernatant was 

carefully removed and discarded and the pellet re-suspended in an appropriate volume 

of reducing electrophoresis sample buffer for loading. 

2.2.9 2D SDS- PAGE  

Two dimensional electrophoresis initially separates proteins based on their net charge 

using an electric field (isoelectric focusing), proteins with the highest pI, that is 

negatively charged, will migrate to the positive anode and proteins with low pI 
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(positively charged) will migrate to the negative cathode. Then SDS-PAGE 

electrophoresis separates these proteins based on their denatured molecular weight, 

higher molecular weight proteins will experience higher resistance in the gel so will 

migrate less distance than low molecular weight proteins.  

For 2D SDS-PAGE a Bio-Rad readyPrep 2D-starter kit and the Bio-Rad protean IEF 

Cell System were used following the manufacturer’s instructions. 

2.2.9.1 IPG Strip Re-hydration 

The required number of 7 cm ready IPG strips (pH 3-10) were removed from the -20 ºC 

freezer. 100 μl of isoelectric (IGF) buffer were pipetted into the required lanes of a 

disposable re-hydration tray and IPG strips (backing plastic removed) were gently 

placed, gel side down, onto the IGF buffer avoiding air bubbles to form. Then the tray 

was covered and left overnight at room temperature to allow strip re-hydration.. 

2.2.9.2 Sample preparation 

2-5 μg of purified 20S proteasome (in 50 mM HEPES, 5mM EGTA pH 8.0)  were 

incubated with 2mM MPP+ or DA in phosphate buffer saline (PBS; 137 mM NaCl, 2.68 

mM KCl, 8.1 mM Na2HPO4, 1.47 mM KH2PO4 pH 7.4)  for 2 h at 37º C prior to 

solubilisation in IGF buffer to cup loading samples onto the strips .  

2.2.9.3 Isoelectric focusing (IEF) 

IEF tray was cleaned with ethanol and then water prior to positioning damped electrode 

wicks over each electrode wire. Each IPG strip was transferred to the corresponding 

lanes of the focussing tray, gel side down and + end of the strips to the anode end of the 

tray, avoiding air bubbles underneath the strip. IPG strips were then covered with 

mineral oil and samples were cup-loaded under the cathode (-) end of each IPG strip. 

The tray was then placed in the protean IEF cell and focussing was run at 50 μΑ / strip 

at  20 ºC and linear ramping of 250 V/ 20 min (step 1) followed by linear ramping of 

4000 V/ 2 h (step 2) and linear ramping of 4000V /10000V-h (step 3, total process time 

5 h). After electrofocussing mineral oil was drained off, strips placed into a clean 

disposable tray and stored at -20 ºC until ready to run second dimension electrophoresis. 
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2.2.9.4 2D SDS-PAGE 

2.2.9.4.1 Preparation of resolving gel 

The Bio-Rad mini protean III apparatus was assembled according to the manufacturer´s 

guidelines (see section 2.2.8.1). For analysis of purified 20S proteasome subunits a 15 

% gel was prepared as detailed in Table 2.3 and Table 2.4. For each 26 ml gel mix, 260 

μl 10% (w/v) ammonium persulphate (APS) and 26 μl TEMED were used as 

polymerisation agents, added immediately before the gel was poured.  

 

REAGENT BUFFER A 

1.5 M Tris Buffer pH 8.8 26.65 ml  

0.1% (w/v) SDS  0.2 g 

30% (w/v)Glycerol  30 ml 

Millipore (distilled) water 140 ml 

 

Table  2.3. Preparation of 200 ml of Buffer A for 2D SDS-PAGE. Buffer was pH to 8.8 
with HCl and stored at 4 ºC. 

 

REAGENT 15 % GEL 

BUFFER A 10 ml 

40 %  (w/v) Acrylamide 9.8 ml 

10 % (w/v) SDS  200 μl 

Distilled water 6 ml 

Table  2.4. Preparation of 26 ml of resolving gel for 2D SDS-PAGE 

 



CHAPTER II- MATERIALS AND METHODS 

 

 57

2.2.9.4.2  IPG strip equilibration 

This step ensures that cysteines are reduced and alkylated to minimise vertical streaking 

in the second dimension. 

To reduce cysteine residues, 1 ml of equilibrium buffer I [6 M urea, 2 % (w/v) SDS, 

0.375 M Tris-HCl pH 8.8, 2 % (w/v) DTT and 20 % (v/v) glycerol] was added to each 

lane containing an IPG strip (gel side down) and samples placed on an orbital shaker for 

10 min. This procedure was repeated 3 times using fresh equilibration buffer I. Strips 

were then washed in 1 ml of equilibration buffer II [6M urea, 2 % (w/v) SDS, 0.375 M 

Tris-HCl pH 8.8 and 20 % (v/v) glycerol] to alkylate free residues. This procedure was 

repeated 3 times using fresh equilibration buffer II. 

Once resolving gels and strips were equilibrated, strips were removed from the 

disposable equilibration tray and dipped briefly into SDS-PAGE buffer [Tris 25 mM pH 

8.3, 192 mM glycine, 0.1 % (w/v) SDS] and laid, gel side up, onto the back plate of the 

resolving SDS-PAGE gel. Strips were overlaid with melted agarose and the gels 

submerged in SDS-PAGE running buffer. 20S subunits were separated at a constant 

current of 200 V. Separation was stopped as the dye front approached the bottom of the 

gel. 

2.2.9.5 Silver staining of the 2D SDS-PAGE (mass spectroscopy 

compatible) 

For this purpose the GE healthcare silver staining kit was used following the 

manufacturer´s instructions. All glassware used was previously washed with detergent, 

rinsed with distilled water and immersed in 5 % (v/v) nitric acid for a minimum of one 

hour. In brief, 2D gels were first fixed in 40 % (v/v) ethanol and 10 % (w/v) glacial 

acetic acid for 30 min, and then washed three times in millipore distilled water for 5 

min. Gels were sensitised in 30 %(v/v) ethanol, 0.2 % (w/v) sodium thiosulphate and 

0.83 M sodium acetate for 30 min and then washed with millipore distilled water once 

for 15 min prior to a second wash left overnight. The following day, silver reaction was 

conducted with 0.25 % (w/v) silver nitrate; no formaldehyde was added at this step to 

allow mass spectroscopy compatibility. Gels were rinsed twice in millipore distilled 

water for 1 min before developing the gels in 0.236 M sodium carbonate and 0.0148 % 

(w/v) formaldehyde for the required time. Development of the gels was stopped with 
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43.2 mM EDTA-Na2·2 H2O for 10 min. Gels were stored at 4oC in millipore distilled 

water. Pictures of the gels were taken on a Fujifilm FLA 5100 gel scanner. 

2.2.10 Western blotting and immunoprobing of proteins 

2.2.10.1 Western blotting 

Proteins separated by SDS-PAGE were transferred electrophoretically onto a 

nitrocellulose membrane by Western blotting using the Wet blotting (Bio-Rad Trans-

Blot electrophoretic) system method. Four pieces of filter paper and one piece of 

nitrocellulose were cut to the same size as the gel and pre-saturated with electroblotting 

buffer [48 mM Trizma base, 39 mM glycine, 20 % (v/v) methanol, 0.0375 % (w/v) 

SDS]. The gel was laid on the top of the sheet of nitrocellulose. This was sandwiched 

on each side with two pieces of filter paper and two fibre pads. Care was taken during 

this procedure to ensure no air pockets. The nitrocellulose sandwich was held in a 

plastic case submerged in electroblotting buffer in a tank. For overnight blotting 30 V 

were applied over 16 h at room temperature. The process could also be carried out in 1 h 

30 min at 100 V according to the manufacturer’s instructions. 

2.2.10.2 Immunoprobing 

2.2.10.2.1 Preparation of nitrocellulose for immunoprobing 

Protein transferred to nitrocellulose during the blotting process was stained with copper 

pthalocyanine 3,4’,4’’,4’’’ tetrasulphonic acid tetrasodium salt (0.05 % (w/v) in 12 mM 

HCl) to ensure adequate transfer and to allow for imaging (Fujifilm intelligent dark 

box). The nitrocellulose was then cut as required for immunoprobing and de-stained in 

12 mM NaOH and washed in distilled water. 

2.2.10.2.2 Blocking of non-specific antibody binding and immunoprobing 

with primary and secondary antibodies 

Non–specific antibody binding was prevented by blocking of nitrocellulose for 1 h in    

3 % (w/v) marvel milk / Tris saline buffer (50 mM Trizma base, 200 mM NaCl, pH 7.4; 

TBS) with gentle shaking. Nitrocellulose sections were incubated with primary antibody 

diluted in blocking agent overnight at 4 oC with gentle shaking. Information regarding 

the epitope specificity and required dilutions of primary monoclonal antibodies used are 
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detailed in Table 2.5. Unbound primary antibody was removed by washing with TBS / 

0.1 % (v/v) Tween 20 for 6 x 10 min washes with vigorous shaking. Nitrocellulose 

sections were incubated with an alkaline phosphatase or horseradish peroxidase (HRP) 

conjugated secondary antibody diluted 1:1000 in 3 % Marvel/TBS to allow 

development via colorimetric or enhanced chemiluminescence methods respectively 

(see sections 2.2.10.3 and 2.2.10.4). Secondary antibodies were incubated for 2 h at 

room temperature with gentle shaking. Unbound antibody was again washed with TBS / 

0.1 % (v/v) Tween 20 for 6 x 10 min. 
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Antibody Epitope specificity 
Working dilution 

(Western Blotting) 

Working dilution 

(Immunocytochemistry) 

N52 

(mAb) 

Anti-NF-H /NF-M 

(phosphorylation independent) 
1:500 - 1:1000 1:200 

SMI 31 

(mAb) 

Anti-NF-H /NF-M 

(phosphorylation dependent) 
1:1000 1:500 

Total ERK  

(pAb) 
Anti- total ERK 1/2 1:500 - 1:1000 N/A 

PW8890 

(pAb) 
Proteasomal β4 1:1000 1:1000 

PW8895 

(pAb) 
Proteasomal β5 1:1000 1:1000 

PW8155 

(pAb) 

Proteasomal “core subunits” 

(α5/α7/β1, β5,β5i,β7) 
1:1000 1:1000 

PW900 

(pAb) 
Proteasomal β6 1:1000 1:1000 

PW8145 

(mAb) 
Proteasomal β2 1:1000 1:1000 

PW8195 

(mAb) 

Proteasomal α subunits 

(α1, 2, 3, 5, 6 and 7) 
1:1000 1:1000 

Table  2.5. Epitope specificity and working dilutions required for primary antibodies 
for Western blotting and immunocytochemistry techniques. pAb= polyclonal 
antibody; mAb= monoclonal antibody. 
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2.2.10.3  Alkaline phosphatase development system 

Blots were washed for 5 min in distilled water then equilibrated for a further 5 min in 

substrate buffer (0.75 M Tris pH 9.5). Antibody reactivity was developed in the dark by 

addition of  alkaline phosphatase substrate solution [20 ml substrate buffer; 44 μl NTB 

(75 mg/ ml in 70% (v/v) DMF); 33 μl BCIP (50 mg/ ml)] prepared immediately prior to 

use. The reaction was allowed to proceed until bands appeared. To stop the reaction the 

substrate was poured off and the nitrocellulose rinsed with distilled water. 

Nitrocellulose was dried between sheets of filter paper for further analyses and storage. 

2.2.10.4  Enhanced Chemiluminescence (ECL) development system 

ECL was performed using a kit from Amersham Pharmacia Biotech UK Ltd., according 

to manufacturer’s instructions. In brief, equal volumes of solution A and solution B 

were mixed to a final volume of 1ml / 9 x 6 cm2 nitrocellulose then immediately 

incubated with the nitrocellulose for 1 min. 

ECL substrate was drained and the nitrocellulose was placed protein-side down onto 

SaranWrap and sealed. Care was taken to avoid trapping air pockets. The nitrocellulose 

was placed protein-side up into a film cassette and held in place with masking tape prior 

to overlaying with photographic film. Film was exposed to nitrocellulose in the dark for 

the required time, dependent on the primary antibody used and then removed from the 

cassette and placed immediately into developing solution (diluted 1:5 in water) for 1 

min. Exposed film was then rinsed in water and transferred to fixing solution (diluted 

1:5 in water) for a further minute. The film was washed again and then allowed to dry at 

room temperature. 

When ECL was performed using a Fujifilm Intelligent dark box system, the process was 

similar except for the fact that no film was required. Instead, after one minute 

incubation of the nitrocellulose with the kit solution, the nitrocellulose was placed 

directly into the dark box and chemiluminescence revealed digitally following the 

manufacturer’s instructions.  

 



CHAPTER II- MATERIALS AND METHODS 

 

 62

2.2.10.5  Stripping and re-probing membranes 

In most cases, primary and secondary antibodies could be completely removed from 

membranes and re-probed several times. Nitrocellulose membranes were submerged in 

stripping buffer [SDS 100 mM, 2-mercaptoethanol, 2 % (w/v), 6.25 mM Tris-HCl pH 

6.7] and incubated at 50 oC for 30 min with occasional agitation. The membrane was 

washed 3 x 10 min in TBS/0.1 % (v /v) Tween-20, then blocked and re-probed as 

detailed in section 2.2.10.2. 

2.2.10.6  Quantification of Western blots 

To allow for quantitative comparison of protein band intensity following Western 

blotting and immunoprobing, a process of band quantification was performed using the 

Aida Image Analyser v.4.03, according to the manufacturer’s guidelines. In brief pixel 

intensity of equal sized areas around bands were obtained and quantified based on the 

number of pixels in each area multiplied by the grey shade value of each pixel.  

2.2.11 Detection of reactive oxygen species by confocal microscopy 

Cells were seeded in Nunc Lab-Tech CC chamber slides at 10,000 cells per well and 

allow to attach and grow. On addition of treatments cells were left incubating at 37 oC 

for the required time. Medium was then carefully removed and 100 μM 2,7-

dichlorodihydrofluorescein diacetate (DCDHF) in DMEM loaded onto cells for 50 min. 

The dye was removed and cells washed with Hanks buffered salt solution (HBSS; 140 

mM NaCl, 5 mM KCl, 1.2 mM CaCl2, 20 mM HEPES pH 7.4, 5 mM NaHCO3, 5.5 mM 

glucose) prior to immunocytochemical analyses. 

2.2.12 Immunocytochemical analysis of proteins 

SH-SY5Y cells were seeded in 300 μl growth media into an eight well permanox 

chamber slide at a density of 10,000 cells/well. After overnight recovery, treatments 

were added and cells incubated for the required time.  

With care, medium was removed, cells washed three times in DMEM to remove serum 

and fixed in 200 μl ice-cold 90 % methanol / TBS at -20 ºC for 10 min. Methanol was 

removed and cells were washed three times with TBS. Cells were further permeabilised 
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in 200 μl Triton X- 100 / TBS for 10 min at room temperature and washed in TBS as 

before prior to immunoprobing them. 

Non-specific antibody binding was prevented by blocking with 3 % (w/v) bovine serum 

albumin in TBS (BSA/TBS) for 1h at room temperature with gentle shaking. Cells were 

incubated with primary antibody diluted in BSA/TBS overnight at 4 oC. Cells were 

washed with TBS for 3 x 5 min then incubated with Fluorescein Isothiocyanate (FITC) 

conjugated secondary antibody diluted 1:50 for 2h at room temperature in the dark. 

Excess secondary antibody was removed by 3 x 5 min washed in TBS in the dark. 

Slides were carefully air-dried. Vectasheld preservative solution ± propidinium iodide 

was applied to the slide before a cover slip was placed over the cells and sealed into 

place. The slide was then stored at -20 oC in the dark to prevent bleaching of 

fluorescence signal prior to viewing by confocal laser microscopy. 

2.2.13 Statistical analysis 

Data were presented as ± the standard error of the mean (SEM) at a 95 % confidence 

limit. Statistical analysis was performed using a two-tailed, homoscedastic, Student’s t-

test. Statistical significance was accepted at p < 0.05 (*) or 0.01 (**). 
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3. EFFECT OF PD MIMETICS ON PROTEASOMAL ACTIVITY IN 

SH-SY5Y CELLS  

3.1 INTRODUCTION 

3.1.1 UPS involvement in PD pathogenesis 

As further detailed in the general introduction, mammalian cells appear to possess two 

major pathways for general protein degradation, lysosomal proteases and the 

proteasome complex. The latter is a component of the UPS, which plays an essential 

role in the degradation and clearance of short-lived, mutant, misfolded or damaged 

proteins in eukaryotes and ultimately in the regulation of crucial processes such as the 

cell cycle, transcription, antigen processing and signal transduction (Goldberg et al 

1995; Ding and Keller, 2001).  

The presence of missfolded and aggregated proteins and ubiquitin-positive inclusions 

within the specific brain region affected in many neurodegenerative diseases, including 

PD, suggest that the UPS might be crucial in their pathogenesis (reviewed by McNaught 

and Olanow, 2006). So far, of all neurodegenerative disorders, PD is most directly 

associated with UPS dysfunction (discussed by Ardley et al, 2005). As introduced in 

section 1.1.2.5 this is supported by the finding that proteasomal activity is decreased in 

SNpc from PD patients event which may contribute to neurodegeneration of 

dopaminergic neurons and LB formation in sporadic PD (Mc Naught et al., 2001, 2002; 

Mc Naught and Jenner 2001), and the discovery of some rare mutations in genes coding 

for components and substrates of the UPS which give rise to familial forms of PD 

(Huang et al., 2004; Betarbet et al., 2005; further detailed in section 1.1.2.4).  

Accumulation of aberrant proteins can occur when the cell proteolytic systems of the 

cell (e.g. UPS) are impaired or when the amount of these proteins exceeds the cell’s 

capacity (reviewed by Betarbet et al., 2005). Indeed, oxidatively damaged proteins 

(mostly ubiquitin-conjugated) have been reported to accumulate with age and age 

related diseases like PD. Moreover, proteasome activity has been shown to be decreased 

with age (Carrad et al., 2002). On the other hand, aggregated proteins have been found 

to bind to the 20S proteasome leading to its irreversible inhibition (Bence et al., 2001; 

Davies, 2001).  Interestingly, certain proteins are more prone to aggregation; this is the 
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case for α-synuclein (reviewed by Maries et al., 2003). In fact, oxidative damage can 

enhance α-synuclein’s ability to misfold and aggregate (Giasson et al., 2000). Although 

controvertial, α-synuclein is thought to be a substrate for the proteasome. Indeed, 

proteasome inhibition can lead to accumulation of α-synuclein in several in vitro 

models (reviewed by Betarbet et al., 2005). Miwa et al. (2005) showed that proteasome 

inhibition in the nerve terminals of nigrostriatal DA neurons in the SNpc led to neuronal 

degeneration and the formation intracytoplasmic inclusions rich in α-synuclein. 

Interestingly, synphilin-1 one of α-synuclein’s binding partners has been reported to 

undergo proteasomal degradation and cells over-expressing synphilin-1 are more 

susceptible to proteasomal dysfunction (Lee et al., 2002). Moreover, futher supporting a 

key role of the UPS in PD pathogenesis, proteasome inhibition has been shown to cause 

selective loss of dopaminergic neurons in both an in vivo and in vitro rat model (Fornai 

et al., 2003).  

Besides UPS impairment, mitochondrial complex I inhibition is also repeatedly 

implicated in the pathogenesis of the disease (reviewed by Abou-Sleiman et al., 2006). 

Indeed, there is increasing evidence that these two events interact with each other in the 

complex multifactorial cascade of deleterious processes underlying PD pathology (Duke 

et al., 2006).  

3.1.2 Proteasomal impairment in PD cellular models 

Several studies link mitochondrial impairment with the UPS in PD since toxins which 

can inhibit mitochondrial complex I activity can lead to proteasome impairment. For 

instance, exposure of rat primary mesencephalic cultures to rotenone and MPP+ for 6 h, 

has been reported to reduce proteasome activity via ATP depletion and not via ROS 

production (Höglinger et al., 2003). Shamoto-Nagai et al. (2003) reported that rotenone 

impaired proteasomal activity, in SH-SY5Y human cells after 72 h, however through 

oxidative modification of the proteasome itself. Very recently, a number of related reports 

have been published. Rotenone-infused rats were shown to exhibit selective loss of the 

nigrastriatal pathway with proteasomal activities reduced in ventral midbrain region of 

rats with lesions, whilst proteasomal activities were increased in rats without lesions 

(Betarbet et al. 2006). The same authors also report rotenone treated SK-N-MC 

neuroblastoma cells exhibit increased proteasomal activity prior to a reduction in 

activities over a 4 week period. Using the same cell line, Wang et al., (2006) studied the 
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effect of 6 pesticides, including rotenone, ziram or dieldrin on the 26S proteasome 

activity using a 26S proteasome reporter system. They showed that some of these 

pesticides inhibited proteasomal activity at low concentrations with rotenone also 

inducing oxidative stress.  

3.1.3 SH-SY5Y human neuroblastoma cell line 

Animal models are useful tools for revealing links between symptoms and pathological 

defects that result following exposure to neurotoxins such as MPTP/ MPP+ or rotenone. 

However, their application is limited for a number of reasons, including ethical 

concerns, species differences and complex cellular interactions occurring at organ and 

tissue level. On the other hand, in vitro cell models allow the investigation of sub-

cellular biochemical processes with a tighter control of the environmental conditions of 

a specific cell type. Employment of a neuroblastoma human cell line may allow 

development of a model with analogy to dopaminergic neurons in vivo. Thus a study of 

the effects of neurotoxins on cultures of human neuroblastoma cells may allow a more 

detailed analysis of changes in the UPS.  

The SH-SY5Y cell line is the third cloned sub-line from a parent neuroblastoma cell 

line SK-N-SH. SK-N-SH was established in 1970 from the mestastatic bone tumour of a 

young female (Biedler et al., 1973). SH-SY5Y human neuroblastoma cells are a useful 

in vitro model for the study of MPTP neurotoxicity since this cell line contains the 

necessary components for the synthesis, metabolism and transport of DA. Furthermore, 

SH-SY5Y cells predominantly express MAO-A and only low levels of MAO-B 

(Fitzgerald et al., unpublished) and contain the DA uptake system (Song and Ehrich, 

1998; Storch et al. 2000). The uptake of DA and MPP+ by this cell line is a dose and 

time dependent process (Song and Ehrich, 1997; Song and Ehrich, 1998). 

3.1.4 Aims of chapter 

At the time this study started, little information was available about the mechanisms by 

which decreased proteasomal function occurred in SNpc of PD patients, or whether 

toxins linked to mitochondrial dysfunction such as MPTP and its active metabolite 

MPP+ could impair the UPS. 

The aim of this chapter is to determine whether treatment of SH-SY5Y human 

neuroblastoma cells with the neurotoxins MPP+ and DA leads to an alteration in 
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extracted proteasome activity. Although it is fully recognised that DA is primarily a 

neurotransmitter, since treatment with DA leads to cell damage, for convenience I will 

refer to both MPP+ and DA as (neuro)toxins. The toxins chosen for this study are of 

relevance for PD since MPP+ inhibits mitochondrial complex I and is the active 

metabolite of MPTP, a neurotoxin commonly used in PD models; DA relevance resides 

in the fact that DA-containing neurons are selectively lost in PD and DA metabolism 

generates a vast amount of oxidative stress which may make neurons within SNpc more 

prone to damage. All three proteasomal activities (CLA, the focus of most previous 

work, TLA and PLA) were studied. 

Moreover, the concomitant effects of the neurotoxins on ATP, glutathione levels, and 

cell viability are also monitored because these parameters are known to influence the 

UPS and are relevant for PD. In order to mimic the situation in vivo (see introduction 

section 1.1.2), glutathione levels were also reduced using L- buthionine-[S,R]-

sulfoximine (BSO), an specific inhibitor of γ-glutamylcysteine synthetase, the rate 

limiting enzyme in GSH biosynthesis (Stokes  et al., 2000). Thus, analysis of the 

possible implications of oxidative stress in the mechanisms underlying toxin-induced 

proteasomal impairment in our cell system were performed by (a) the use of a precursor 

for the synthesis of the antioxidant glutathione, N-acetyl-cysteine (NAC; also a mild 

antioxidant on its own right), and (b) further stressing the toxin-treated cells by 

depleting glutathione levels with BSO.  

Finally, since PD is a chronic disorder, the effects of 3 and 7 weeks treatments with low 

levels of toxins on proteasomal activity were also monitored.  
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3.2 RESULTS 

3.2.1 Characterisation of a proteasome activity assay for SH-SY5Y 

cells 

3.2.1.1 Effect of protein content 

The fluorogenic peptide assay for proteasomal activity (described in the methods 

section 2.2.6.1) had not been used before for SH-SY5Y cell extracts in my laboratory. 

Therefore, a preliminary study was performed to determine the amount of protein (and 

thus cell number) to give a representative activity rates.  

SH-SY5Y cells were plated out in 6-well plates at different densities (i.e 250,000, 

300,000, 400,000 and 500,000 cells per well), left incubating overnight  and extracted 

into 250 μl of homogenisation buffer as described in section 2.2.4.2.  A fluorogenic 

peptide assay for CLA was performed as described in section 2.2.6.1.  

With 300,000 - 500,000 cells/well activity rates/μg protein were similar, irrespective of 

whether 25 μl or 100 μl sample were used (Table  3.1); using 250,000 cells/ well, rates 

were lower. Based on these results a cell density of 400,000-500,000 cells/ well and 100 

μl of assay volume (corresponding to 24-33 μg protein/well) were chosen as suitable for 

use in the assay. 
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 25μl 100μl 

CELL DENSITY ΔFU/s ΔFU/s/ μg SEM ΔFU/s ΔFU/s/ μg SEM 

250,000 0.0272 0.0063 0.0098 0.1282 0.0116 0.0039 

300,000 0.0818 0.0193 0.0275 0.2694 0.0238 0.0173 

400,000 0.1358 0.0227 0.0089 0.5669 0.0236 0.0304 

500,000 0.1814 0.0217 0.0112 0.7156 0.0213 0.0212 

 

 

 

 

 

 

 

Table  3.1. Effect of cell density and sample volume on fluorogenic peptide assay for 
chymotrypsin-like activity (CLA). Cells were plated out in 6 well plates at different 
densities (ie. 250,000, 300,000, 400,000 and 500,000) and CLA of cell extracts 
monitored as detailed on section 2.2.6.1. Two different volumes of the 
samples, 25 and 100 μl were tested in order to determine the optimal parameters of the 
assay. Results are presented as ΔFU/s and ΔFU/s/μg ± SEM. Data are from a 
representative experiment with assays replicated three times. 
                             

3.2.1.2 Relative proteasomal activities in SH-SY5Y cells 

The fluorogenic substrates used for measuring the three proteasomal activities chosen in 

our laboratory were Suc-LLVY-AMC, Boc-LLR-AMC and ZLLE-AMC for CLA, TLA 

and PLA respectively. 

Table  3.2 illustrates apparent fluorescence rate values for CLA, TLA and PLA; results 

indicate that TLA is greatest, followed by CLA and finally PLA in our cell line.  

 

ΔFU/s/μg SEM
CLA 0.0289 0.0068

TLA 0.2446 0.0204

PLA 0.0165 0.0012  

Table  3.2.  Relative apparent proteasomal activities from SH-SY5Y cells. Cells were 
grown in 6-well plates and after overnight recovery and extracted in 250 μl 
homogenisation buffer (section 2.2.4.2). Then cell extracts were incubated with Suc-
LLVY-AMC, Boc-LLR-AMC and ZLLE-AMC to monitor CLA, TLA and PLA 
respectively in a fluorogenic peptide assay (section 2.2.6.1). Results are presented as 
ΔFU/s ± SEM (n=3).  
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3.2.1.3 Specificity of the different fluorogenic substrates for proteasomal 

activity 

To determine the specificity of the three substrates towards proteasomal activity, an 

irreversible proteasome inhibitor (lactacystin) and a calpain inhibitor (MDL 28,170) 

were used in the fluorogenic peptide assay as described before. 

Final concentrations of 1 μM and 10 μM lactacystin and 0.1 μM and 1 μM of MDL 

28,170 were added to control cell extracts and proteasomal activities were measured. 

Both inhibitors were also tested on purified 20S proteasome and calpain enzyme; 

calpain activity was measured as detailed in section 2.2.6.2. 

Table 3.3 shows the inhibitory effects of lactacystin and MDL 28,170. Lactacystin 

inhibited CLA of purified 20S proteasome in a dose dependent manner; with 0.1, 1 and 

10 μM lactacystin, inhibiting the enzyme by 40 %, 78 % and 95 % respectively. With 

10 μM lactacystin, TLA of 20S samples was partally inhibited (70% inhibition cf. 

controls) but PLA was unaffected. In cell extracts, lactacystin inhibited CLA in a dose 

dependent manner; however, none of the other proteasomal activities were inhibited by 

lactacystin. Finally, 1 and 10 μM lactacystin also inhibited calpain, altought to a lesser 

extent than MDL 28,170 (25 % and 40 %, respectively). The assay was performed with 

0.36 μg/μl of calpain, concentration which was found to give consistent activity rates in 

the fluorogenic assay.  

On the other hand, calpain was inhibited by 51 % with 0.1 μM MDL 28,170, whilst 

higher doses of the inhibitor (1 and 10 μM) virtually abolished the activity. MDL 

28,170 also inhibited CLA and TLA from purified 20S proteasome by 25 % and 58 % 

respectively when used at 10 μM, but had no effect on PLA. In cell extracts, MDL 

28,170 did not inhibit CLA or PLA; however TLA was inhibited by 67 % with 1 μM 

MDL 28,170.  
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 % Inhibition 

SAMPLE Inhibitor Concentration (μM) CLA TLA PLA 

0.1 40 * 0 0 

1.0 78 ** 0 0 Lactacystin 

10.0 95** 72 * 0 

0.1 0 0 0 

1.0 0 0 0 

20S 

MDL 28,170 

10.0 25 ** 58** 0 

1.0 70 ** 0 0 
Lactacystin 

10.0 94  ** 0 0 

1.0 0 0 0 
Extracts 

MDL 28,170 
10.0 0 67 ** 0 

 Concentration (μM) Calpain 

0.1 0 

1.0 25 ** Lactacystin 

10.0 39 ** 

0.1 51 ** 

1.0 99 ** 

Calpain 

MDL 28,170 

10.0 98 ** 
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Table  3.3. Inhibitory effects of lactacystin and MDL 28,170 on 20S proteasome, SH-
SY5Y cell extracts and calpain enzyme. Cell extracts (20-25 μg), 0.05 μg of 20S 
protease or 0.036 μg of calpain were utilised in a fluorogenic petide assay as described 
in sections 2.2.6.1 and 2.2.6.2. Lactacystin or MDL 28,170 (0.1, 1 and 10 mM) were 
directly added to the assay to assess specificity of the substrates and inhibitors. Results 
were calculated as ΔFU/s/μg and converted to % activity cf. controls. Statistical 
analysis was carried out using a two-tailed t-test. Data are from a representative 
experiment with assays replicated three times. The experiment was repeated 3 times. 
Statistical significance was accepted when *= p<0.05 or ** = p< 0.01 in comparison to 
untreated control. 
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Although lactacystin is a widely used and fairly specific proteasome inhibitor, it did not 

inhibit PLA activity in cell extracts or purified 20S whilst TLA was only inhibited at the 

highest concentration used (ie. 10 μM). Thus, a different proteasome inhibitor, 

epoxomicin, was utilised to investigate the specificity of the TLA substrate in particular 

for measuring (TLA) proteasomal activity. The specificity of epoxomicin was also 

determined by using commercial calpain. 

Figure 3.1 shows that 1, 10 and 20 μM epoxomicin all inhibited TLA in purified 20S 

proteasomes by 65 % (panel A; similar to lactacystin) and TLA in cell extracts by 25 % 

(panel B). Since the effect of epoxomicin was not dose dependent, a 10 μM dose was 

used in subsequent experiments with cell extracts. 

Finally, the effect of 10 μM epoxomicin on CLA and PLA (in addition to TLA) from 

SH-SY5Y cell extracts was investigated in order to correlate TLA data shown in figure 

3.1 with the other two proteasomal activities. Figure  3.2 shows CLA was particularly 

sensitive to epoxomicin. As before, TLA was only partly inhibited by epoxomicin        

(~ 30 %) but PLA was inhibited by 74 % in comparison to controls. 
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Figure  3.1. Inhibitory effect of epoxomicin on TLA from SH-SY5Y cells, 20S 
proteasome or calpain activity. Cells extracts (20-25 μg), purified 20S proteasome 
(0.05 μg) or calpain-2 (0.036 μg) were utilised in a fluorogenic peptide assay as 
detailed in sections 2.2.6.1 and 2.2.6.2 respectively. 1, 10 and 20 μM epoxomicin were 
directly added to control cell extracts, purified 20S proteasome or calpain-2 to assess 
the specificity of the substrates utilised in the assay towards TLA. Specificity of 
epoxomicin towards proteasome was also assessed by testing the effect of this inhibitor 
on calpain enzyme. Results were calculated as ΔFU/s/μg ± SEM and then converted in 
mean % in comparison to control samples. The data are from a representative 
experiment with assays replicated three times. Statistical analysis was carried out using 
a two-tailed t-test. Statistical significance was accepted when *= p<0.05 cf. control. 
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Figure  3.2. Inhibitory effect of 10 μM epoxomicin on CLA, TLA and PLA from SH-
SY5Y cells. Cells extracts were utilised in a fluorogenic peptide assay as detailed in 
section 2.2.6.1. Epoxomicin (10 μM) was directly added to control cell extracts to 
assess the specificity of the substrates utilised in the assay and epoxomicin towards 
proteasome activity. Results were calculated as ΔFU/s/μg ± SEM and then converted in 
mean % in comparison to control samples. The data are from a representative 
experiment with assays replicated three times. Statistical analysis was carried out using 
a   two-tailed   t-test.  Statistical   significance   was   accepted   when * = p<0.05 or ** 
= p<0.01 of control. 
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3.2.2 Effect of MPP+ and DA on proteasomal activity 

3.2.2.1 Assessment of cell viability after exposure to toxins 

Before studying the effect of toxins on proteasomal activity, concentrations of the toxins 

that were highly and mildly cytotoxic to mitotic SH-SY5Y cells over a 72-h period were 

established using a MTT reduction assay (see section 2.2.2). This assay is dependent on 

cell integrity and viability and is, more specifically, a measure of metabolic activity. 

Figure  3.3 shows that MPP+ and DA reduced cell viability in a dose dependent manner. 

MPP+ (100 μM) did not reduce cell viability until 48 h (29 % reduction ca. control 

samples) and, similarly, cell viability was reduced by 30 % at 72 h. Increasing MPP+ to 

2 mM reduced cell viability by 51 %, 53 % and 63 % after 24, 48 and 72 h, respectively. 

DA at 100 μM did not affect cell viability until 72 h, whilst 500 μM concentration of 

the latter toxin led to a 64 %, 70 % and 73 % decrease in cell viability after 24, 48 and 

72 h respectively (ca. control samples), similar to 2 mM MPP+. 2 mM DA reduced cell 

viability by 35 %, 30 % and 15 % in comparison to controls after 24, 48 and 72 h 

respectively. Therefore, high doses of DA appears more damaging to the cells than 

MPP+. 

Finally, BSO toxicity was also assessed. Although, 2mM BSO lead to a 90% reduction 

in glutathione levels as early as 24 h (see Figure 3.3), cell viability was not affected over   

72 h. 

In subsequent experiments, 100 μM MPP+ and DA were selected for use in SH-SY5Y 

cells as a mildly toxic dose (~20-30 % reduction in cell viability after 72 h) and 2 mM 

MPP+ and 500 μM DA as a highly toxic dose (~60- 70 % cell viability reduction ca. 

controls).  

 

 

 

 

 



CHAPTER III- EFFECT OF PD MIMETICS ON PROTEASOMAL ACTIVITY 

 

 78

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

MPP+ 100 uM MPP+ 2 mM DA 100 uM DA 500 uM DA 2 mM BSO 2mM

%
 c

el
l v

ia
bi

lit
y 

ca
. c

on
tro

ls

 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

MPP+ 100 uM MPP+ 2 mM DA 100 uM DA 500 uM DA 2 mM BSO 2mM

%
 c

el
l v

ia
bi

lit
y 

ca
. c

on
tr

ol
s

 

24 h 

48 h 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

MPP+ 100 uM MPP+ 2 mM DA 100 uM DA 500 uM DA 2 mM BSO 2mM

%
 c

el
l v

ia
bi

lit
y 

ca
. c

on
tr

ol
s

 

Figure  3.3. Assessment of cell viability in SH-SY5Y cells after MPP+, DA and BSO 
exposure over time. Cells were seeded in 96 well plates at a density of 10000 cells/ 
well. After 24h medium was exchanged for fresh growth medium supplemented with/ 
without 100 μM and 2 mM MPP+, DA 100 μM and 500 μM and BSO 2 mM and 
incubated for 24, 48 and 72 h prior to MTT reduction assay (section 2.2.2). Data are 
from three independent experiments. Statistical significance was assessed vs. control 
mitotic cells using a two-tailed t-test where *= p< 0.05 and **= p< 0.01.  
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3.2.2.2 Effect of MPP+ and DA on proteasomal activities 

The effects of a 72 h exposure to mildly and highly toxic doses of MPP+ and DA on the 

three proteasomal activities were initially studied. In order to assess the true 

contribution of proteasomal activity to each value, the effects of 10 μM lactacystin and 

10 μM epoxomicin were also monitored (concentrations chosen in section  3.2.1.3). 

Table 3.6 shows that 100 μM of MPP+ or DA did not affect CLA or PLA after 72h. 

Higher doses of MPP+ (2 mM) reduced CLA and PLA to 20.2 % and 10.2 % of 

controls, respectively. On the other hand 500 μM DA also reduced CLA and PLA, but 

to a lesser extent, than MPP+ (by 44.4 % and 51 %, respectively). Interestingly, neither 

toxins reduced TLA at any concentration tested; indeed, 100 μM MPP+significantly 

increased this activity by 62.7 % in comparison to control. However, this increase in 

activity or the lack of effect of the toxins on TLA could be due to the unspecific nature 

of the TLA substrate towards proteasomal activity (see section 3.2.1.3).  

This was confirmed by using the proteasome inhibitors lactacystin and epoxomicin on 

control and toxin-treated cells. Results show that whilst lactacystin did not inhibit TLA 

in treated cells, epoxomicin similarly reduced TLA in control and toxin-treated cells (by 

25-30 % of controls); thus proteasomal TLA in the cell extracts accounts only 25-30 % 

of the total activity rates obtained. On the other hand, for CLA and PLA the assay is 

truly measuring proteasomal activity since epoxomicin virtually abolish CLA (also 

lactacystin) and inhibited PLA by around 90 % in most cases (except with 2 mM MPP+ 

where inhibition was 68 %). Thus, toxins are reducing CLA and PLA.  
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Activity Treatment ΔFU/s/μg SEM 
% Activity 

ca. control 

% Activity with 

lactacystin 10μM 

% Activity with 

epoxomicin 10μM 

Control 0.0289 0.0041 100.0 3.3 * 1.1 * 

MPP+ 100 μM 0.0238 0.0024 82.5 6.0 *  0.0  ** 

MPP+ 2 mM 0.0058 0.0034 20.2 * 0.0 *  0.0 ** 

DA 100 μM 0.0302 0.0072 104.5 27.3 ** 0.0 * 

CLA 

DA 500 μM 0.0160 0.0060 55.6 * 8.2 **  0.0 ** 

Control 0.245 0.0077 100.0 78.9  74.6 * 

MPP+ 100 μM 0.398 0.0116 162.7 ** 90.0  68.7 * 

MPP+ 2 mM 0.212 0.0155 86.9 70.5  72.6 * 

DA 100 μM 0.274 0.0118 112.2 100.0  77.1 * 

TLA 

DA 500 μM 0.283 0.0168 115.8 93.1  67.8 ** 

Control 0.0165 0.0008 100.0 76.2 12.8 * 

MPP+ 100 μM 0.0162 0.0009 98.6 83.0 10.7 * 

MPP+ 2 mM 0.0017 0.0018 10.2 ** 100.0 36.6 * 

DA 100 μM 0.0165 0.0017 100.3 80.0 8.9 * 

PLA 

DA 500 μM 0.0079 0.0009 48.2 ** 100.0 0.0 ** 
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Table  3.4. Effect of MPP+ and DA on proteasomal activities from SH-SY5Y cells after 
72h exposure. Cells were grown in 6-well plates and after overnight recovery; cells 
were treated with MPP+ and DA. After 72h incubation cells were extracted in 250 μl 
homogenisation buffer and cell extracts were incubated with Suc-LLVY-AMC, Boc-
LLR-AMC and ZLLE-AMC to monitor CLA, TLA and PLA respectively in a fluorogenic 
peptide assay (section 2.2.6.1). 10 μM lactacystin or epoxomicin (final concentrations) 
were directly added to the extracts in the assay in order to assess substrate specificity 
for proteasomal activity. Results are presented as ΔFU/s ± SEM and then converted in 
mean % in comparison to control samples. The data are from a representative 
experiment with assays replicated three times. Statistical analysis was carried out using 
a two-tailed t-test. Statistical significance was accepted when *= p<0.05 or ** = p< 
0.01 cf. control.  
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Since only 25-30 % of the total activity measured by the TLA substrate in SH-SY5Y 

cell lysates is proteasomal TLA in all samples tested, the effects of the toxins on 

proteasomal TLA were calculated by correcting each activity rate using the % inhibition 

of activity obtained with epoxomicin (Table 3.4).  

Table  3.5 shows that neither toxin reduced TLA activity; indeed a significant activation 

of the latter activity occured with 100 μM MPP+ and 500 μM DA. 

 

Treatment 
“Uncorrected TLA” 

(AFU/s/μg ±SEM) 

% Inhibition 

with 

epoxomicin 

“Corrected TLA” 

(AFU/s/μg ± SEM) 
% control 

Control 0.245 ± 0.008 25.4 * 0.062 ± 0.002 100 

MPP+ 100 μM 0.398 ± 0.012 31.3 * 0.120 ± 0.003     194 ** 

MPP+ 2 mM 0.212 ± 0.015 27.4 * 0.058 ± 0.004 93.5 

DA 100 μM 0.274 ± 0.012 22.9 * 0.061 ± 0.003 99.3 

DA 500 μM 0.283 ± 0.017 32.2 ** 0.088 ± 0.005     142.5 * 

 

Table  3.5. Effect of MPP+ and DA cells on proteasomal TLA from SH-SY5Y cells 
after 72 h exposure. Cells were grown in 6-well plates and after overnight recovery; 
cells were treated with MPP+ and DA. After 72h incubation cells were extracted in 250 
μl homogenisation buffer and cell extracts were incubated with Boc-LLR-AMC to 
monitor TLA in a fluorogenic peptide assay (section 2.2.6.1). Epoxomicin (10 μM final 
concentration) was directly added to the extracts in the assay in order to assess 
substrate specificity for proteasomal activity. Total activity rates were corrected against 
the % inhibition of TLA with epoxomicin and then converted into mean % in 
comparison to control samples. Statistical analysis was carried out using a two-tailed t-
test. Statistical significance was accepted when *= p<0.05 or ** = p< 0.01 cf. control 
(n=3).  
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3.2.3 Direct effect of MPP+ and DA on SH-SY5Y cell extracts 

To determine whether toxins can directly impair proteasome function, control cell 

extracts were incubated with a range of MPP+ and DA concentrations (0.1-20 mM) 

during the assay. 

Figure 3.5 shows that toxins at 100 μM did not reduce CLA in cell extracts; however, 2 

mM MPP+ and DA significantly reduced CLA to 87.0 % of controls. Whilst 20 mM DA 

had a similar effect to 2 mM DA,   20 mM MPP+ reduced CLA by a much greater extent 

(to 16 % of controls) than 2 mM MPP+. 
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Figure  3.4. Direct effect of MPP+ and DA on 20 S proteasomal activity of SH-SY5Y 
cell extracts. Cells were grown in 6-well plates and after overnight recovery, extracted 
in 250 μl homogenisation buffer. Cell extracts were incubated with Suc-LLVY-AMC to 
monitor CLA in a fluorogenic peptide assay (section 2.2.6.1). 100 μM, 2 and 20 mM 
MPP+ and DA (final concentrations) were directly added to the extracts in the assay in 
order to assess direct effect of the toxins on CLA activity. Results were calculated as 
ΔFU/s/μg ± SEM and then converted in mean % in comparison to control samples. The 
data are from a representative experiment with assays replicated three times. Statistical 
analysis was carried out using a two-tailed t-test. Statistical significance was accepted 
when *= p<0.05 or ** = p< 0.01 cf. control.  
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3.2.4 Effect of MPP+ and DA on CLA, ATP and glutathione levels of 

SH-SY5Y cells. 

CLA is the most well characterised proteasomal activity and its substrate is very 

specific (see section  3.2.1.3) since 10 μM lactacystin and epoxomicin virtually 

abolished its activity in both cell extracts and pure 20S proteasome. Therefore, future 

studies will focus on CLA. The next aim was to assess whether the reduction in CLA in 

response to MPP+ and DA treatment was associated with changes in ATP and 

glutathione levels.  

ATP and glutathione levels from SH-SY5Y cells were determined by enzymatic 

methods detailed in sections 2.2.3 and 2.2.7, respectively. Control SH-SY5Y cells 

typically contain 5.504 nmols of ATP and 20.798 pmols of glutathione per μg of protein 

(Table  3.6). 

 Value ±SEM 

pmols ATP / μg protein 5.504 ± 1.173 

pmols glutathione / μg protein 20.798 ± 3.702 

 

Table  3.6. ATP and glutathione levels of SH-SY5Y cells. Cells were seeded in either, 
96-well plates or T25 flasks and after overnight recovery ATP and glutathione levels 
were monitored as described sections 2.2.3 and 2.2.7, respectively. Data are from three 
independent experiments with assay replicated three times. 

 

Figure  3.5 and Figure  3.6 represent a time course of CLA, ATP and glutathione levels 

after treatment with MPP+ and DA, respectively, in comparison to controls.  

Figure  3.5 shows that MPP+ affects CLA, ATP and glutathione levels in a dose and 

time-dependent manner. 100 μM MPP+ had no significant effect on CLA activity at 24 h 

and 48 h; however it reduced CLA by 30 % at 72h. This reduction in CLA was 

preceded by a 30% decrease in glutathione levels after 24 h, which further decreased 

after 72h. Finally, 100 μM MPP+ did not reduce ATP levels after a 24-h exposure, but, 

after 48 h and 72 h, ATP levels were reduced by approximately 20 %. 
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With 2 mM MPP+, CLA was not affected at 24 h but was significantly reduced by 46 % 

and 78% at 48 and 72 h, respectively. Similarly, ATP levels were not affected until 48 h 

treatment with 2 mM MPP+ (48 % reduction ca. controls), which further decreased at 

72h (69 % reduction ca. controls). Glutathione levels, on the other hand were reduced 

earlier (31 %, 67% and 82 % after 24 h, 48 and 72 h, respectively in comparison to 

control samples). 

Figure  3.6 shows that 100 μM DA did not reduce CLA nor glutathione levels till 72 h 

treatment (30 % and 23 % reduction ca. controls, respectively). However, 100 μM DA 

resulted in a significant increase (76 % ca. controls) in glutathione levels at 24h. ATP 

levels were not affected by this dose of DA at any time tested. With 500 μM DA, again, 

CLA was only reduced after 72 h. As before glutathione levels increased in comparison 

to controls after 24 h, but were significantly decreased by 17 % and 77 % after 48 and 

72h, respectively. Finally, this high dose of DA virtually abolished ATP levels as early 

as 24 h. 
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Figure  3.5. Effect of MPP+ on CLA, ATP and glutathione levels of SH-SY5Y over 
time. Cells were seeded in either, 6-well plates, T25 flasks or 96-well plates and 
treated, after overnight recovery, with 100 μM and 2mM MPP+ for 24, 48 and 72h. 
After required time CLA, ATP and glutathione levels were monitored as described 
sections 2.2.6.1, 2.2.3 and 2.2.7 respectively. Results are presented as mean % in 
comparison to controls. The data are from five independent experiments. Statistical 
analysis was carried out using a two-tailed t-test. Statistical significance was accepted 
when *= p<0.05 or ** = p< 0.01 cf. control. 
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Figure  3.6. Effect of DA on CLA, ATP and glutathione levels of SH-SY5Y cell 
extracts. Cells were seeded in either, 6-well plates, T25 flasks or 96-well plates and 
treated, after overnight recovery, with 100 μM and 500 μM DA for 24, 48 and 72h. 
After required time CLA, ATP and glutathione levels were monitored as described 
sections 2.2.6.1, 2.2.3 and 2.2.7, respectively. Results are presented as mean % in 
comparison to controls. The data are from five independent experiments. Statistical 
analysis was carried out using a two-tailed t-test. Statistical significance was accepted 
when *= p<0.05 or ** = p< 0.01 cf. control. 
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3.2.5 Effect of toxins on the proteasome is partly due to oxidative 

stress. 

3.2.5.1 Effect of N-acetyl cysteine on proteasomal activity after toxic insult 

To determine whether the decrease in proteasomal activity caused by the toxins could 

be partly due to oxidative stress, the effect of N-acetyl cysteine (NAC; at 1 mM) on 

proteasomal activity of SH-SY5Y cells after 72-h exposure to 2mM MPP+ and DA was 

monitored. 

Figure  3.7 shows 1 mM NAC itself did not affect CLA after 72h but that MPP+ and DA 

decreased CLA to 13.7 % and 0.5 %, respectively after the same time period. In the case 

of DA, the decrease in proteasomal activity was partly reversed by 1 mM NAC (activity 

increasing from 0.5 % to 52.3 % of control). However, 1 mM NAC did not significantly 

protect CLA from MPP+ toxicity.  
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Figure  3.7. Effect of NAC on CLA from SH-SY5Y after 72h toxic insult with MPP+ 
and DA. Cells were grown in 6-well plates and after overnight recovery, were treated 
with 2 mM MPP+ or DA+/ - 1 mM NAC. After 72h incubation cells were extracted in 
250 μl homogenisation buffer and cell extracts were incubated with Suc-LLVY-AMC to 
monitor CLA in a fluorogenic peptide assay (section 2.2.6.1). Results were calculated 
as ΔFU/s/μg ± SEM and then converted in mean % in comparison to control samples. 
The data are from a representative experiment with assays replicated three times. 
Experiment performed 3 times. Statistical analysis was carried out using a two-tailed t-
test. Statistical significance was accepted when ** = p< 0.01 cf. untreated and toxin-
treated control. 
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The protection afforded by NAC against DA was also observed at the morphology 

level.  Figure  3.8 shows that control cells (panel A) and cells treated with NAC (panel 

B) are flat and elongated and have some axon-like structures. On the other hand, when 

treated with 2mM MPP+ or DA cells were rounded and many were floating (panel C 

and E, respectively).  NAC had no effect on the morphology of cells treated with MPP+, 

but blocked the effect of DA on cell morphology (panel D and F, respectively).  
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                               A) Control                                          B) 1 mM NAC 

         

                            C) 2 mM MPP+                          D) 2mM MPP+ + 1 mM NAC 

         

                          E) 2 mM DA                                F) 2mM DA + 1 mM NAC 

 

Figure  3.8. Morphological changes in SH-SY5Y cells after 72h treatment with 2 mM 
MPP+, 2 mM DA and 1 mM NAC. Images were taken with a Nikon eclipse TS100 
inverted microscope (x 400 magnification). Scale bar= 25 μm. 
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3.2.5.2 Assessment of reactive oxygen species (ROS) formation in SH-SY5Y 

cells by confocal microscopy 

To confirm the possible implication of ROS in MPP+ and DA toxicity in our model, 

DCHDF was used as a general indicator of ROS formation (Crossthwaite et al., 2002). 

Following enzymatic or base-catalysed cleavage of the diacetate group, DCFDH is 

readily oxidised to the highly fluorescent product dichlorofluorescein (DHF). Formation 

of DHF can be monitored by confocal laser microscopy (see section 2.2.11).  

Results show that 2 mM MPP+ increased ROS in SH-SY5Y cells after 48 and 72 h 

(Figure 3.9). Despite using a lower dose of DA (100 μM) than MPP+, ROS levels were 

much higher in the DA samples, even after 24 h.  

The effect of NAC on MPP+ and DA 72 h treatment was also monitored. Results show 

that NAC reduced ROS formation in control and also in toxin-treated cells. 

Interestingly, with DA samples NAC appeared to virtually abolish ROS formation. 
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Figure  3.9. Assessment of ROS formation by confocal microscopy. SH-SY5Y cells 
were plated out in permanox 8-well chamber slides at a density of 10,000 cells per well. 
After overnight recovery cells were treated with 100 μM DA and 2 mM MPP+ for 24, 48 
and 72 h prior to analysis of ROS formation by confocal microscopy as described in 
section 2.2.11. The effects of NAC were also monitored on 72h control and toxin-treated 
cells. Note: 100 μM DA was used because higher levels resulted in complete loss of 
cells from the chamber slides. Scale bar = 100 μm. 
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3.2.5.3 Effect of glutathione depletion in CLA and ATP levels on SH-SY5Y  

In section  3.2.2.2 it was shown that glutathione levels are depleted in SH-SY5Y cells 

after treatment with MPP+ and DA. In fact, with MPP+, glutathione depletion preceded 

reduction in CLA. Therefore, to investigate whether the reduction in CLA was mainly 

driven by glutathione, glutathione levels were artificially depleted by 2 mM BSO. 

As expected, 2 mM BSO virtually depleted glutathione levels as early as 24h (Figure 

 3.10). ATP levels were also reduced by 20-30 % after 48 and 72 h and by 65 % after 96 

h. Although CLA was reduced by approximately 30 % at 72 h, the reduction in CLA 

was only significant (> 50 %) after 96 h treatment with 2 mM BSO.  

          

BSO 2 mM

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 20 40 60 80 100 120
Time (h)

%
 c

a.
 C

O
NT

RO
LS

% CLA

% GLUT

%ATP

 

BSO 2 mM 

 A
ct

iv
ity

 (%
 c

on
tr

ol
) 

** 

** 

 

  
 

 

 

**

**

**

**
**

**

Figure  3.10. Effects of 2 mM BSO on CLA, ATP and glutathione levels of SH-SY5Y 
over time. Cells were seeded in either, 6-well plates, T25 flasks or 96-well plates and 
treated, after overnight recovery, with 2mM BSO for 24, 48, 72 and 96 h. After required 
time CLA, ATP and glutathione levels were monitored as described sections 2.2.6.1, 
2.2.3 and 2.2.7, respectively. Results are presented as % in comparison to controls. The 
data are from three independent experiments. Statistical analysis was carried out using 
a two-tailed t-test. Statistical significance was accepted when ** = p< 0.01 cf. control. 
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3.2.5.3.1 Assessment of reactive oxygen species (ROS) formation after 

glutathione depetion 

Figure  3.11 shows that 2 mM BSO increased ROS in comparison to controls by 24 h. 

ROS were not further increased after this time point. 
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Figure  3.11. Assessment of ROS formation by confocal microscopy. SH-SY5Y cells 
were plated out in permanox 8-well chamber slides at a density of 10,000 cells per well. 
After overnight recovery cells were treated with 2 mM BSO for 24, 48 and 72 h prior to 
analysis of ROS formation by confocal microscopy as described in section2.2.11. Scale 
bar = 100 μm. 
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3.2.5.3.2 Effect of glutathione depletion on CLA after 72 h toxic insult 

To investigate whether glutathione reduction can further exacerbate proteasome 

impairment caused by MPP+/  DA, 2 mM BSO was used to deplete glutathione in cells 

treated with 100 μM MPP+ or DA for 72 h. Cells were extracted and a fluorogenic 

peptide assay was performed as explained in sections  2.2.4.2 and 2.2.6.1, respectively. 

Figure  3.12 shows that, although BSO further reduced CLA in the MPP+ treated cells, 

the reduction was not significant. In the presence of DA, on the other hand, BSO 

resulted in a significant increase in CLA.  
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Figure  3.12. Effect of glutathione depletion on CLA, of SH-SY5Y after 72h toxic 
insult with 100 mM MPP+ and DA. Cells were seeded in 6-well plates and after 
overnight recovery, treated with 100 μM MPP+ and DA supplemented with or without 2 
mM BSO for 72h. Then, cells were extracted as detailed in section 2.2.4.2 prior to CLA 
measurement as described section 2.2.6.1. Results were calculated as ΔFU/s/mg and 
transformed into % in comparison to the relevant control (untreated control or BSO 
control). The data are from six independent experiments. Statistical analysis was 
carried out using a two-tailed t-test. Statistical significance was accepted when *= 
p<0.05 or ** = p< 0.01 cf. untreated or toxin-treated control. 
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3.2.6 Effect of chronic exposure to low doses of MPP+ and DA on 

proteasomal activity 

Finally, proteasomal activity was monitored after chronic exposures (3 and 7 weeks) to 

low doses of MPP+ and DA. Figure 3.13 shows that 10 μM MPP+ significantly reduced 

CLA  by 9 % and 30 % in comparison to controls after 3 and 7 weeks, respectively. 

TLA and PLA were not reduced until 7 weeks treatment with MPP+ (14 % and 47 % 

reduction respectively ca. controls). 10 μM DA reduced CLA by 49 % and 17 % after 3 

and 7 weeks, respectively. Interestingly, TLA was considerably increased with 10 μM 

DA at both times tested. Finally, 10 μM DA reduced PLA by 74 % and 19 % in 

comparison to controls after 3 and 7 weeks, respectively. 
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Figure  3.13. Effect of chronic treatment with 10 mM MPP+ and DA on proteasomal 
activities. Cells were seeded in  6-well plates and after overnight recovery, treated with 
10 μM MPP+ and DA for 3 or 7 weeks. Proteasomal activities were monitored as 
described section 2.2.6.1. Results were calculated as ΔFU/s/μg + SEM and transformed 
into % in comparison to controls. The data are from three independent experiments. 
Statistical analysis was carried out using a two-tailed t-test. Statistical significance was 
accepted when * = p<0.05 cf. toxin control or ** = p< 0.01 cf. control. 
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3.3 DISCUSSION 

3.3.1 Specificity of fluorogenic substrates for measuring proteasomal 

activities and protease inhibitors 

As detailed in the main introduction, the eukaryotic proteasome possesses three 

proteolytic activities, known as chymotrypsin-like, trypsin-like and post-acidic-like 

(also termed PGPH) activities with distinct specificities against peptide substrates 

(Rodgers and Dean, 2003 and Kisselev and Goldberg, 2005). A convenient and 

sensitive way to monitor the activity of proteasomes in cells or tissues is the incubation 

of cell lysates or tissue homogenates with fluorogenic peptide substrates, which are 

three or four amino acid residue peptides with a fluorogenic reporter group at the C 

terminus. The proteasome cleaves an amido bond between an aminoacid and the 

reporter group, resulting in the release of a highly fluorescent product which can be 

measured. There are different fluorophores but substrates containing 7-amino-4-

methylcoumarin (AMC) are the most commonly used. Despite being used widely, 

relatively little information is available on how specific these substrates are for 

proteasomal activity when used in biological samples which may contain many other 

proteases (Kisselev and Goldberg, 2005). Furthermore, the specificity of proteasome 

inhibitors and substrates towards the proteasome may vary between different cell lysates 

and tissue homogenates (Rodgers and Dean, 2003; Kisselev and Goldberg, 2005). 

To attempt to assess the specificity of the assays in SH-SY5Y cell lysates, the ability of 

the proteasome inhibitors lactacystin and epoxomicin, and also the calpain inhibitor MDL 

28,170 to inhibit the production of a fluorescent product was compared in SH-SY5Y cells 

lysates and purified 20S proteasome samples. In this study fluorogenic substrates chosen 

for measuring proteasomal activity were Suc-LLVY-AMC, Boc-LRR-AMC and Z-

LLE-AMC for CLA, TLA and PLA, respectively. 

Epoxomicin is claimed to inhibit exclusively proteasomal activity (Kisselev and 

Goldberg, 2001) whilst lactacystin is known to be more active against CLA than TLA 

and PLA (Rodgers and Dean, 2003; Kisselev and Goldberg, 2006). Indeed, lactacystin 

covalently binds to the terminal Thr of the chymotrypsin–like subunit β5 (Groll and 

Huber, 2004). On the other hand, MDL 28,170 is a short hydrophobic N-blocked 

dipeptidyl aldehyde lacking charged residues which is able to penetrate cell membranes 
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by passive diffusion. This calpain inhibitor is reported to also inhibit cathepsin B, and 

very weakly α-chymotrypsin (Mehdi, 1991).  

Lactacystin inhibited CLA in a dose dependent manner in pure 20S; inhibition was 

virtually complete at the highest concentration (10 μM). On the other hand, 20S-TLA 

was only inhibited by high doses of lactacystin (10 μM) and PLA was not inhibited at 

any concentration tested. Epoxomicin reduced PLA to a great extent whilst TLA was 

only partly inhibited even at the highest concentration of the inhibitor tested (i.e 20 

μM). Thus, results suggest that epoxomicin is specific for CLA and to a lesser extent 

PLA followed by TLA, whilst lactacystin is most specific for CLA followed by TLA. 

Lactacystin does not inhibit PLA. This is consistent with Kisselev and Goldberg (2005) 

who report that epoxomicin is the most specific inhibitor for the three proteasomal 

activities and with Rodgers and Dean, (2003) who showed that lactacystin is most 

active for CLA. Limited data is available about the specificity of inhibitors against PLA 

but it is known that PLA is less well inhibited by lactacystin or epoxomicin that CLA 

(Rodgers and Dean, 2003). On the other hand, MDL 28,170 virtually depleted calpain 

activity when used at 1 μM or over. Since 10 μM MDL 28,170 also partly inhibited 

TLA and to a lesser extent CLA our results suggest this inhibitor losses specificity for 

calpain when used at high concentrations (Rodgers and Dean, 2003). 

Specificity of the fluorogenic substrates was tested using the inhibitors with cell 

extracts. Again, lactacystin inhibited CLA from SH-SY5Y cell lysates in a dose-

dependent manner with 10 μM abolishing this activity. Similarly 10 μM epoxomicin, 

also depleted CLA in cell lysates; these data and the fact that CLA in the 20S and cell 

extracts was only weakly/ not inhibited by MDL 28,170 would suggest that Suc-LLVY-

AMC was fairly specific for CLA. This is consistent with the studies of Rodgers and 

Dean (2003) who found Suc-LLVY-AMC the most specific substrate to measure CLA. 

Indeed, this activity was inhibited by more than 75 % with lactacystin in THP1 and 

J774 cell lysates and in liver cytosol homogenate (Rodgers and Dean, 2003). On the 

other hand, since lactacystin did not inhibit TLA in cell extracts and epoxomicin only 

partially inhibited TLA (~ 25 % ca. controls), results would suggest that the TLA 

substrate is less specific than the CLA substrate for proteasomal activity. Our results are 

supported by Kisselev and Goldberg (2001), who found that the contribution of non-

proteasomal proteolysis to the cleavage of substrates of TLA is always higher than to 
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the cleavage of PLA and CLA sites. They showed that substrates utilised to measure 

TLA present a high Km (>0.5 mM) and the specific activity at low concentrations of the 

substrates is low (Kisselev and Goldberg, 2001). Rodgers and Dean (2003) also found 

TLA was weakly inhibited by the proteasome inhibitors and that TLA substrate 

measured other proteases activities. Finally, since PLA was markedly inhibited by 

epoxomicin (87.2 % inhibition ca. controls) but not by MDL 28,170 our results suggest 

that Z-LLE-AMC is a fairly specific substrate towards proteasomal PLA.  

It would have been of interest to measure calpain activity in our cell system to further 

confirm a possible activation of these proteases with MPP+ and DA. However, the 

protocol used (from Sasaki et al., 1984 with modifications) did not give reproducible 

activity rates. In fact, although calpains are calcium activated proteases, the assay gave 

decreasing activity rates with increasing concentrations of calcium, suggesting that it 

was not reliable.  

3.3.2 Effects of MPP+ and DA on proteasome activity 

Our data indicate that MPP+ and DA reduced CLA and PLA from SH-SY5Y cells in a 

dose dependent manner after 72 h. The use of proteasomal inhibitors in control and toxin-

treated cell lysates confirmed that the activities affected by the toxins were proteasomal.  

CLA and PLA were similarly reduced by the toxicants, whilst proteasomal TLA (obtained 

from inhibition assays with epoxomicin) was not reduced by MPP+ or DA; in fact a 

significant increase in TLA was observed with 100 μM MPP+ and 500 μM DA.  

The decrease in CLA and PLA after toxic insult with MPP+ and DA in our cell system 

is consistent with data reported by several authors. For instance, Keller et al. (2000) 

found that DA toxicity induced a time and dose-dependent decrease in proteasome 

activity in the PC12 cell line. Elkon et al. (2004) also found a decrease in the three 

proteasomal activities in PC12 cell line, this time caused by 6-hydroxy-DA (6-OHDA), 

a derivate of DA widely used in animal models of PD. Interestingly, they also report an 

increase of the proteasomal activities with low doses of the toxin. This is in accordance 

with the increase in TLA activity in our cell system with 100 μM MPP+ and 500 μM 

DA which might be a cellular compensatory effect to mild oxidative stress.  Moreover, 

some studies also showed that toxins that inhibit mitochondrial complex I, like rotenone 

and other pesticides also lead to proteasome inhibition (Shamoto-Nagai et al. 2003; 

Höglinger et al. 2003; Wang et al. 2006). Finally, MPTP has also been reported to impair 
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the three different proteasomal activities in the SN of common marmosets (Zeng et al., 

2006). Controversially, in our cell system TLA was not reduced by MPP+ or DA despite 

the use of the same fluorogenic substrate (Z-LLE-AMC)  as used by several authors who 

show a decrease in this activity after rotenone (Betarbet et al., 2006) or MPTP (Zeng et al., 

2006) treatment. This suggests that in our human cell system, TLA is less sensitive to 

MPP+ and DA treatment than CLA or PLA. 

3.3.3 Effects of PD mimetics on proteasome activity, glutathione and 

ATP levels 

As indicated earlier, mitochondrial dysfunction linked to energetic failure and oxidative 

stress (ROS formation), accompanied by a depletion of both reduced and oxidised 

gluthatione content, are well documented contributors to the disease state (Cassarino 

and Bennet, 1999; Beal M.F. 2001; Buhmann et al. 2004, Chinta et al. 2006). It is 

therefore important to understand the contribution of these factors on proteasome 

activity in the cells following treatement with the PD mimetics MPP+ and DA.  

3.3.3.1 Effects of MPP+ and DA on CLA 

MPP+ and DA reduced proteasomal CLA in a dose and time dependent manner. 

Proteasomal activities were corrected by protein content in order to eliminate any 

possible decrease in activity due to cell death. The results, as further detailed in the last 

section, are consistent with several studies showing that some pesticides, including 

rotenone (Betarbet et al., 2001; Betarbet et al., 2006 and Wang et al., 2006), MPTP/ 

MPP+ and DA or derivates can lead to proteasome reduction (Keller et al., 2000; Elkon 

et al. 2004; Shamoto-Nagai et al. 2003; Höglinger et al. 2003 and Zeng et al., 2006). 

The link between these toxins, which inhibit mitochondrial function, and proteasome 

impairment further strengthens the potential role of the proteasome in the pathogenesis 

of PD. Indeed, proteasomal function has been reported to be decreased in SNpc from 

PD patients (McNaught and Jenner 2001; McNaught et al., 2003).  

Contrary to previous reports, this thesis reports that CLA activity could be also directly 

impaired by addition of the toxins to the cell extracts. Concentrations of 2 mM of MPP+ 

and DA led to a reduction in CLA, MPP+ being more damaging than DA over a 2 h 

incubation period. This disagrees with Höglinger et al. (2003) who exclude a direct 

reduction of CLA after incubating primary mesencephalic cell lysates with 30 μM 
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MPP+ (and also 30 nM rotenone) for ten min. However, this approach is limited since 

time exposure might be too short to affect proteasome activity with low concentrations 

of the toxins. Also Wang et al. (2006) report that no direct effect on 20S proteasome 

activity in SK-N-MC cells lysates treated with 6 different pesticides, including the 

complex I inhibitor rotenone. Therefore, to my knowledge, this study is the only one 

showing direct effect of MPP+ and DA on proteasome activity. 

3.3.3.1.1 Mechanisms of MPP+-mediated CLA impairment  

MPP+ decreased glutathione levels prior to reducing CLA or ATP levels; indeed, CLA 

was only reduced if ATP was also reduced. These findings, suggest that MPP+-induced 

proteasomal impairment in my system may be mainly driven by ATP levels. This is 

supported by the fact that the antioxidant, NAC, failed to protect the cells from MPP+ 

effects on the proteasome. This is similar to Höglinger et al. (2003) who found that in 

rat primary mesencephalic cultures, ATP levels needed to be reduced to a threshold low 

level by MPP+ or rotenone prior to induce cell death linked with a 30-60 % reduction in 

UPS activity. Furthermore, these authors found that restoring ATP levels up to 40 % by 

glucose supplementation, restored proteasomal activities. However, in my cell system 

only a 20 % reduction in ATP levels in comparison to controls was required for MPP+ 

to induce proteasome dysfunction. This suggests that human cells are more sensitive 

than rat cells.  On the other hand, Betarbet et al. (2006) found that chronic exposure of 

human SK-N-MC cells to rotenone impaired the UPS without decreasing ATP levels 

whilst α-tocopherol protected the cells from rotenone insult indicating that oxidative 

stress is involved in the toxicity of this complex I inhibitor.  

It is important to note that, glutathione levels may also play a role in MPP+-mediated 

proteasomal impairment in SH-SY5Y cells, since a sustained reduction in glutathione 

levels precede the decrease in CLA. Some evidence that depletion in glutathione levels 

by BSO may exacerbate the effect of MPP+ on CLA is presented in this thesis. 

Moreover, confocal microscopy analysis showed that addition of NAC to MPP+-treated 

cells (2 mM) could counteract the increase of ROS caused by the toxin, however as 

stated before without rescuing CLA or cell morphology. Indeed, oxidative stress (ie. 

free radical formation) has been proposed by several authors to contribute to MPTP/ 

MPP+ toxicity (Conn et al., 2001; Song et al., 2004) and, contrary to the results obtained 

in this thesis, is supported in some systems by the protection afforded by anti-oxidant 
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agents (Lai et al., 1993; Gonzalez-Polo et al. 2004; Chinta et al. 2006).  Interestingly, 

Cassarino et al. (1997) found that MPTP treatment of mice and MPP+ exposure of SH-

SY5Y human neuroblastoma cells increased oxygen free radical production and also 

antioxidant enzyme activities. However, involvement of ROS in MPP+ toxicity is 

controversial. Lee et al. (2000) found that MPP+ did not increase levels of lipid 

peroxidation at toxic concentrations in SH-SY5Y cells. Moreover, they also found that 

pre-treatment of the cells with antioxidants or antioxidant enzymes did not reduce MPP+ 

cytotoxicity, concluding that that MPP+ increased the vulnerability of cells to oxidative 

stress rather than inducing cell death directly from oxygen free radicals generation. In 

addition, Lotharius and O’Malley (2000) reported that MPP+-induced ROS formation is 

not mitochondrial in origin but results from vesicular DA displacement and intracellular 

DA oxidation. 

In conclusion, it appears that ROS might not be the main factor controlling MPP+-

induced proteasome impairment; glutathione depletion combined with either ATP 

depletion and/or oxidative stress are needed before proteasomal activity is reduced. 

3.3.3.1.2 Mechanism of DA-mediated CLA impairment 

With regards to DA, low levels of this toxin (100 μM) did not reduce ATP levels at any 

time tested, whilst CLA and glutathione levels were reduced after 72 h. With higher 

doses of DA, ATP levels were virtually abolished as early as 24 h, presumably via 

complex I inhibition (Gluck and Zeevalk 2004; Ben-Shachar et al. 2004; Gimenez-

Xavier et al., 2006), but CLA was not reduced until 72 h treatment; this was after 

glutathione levels were decreased (by 48h). Thus, it is hypothesised that DA toxicity 

may be primarily driven by oxidative stress within the cells and not via ATP depletion.  

This was supported by the fact that the antioxidant NAC, could significantly reduce the 

effect of dopamine on CLA and also on cell morphology. Indeed, confocal microscopy 

studies revealed that low doses of DA (100 μM) induced vast amounts of ROS in SH-

SY5Y cells, which could be markedly alleviated by the NAC. Moreover, consistent with 

my findings, Elkon et al. (2004) found that a reduction in proteasome activity caused by 

6-OHDA in PC12 cells was alleviated by the addition of the antioxidant NAC. This 

glutathione precursor also rescued cells from protein oxidation and abolished the 

activation of caspase-3 (ie. apoptosis; Elkon et al., 2004). Additionally, data supporting 

a key role for glutathione on DA toxicity and UPS impairment was shown by Jha et al. 
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(2002), since a reduction of total glutathione levels after treatment of  PC12 cells with 

the DA metabolite, 6-OHDA, led to reduced ubiquitin conjugated levels suggesting that 

ubiquitination of proteins is inhibited in a glutathione-dependent fashion.  

Surprisingly, BSO appeared to protect proteasome from DA insult; CLA was 

significantly increased to virtually control levels when BSO was added to DA. This 

could be explained by a similar transient compensatory response to that observed by 

others with 6-OHDA (Elkon et al., 2004). On the other hand, Stokes et al. (2000) found 

that in SK-N-SH neuroblastoma cells, DA toxicity was enhanced when GSH was 

depleted; but only when glutathione levels were virtually depleted (98 % reduction with 

2mM BSO), suggesting that GSH stores are in excess in neuroblastoma cells. 

Finally it is important to note that although DA concentrations used in this study (100-

500 μM) would be considered as being above normal physiological values, since 

extracellular concentrations are reported to be of the order of nM in the SN and 

striatum, the intracellular striatum concentration is estimated to be around 70 μM, 

whilst the concentration in neuronal endings can be in the mM range (Blum et al., 2001; 

Gimenez-Xavier et al., 2006; Morikawa et al., 1996). Thus it would seem likely that 

extracellular DA concentrations in the present study would lead to intracellular 

concentrations that are found in vivo in dopaminergic neurons with disrupted vesicles or 

vesicles not storing DA efficiently. 

In conclusion, reduction in glutathione levels and the subsequent increase in oxidative 

stress might be a critical parameter on DA-induced proteasomal impairment.  

3.3.3.2 Effect of BSO on CLA 

It has been suggested that low levels of oxidative stress increases proteasome activity 

but higher levels can inhibit proteasomal fuction (Reinheckel et al., 1998). Indeed, 

depletion of glutathione levels (with BSO) in my cell system led to impaired CLA. 

However, although ROS levels were greatly increased after 24 h treatment with BSO, 

proteasomal function only decreased after 96 h. BSO also reduced ATP levels in the 

cells (by 48 h), suggesting that other factors, like ATP, might also be contributing in the 

process. Therefore, ROS by itself might not be sufficient to cause proteasomal 

impairment.   



CHAPTER III- EFFECT OF PD MIMETICS ON PROTEASOMAL ACTIVITY 

 

 106

3.3.4 Chronic exposure to low levels of toxins impairs proteasomal 

function 

Chronic exposure to low levels of MPP+ reduced CLA levels after 3 weeks treatment, 

and TLA and PLA after 7 weeks treatment with the toxin. In contrast, DA was more 

damaging to the proteasome, reducing CLA and PLA after 3 weeks treatment. These 

data are consistent with Betarbet et al. (2006) who found that chronic exposure to 

rotenone also decreased the three proteasomal activities in SK-N-MC cells after 4 

weeks. As reported before in this thesis, TLA appears to be the least sensitive of the 

three activities. Interestingly, TLA was increased after 3 and 7 week exposure of cells to 

DA. It has been suggested that activation of the proteasome can occur under mild 

oxidative stress conditions (Reinheckel et al., 1998). This might be a compensatory 

mechanism in order to help the cells to cope with oxidatively damaged proteins. Indeed, 

treatment of PC12 cells with 6-OHDA, a naturally occurring DA analogue (Blum et al., 

2001), increases proteasome activity at low doses (10-100 μM) with a reduction in 

activity with higher doses discussed (Elkon et al., 2004). This is in agreement with 

Höglinger et al. (2003) who showed that 6-OHDA also transiently increased all three 

proteasomal activities in rat mesencephalic cell cultures. Recent data from Betarbet et 

al. (2006) also showed compensatory increases in proteasomal activities in 

neuroblastoma cells prior to a reduction in activities over a 4 week period. However, as 

discussed in section  3.3.1, the TLA substrate is unspecific for measuring proteasomal 

TLA. My previous data suggest that calpains may contribute to the activity measured in 

the TLA assay since MDL 28,170 inhibited measured TLA by 67 % of control cells. 

Nevertheless, further studies with different types of proteases inhibitors are needed to 

elucidate true proteasomal TLA in these experiments.  
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4. MPP+, MPTP AND DA DIRECT EFFECT ON PURIFIED 20S 

PROTEASOME 

4.1 INTRODUCTION 

4.1.1 The 20S proteasome 

As explained in the general introduction, the 20S proteasomal catalytic core is a 28 

subunit multicatalytic particle consisting of four heptameric rings. The two outer rings 

consist of seven α-subunits each and the two inner rings consist of seven β-subunits. 

The multiple catalytic centres are located in three β−subunits (β5, β 2 and β1; Koop et 

al., 1997; De Martino and Slaughter, 1999; Ferrell et al., 2000; Kisselev and Goldberg, 

2001; De Vrij et al.  2004).  

 In vivo, 20S proteasomes exist not only as a part of the 26S complexes but also as free 

particles (Kisselev et al., 1998) and comprise about 1 % of cell proteins (Lee and 

Goldberg, 1998). Indeed, although initial studies suggested that the 26S was the major 

proteasomal form in vivo, subcellular localization and stochiometrics of the different 

complexes showed that the number of free 20S particles exceeds that of the 19S and 

11S (free or bound to 20S) by 3 to 4-fold. Moreover, the 20S proteasome itself degrades 

proteins without a requirement for ubiquitin or ATP, including oxidized and damaged 

proteins (Davies et al., 2001; De Vrij et al., 2004). Oxidised proteins are particularly 

relevant to neurodegenerative disorders, such as PD, and seem to be degraded via the 

20S in an ubiquitin-independent manner (Davies, 2001; Grune et al., 2003).  

A growing body of evidence suggests that proteasome activity declines with age and is 

involved in certain pathologies (Bulteau et al., 2001; Carrard et al., 2002; Farout et al., 

2006). This has been attributed, at least in part, to oxidative stress since it has been 

shown that the proteasome can undergo modification by 4-hydroxy-2-nonenal (HNE), a 

lipid peroxidation product, during these situations (Bulteau et al., 2001; Carrard et al., 

2002). Moreover, recent data have been published reporting that HNE oxidatively 

modified specific subunits of the 20S proteasome (Farout et al., 2006). 
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4.1.2 Aims of chapter 

As introduced in the last chapter there is an increasing number of studies which link 

complex I inhibition to proteasomal impairment. However, limited data is available 

about the possible direct effects of complex I toxins on the proteasome itself.  Data 

presented in last chapter indicates that direct incubation of SH-SY5Y cell lysates with 

MPP+ and DA leads to reduced CLA; however, recent work suggests no direct effects of 

some mitochondrial toxins, such as MPP+ or rotenone, on the proteasome (Höglinger  et 

al., 2003; Betarbet  et al., 2006; Wang  et al., 2006). It is important to note that the 

approach of these authors was incomplete since relatively low concentrations of toxins 

with short time exposures were utilised when assaying 20S activity of cell lysates.  

Therefore it was considered important to further monitor the direct effects of the 

neurotoxins MPTP, MPP+ and DA on the activities of the commercial 20S proteasome 

purified from human red blood cells and in particular on TLA, which was shown to be 

less sensitive to the toxins in the previous chapter. Indeed, the use of purified 20S 

proteasome will assure that substrates (particularly TLA substrate) are specifically 

measuring proteasomal activity. In addition, the protective capacity of vitamin C 

(ascorbic acid) was examined to establish whether the neurotoxins caused free radical 

damage. Additionally, for comparison, the effects of these toxins on purified trypsin 

enzyme were also monitored to establish whether a general protease was affected in a 

similar manner to the proteasome. Finally, 2D SDS-PAGE techniques were utilised in 

order to separate the 20S subunits and analyse whether specific proteasome subunits 

were affected; this was monitored using silver-staining and antibodies directed against 

various β-subunits (to help define the exact catalytic subunits affected) and α-subunits 

on Western blots (Brooks et al. 2000).   
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4.2 RESULTS 

4.2.1 Effect of MPP+, MPTP and DA on 20S proteasomal activities 

Figure  4.1 (A) shows that all toxins reduced CLA in a dose dependent manner, with the 

effects of 2 mM MPTP and MPP+ being similar, resulting in 72 % and 54 % reductions, 

respectively. On the other hand, DA had a greater effect and completely abolished 

activity at 2 mM whilst a low concentration (10 μM) reduced CLA by 70 %. 

On the other hand, TLA was not affected by MPTP at all concentrations tested (Figure 

 4.1B). However, MPP+ significantly reduced TLA by 30% and 42% at 500μM and 

2mM respectively. DA had a more potent effect on this activity, and completely 

abolished activity when used at 500 μM or 2 mM. Again, the pattern shown by MPP+ 

and DA was dose dependent. 

As for CLA, PLA was reduced by all toxins (Figure  4.1C). Indeed, PLA was more 

sensitive to high doses of MPP+ and MPTP than CLA since PLA was completely 

abolished at the highest toxin concentration. Although, DA was the most damaging, 

abolishing PLA at 500 μM, the effects of the three toxins were very similar. 
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Figure  4.1. Effect of MPP+, MPTP and DA on CLA (A), TLA (B) and PLA (C) of 
commercial 20S proteasome. Suc-LLVY-AMC, Boc-LRR-AMC and Z-LLE-AMC were 
used to monitor proteasomal CLA, TLA and PLA, respectively as described in section 
2.2.6.1. Results were calculated as ΔFU/s/μg ± SEM and converted to mean % in 
comparison to controls. The data are from three independent experiments with assays 
replicated four times. Statistical analysis was carried out using a two-tailed t-test. 
Statistical significance was accepted when ** = p< 0.01 cf. control. 
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4.2.2 Effect of the antioxidants on toxin induced 20S proteasome 

impairment  

4.2.2.1 Screening for the most suitable antioxidant 

Different antioxidants were used: glutathione (GLUT), N-acetyl cysteine (NAC), 

vitamin E (α-tocopherol) and vitamin C. Firstly, the effect of these antioxidants against 

DA toxicity towards proteasomal chymotrypsin- like activity was screened, in order to 

select a suitable antioxidant for further studies. Table  4.1 shows that 100 μM DA 

reduced CLA to 39 % of controls and this reduction was partly reversed by100 μM 

vitamin C (68 % in comparison to vitamin C control). In contrast, none of the other 

antioxidants tested offered protection to the proteasome against DA toxicity. Therefore, 

vitamin C was selected for further studies with the other toxins.  
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 ΔFU/s/μg SEM % Activity cf. control 

Control 2.215 0.031 100 

GLUT 100 μM 2.266 0.109 102.3 

NAC 100 μM 2.225 0.056 100.4 

 VI T E 100 μM 2.050 0.092 92.5 

VIT C 100 μM 2.663 0.115 120.2 

DA 100 μM 0.870 0.075     39.3 ** 

DA/ GLUT  1.042 0.074    46.0 ** 

DA/ NAC 0.736 0.076    33.1 ** 

DA/ VIT E 0.883 0.124    43.1 ** 

DA/ VIT C 1.811 0.119        68.0 **/ •• 

 

Table  4.1. Assessment of the effect of different antioxidants on DA toxicity to CLA 
from purified 20S proteasome. DA and antioxidants  were directly added to the 20S 
(0.05 μg) proteasome in a black 96-well plate and preincubated for 15 min before the 
addition of the CLA substrate, Suc-LLVY-AMC. CLA was monitored as described in 
section 2.2.6.1. Results were calculated as ΔFU/s/μg ± SEM and converted to mean % 
in comparison to controls or antioxidant controls. Statistical analysis was carried out 
using a two-tailed t-test. Statistical significance was accepted when ** = p< 0.01 cf. 
untreated and antioxidant-treated control or •• = p< 0.01 cf. DA (n=3). Important note: 
variations in activity between control 20S are due to the fact that different batches of 
commercial purified proteasome produce different basal activities due to source 
differences (ie. different individuals). This is specified in the data sheet of the product 
(code PW8729) purchased from Biomol International, Exeter, UK. 
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4.2.2.2 Protective effect of vitamin C on CLA from purified 20S proteasome 

treated with various toxins 

Figure  4.2 shows vitamin C protected the 20S proteasome from 2 mM MPTP, MPP+ 

and DA to different extents. 100 μM vitamin C was required to protect CLA against 

DA, restoring activity from 1 % of controls to 46 % of controls; with 500 μM and 1 mM 

vitamin C, CLA was increased to 62 % and 70 % of controls, respectively.  Low doses 

of vitamin C (10μM) protected CLA against MPP+ and MPTP, restoring CLA from 47 

% and 7.5 % to 67 % and 62 % of controls, respectively; protection improved when the 

vitamin C dose was increased to 100 μM (to 78 % and 87 % for MPP+ and MPTP, 

respectively).  
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Figure  4.2. Effect of vitamin C on toxin induced proteasome impairment.  DA (A), 
MPP+ (B) or MPTP (C) were added directly to 0.05μg commercial 20S with or without 
10, 100, 500 μM and 1 mM vitamin C.  Suc-LLVY-AMC was used to monitor CLA (as 
explained in section 2.2.6.1). Results were calculated as ΔFU/s/μg ± SEM and 
converted to mean % in comparison to controls or antioxidant controls. Statistical 
analysis was carried out using a two-tailed t-test. Statistical significance was accepted 
when * = p<0.05; ** = p< 0.01 cf. toxins (n=3).  
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4.2.3 Effects of MPP+, MPTP and DA on trypsin enzyme activity 

Next, the effect of toxins on trypsin enzyme (EC 3.4.21.4) were compared to the effects 

on its proteasomal counterpart, 20 S trypsin-like activity.  

Firstly, different dilutions (1:5000; 1:10000; 1:20000; 1:40000 and 1:80000; in 50 mM 

HEPES, 5mM EGTA, pH 8.0) of trypsin enzyme (1mg/ml) were tested to determine an 

amount of the pure enzyme that provided a fluorescence rate similar to the 20S 

proteasome (section  4.2.1).  10 μl of 1:10000 dilution per assay (ie. 1 ng pure trypsin) 

were found to be suitable for the experiment. The procedure was as described 

previously for the 20S proteasome except 10μl of the diluted enzyme were added as 

opposed to commercial 20S.  

The data presented in Table  4.2 show 20S TLA to be more sensitive to DA than trypsin 

enzyme, with 500 μM DA completely inhibiting 20S-TLA whilst reducing trypsin 

activity by only 71 %. In contrast, MPP+ had a similar effect on both activities. 

Consistent with previous data (see section  4.2.1) MPTP had no significant effect on 

proteasomal TLA and similarly had no adverse effect on trypsin enzyme activity. 
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 20S Trypsin 

Treatments 
ΔFU/s/μg ± 

SEM 

% Activity ca. 

control 
ΔFU/s/μg ± SEM 

% Activity ca. 

control 

Control 4.504 ± 0.176 100.0 8.679 ± 0.351 100.0 

MPP+ 100 μM 4.135 ± 0.280 91.8 8.192 ± 0.425 94.4 

MPP+ 500 μM 3.658 ± 0.209    81.2* 7.208 ± 0.420   83.1* 

MPP+ 2 mM 3.473 ±  0.118      77.1** 6.690 ± 0.310      77.1** 

MPTP 100 μM 4.090 ± 0.065 90.8 7.781 ± 0.664 89.7 

MPTP 500 μM 3.842 ± 0.259 85.3 9.135 ± 0.198 105.3 

MPTP 2 mM 4.156 ± 0.111 92.3 7.881 ± 0.444 90.8 

DA 100 μM 1.914 ± 0.355      42.5** 4.558 ± 0.332    52.5** 

DA 500 μM 0.000 ± 0.408    0.0** 2.483 ± 0.437     28.6**/ • 

DA 2 mM 0.000 ± 0.489   0.0** 1.594 ± 1.594    18.4**/• 

 

Table  4.2. MPP+, MPTP and DA effect on pure trypsin enzyme. 1 ng of pure trypsin 
enzyme/HEPES-EGTA and 0.05 μg of 20S proteasome were used in a fluorogenic 
substrate assay, as described before, to compare the effect of the toxins on both 
enzymes. The data are from a representative experiment with assays replicated three 
times. Results were calculated as ΔFU/s/μg protein ± SEM and then converted to % 
reduction in comparison to control samples. Statistical analysis was carried out using a 
two-tailed t-test. Statistical significance was accepted when * = p<0.05; ** = p< 0.01 
ca. controls or • = p<0.05 cf. the same DA treatment on TLA vs. trypsin enzyme.  
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4.2.3.1 Effect of vitamin C on trypsin enzyme activity after toxic insult 

Figure  4.3 shows that concentrations of vitamin C ≥100 μM almost completely reversed 

the DA-mediated effect on trypsin enzyme activity.  
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Figure  4.3. Effect of vitamin C on trypsin enzyme activity after toxic insult with 2 mM 
DA. 1 ng of pure trypsin enzyme/HEPES-EGTA was used in a fluorogenic substrate 
assay, as described in section 2.2.6.1., to compare the effect of the toxins on both 
enzymes. The data are from a representative experiment with assays replicated four 
times. 2 mM DA was added directly to the trypsin enzyme in the presence or absence of 
(10-500 μM) vitamin C. Results were calculated as ΔFU/s/μg ± SEM and converted to 
mean % in comparison to controls or antioxidant controls. Statistical analysis was 
carried out using a two-tailed t-test. Statistical significance was accepted when * = 
p<0.05 cf. toxins.  
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4.2.4 Effect of toxins on purified 20S proteasomal subunits 

DA and MPP+ have been shown to reduce 20S proteasome activity when either added 

directly to purified proteasome (section  4.2.1) or to SH-SY5Y cells (section 3.3.2). This 

section investigated whether any specific core subunit of the 20S proteasome is 

particularly affected by MPP+ and DA.  

Purified 20S proteasome (2 μg in 50 mM HEPES, 5mM EGTA pH 8.0) was incubated 

with 2mM MPP+ or DA in phosphate buffer saline (PBS) for 2 h at 37º C prior to 

fractionation by 2D-SDS PAGE as described in section 2.2.9.5. Gels were then silver 

stained (see section 2.2.9.5) or analysed by Western blotting/ immunoprobing (see 

sections 2.2.10.1 and 2.2.10.2) using specific antibodies against 20S proteasome core 

subunits. Membranes were probed/ stripped several times as detailed in section 2.2.10.5.  

Table  4.3 gives a summary of the molecular masses and isoelectric points (pI) of the 

fourteen 20S subunits whilst Figure  4.4 is a 2D electrophoretic reference map for 20S 

subunits (blots taken from Claverol et al., 2002). As can be seen, the pI values range 

from 4.8 to 8.7 and the molecular masses are from 22 to 30 kDa. 
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20S subunit 
Theoretical 

molecular mass (Da) 
Theoretical pI Function 

α5 26,469 4,86 
Catalyse a proteasome 

RNAase activity 

β1 21,862 5,15 PLA active site 

α7 28,302 5,43 Unknown 

β2 25,295 6,09 TLA active site 

β7 24,379 5,76 
PLA  active site 

complementary subunit  

α6 29,556/ 30,108ª 6,90/ 7,28 Unknown 

α1 27,339 7,01 Unknown 

β3 22,930 6,81 Unknown 

α3 29,483 7,95 Unknown 

α2 25,767 7,74 Unknown 

β4 22,836 7,31 
CLA  active site 

complementary subunit 

α4 22,458 8,67 Unknown 

β6 27,887 8,38 
TLA  active site 

complementary subunit 

β5 23,548 8,66 CLA active site 

Table  4.3. Subunit identification of human 20S proteasome purified from 
erythrocytes. The above table shows the theoretical molecular weights and isoelectric 
points of the 14 subunits of the human proteasomal 20S catalytic core. Table taken from 
Claverol et al. (2002) with modifications. Most of the subunits (12 of 14) exhibit several 
isoforms (from 2 to 4). Only subunits α5 and β3 appear as one single spot (see Figure 
4.4). ª = short and long isoform of α6 subunit. 
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Figure  4.4. Two- dimensional electrophoretic reference map of human 20S 
proteasome (Picture taken from Claverol et al., 2000). 20S proteasome from 
erythrocytes (40μg) was separated using a pH 3-10 non linear IPG strip in the first 
dimension followed by a 12.5 % polyacrylamide SDS gel in the second dimension. The 
2D gel was stained with Coomassie Brilliant Blue. All labelled spots were identified by 
MALDI-TOF mass spectrometry and database search. 
 

Figure 4.5 and Table  4.4 show some of the spots which were identified in the 2D-gel by 

MALDI-TOF mass spectroscopy and data base search (performed by Kevin Bailey and 

John Kyte from School of Biomedical Sciences, University of Nottingham Medical 

School, Nottingham, UK). The rest of the spots mapped in Figure 4.6 were identified by 

theoretical molecular weights and pI of the different subunits together with a 

comparison with the refence map available from Claverol et al., (2002; see Figure 4.4). 

 

CONTROL 

 

 

Figure  4.5. Two-dimensional SDS-PAGE of 20S purified proteasome from human 
erythrocytes. 2μg of 20S proteasome were separated using a pH 3-10 non-linear IPG 
strip (1st dimension) followed by a 15 % polyacrylamide SDS gel electrophoresis 
(detailed in section 2.2.9.4). The 2D gel was silver stained as detailed in section 2.2.9.5. 
and all labelled spots were identified by MALDI-TOF mass spectrometry and database 
search. 
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Spot 
number Identification 

Tryptic 
fragments 

(Number of 
fragments/ 
matched 

fragments) 

% 
Sequence 
coverage 

Score Theoretical 
pI 

Theoretical 
MW (Da) 

1 β6 8/8 46 % 93 8.27 26,472 

2 β5 9/10 44 % 101 7.33 23,606 

3 β4 4/4 26 % 51 6.51 22,882 

4 α3 4/6 19 % 36 7.57 29,465 

5 α1 7/8 29 % 68 6.34 27,382 

6 β7 4/4 21 % 49 5.70 25,893 

 Table  4.4. Subunit identification of human 20S proteasome purified from 
erythrocytes. The above table shows the identification of the spots labelled in figure 4.5. 
Identification was performed by MALDI-TOF mass spectrometry and database search. 
Protein score is -10*Log (P), where P is the probability that the observed match is a 
random event. Protein scores greater than 64 are significant, p< 0.05. 

 

Figure 4.6 shows there is no obvious difference in the 20 S subunits when the 

proteasome was treated with 2 mM MPP+ (panel B) or DA (panel C) in comparison to 

control (A). The change in position of the β5 subunit observed in the gels might be due 

to differences between sample batches since it occurred in both, controls and toxin- 

treated samples (see discussion section 4.3.2). Further analysis using Western blotting 

and immunoprobing with specific antibodies against the different proteasome core 

subunits showed that treatment with DA led to a loss of detection of β4 (CLA active site 

complementary subunit), β2  (TLA active site complementary subunit) and β6 (TLA 

active site complementary subunit; panels B, C and D, respectively). On the other hand, 

anti-core subunits antibody revealed that no change occurred in the PLA-associated 

subunits β1 and β7 (panel E). Finally, detection of the α-subunits 1, 2, 3 and 6 was also 

decreased after treatment of the proteasome with DA although no changes in α5/7 

subunits were observed (panel F). MPP+ did not appear to significantly change the 

pattern of any of the subunits in comparison to controls (panels A-F).  
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Figure  4.6. Two dimensional SDS-PAGE of 20S purified proteasome from human 
erythrocytes treated with 2 mM MPP+ and DA. 2 μg of untreated (A), 2 mM MPP+ 
treated (B) and DA treated (C) 20S proteasome were  separated using a pH 3-10 non-
linear IPG strip (1st  dimension) followed by a 15 % SDS polyacrylamide gel 
electrophoresis (detailed in section 2.2.9.4). The 2D gel was silver stained as detailed in 
section 2.2.9.5. All labelled spots were identified by MALDI-TOF mass spectrometry 
and database search or by comparison with established reference maps of human 20S 
proteasome. The experiment was repeated three times obtaining similar spot patterns; 
samples presented in duplicates to demonstrate the reproducibility obtained. 
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A) β5 SUBUNIT (CLA active site) 

               
Sample 1 

   

MPP+ Control DA 

Sample 2 

 

 

B) β4 SUBUNIT (CLA active site supplementary subunit) 

                  Sample 1 

               

MPP+ Control DA 

Sample 2 

 

 

C) β2 SUBUNIT (TLA active site) 

               
Sample 1 

              

MPP+ Control DA 

Sample 2 

 

 

D) β6 SUBUNIT (TLA active site supplementary subunit) 
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Control MPP+ DA 
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E) CORE SUBUNITS α5/α7, β1, β5i, β5, β7 

 

                  

                  

                  

   

 

 

F) ALPHA SUBUNITS α1, 2, 3, 6, 5/7 

 

                                                  

                        

                       

 

 

Figure  4.7. Western blot analysis of 20S core subunits after treatment with 2 mM 
MPP+ and DA. 2 μg of 20S proteasome (untreated or treated with 2 mM MPP+ /DA) 
were  separated using a pH 3-10 non-linear IPG strip (1st  dimension) followed by a 15 
% SDS  polyacrylamide gel electrophoresis (detailed in section 2.2.9.4). Then protein 
was transferred to nitrocellulose membrane by Western blotting and probed with 
antibodies against 20S subunits β5, β4, β2, β6, core subunits (α5/α7, β1,β5i, β5 β7) 
and alpha subunits (α1, 2, 3, 5, 6 and 7). For further information on the antibodies 
utilised in this section see Table 2.5 in section 2.2.10.2.2.  Primary antibody binding 
was detected by ECL method as detailed in section 2.2.10.4. All labelled spots were 
identified by comparing antibodies staining with the theoretical molecular weight and 
pI from established reference maps of human 20S proteasome. The experiment was 
repeated three times obtaining similar spot patterns. 
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4.3 DISCUSSION 

4.3.1 MPTP/ MPP+ and DA have a direct effect on 20S proteolytic 

activities  

Table 4.5 shows a summary of the relative effects of MPP+, MPTP and DA on the 

different 20S proteasomal activities with full statistical analysis. Data confirm that 

toxins can directly affect 20S activity. Overall, the relative sensitivities of the activities 

on the proteasome are as follows:  

         MPP+: CLA > PLA > TLA 

         MPTP: PLA > CLA > TLA 

                                             DA: CLA > PLA > TLA 

However, PLA was more sensitive to high concentrations of MPP+ (ie. 0.5-2 mM) than 

CLA. Importantly, TLA appeared to be the least sensitive activity to the toxins. This is 

consistent with results in the last chapter (see section 3.2.2) which show a lower 

sensitivity of TLA activity in SH-SY5Y cells when treated with MPP+ and DA over a 

period of 72 h. Indeed, TLA from purified 20S was unaffected by MPTP. Overall, 

toxins decreased proteasomal activity in a dose-dependent manner and DA appeared 

more damaging than MPP+ or MPTP to the purified enzyme. In fact, the highest dose of 

DA tested ie.2 mM abolished the three proteasomal activities. This is not surprising 

since DA and its derivates from autooxidation are strong oxidants and it is well-known 

that proteins, and therefore enzymes, can easily be modified resulting in a loss of 

function (Szweda et al., 2002; Grune et al., 2003; Elkon et al., 2004).  In contrast, the 

effects of MPP+ and DA on CLA and PLA were similar in the SH-SY5Y cell model and 

overall MPP+ had a greater effect on these activities than DA, suggesting that the non-

direct effects of MPP+on the proteasome are very deleterious to the cells (see section 

3.2.2). 

To date, this is the first study showing that DA and MPP+ added directly to the 20S 

proteasome can cause a reduction in proteasomal activity.  Several studies refute direct 

effects of certain toxins on the proteasome. For instance, Höglinger et al. (2003) 

excluded a direct inhibition of the proteasome by MPP+ and rotenone by measuring 

CLA in cell extracts exposed for 10 min to low doses of these toxins. However, their 

approach seems incomplete, since the high content of other proteins in the cell extract 
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may be quenching the effect of the toxins on the proteasome ie. the actual amount of 

free toxin in contact with the proteasome might be too low and also the exposure time 

of the lysate to the toxin was very short. This is also the case in very recent study, which 

reports that treatment of a human neuroblastoma cell line (containing a 26S reporter 

system) with several pesticides, including rotenone, reduced 26S proteasome but none 

of these pesticides result in direct impairment of 20S activity (Wang  et al., 2006). 

However, the authors again used cell lysates to monitor the direct effect of these 

pesticides. In addition to the fact that the pesticides were used at low concentrations (ie. 

1-10μM), one could also argue that since cell lysates will contain 26S proteasomes, they 

might not truly be checking the direct effects on the 20S proteasome. Betarbet et al. 

(2006) also found that direct incubation of SK-N-MC cell lysates to 10 μM rotenone 

had no direct effect on proteasomal activity. 
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Concentration 

(μM) 

% 

CLA 

% 

TLA 

% 

PLA 

t-Test CLA 

vs. TLA 

t-Test CLA 

vs. PLA 

t-Test TLA 

vs. PLA 

10  83.4     92.9  88.0 0.1225 0.4138 0.5139 

100 71.4**  83.3  89.8 0.2014 0.0534 0.3497 

500 46.3** 69.9** 31.6** 0.0022 0.0043 3.985E-05 

MPP+ 

2000 43.6** 57.6** 0.3** 0.0665 2.039E-06 1.437E-05 

10  88.9       97.9 65.2** 0.2205 0.0201 0.0010 

100  93.4        97.0 75.5** 0.6576 0.0074 0.0314 

500 66.1**   99.6 11.8** 1.231E-05 1.01E-07 1.132E-09 

MPTP 

2000 29.7**   89.4 0.0** 3.690E-06 3.653E-07 3.085E-07 

10 31.1**   92.2 65.2** 2.299E-08 4.019E-05 0.0003 

100 34.0**   79.4* 72.5** 3.443E-07 0.0004 0.3989 

500 13.2** 0.0** 0.0** 1.214E-10 8.592E-11 0.1091 

DA 

2000 0.3** 0.0** 0.0** 0.4199 1.0110 0.8661 

 

Table  4.5. Comparison of the effects of toxins on the different proteasomal 
activities from commercial 20S proteasome. Results of effects of MPP+, MPTP and DA 
on CLA, TLA and PLA from 20S proteasome purified from human red blood cells. 
Reductions in activity in comparison to controls were considered statistically different 
to controls when * = p<0.05 or ** = p< 0.01 after analysis using a two-tailed t-test. 
Analyses of the differences in the rate values between the three proteasomal activities 
after toxic insult was also performed using a two-tailed t-test. Statistical values are 
presented in the table and values were considered significantly different when p< 0.05. 
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4.3.1.1 Direct effect of the toxins on 20S proteasome is partly due to 

oxidative modification of the proteasome 

It is plausible that the direct effect of the toxins on the 20S proteasome could be due to 

oxidative damage to the proteasome. This was confirmed by incubating the proteasome 

with the toxins in the presence of vitamin C, a well known antioxidant. Since vitamin C 

protected CLA from MPTP, MPP+ and DA toxic insult it is hypothesised that the direct 

effects of the toxins on 20S proteasome is partly due to direct oxidative damage to the 

proteasome itself. Our findings support the study by Shamoto-Nagai et al. (2003), who 

found a decrease in proteasome activity in rotenone-treated cells together with oxidative 

modification of the proteasome itself and aggregation with other proteins. Nevertheless, 

this study did not look at the direct effect of rotenone on 20S activity per se. Moreover, 

Reinheckel et al. (1998) found that several oxidants that appear to play major roles in 

biological systems inhibited the activity of the 20S proteasome in a concentration-

dependent manner. It is noteworthy that in our studies, low doses of vitamin C (10 μM) 

were enough to protect the proteasome from MPTP/MPP+ toxicity whilst higher doses 

(ie. 100 μM) were required to protect the 20S from DA, indicating that DA is a stronger 

oxidant.  

4.3.1.2 The proteasome is slightly more sensitive to DA than a general 

protease 

As discussed before, proteins and therefore proteases are inheritently susceptible to 

oxidative damage but, is the proteasome more susceptible to toxic insult and oxidative 

damage than other proteases? Our results comparing proteasomal TLA with its 

counterpart, trypsin enzyme, indicates that although MPP+ had a similar effect on both 

enzymes, the proteasome was more susceptible to DA insult than trypsin. Since DA is a 

stronger oxidant than MPP+ and MPTP, it seems that the proteasome is more sensitive to 

oxidative damage than the trypsin enzyme. Studies also showed that vitamin C 

protected trypsin enzyme from DA toxicity. It is possible that either the β-subunits 

themselves, the α−subunits, or local factors surrounding the trypsin-like active centre of 

the 20S proteasomal core are more affected by oxidative damage than trypsin.  
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4.3.2 Structural modification of the 20 S α and β subunits by the 

toxins  

Further analysis using 2D-SDS-PAGE fractionation and silver staining did not reveal 

major changes in the position of subunits following exposures to toxins in vitro. Some 

changes were found in the relative position of the β5 subunit, however this change also 

occurred in the control sample suggesting that different batches of 20S proteasome to be 

responsible (as stated in the data sheet of the product (code PW8729; purchased from 

Biomol International, Exeter, UK) batches will vary in their exact composition and 

activities). 

The subunit mapping performed in our 2D gels was initially purely theoretical and 

based on previous data available regarding isoelectric points and molecular weights of 

the different 20S proteasomal subunits. However, the identity of some of the spots was 

confirmed by MALDI-TOF mass spectroscopy (ie. subunits β4-7, α1 and α3). 

Western blotting analysis using specific antibodies against the different subunits of the 

core proteasome complex revealed that several α- and β-subunits were modified by DA 

in a way that the antibodies no longer recognised the epitopes of the proteins. Table 4.5 

summarises the changes in immunoreactivity of the proteasomal subunits following 

toxin treatment. Treatment of the 20S proteasome with 2 mM DA caused a loss in the 

detection of the CLA-related subunit β4; in the TLA-related subunits β2 and β6 but not 

in the PLA subunits (β1 and β7). In contrast, MPP+ caused no change in detection of 

any of the subunits. Thus loss of reactivity did not match loss of activity since all three 

activities were abolished by 2 mM DA and CLA and PLA were abolished by MPP+. DA 

decreased the detection of α1, α2, α3 and α6, whilst no change occurred on α5 and α7. 

Since the α-subunits are thought to play an important role in maintaining the stability of 

the enzymatic complex (DeMartino and Slaughter, 1999; Ferrell et al., 2000), 

modification of these subunits might also be responsible for the loss of activity of the 

20S proteasome. On the other hand, no change in any α-subunit was observed after 

treatment of the proteasome with MPP+.  

The above data suggest that the approach used might either not be detecting more subtle 

changes which may be occurring in the subunits or, such changes occurred in epitopes 

that are not recognised by the antibodies,. Moreover, it was shown in section  4.2.2.2 
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 Subunit DA MPP+ 

CLA active site β5 No effect No effect 

CLA complementary 

subunit 
β4 Loss No effect 

TLA active site β2 Loss No effect  

TLA complementary 

subunit 
β6 Loss No effect 

PLA active site β1 No effect No effect 

PLA complementary 

subunit 
β7 No effect No effect 

α1 Loss No effect 

α2 Loss No effect 

α3 Loss No effect 

α5 No effect No effect 

α6 Loss No effect 

α-subunits 

(stability and 

scaffolding functions) 

α7 No effect No effect 

Table  4.6. Summary of changes in immunoreactivity of 20S proteasomal subunits 
following toxin treatment revealed by immunoblotting. 
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5. EFFECTS OF PD MIMETICS ON NEUROFILAMENT 

TURNOVER 

5.1 INTRODUCTION 

5.1.1 Presence of NFs in LB 

As indicated in the main introduction, LBs contain α- synuclein (Giasson et al., 2000), 

ubiquitin and ubiquitinated proteins (Lowe et al., 1988) and also misfolded tubulin 

(Galloway et al., 1992), components of the UPS (e.g. proteasomal subunits, 

ubiquitination/ de-ubiquitination enzymes and proteasome activators; McNaught et al., 

2002a) and all three NF subunits (Forno et al., 1986, Galloway et al., 1988; Galvin et 

al., 1997). Of the three NF proteins, NF-H and NF-M are most commonly associated 

with LBs (Pollanen et al., 1993), with an abundance of the phosphorylated forms of 

these proteins (Forno et al., 1986; Smith et al., 1991). 

Axonal transport is essential for normal neuronal function, therefore its impairment may 

be damaging to the cell.  Indeed, blockage of axonal transport can lead to the 

development of aberrant inclusions within the cell body, typical of several 

neurodegenerative disorders such as dementia with Lewy bodies, AD or PD (Petzold, 

2005). The presence of both cytoskeletal proteins and ubiquitin / ubiquitinated proteins 

within the LB suggests that impaired protein catabolism (ie. the UPS) might also be 

linked to the abnormal accumulation of these proteins in neurological diseases and in 

particular PD. Indeed, it has been found that normal segregation of highly 

phosphorylated NFs in axons is disrupted in some neurons in pathological states 

associated with perikaryal accumulation of neurofilaments (Hirokawa and Takeda, 

1998; Nixon R.A. 1998; Yabe et al. 2001). Interestingly, phosphorylation of NFs 

promotes their dissociation from kinesin motors (Yabe and Shea, 2000).  

A direct link between aberrations in the cytoskeleton and PD was provided by the 

identification of a point mutation in the gene coding for NF-M in a patient with early-

onset severe PD (Lavedan et al., 2002). However, the relevance of this mutation in PD 

is not clear since Kruger et al. (2003) reported that mutations in the NF-M gene may 

increase susceptibility to develop PD but do not play a major role in the disease. 
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5.1.2 Effect of neurotoxins on NF expression and post-translational 

modifications 

As introduced earlier, aberrant cytoskeletal expression and altered post-translational 

modifications in cytoskeletal proteins are associated with neuropathological processes 

(discussed by D’Andrea et al., 2001) linked with changes in cell morphology and 

possibly with the appearance of protein aggregates (reviewed by Xiao et al., 2006). 

Most current in vitro studies investigating LB-like inclusions are focused on α-

synuclein (Gomez-Santos et al., 2002, 2003, 2005; Matsuzaki et al., 2004) or parkin 

accumulation (Zhao et al., 2003; Muquit et al., 2004); however, very little data are 

available regarding aberrant NF accumulation and phosphorylation in in vitro PD 

models. 

Nevertheless, several in vitro studies have reported that certain toxins can induce 

abnormal accumulation and phosphorylation of NFs. For example, treatment with 

acrylamide and 2,5-hexadione resulted in the accumulation of NFs in the perikarya of 

non-differentiated SH-SY5Y cells (Hartley  et al., 1997). Shea and his co-workers 

reported that aluminium treatment of neuronal cells led to extensive NF-H 

phosphorylation (Shea et al., 1995) forming filamentous inclusions in the perikaryon of 

the cell (Shea et al., 1997).   

Of relevance to PD, Masaki et al. (2000) reported that proteasome inhibition with 

lactacystin over a period of 24 h resulted in an increase in phosphorylated NF-H and 

NF-M, which was associated with increased activities of the stress activated kinases 

JNK but no change in CDK-5 activity in PC12h cells. In addition, in our laboratory, De 

Girolamo et al. (2000) showed that treatment of differentiated mouse N2a 

neuroblastoma cells with subcytotoxic concentrations of MPTP (ie. 10 μM) led to 

increased levels of pNF-H; moreover immunofluorescence analyses revealed that pNF-

H accumulate in the perikaryon suggesting that MPTP treatment altered NF-H 

distribution concomitant with a change in cell morphology.  More recently, this has 

been reported to be associated with a transient increase in JNK activity in the presence 

of sustained ERK activity (De Girolamo and Billett, 2006). However, with high 

concentrations of MPTP (ie. 5 mM) JNK activation is sustained whilst ERK is inhibited 

(De Girolamo and Billett, 2006). 
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5.1.3 Degradation of NFs 

Estimates of the half life of NFs vary between approximately 20 days (Nixon and 

Logvinenko, 1986) and 0.5-1.0 year (Lee and Cleveland, 1996). Their long life makes 

NFs more prone to a build up of damage by oxidative stress and possibly their 

accumulation in pathological states. Phosphorylation of NFs has been reported to 

decrease the susceptibility of NFs to degradation (Sternberg and Sternberg, 1983), 

perhaps due to the fact that pNFs are are poorer substrates for calpain (Pant et al., 

1988).  

Indeed, calcium-activated neutral proteases (i.e. calpains) that locate along the axon are 

thought to be the proteolytic enzymes which primarily mediate NF breakdown, 

suggesting that calpains might play a crucial role in neurodegeneration (Kupina et al., 

2003; Kunz et al., 2004). Both μ- and m-calapins are present in axons (Stys et al., 2002; 

Kupina et al., 2003) and are involved in NF degradation (Nixon, 1986). This is further 

supported by studies suggesting that NFs are degraded by calpains in axons undergoing 

Wallerian degeneration (discussed by Nixon and Logvinenko 1986).  

Lysosomal degradation of NF proteins has also been reported. Indeed, cathepsin D has 

been shown to degrade NFs in rat, bovine and human tissue (Nixon and Marotta, 1984). 

Moreover, it has also been reported that NFs can be cleaved by trypsin and α-

chymotrypsin (Chin et al., 1983; Fasani et al., 2004). 

Finally, limited evidence also involves the UPS with NFs degradation. Gou and 

Leterrier (1995) showed that incubation of purified radiolabeled NFs with a soluble rat 

brain fraction containing the enzymes necessary for ubiquitin dependent degradation of 

proteins resulted in degradation of NFs when ATP and ubiquitin were added.   

5.1.4 Aims of chapter 

Since NFs are one of the major components of LBs and the activity of the UPS is 

reduced in PD, the first aim of this study was to determine whether NFs undergo 

proteasomal degradation, either under normal or under stressed conditions in human 

dopaminergic SH-SY5Y cells. The limited data available about the possible 

proteasomal degradation of NFs were achieved using rat brain homogenates (Gou and 

Leterrier, 1995) and no information is available in human tissues/cells. 
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The role of the proteasome in NF turnover was examined using the specific proteasome 

inhibitor lactacystin and Western blotting. In order to simplify the analysis new protein 

synthesis was inhibited by cycloheximide. The effects of artificially reducing 

glutathione levels to promote a more oxidative environment on NF turnover were also 

studied. 

In previous chapters it is clear that complex I inhibition leads to proteasome 

dysfunction. Previous published work has indicated that (a) complex I inhibition alters 

NF phosphorylation and distribution in a manner that may be relevant for PD (De 

Girolamo et al, 2000; De Girolamo and Billett, 2006) and (b) proteasome inhibitors can 

also affect NF phosphorylation (Giasson and Mushynski, 1995; Masaki et al., 2002). 

Thus the second aim was to study the effect of different concentrations of MPP+ and 

also DA on NF levels and phosphorylation in my human cell model. Moreover, since 

calpain is reported to be the major protease involved in the degradation of NF proteins 

(Stys and Jiang, 2002; Kupina et al., 2003; Kunz et al., 2004) the effect of calpain 

inhibition on mitotic SH-SY5Y cells exposed to high doses of MPP+ and DA was also 

studied.  

Finally, since neurodegeneration is a chronic process and recent work with rotenone 

indicates that, following long-term exposure, insoluble inclusions of synuclein 

accumulate (Sherer et al. 2001), it is of interest to study the effect of chronic exposure 

to low levels of DA and MPP+ on NF profiles and post-translational modifications.  
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5.2 RESULTS 

5.2.1 Neurofilaments can partly be degraded by the proteasome 

Before this study could commence, the effect of treatment of cells with a proteasome 

inhibitor (lactacystin) on endogenous proteasomal CLA was investigated. Although 

recent data suggests that epoxomicin is the most specific proteasomal inhibitor 

(Kisselev and Goldberg, 2005) literature at the time the experiment was performed, 

suggested that lactacystin was the “gold standard” proteasome inhibitor for the purpose 

of the experiment (Fenteany et al.; 1995; Craiu et al.; 1997; Fenteany and Schreiber, 

1998; David et al., 2002). 

Cells were grown in 6-well plates and treated with 1 and 2.5 μM lactacystin for 24h 

prior to extraction and measuring CLA (see sections 2.2.4.4 and 2.2.6.1). Lactacystin at 

2.5 μM virtually abolished CLA and was thus used in subsequent experiments (see 

Table 5.1).  

 

Lactacystin % inhibition SEM 

1 μM 65 % ** 4.235 

2.5 μM  95 % ** 4.881 

 

Table  5.1. Inhibitory effect of lactacystin on endogenous CLA in SH-SY5Y cells. Cells 
were grown in 6-well plates and incubated with growth medium supplemented with/ 
without 1 and 2.5 μM lactacystin for 24 h prior to extraction and measuring CLA as 
described in methods sections 2.2.4.2 and 2.2.6.1. Results were calculated as ΔFU/s/μg 
and converted to mean % inhibition in comparison to control ± SEM. Statistical 
analysis was carried out using a two-tailed t-test and statistical significance accepted 
when ** = p<0.01 cf. controls (n=3).  
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The effects of lactacystin and BSO on NF turnover were then investigated, using 

cycloheximide to inhibit new protein synthesis. Cells were grown in T-25 flasks to 80% 

confluence prior to treatment with fresh growth medium supplemented with 10 μg/ml 

cycloheximide, with or without 2.5 μΜ lactacystin and 2 mM BSO for 24 h, as described 

in Table 5.2. Cells were then extracted (see section 2.2.6.2) their protein content 

estimated (section 2.2.5.1.) and 30 μg protein subjected to SDS-PAGE electrophoresis 

and NFs examined by Western blot analysis (see sections 2.2.8 and 2.2.10). 

 

 TREATMENTS 

Sample name Cycloheximide 

10 μg/ml 

BSO  

2 mM 

Lactacystin  

2.5 μM 

CONTROL + - - 

BSO + + - 

LACT + - + 

LACT + 

BSO 
+ + + 

Table  5.2. Treatments of SH-SY5Y cells for analysis of NF degradation via the 
proteasome. Cells were incubated for 24 h with growth media supplemented with 
different treatments as summarised above.  
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Figure 5.1 shows that BSO, lactacystin or a combination of both had little effect on cell 

morphology and cell growth, compared to the cycloheximide treatment alone after 24 h.  

 

 

                                            

                            A) Cycloheximide 10 μg/ml              B) Cycloheximide 10 μg/ml + BSO 2mM                

                       

                           C) Cycloheximide  10 μg/ m l                     B) Cycloheximide 10 μg/ ml  

                                 + Lactacystin 2.5 μM                             + Lactacystin + BSO 2mM         

 

Figure  5.1. Morphological assessment of SH-SY5Y cells after 24 h treatment with 
cycloheximide (10 μg/ml), lactacystin (2.5 μM) and BSO (2mM). Images were taken 
with a Nikon eclipse TS100 inverted microscope (x 400 magnification). Scale bar 
represents 20 μm. 



CHAPTER V- EFFECTS OF PD MIMETICS ON NF TURNOVER IN SH-SY5Y CELLS 

 

 142

Total NF-H status was studied using the commercial neurofilament 200 monoclonal 

antibody (clone N52). It is said to be phosphorylation independent and therefore does 

not discriminate between phosphorylated and de-phosphorylated epitopes of NF-H. The 

N52 antibody gives rise to a doublet in which the two bands do not always separate. On 

the other hand, specific neurofilament phosphorylation was assessed using SMI 31, 

which detects hyperphosphorylated NF-H and NF-M epitopes (pNF-H and pNF-M, 

respectively). 

Proteasome inhibition by lactacystin led to an increase in total NF-H after 24 h; such 

accumulation was further increased when both lactacystin and BSO were added (Figure 

5.2A). However, proteasome inhibition with lactacystin in the presence or absence of 

BSO did not increase phosphorylated NF-M and NF-H levels or change significantly 

the ratio between these two phosphorylated subunits. In mitotic SH-SY5Y cells the 

normal ratio of pNF-H to pNF-M in control cells averaged at 0.7 (panel B). 
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Figure  5.2. Western blot analysis of NF proteins in mitotic cells after 24 h exposure to 
proteasome inhibitors and/or BSO. Cells were grown in T-25 flasks, treated as detailed 
in table 5.2 for 24h and extracted as detailed in section 2.2.4.1. Proteins were separated 
by SDS-PAGE, transferred to nitrocellulose by western blotting (see sections 2.2.8 and 
2.2.10) and probed with N52 (1:500), SMI 31 (1:1000) and anti total ERK 1/ 2 (1:500). 
Primary antibody binding was detected by alkaline phosphatase(N52 and total ERK; 
see section 2.2.10.3) and ECL (SMI 31; see section 2.2.10.4, respectively) Bands were 
corrected against total ERK (N52 blot) or protein copper staining (SMI31 blot) for 
differences in protein loading and band intensity was quantified as detailed in section 
2.2.10.6. Results are presented as mean % of controls ± SEM or ratio between pNF-H: 
pNF-M ± SEM. Statistical analyses were carried out using a two-tailed t-test and 
statistical significance accepted when * = p<0.05 cf. controls (n=3). Control samples 
were assigned an intensity value of 100 % for N52 or SMI 31 reactivity or 1 for the 
ratio of pNF-H: pNF-M. 
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5.2.2 Changes in NF profiles following exposure to MPP+  

In this section, the effects of different concentrations of MPP+ on NF profiles are 

analysed by Western blotting (see sections 2.2.8 and 2.2.10) and immunoprobing of the 

samples with antibodies against NF proteins (N52 and SMI 31, see sections 2.1.3.1 and 

3.3.10.2). BSO was also used together with the toxin in order to mimic the glutathione 

depletion that occurs in PD. In these experiments cycloheximide was included in the 

growth medium. 

Figure 5.3A shows that BSO, 100 μM MPP+ or both together  did not affect either total 

NF-H levels or total phosphorylated NF-H + NF-M levels in comprison to controls at 

any time tested (ie. 48 and 72 h). However, 100 μM MPP+ increased the ratio of pNF-H: 

pNF-M in comparison to controls; the addition of BSO did not further increase this ratio 

in comparison to the MPP+ treatment.  

When MPP+ was used at 500 μM (Figure 5.3B), in the presence or absence of BSO, 

there was no significant change in total NF-H in comparison to control over 72h. As 

before, BSO alone did not affect NF profiles. However, 500 μM MPP+ with and without 

BSO increased the levels of total phosphorylated NF-H in comparison to controls after 

72h exposure and also the ratio between pNF-H: pNF-M after 48h and 72h.  
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Figure  5.3. Changes in NF profiles after 24, 48 and 72 h exposure to 100 μM and 500 
μM MPP+ in SH-SY5Y cells. Cells were grown in T-25 flasks, treated with 
cycloheximide (10 μg/ml; control) +/- 100 M (panel A)  or 500 μM (panel B) MPP+ 
and/ or BSO for 24, 48 and 72 h. Proteins were extracted (section 2.2.4.1) and 
eparated by SDS-PAGE, transferred to nitrocellulose by western blotting (see sections 
.2.8 and 2.2.10) and probed with N52 (1:500), SMI 31 (1:1000) and anti total ERK 1/ 

2 (1:500). Primary antibody binding was detected by alkaline phosphatase (N52 and 
tal ERK) and ECL (SMI31; section 2.2.10.3 and 2.2.10.4, respectively) and band 

intensity was quantified as detailed in section 2.2.10.6. Bands were corrected against 
tal ERK for differences in protein loading. Results are presented as mean % of 

controls ± SEM or ratio between pNF-H: pNF-M ± SEM. Statistical analyses were 
arried out using a two-tailed t-test and statistical significance accepted when * = 

p<0.05 or ** = p< 0.01 cf. controls (n=3).Control samples were assigned an intensity 
alue of 100 % for N52 or SMI31 reactivity or 1 for the ratio of pNF-H: pNF-M .  
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5.2.3 Changes in NF profiles following exposure to MPP+, DA and 

protease inhibitors 

In this section, the effects of proteasome and calpain inhibitors on NF profiles treated 

with high doses of MPP+ and DA were investigated. As before, cycloheximide was 

included in the growth medium.  

Figure 5.4 shows that inhibition with 2.5 μM lactacystin led to the accumulation of total 

NF-H, this time, after a 72 h treatment. As before, phosphorylated NF-M and NF-H did 

not accumulate with lactacystin and the ratio between pNF-H: pNF-M did not change 

either. Since it was not possible to optimise the fluorogenic assay for measuring calpain 

activity in our cell system, MDL 28,170 (10 μM) was utilised to inhibit endogenous 

calpain activity (based on Wang  et al., 1996; who used MDL 28,170 to inhibit calpain 

in SH-SY5Y cells). As for lactacystin, calpain inhibition with MDL 28,170 resulted in 

accumulation of total NF-H but not phosphorylated NF-M and NF-H.   

Figure 5.4  also shows that 2 mM MPP+ not only increased total levels of pNF-M + 

pNF-H but also the ratio between pNF-H: pNF-M as seen previously with 500 μM 

MPP+. However, 2 mM MPP+ also increased the levels of NF-H, contrary to the 

situation with 500 μM MPP+. Treatment with 500 μM DA decreased both 

phosphorylated and total NF levels. Interestingly, with N52, a smear of NF-H can be 

seen up to the top of the gel in the DA lane, probably due to protein aggregation.  

Addition of lactacystin or MDL 28,170 did not further increase total NF-H , [pNF-H + 

pNF-M] or the ratio between pNF-H:pNF-M in MPP+ treated-cells. However, in DA-

treated cells addition of MDL 28,170 increased total NF-H levels in comparison to the 

DA control.
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Figure  5.4. Effect of proteasome a ition on NF profiles after toxic 
insult. Cells were grown in T-25 flasks, treated with cycloheximide 10 μg/ml (control 
cells) and  2 mM MPP+ or 500 μM DA with or without 2.5 μM lactacystin or 10 μM 
MDL 28,170 for 72 h and extracted as detailed in section 2.2.4.1. Proteins were 
separated by SDS-PAGE, transferred to nitrocellulose by western blotting (see sections 
2.2.8 and 2.2.10) and probed with N52 (1:500) and SMI 31 (1:1000). Primary antibody 
binding was detected by alkaline phosphatase (N52) and ECL (SMI31; section 2.2.10.3 
and 2.2.10.4, respectively) and band intensity was quantified as detailed in section 
2.2.10.6. Bands were corrected against copper staining of the proteins for differences in 
protein. Results are presented as mean % of controls ± SEM or ratio between pNF-H: 
pNF-M ± SEM. Statistical analyses were carried out using a two-tailed t t and 
statistical significance accepted when *  
toxin-treated control =3). Contr tensity value of 100 
% for N52 or SMI31reactivity or 1 for the ratio of F-H NF-M . N.D= not detected 

 

 

nd calpain inhib
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= p<0.05 or ** = p< 0.01 cf. untreated or
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5.2.4 Effects of 100 μM and 2 mM MPP+ on NFs distribution 

munocytochemistry was performed on cells treated with MPP+ for 72 h. Cells were 

xed in methanol and then permeabilised using triton X-100 as detailed in section 

.2.12. The distribution of phosphorylated NF-H and NF-M was visualised by probing 

ith SMI 31. 

efore visualising the NF proteins on the confocal microscope (section 2.2.11), cell 

orphology was studied using a phase contrast microscope. As Figure 5.5A shows, 

orphology between control cells (panel A, top) and 

aining following MPP+ treatment (panel B middle and bottom).   

munocytochemical analysis of cells stained with SMI31 revealed that phosphorylated 
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there were no gross changes in m

cells rem

Im

NF-M and NF-H were evenly distributed in both the cell body and axon-like processes 

(Figure 5.5, top right panel). However, treatment of the cells with either 100 μM or 2 

mM MPP+ resulted in a greater staining in the cell body compared to axon-like 

processes and concentration around the nucleus (Figure 5.5B middle and bottom right 

panel, yellow stain indicates NFs and nuclei to be closely associated). 
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                           A) MORPHOLOGY                          B) SMI31  

                                                                             (FITC+propidium iodide)              
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Figure  5.5. Immunocytochemical analysis of NF proteins in SH-SY5Y cells following 
72 h treatment with MPP+. Figure 5.5A represents cells visualised using phase contrast 
microscopy whilst Figure 5.5B represents confocal laser microscopy analysis. Cells 
were grown and treated with 100 μM or 2 mM MPP+ for 72 h in  permanox 8-well 
chamber slides at a density of 10,000 cells per well. Following treatment cells were 
fixed, permeabilised and immunocytochemistry performed as detailed in section 2.2.12 
using SMI 31 (1:500). Scale bar represents 10 μm. 
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5.2.5 Changes in NF proteins in SH-SY5Y cells following chronic 

exposure to MPP+ and DA 

 the previous section the effects of short exposure to mildly and highly cytotoxic 

oncentrations of MPP+ and DA on NF proteins profiles were investigated. 

 this section, the effects of chronic exposure (3 and 7 weeks) to low concentrations 

0 μM) of MPP+ and DA on the expression and post-translational modification of NF 

roteins are analysed. This may provide a greater resemblance to neurodegeneration in-

ivo. Western blotting/ immunoprobing and immunocytochemical techniques were 

mployed to provide both quantitative analysis of protein expression and distributional 

igure 5.6 shows no significant change in total NF-H levels (N52) following exposure 

 10 μM MPP+ over 7 weeks, whilst DA led to a transient decrease (~17 % in 

omparison to control) in total NF-H levels (N52) after 3 weeks. On the other hand, 

both toxins led to a significant decrease in pNF-M + pNF-H (SMI 31). MPP+ decreased 

mparison to control after 3 and 7 weeks 

spectively. Similarly, DA reduced total NF-H to 59 % and 52 % after 3 and 7 weeks, 

spectively. Finally, no change in the ratio of pNF-H: pNF-M was observed after 3 or 7 

ent with either toxin. The observed ratio between pNF-H and pNF-M was 

1.4 and 2.3 for 3 and 7 week control cells, respectively. 

In

c

In

(1

p

v

e

changes in proteins. 

5.2.5.1 Western blotting analysis of NF profiles after 3 and 7 weeks 

exposure to MPP+ and DA  

The results obtained were different from those reported earlier with shorter exposure 

times. 

F

to

c

total pNF-M + pNF-H to 62 % and 68 % in co

re

re

weeks treatm
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Figure  5.6. Effect of chronic exposure to MPP+ and DA on NF turnover in SH-SY5Y 
cells. Cells were grown in T-25 flasks, treated with 10 μM MPP+ and DA for 3 and 7 
weeks and extracted as detailed in section 2.2.4.1. Proteins were separated by SDS-
PAGE, transferred to nitrocellulose by western blotting (see sections 2.28 and 2.2.10) 
and probed with N52 (1:500) and SMI 31 (1:1000). Primary antibody binding was 
detected by alkaline phosphatase (N52) and ECL (SMI31; section 2.2.10.3 and 2.2.10.4, 
respectively) and band intensity was quantified as detailed in section 2.2.10.6. Bands 
were corrected against copper staining of the proteins for differences in protein. Results 
are presented as mean % of controls ± SEM or ratio between pNF-H: pNF-M ± SEM. 
Statistical analyses were carried out using a two-tailed t-test and statistical significance 
accepted when * = p<0.05 or * ls (n=3). Control samples were 
assigned an intensity value of 100 % for N52 or SMI31reactivity or 1 for the ratio of 
pNF-H: pNF-M.  

 

 

* = p< 0.01 cf. contro
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5.2.6 Immunocytochemical analyses of NF proteins after 3 and 7 

weeks exposure to MPP+ and DA  

munocytochemistry was performed on control, MPP+- and DA- treated cells (7 weeks 

eatment) fixed in methanol and then permeabilised using triton X-100 as detailed in 

ection 2.2.12. The distribution of phosphorylated NF-H and NF-M was visualised by 

robing cells with SMI 31. 

ed using phase contrast microscopy and 

onfocal laser analysis, respectively. There were no significant changes in morphology 

etween control cells (Figure 5.7A top panel) and cells treated with MPP+ (Figure 5.7A 

anels middle and bottom), all containing some axon-like structures.  

Im

tr

s

p

Figure 5.7A and B represent cells visualis

c

b

p

Immunocytochemical analysis of cells showed that distribution of pNF-M and pNF-H 

were uniform in both the cell body and axon-like structures in control cells (Figure 5.7B 

top panel), whilst in cells treated with 10 μM MPP+ and DA, pNF-M and pNF-H 

accumulated in the cell body and there was virtually no staining within the axon-like 

processes (Figure 5.7B middle and bottom panels).  
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                       A) MORPHOLOGY                                          B) SMI31  
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Figure  5.7. Immunocytochemical analysis of NF proteins in SH-SY5Y cells following 
chronic treatment with MPP+ and DA. In fig 5.8A mitotic cells were visualised using 
phase contrast microscopy. Fig 5.8B represents confocal laser microscopy analysis of 
mitotic cells. SH-SY5Y cells were grown in T-25 flasks and treated for 7 weeks with 10 
μM MPP+ and DA and then transferred to  permanox 8-well chamber slides at a density 
of 10,000 cells per well. After overnight recovery cells were fixed, permeabilised and 
immunocytochemistry performed as detailed in section 2.2.12 using SMI 31 (1:500). 
Scale bar represents 10 μM. 
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5.3 DISCUSSION 

.3.1 NFs can partly be degraded by the proteasome 

 this study we report that inhibition of proteasomal activity in human dopaminergic 

H-SY5Y cells led to an accumulation of total NF-H levels suggesting that NF can be 

egraded via the proteasome. Furthermore, depletion of glutathione, an event which is 

een widely reported to occur within the dopaminergic neurons of PD patients, led to 

rther accumulation of  total NF-H levels after proteasome inhibition. Thus, 

luthatione depletion might generate high levels of ROS within the cells which in turn 

ay be modifying NFs making them better substrates for the proteasome. In fact, it has 

een reported that the proteasome complex is responsible for the selective degradation 

Phosphorylated NF-M and NF-H (pNF-M and pNF-H, respectively) did not accumulate 

after proteasome inhibition with lactacystin nor when glutathione levels were depleted, 

suggesting that these phosphoepitopes are not degraded via the proteasome, at least in 

control cells. Previous reports indicated that the main proteolytic pathway involved in 

the degradation of NF proteins to be calpains (Schlaepfer et al., 1985; Ray et al., 2000; 

Stys and Jiang, 2002). However, in my system the calpain inhibitor MDL 28,170 had no 

effect on phosphorylation, suggesting that the phosphoepitopes are not degraded via the 

calpain system either. Indeed, it has been reported that calpains degrade phosphorylated 

NFs at slower rates than dephosphorylated NFs (Pant et al., 1988). Nevertheless my 

results show an increase in total NF-H when calpain activity was inhibited with MDL 

28,170. This was expected since it is well-documented that NFs undergo calpain 

degradation in vivo (Schlaepfer et al., 1985; Ray et al., 2000; Stys and Jiang, 2002; 

Kunz et al., 2004).  
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S

d

b

fu

g

m

b

of modified cytoplasmic, nuclear and endoplasmic reticulum proteins (Davies 2001) and 

that oxidised non-ubiquitinated proteins might be degraded by the 20S proteasome 

(Grune et al., 2003). Thus my data would support the involvement of the UPS in the 

degradation of NFs, in agreement with Gou and Leterrier (1995). Figure 5.8 is an 

attempted overview of the effects of proteasome inhibition on the NF system in SH-

SY5Y cells. 
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th 100-500 μM MPP+ by 48 h. Generally, total NF-H levels and 

with acrylamide or 2,5-hexanedione (Hartley  et al., 1997) or in 

euronal cells after treatment with aluminium (Shea  et al.,  1995). 

 

 

 

 

 

 

Figure  5.8. Overview of the effects of proteasome and calpain inhibition on the NF 
system in control SH-SY5Y cells. 
 

5.3.2 Changes in NF profiles after treatment with toxins 

Table 5.3 summarises the effects of toxins and/or protease inhibition on NF profiles.The 

main finding in this section is an increase in the ratio between pNF-H and pNF-M after 

treatment wi

 Control cells 
 
 
 

               LACTACYSTIN 24h                                                                                                

PROTEASOME ↓
 
         

           
 
 
               
                                 
New protein 
Synthesis  

NF-H oxidation 

↓ glutathione 

Other routes ? pNF-H + pNF-M 
NF-H ↑ 

Calpains 

phosphorylated NF-M and NF-H levels did not increase with these concentrations 

except for the 72 h-treatment with 500 μM MPP+ which led to a 60 % increased in pNF-

M and pNF-H. The increase in the ratio of pNF-H: pNF-M was mainly due to an 

increase in pNF-H, with NF-M levels being maintained. These changes may be a result 

of activation of stress kinases known to occur in response to both complex I inhibition 

(De Girolamo and Billett, 2006) and proteasome inhibition (Masaki et al., 2000). The 

findings that NF phosphorylation and the ratio between pNF-H and NF-M increased 

with doses ≥ 500 μM MPP+ suggest that the relative phosphorylated state of these 

subunits is important in MPP+ toxicity (see Figure 5.9). Indeed, several toxins have been 

reported to induce aberrant phosporylation of NFs in vivo (in LB; Forno et al., 1986) 

and in vitro (De Girolamo et al., 2000; Hartley et al., 1997). For example, increased 

NF-H phosphorylation and NF accumulation has been reported in SH-SH5Y cells 

following treatment 

n
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TIME TREATMENT NF-H pNF-H + pNF-M [pNF-H:pNF-M] Conclusion 

100μM MPP+ = = ↑ (30%) 
48h

100μM MPP+ + BSO = = ↑ (40%) 
 

100μM MPP+ = = ↑ (42%) 
72 h 

100μM MPP+ + BSO = = ↑ (20%) 

100μM MPP+ increases 

ratio of pNF-H: pNF-M; 

no additional effect with 

BSO 

500μM MPP+ = = = 
24 h 

500μM MPP+ + BSO = = = 

500μM MPP+ = = ↑ (20%) 
h 

[pNF-H:p NF-M] by  48 h; 

no additional effect wi

48 
500μM MPP+ + BSO = = ↑ (15%) 

500μM MPP+ = ↑ (60%) ↑ (80%) 
72 

500μM MPP+ increases  

th 

BSO.  

It also leads to an increase 

in phosphorylation of NF-

H + NF-M after 72 h. 
h 

500μM MPP+ + BSO = = ↑ (35%) 

2 mM MPP+ ↑ (18%) ↑ (127%) ↑ (246%) 

LACT + 2mM MPP+ ↑ (21%) ↑ (123%) ↑ (400%) 

LACT ↑ (19%) = = 

MDL 28,170 ↑ (22%) = = 

MDL 28,170 + 2 mM MPP+ ↑ (30%) ↑ (138%) ↑ (325%) 

DA 500 μM ↓ (40%) ↓ (75%) N.D 

DA 500 μM + LACT ↓ (35%) ↓ (63%) N.D 

72 

 

total NF-H levels, pNF-H 

H: 

l 

of 

ed 

er 

ot 

n, 

 in 

h 

DA 500 μM + MDL 28,170 
↓ (15%) 

↑ca DA 
↓ (65%) N.D 

2mM MPP+ increased

+ pNF-M and  [pNF-

pNF-M]; no additiona

effect by the addition 

inhibitors; proteasome 

activity might be involv

in NF degradation aft

MPP+ treatment but n

calpains. 

With DA, increased NF-H 

with calpain inhibitio

thus calpain is involved

degrading NF-H  

Table  5.3. Summary of effects of toxins and/or protease inhibitors on NF profiles. 
Accumulation or decrease in NF are symbolised as ↑ or ↓  resp
change indicated in brackets. No change in NFs is symbolised as =.  N.D refers to not 

ectively with the % 

etermined. d
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Furtherm dy, tre t o Y  2mM +  

increased total NF-H levels after 72 h, this increase might be due to impaired 

proteolysis of NFs via the proteasome since (a) NF-H has been shown to undergo 

proteas  (see s + has 

reduce proteasome activity by 48 h (46 % reduction ca. controls; see section 3.2.4). 

Although it was found that phosphorylated NF-H and NF-M might not undergo 

proteas in con l cells, an

was evident after 72 h treatment with both 500 μM and 2 mM MPP+. Thus it is 
+ leads to the aberrant phosphorylation of NFs, as it has been 

previou irolam et al., 200  and that aber tly phos

may undergo proteasomal degradation. Alternatively, these epitopes a

r tem whose activity is also reduced following MPP  treatm ee 

Figure teasom nor calpai nhibition of cells treated

not further accumulate NFs in comparison to MPP+ treatment on its o

roteasome inhibition (s  has 

be virt th lacta stin by 24 ) but the la fect with the calpain 

inhibitor suggest that calpain is not actively degrading NFs in cells treated with MPP+. 

Following MPP+ treatment (100 μM and 2 mM) pNF-M and pNF-H accu

cell, p the p ar s e Wes anal

treatment with 100 μM MPP+ d no ch ge in total pN H + pNF

the distribution of phosphorylated NF are very subtle. My findings are 

Beck (200  found sphoryl d NF-H and N -M were

e c ed 5Y owing sure 

of MPP+. Indeed, NF phosphorylation is linked to the slowing of NF a

and also promotes their dissociation from otors (Yabe and Shea, 2000). This is 

of interest since it has been found that nor egation of ly pho

in axons is disrupted in some neurons in pathological states associated

accu en kaw keda, 199 ixon R.A.

et al. 2001). 

ed and dephosphorylated NFs. Proteasome inhibition with lactacystin did 

ore, in this stu atmen f mitotic SH-S 5Y cells with MPP  also

omal degradation ection 5.2.1) and (b) 2 mM MPP been shown to 

 

omal degradation tro  increase in these phosphorylated epitopes 

hypothesised that MPP

sly reported (De G o 0), ran phorylated NFs 

re degraded via 
+ ent (sanother p otease sys

5.9A). Neither pro e n i  with 2 mM did 

wn. This is not 

been shown to surprising with the p ince proteasome activity

ually abolished wi cy  h ck of ef

mulated in the 

ysis after 72 h 

-M, changes in 

consistent with 

 located within 

to 5 mM doses 

xonal transport 

redominantly in erinucle ite. Sinc tern blot 

, reveale an F-

4) who also that pho ate F

th ell body in differentiat  SH-SY cells foll 24 h expo

kinesin m

mal segr  high sphorylated NFs 

 with perikaryal 

 1998; Yabe mulation of neurofilam ts (Hiro a and Ta 8; N

Finally, the effects of 500 μM DA on the expression and post-translational 

modifications of NFs were also studied. Results show that DA led to a decrease in 

phosphorylat
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not change levels of total NF-H and [pNF-H + pNF-M] in DA treated cells. However, 

when calpain was inhibited an increase in total NF-H levels was observed in cells 

treated with DA in comparison to DA control. This suggests that calpains may be 

activated by DA and thus make NF-H a preferable substrate for calpain. This hypothesis 

is supported by the finding that that oxidative stress and certain toxins can increase 

intracellular calcium levels thereby increasing calpain activity in cultured cells (Lee 

M.S. et al., 2000). In section 3.2.5.2, it was shown that 100 μM DA increased ROS 

levels in SH-SY5Y cells to a great extent, thus it is likely that DA would activate 

calpains via ROS production. Since 2 mM MPP+ raised ROS levels to a much lesser 

extent than DA, it is hypothesised that MPP+ might not activate calpains as much as DA 

and therefore NFs in MPP+-treated cells might preferably undergo proteasomal 

degradation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) MPP+ treated cells 
 
 
                                                                                                    MPP+ 2 mM                        
                                                                                                            72h 
                                                                                         
 
 

PROTEASOME ↓

 

system. 

 

Figure  5.9. Overview the effects of high levels of MPP+ (A) and DA (B) on the NF 

                              
New protein 
Synthesis  Other routes ↓ ?

(Not calpains) 
pNF-H + pNF-M ↑ NF-H ↑ 

JNK/ 
CDK5 ↑ 

 

 B) DA-treated cells 
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New protein 
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PROTEASOME ↓
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5.3.3 Effect of chronic exposure to low levels of MPP+ and DA on NFs 

levels and distribution 

Finally, since PD is a chronic disorder, the effect of chronic exposure to 10 μM MPP+ 

and DA was also estudied.  Table 5.4 shows a summary of the effects of chronic 

treatment with the toxins on NF levels and phosphorylation linked to the effects of these 

treatments on proteasome activity (data from section 3.3.4).  

Total levels of NF-H were transiently decreased after 3 weeks treatment with DA; at 

this time CLA and PLA were markedly reduced, therefore it is hypothesised that NF-Hs 

were degraded by calpains. This hypothesis is supported by (a) some evidence that DA 

may activate calpains (see section 5.3.2) and (b) the fact that apparent TLA is greatly 

activated after 3 weeks treatment and, as discussed in chapter III, could be due to the 

fact that the substrate for TLA is able to measure calpain activity. However, NF-H 

vels were not affected after 7 weeks treatment with DA.  

o significant changes in total NF-H were observed with MPP+. However, both 

neurotoxins reduced the levels of pNF-M + pNF-H; this could be explained in a number 

f ways. Firstly, as for control cells, phosphorylated NFs might not undergo 

roteasomal degradation (see section 5.2.1) and other routes capable of degrading these 

hosphoepitopes are more active. Secondly, toxins could induce aberrant 

phosphorylation and oxidation of NFs, thus making them more suitable proteasomal 

 This is also a possible explanation since proteasome activity is only reduced 

by 10- 30 % by the toxins over a period of 7 weeks, thus NF-H can still be normally 

egraded by the proteasome.  

inally, no change in the ratio of pNF-H:pNF-M was found after 3 or 7 weeks treatment 

ith these low levels of toxins. However, it is important to note that the ratios in control 

samples were 1.4 and 2.3 for cells cultured for 3 and 7 weeks, respectively. This is the 

pposite of the situation with short term control cells where the mean control ratio was 

.7. Thus, it appears that the ratio of pNF-H: pNF-M increases with time of culture. It 

mains to be checked whether the activity of stress kinase enzymes were altered 

following chronic exposure. 

 

le

N

o

p

p

substrates.

d

F

w

o

0

re

 



CHAPTER V- EFFECTS OF PD MIMETICS ON NF TURNOVER IN SH-SY5Y CELLS 

 

 167

CHAPTER V- EFFECTS OF PD MIMETICS ON NF TURNOVER IN SH-SY5Y CELLS 

 

 167

ca. Controls 
Weeks 

Treatment 

(10 μM) 

 Total  

NF-H 

pNF-H + 

pNF

[pNF-H: 

-M  pNF-M] % CLA % TLA % PLA 

MPP+ = ↓ (38%) = 91.2 91.5 91.9 
3 

DA ↓ (15%) ↓ (32%) = 51.0 426.16 25.7 

MPP+ = ↓ (40%) = 70.0 86.2 52.96 
7 

DA = ↓ (46%) = 81.9 178.7 80.4 

Table 5.4. Summary of the effects of 3 and 7 weeks treatment with 10 μM MPP+ and 
DA on NF levels and phosphorylation. Accumulation or decrease in NF are 
symbolised as ↑ or ↓  respectively with the % change indicated in brackets. No change 
in NFs is symbolised as =.  The data is compared with the effects of chornic exposure to 
toxins on proteasome activity (see section 3.2.6) for a better understanding of the data. 

 

  

 

 

 

 

 

 

 

Chronic exposure (7 weeks) 
 
                                                                                                   
                                                                                         10 μM DA / MPP+ 
                                                                                                   
                                                                                         
      
                                                                                                                                         
  
                              
New protein 
Synthesis  

PROTEASOME ↓
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Other routes ↓?pNF-H + pNF-M ↓ NF-H  

Oxidised NF-H ↑? 

Figure  5.10. Overview of the effects of chronic exposure to 10 mM MPP+ and DA on 
the NF system in SH-SY5Y cells. 
 

The distribution of phosphorylated NF-H and NF-M after chronic treatment (7 weeks) 

of the cells with toxins was also studied. As stated before, it is important to note that 

although my study was performed with mitotic cells, some axon-like structures could 

still be observed in control cells. These axon-like structures were not altered after 7 

eeks treatment with either toxin. Immunocytochemical analysis revealed that in 

control cells, SMI31 staining occurred within the axon-like processes and also in the 

w
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perikarya. However, after tre tment with the toxins SMI31 staining was intense and 

r  to ll b nd do  perinuclear. These results are 

consistent with De Girolamo et al. (2000) and De Girolamo and Billett (2006) who 

foun  accum  of pho horyla H wi n the cell perikary ter tre t 

of mouse neuroblastom ith toxic ncentra  of M he c s 

in the distribution of pNFs might be due to impaired transport of NF proteins within the 

cell, and ma involv in t ation of inclusion bodies seen in several 

neurodegenerative disorders (Petzod, 2005).  

a

estricted  the ce ody a was pre minantly

d ulation sp ted NF- thi on af atmen

a cells w  sub-cyto  co tions PTP. T hange

 y be ed he form



 

 

 

 

 

 

CHAPTER VI 

 

GENERAL DISCUSSION 



CHAPTER VI- GENERAL DISCUSSION 

 

 170

6. GENERAL DISCUSSION 

This thesis has focused in two areas of research regarding the pathogenetic mechanisms 

underlying PD, altered proteasomal activity and changes in NFs after mimicking some 

of the biochemical features of PD by using MPP+ and DA in an in vitro model. 

6.1 EFFECTS OF MPP+ AND DA ON PROTEASOME ACTIVITY  

6.1.1 Role of ATP and ROS in toxin-mediated proteasome impairment 

The causes underlying PD have not yet been fully elucidated, thus a wide amount of 

research is being undertaken in order to determine the specific mechanisms of nigral 

cell death. Recently, UPS impairment is gaining importance in the field as a key event 

contributing to the pathogenesis of both sporadic and familial PD. Moreover, 

impairment of this proteolytic pathway might also be involved in the formation of 

protein aggregates typical of the disease (reviewed by McNaught and Olanow, 2006). 

In this thesis, the effects of MPP+ and DA on proteasomal activity from human 

dopaminergic SH-SY5Y cells were investigated since both toxins are relevant in PD; 

Indeed, MPP+ can reproduce some of the biochemical deficits of PD (reviewed by 

Przedborsky and Vila, 2001) and DA containing neurons are specifically lost in PD. 

Moreover, DA metabolism creates a highly oxidative environment thus increasing the 

vulnerability of these neurons (reviewed by Blum et al., 2001). The contributions of 

ROS and ATP on proteasome impairment were studied since both parameters are 

thought to be important in PD and most previous in vitro work was performed in rat 

cells. This is important since different proteasome subtypes exist in different species, 

tissues and cells (Rivett et al., 2001). 

This study revealed that complex I inhibition by MPP+ and the presence of DA led to a 

reduction in CLA and PLA in the cells. However, TLA activity was not reduced by the 

toxins; in fact, activation of this activity was observed following treatment with low 

doses of MPP+ and high doses of DA, suggesting a compensatory effect of the cells in 

response to oxidative stress. This is the first time that differential proteasome sensitivity 

to the toxins has been reported despite the assessment of the three activities in a limited 

number of human post-mortem PD samples (McNaught and Jenner, 2001; McNaught et 

al., 2003), in rats or SK-N-MC cells chronically treated with rotenone (Betardet et al., 
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2006) and in rodent cells treated with rotenone, MPP+ (Hoglinger et al., 2003) and 6-

OHDA (Elkon et al., 2004).  

The mechanisms triggering MPP+- and DA-mediated proteasome impairment were 

found to be different in SH-SY5Y cells. MPP+ decreased proteasome activity primarily 

via complex I inhibition (ie. ATP depletion) whilst, DA-mediated proteasome 

impairment was a major consequence of oxidative stress (ie. ROS generation) as 

confirmed by the fact that NAC, a precursor for glutathione synthesis and a mild 

antioxidant itself, could counteract the effects of DA on the proteasome linked to the 

recovery of cell morphology. These findings are in agreement with Elkon et al. (2004) 

who found that NAC alleviated proteasome impairment caused by 6-OHDA in an in 

vitro mouse cell model. Moreover, glutathione levels were transiently increased after 

DA treatment, as previously reported by Haque et al. (2003), possibly as a response of 

the cells to oxidative stress. In contrast, NAC did not protect the proteasome against 

MPP+ toxicity. ATP has previously been claimed as the main factor driving proteasome 

impairment after MPP+ and rotenone treatment in rat mesencephalic cell cultures 

(Hoglinger et al., 2003).  

Results in this thesis show that DA is a stronger oxidant than MPP+, since low doses of 

DA generated greater amounts of ROS than high doses of MPP+. However, NAC was 

able to withdraw the ROS generated by both toxins, thus it is tempting to hypothesise 

that ROS might also influence or exacerbate ATP depletion caused by MPP+ thereby, 

further compromising proteasomal function. Indeed in dopaminergic cells, DA plus 

complex I inhibition would exacerbate each others effects. 

It is important to note that short term glutathione depletion on its own might not be 

sufficient to impair CLA, thus other adverse events, notably ATP depletion, might act 

together with ROS in decreasing protesomal function. 

Finally, since PD is a chronic disorder chronic treatment of the cells may give a better 

understanding of the situation in vivo. Interestingly, CLA was also impaired after 3 and 

7 weeks treatment with 10 μM MPP+ and DA. However, PLA and TLA were only 

significantly reduced after 7 weeks treatment suggesting that CLA is more sensitive 

than the other activities; this is consistent with our short exposure data. As before, TLA 

was the least sensitive proteasomal activity to the toxins. The relevance of this finding 
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remains uncertain, since the most important proteolytic activity for protesomal function 

has been reported to be CLA (Jäger et al., 1999).    

Since in this study proteasomal activity was monitored using fluorogenic peptides 

which measure ATP independent 20S activity (from both free 20S and 20S bound to 

regulatory particles), it remains to be determined whether the toxins differently affect 

the 26S proteasome. Furthermore, the effects of the toxins on other proteases, including 

calpains, also needs to be assessed.  

6.1.2 Direct effects of toxins on proteasome activity 

By studying the direct effects of the toxins on purified 20S proteasome and proteasomal 

activities of crude cell extracts, the primary and secondary effects of the toxins on 

proteasome activity were able to be discriminated. MPP+ and DA were shown to 

directly decrease CLA when added to cell extracts, with MPP+ having a greater effect 

than DA. This was the opposite situation to purified 20S samples where DA was more 

damaging than MPP+. This suggests that MPP+ direct effect is more specific towards the 

proteasome whilst DA might be randomly interacting with all the proteins present in the 

cell lysate. It is worth noting, that some the direct effects of the toxins detected via 

measurement via 20S activity in the cell lysates might possibly occurring via damage to 

the regulatory subunits, given that our extraction system contained ATP and would 

conserve at least some 26S particles (Coux et al.,1996). 

Overall, 20S-CLA was more sensitive to MPP+ and DA than 20S-PLA followed by 

20S-TLA. Indeed, MPTP although unable to be metabolised to MPP+ in vitro also 

reduced 20S-CLA and 20S-PLA (this time PLA being more sensitive than CLA) whilst 

TLA was unaffected. It appears than TLA is directly and indirectly less sensitive to the 

toxins than the other two activities. Since addition of an antioxidant could protect 

against toxic insult, the direct effect of the toxins to the proteasome is at least partly due 

to oxidative damage to the multiprotease itself. This is consistent with Shamoto-Nagai 

et al. (2003) who report decreased proteasomal activity in rotenone-treated cells 

associated with oxidative modification of the proteasome.  Therefore, since TLA is the 

least affected activity by the toxins, either TLA catalytic subunits (β2 and β6) or TLA 

regulation (α-subunits) might be less sensitive to oxidative damage or the oxidative 

changes in this subunits might have less impact in the functionality of this activity.  
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The fact that the direct effect of the toxins on the proteasome might be partly due to 

oxidative damage could have consequential effects on the 26S proteasome since is four 

times more vulnerable to oxidative stress than the 20S (Reinheckel et al.,1998). This 

could be related to possible effects on the various regulatory subunits of the 26S 

proteasome. Indeed, McNaught et al. (2003) reported a loss in the α-subunits in SNpc 

of PD patients together with a reduction in the 19S activator and virtually undetectable 

levels of 11S. However, oxidative damage is not solely confined to the regulatory 

subunits since the β-subunits of the 20S are also reported to be targets in SH-SY5Y 

cells (Shamoto-Nagai  et al., 2003).  

Indeed, this thesis shows that CLA (β4), TLA (β2 and β6) and some α-subunits (α1, 

α2, α3 and α6) of the 20S proteasome were modified after treatment with DA. 

However, although MPP+ decreased proteasomal activity this was not detected by 

Western blotting, suggesting that changes in the subunits following MPP+ treatment are 

either more subtle than the ones caused by DA or the epitopes modified by MPP+ are 

different to the epitopes recognised by the antibodies. 

Interestingly, whilst the direct effects of MPP+ on 20S-TLA were very similar to their 

effects on trypsin enzyme, DA was more damaging to the proteasome suggesting that 

some of the oxidative damage could be affecting the non-catalytic subunits which can 

moderate the 20S-TLA. Indeed, as previously discussed, western blotting analysis 

showed that some of the α- subunits were affected by DA.  

The fact that the three PD mimetics used in this study could directly affect 20S activity 

would suggest that chemicals with this type of structure may have direct deleterious 

effects on the UPS in vivo if their concentrations are sufficiently high. Indeed, it has 

been suggested that exposure to environmental toxins/pesticides may be contributing to 

the most common, sporadic form of PD (Liu and Yang 2005;Zhou et al. 2004) This is 

supported by a report that maneb leads to a reduction in proteasome activity (Zhou et al. 

2004). Very recently a paper by Wang et al. (2006) looked at the direct effects of other 

pesticides (including rotenone) on 26S using human neuroblastoma cells with a 26S 

proteasome reporter system and found six pesticides which resulted in reductions in 26S 

activity, some at very low concentrations (10 nM for rotenone). Of the six pesticides, 

rotenone caused oxidative stress, but the others did not (e.g. benomyl, dieldrin, ziram), 

suggesting the involvement of other mechanisms. On the other hand none of the 
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pesticides had a direct effect on 20S proteasomal activity in cell lysates at the 

concentrations tested (maximum 10µM), as also concluded for rotenone in another 

recent study (Betarbet et al. 2006). 

Thus this work adds further support to the suggestion that complex I inhibition/defects, 

whether due to the effects of toxins or due to genetic predisposition, leads to selective 

problems in dopaminergic neurons since the DA is released following ATP depletion, 

causing damage to the proteasome in these cells. It is likely that complex I inhibition in 

non-dopaminergic cells would be less damaging, and in this case ATP depletion rather 

than ROS would be the important determinant of 20S activity. 

Further investigation is required to further confirm that the toxins oxidatively modify 

the 20S proteasomal subunits and to determine whether other possible modifications are 

also occurring. Moreover, it would be of interest to study the direct effects of the toxins 

on purified 26S proteasome. 

6.2 EFFECTS OF MPP+ AND DA ON THE NF SYSTEM  

This thesis demonstrates that NFs can undergo proteasomal degradation in SH-SY5Y 

cells. Moreover, MPP+ altered the expression and distribution of NF proteins. Short 

term exposure to high levels of the toxin led to the accumulation of total NF-H and 

increased NF-H and NF-M phosphorylation in my cell system. This could be a result of 

a decrease in proteasome activity caused by the toxin; moreover, MPP+ might be 

causing aberrant phosphorylation of NF proteins. Indeed, an increase of the ratio in the 

ratio of pNF-H: pNF-M was also observed and might be important in the response of 

the cells to MPP+ toxicity. Although this thesis did not study the kinases responsible for 

elevated NF phosphorylation following MPP+ treatment, it  is possible CDK-5 could be 

involved since it has been reported that oxidative stress can increase CDK-5 activity 

thereby increasing perikaryal NF phosphorylation (Shea  et al., 2004). Alternatively, NF 

phosphorylation could be increased by JNK since it has been reported that proteasomal 

inhibition increased NF-H phosphorylation and JNK activity in PC12h cells (Masaki et 

al., 2000).  

The effects of high doses of DA on NF proteins were also determined, contrary to 

MPP+, DA decreased total NF-H levels and NF-H and NF-M phosphorylation after 72 

h. It is hypothesised that DA is possibly activating calpains. Indeed, calpains are 
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reported to be the major pathway involved in NF degradation (reviewed by Petzold, 

2005) along with further evidence presented in this thesis.  

It is important to note that with high doses of the toxins (i.e 500 μM DA and 2 mM 

MPP+) other factors different to the ones highlighted in this thesis might be also 

activated which might influence both the proteasomal and NF systems in my cell model, 

thus increasing the complexity of the analysis and extrapolation of these data to the in 

vivo situation.  

Similarly to the short time exposure data, chronic exposure of the cells to DA resulted 

in a transient decrease of both total NF-H (again possibly, due to calpain activation), 

whilst no change was observed with MPP+. However, both toxins decreased the levels 

of phosphorylated NFs by 3 weeks probably due to proteasomal degradation since 

proteasome activity was not greatly impaired by chronic exposure to the toxins.  

Furthermore, immunocytochemical analyses revealed that both short and long term 

exposures to MPP+ altered the distribution of NF which localised to the cell body. This 

was also the case in cells chronically treated with DA suggesting that both toxins might 

alter the axonal transport of these cytoskeletal proteins. This is of interest since 

abnormal NF aggregates are pathological hallmarks of many neurodegenerative 

disorders including PD (Julien, 1999).  Moreover, NF proteins are found in LB together 

with ubiquitinated proteins, suggesting that disruption of the UPS might contribute to 

the formation of such aggregates and vice-versa, protein aggregates might also perturb 

proteasomal function by sequestering the UPS components or by overloading the 

proteasome capacity (reviewed by Betardet et al., 2005). A link between LB and NFs 

accumulation or redistribution reported in this thesis is still uncertain and requires 

further investigation, for example immunocytochemical co-localisation studies of NFs, 

synuclein, proteasome subunits and ubiquitin need to be undertaken. To assess the 

significance of changes in NF distribution it will be useful to also study the status of 

other cytoskeletal elements (MTs and MFs) and proteins found associated with 

aggresomes (γ-tubulin and heat-shock proteins).  
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6.3 CONCLUSIONS 

Figure 6.1 integrates the data presented in this thesis and suggests possible links to PD 

pathogenecity. 

In conclusion, this thesis provides further evidence that the UPS in conjunction with 

complex I inhibition and ROS formation might play an important role in PD 

pathogenesis and possibly in protein aggregation which is a common feature not only of 

neurodegenerative disorders but also of ageing. The findings reported in this study can 

be summarised as follows: 

• MPP+ and DA decreased proteasomal activity, ATP and glutathione levels in 

SH-SY5Y cells. MPP+ toxicity towards the proteasome is primarily caused by 

ATP depletion whilst ROS (glutathione depletion) appeared to be the 

determinant in the case of DA.  

• MPP+, MPTP and DA could directly impair the 20S proteasome partly due to 

oxidative damage to the multicatalytic complex.  

• The relative sensitivity of the different proteasomal activities to the toxins in 

both the cells and the 20S was overall: CLA > PLA > TLA.  

• The proteasome seemed more sensitive to DA than trypsin enzyme suggesting 

that the regulatory subunits of the 20S proteasome might also be critical in 

maintaining protesome activity. 

• Several catalytic and non-catalytic subunits of the proteasomal core were 

modified by the toxins. Again TLA was the least sensitive activity to the direct 

effect of toxins.   

• Proteasomal inhibition resulted in accumulation of NF-H levels suggesting 

that these proteins might undergo proteasomal degradation.  

• MPP+ and DA induced changes in the post-translational modification and 

distribution of the NF network.  
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Figure  6.1. Overview of MPP+ and DA effects on UPS and NF system as detailed in 
this thesis and current literature. MPP+ impairs proteasomal activity primarily via 
complex I inhibition whilst DA-mediated proteasome impairment is mainly due to ROS. 
In addition these toxins can directly reduce 20S proteasome activity.  Reduced 
proteasomal function leads to accumulation of NFs (phosphorylated and 
dephosphorylated) in the cell body and are known to be found in LB with other aberrant 
proteins (Gai et al., 2000). Based on published work (reviewed by McNaught and 
Ollanow, 2006) it is likely that proteasome dysfunction leads to protein aggregation of 
other proteins also. 
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