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Abstract

In this paper, we have introduced a novel technique for planning experi-
mental design employing fuzzy rule-based systems. The significant aspect of
the proposed Experimental Design with Fuzzy Levels (EDFLs) is assigning a
membership function for each level of variable factors. Consequently the design
matrix and observed responses can be represented in a set of fuzzy rules. A
number of examples are presented to clarify the proposed idea and the results
are compared with the conventional Taguchi methodology. We have specifically
planned a L1g orthogonal array EDFL for the solder paste printing stage of sur-
face mount printed circuit board assembly to provide a model for the process

and optimize the selection of variable factors.
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1 Introduction

The Taguchi quality control technique is an effective experimental design method for
characterizing the optimal variable parameters and reducing performance variation
for a manufacturing process (Bendell et al., 1989; Grove and Davis, 1992; Taguchi
and Wu, 1980). The experimental design methodology of the Taguchi is distinguished
by utilizing orthogonal arrays and the analysis of signal to noise (S/N) ratio. The
orthogonal array design provides an economic method for studying the interaction of
process variables on the mean and variance of a particular process response.

However, the traditional statistical design of experiment considers a number of
factors at different levels which are measurable either qualitatively or quantitavely.
The factor levels which the experiment has been carried out are representative of
whole system functionality. In general, variable factors can be expressed with some
linguistic terms such as low and high indicating uncertainty of their values. If some of
the factor levels are not measurable, their values should be represented by equivalent
fuzzy terms so that their importance is included in the system response.

This paper presents a new technique of experimental design with fuzzy levels.
Applying this model, a functional equivalence between fuzzy rule-based system and
experimental design will be shown. The functional equivalence enables us to apply
what has been discovered for one to the other and vice versa.

As part of our investigation' to establish a closed loop control system for the solder
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paste printing stage of surface mount printed circuit board (PCB) production, we are
required to identify the quality and characteristic of solder paste deposit on PCB for
disparate variables. It is essential that the printing variables be optimized so that
the resultant solder paste deposit is uniform and with a proper geometry and shape.
Therefore it is required to construct a model representing the relation between system
response (height, area and volume of paste deposit) and variable factors (squeegee
load, viscosity of paste etc.). We have employed the proposed method of EDFL to
formulate a model for the process and optimize the variables.

The subsequent sections of this paper are organized as follows. In Section 2
experimental design with fuzzy levels will be introduced followed by explanation on
fuzzy rule-based systems in Section 3. The functional equivalence between EDFLs
and fuzzy rule-based systems is explained in Section 4. In Section 5 constructing a
model for solder paste printing applying EDFL will be explained. Concluding remarks

are then made in the final section.

2 Experimental Design with Fuzzy Levels

The goal of experimental design methodology is to obtain the best set of variable
factors without exhaustive test. To achieve this goal, an “experimental model” is de-
signed. It allows a mathematical estimation of the effect of each factor independently
from the others through the definition of orthogonal arrays.

There is a well established theory of planning experimental design (Bendell et

al., 1989; Grove and Davis, 1992; Taguchi and Wu, 1980). Primarily it is assumed



that the levels of the variable factors are known. The experiment is usually designed
for two or three levels and occasionally higher order levels. Considering the different
levels of each factor a full factorial or orthogonal array fractional factorial combination
of levels are advised for experimentation. Let us suppose that seven variable factors
with three levels each have to be tested. Comprehensive test lead to 37 = 2187
experiments; but using the orthogonal array, the minimum number of trial needed to
perform is 18.

In order to estimate the optimal level of parameters, the effects of each individual
variable factor is calculated. The principal of orthogonal array states that each value
of a variable factor is opposed to each value of the other factors for the same number
of experiments. The effects of each individual variable factor or their interaction are
calculated to obtain the optimal level of parameters. Using a linear or nonlinear
regressor, we can eventually construct a model representing the relation between
variable factors and yield. The model can be used as a predictor to anticipate the
yield for variable factors between the measured levels.

In this paper we propose to substitute the variable factors with “linguistic variable
factors” (fuzzy variable factors). Linguistic variables are variables whose values are
not numbers but words or sentences in a natural language. For example, the statement,
‘the temperature is hot’ is not as exact as saying ‘the temperature is 40°c’. The label
‘hot” is a “linguistic value”(linguistic label) for the linguistic variable temperature
with the understanding that ‘hot’ is similar to the numerical value 40°c with less
precision.

The linguistic values assigned to each linguistic variable are characterized by their
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Fig. 1. Membership function of variable factors with two levels: (a) temperature T

(b) humidity H.

membership functions (MFs). The MF is a function mapping the range of variable
factor to values between and including 0 and 1 i.e. ppq(temperature) € [01].

The underlying idea of EDFL can be stated as follows:

e The judgement about the yield of product is usually made based on the designed
trial for a few levels of variable factors. It would be useful if we can incorporate
the information of a whole range of variable factors. For instance, consider the
yield of a product which is affected by temperature, T, and humidity, H. If
we plan a two-level experiment, we are only considering the effects of variable
factors in those two levels i.e. T € {11,T2} and H € {H,, Ho}. Instead of

forcing the variable factors to be one of the two specific levels, we can determine



it to belong to a whole range of variable factors with a degree of association i.e.

T e [TI,TQ] and H € [HI,HQ].

e [t is very difficult to involve the information related to the levels of factors which
are not measurable precisely or where there are only qualitative expression
available. To involve linguistic information in experimental design, we have to
provide a proper model to represent this type of information. If some of the
variable factors can not be measured precisely, but still need to use them in the
design and creation of a model of the process, the ultimate approach is to use

fuzzy variable factors.

If we again consider the yield of a product which was affected by temperature, T,
and humidity, H. The levels of variable factors 17,7, and H;, Hy can be fuzzified to
Tl, T, and fN[I, H,. The superscript ~ represents the fuzzy values in contradistinction
to crisp values. The triangular MFs of . (1), pz, (1), g, (H) and pug, (H) replaced
with the known levels Ty, Ty, H, and H, are depicted in Fig. 1(a) and Fig. 1(b) for
the variable factors T and H respectively. They are limited in two lower limit (LL)
and upper limit (UL) bounds.

We assign the maximum grade of membership where the variable factors are in
their known levels i.e. 11,75, H; and H,. The grade will be reduced from the max-
imum as the variable factor moves away from the measured level. Furthermore, if a
linguistic term for the factor levels are available, they can be used in the same fashion.
Fig. 2(a) and Fig. 2(b) illustrate the triangular MFs of fuzzy factors with three levels

Ty, Ty, Ty and H,, H,, H; for the variable factors T and H respectively.
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Fig. 2. Membership function of variable factors with three levels: (a) temperature

T (b) humidity H.

3 Fuzzy Rule-Based Systems

To show the functional equivalence between fuzzy rule-based system and experimental
design with fuzzy levels, in this paper, fuzzy rule-based systems of the following

configuration are employed to represent the relation among linguistic information.

R': If 7, is A7 and ... xj 18 fl; ... and z, is fl;, then 2 is B *

where R’ is the label of i*" rule, xzj: j=1,2,...,pis the 4" variable factor and z is

the output. fl;- (i=1,2,...,nand j = 1,2,...,p) are fuzzy labels, and B’ are real



numbers. n and p are the numbers of rules and variables, respectively. The number
of individual MFs for a specific input value x; (121]1, fl?, fl?) is K. Different shapes
of MF for fuzzy values, A;, can be employed e.g. triangular or Gaussian. We assume
that the universe of variable factors is limited to a lower limit (LL) and upper limit
(UL) bounds, i.e. z; € [LL;, UL;], j=1,...,p.

We further assume that the MFs for each input are normal, i.e. SUP,; fl; =1,z; €

[LL; UL;]. Moreover for each variable factor:

S nala) =1, =12 p (1)
i=1
The output, z(t), at the ¢ trial, as a function of variable factors z;(t) : j =

1,2,...,p, is given in the following equation (Wang and Mendel, 1992):

(2)
where B’ is the consequent parameters of rules and w' is the rule firing strength given

by:

(z;(t)) i=1,2,...,n (3)

It has been proved that fuzzy rule-based systems with the structure given in this
section are universal approximators (Wang and Mendel, 1992), i.e. they are capable
of capturing the nonlinear characteristics of any complex process with n variable
factors. The reader is referred to (Mendel, 1995) for more details on fuzzy rule-based

systems.



4 Functional Equivalence

From the information provided in last two sections it is clear that the EDFL explained
in Section 2 and the fuzzy rule-based systems introduced in Section 3 are functioning
in very similar ways. When MFs are defined for each level of variable factors, the
design factor layout and response data can be presented in a set of fuzzy rules given
in expression (x). Where the variable factors are replaced with linguistic variables z;,
the output z can be substituted with any statistical terms such as average yield, 7,
or signal to noise ration, S/N. The number of individual MF, K;, is the number of
levels considered for each variable factor.

In the following subsection a simple example is presented to clarify the func-
tional equivalence between fuzzy rule-based system and experimental design with

fuzzy levels.

4.1 TIllustrative Example

A simple artificial example is presented to illustrate the EDFL (Lochner and Matar,
1990). Consider a chemical reaction where its yield, g, was thought to be a function
of three variables: Formulation (F), Mixer speed (S) and Temperature (T). An L4
orthogonal array is selected to implement the design factors. The levels selected for
the variable factors are listed in Table 1.

The combination of factor levels to be used for a L, Taguchi orthogonal array
is given in Table 2. The experiment has been replicated 4 times. The last three

columns in Table 2 are respectively the average of the four responses, vy, y2,y3 and



Table 1: Levels selected for variable factors.

Factors

level 1

level 2

F :Formulation || I

S :Speed

T :Temperature || 20°c

50rpm

IT

90rpm

40°c

Table 2: L, design factor layout and response data.

Trial | F S T FS FT ST |y v w3 wyilly S S/N

1 1 1 1 2 2 2 12 12 10 13 || 11.75 | 1.26 | -21.44
2 1 2 2 1 1 2 § 8 15 14| 11.25 | 3.78 | -21.38
3 2 1 2 1 2 1 18 16 14 12 || 15.0 | 2.58 | -23.62
4 2 2 1 2 1 1 14 22 7 5 12.0 | 7.70 | -22.75

Yy, standard deviation of samples, s, and signal to noise ration, S/N, by using the

smaller the better formula. These statistical terms are clearly defined in the following

equations:

S/N =

Ly
Y Yk
N k=1

{

—10log (

1 N

N7 2=k ?)2>

_1k:1

k=1

iyi/N>

where N is number of replication of experiment and y; is the k™ response.

Variable factor F' is a discrete level with two levels I and II. Variable factors S
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Fig. 3. Membership function of variable factors (a) speed (b) temperature.

and T are continous and they are measured in two levels Sy, So and T}, 7T5. They can
be considered as a fuzzy variable with two fuzzy labels Sy, Sy and Ty, T, respectively.
MFs are defined by Gaussian functions and they are depicted in Fig. 3(a) and Fig.
3(b) for variable factor S and T respectively. It should be noted that these MFs
satisfy the normal condition given in Equation (1).

Upon defining the MFs of new linguistic variable factors, the design factor layout
in Table 2 can be presented in a fuzzy rule-based system with 4 rules (n = 4), three
inputs (p = 3) with two individual MFs for each input (K; = K, = K3 = 2). Each
row in the Table 2 represents a fuzzy rule, if we replace each level with its fuzzy value
i.e. Sy with Sp, T; with T} and so on. The following fuzzy rules are replaced with the

L, design factor layout and average yield, ¢, in Table 2.

10



If Fis Typel and S is S; and T is 1) then g is 11.75
If Fis Typel and S is S, and T is Ty then 7 is 11.25
If Fis Type IT and S is S; and T is Ty then 7 is 15.0

If Fis Type Il and S is S, and T is T} then ¢ is 12.0

The above rules can be repeated for standard deviation, s, and signal to noise ration,
S/N, if the output average yield is replaced with the new term.

Employing these fuzzy rules, the effect of each individual factor or their combin-
ation on average yield, standard deviation or S/N ration can be studied easily. For
instance, if we want to see only the effect of T (F', S) on the average yield, g, the

rules representing this experimental design must be rewritten in the following form:

If F and S are anything and T is T} then g is 11.75
If F and S are anything and T is T} then 7 is 11.25
If F and S are anything and T is T, then 7 is 15.0

If F and S are anything and T is T} then g is 12.0

where the values related to F' and S are not important and their MFs are fixed to
“anything”. The MF of “anything” is a constant function with grade of 1 for the
whole range of the variable factor.

If we again employ the decision Equation (2), this effect will be shown for different
values of T. The effect of F'; S and T on average yield are depicted in Fig. 4(a).

To visualize the relation between the average yield, ¥ and fuzzy variables S and

11
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T, a 3D surface is depicted in Fig. 5(a). The surface shows the interaction between
two variable factors. The relation between the variable factors and S/N ratio can be
studied in the same fashion. Fig. 4(b) shows the relationship between S/N ratio and

variable factors F', S and T'. The interaction surface between the signal to noise ratio

(b)

and fuzzy variables S and T is shown in Fig. 5(b).

Fig. 4(a) predicts that variable factors F', S, and T should be set respectively
at levels Type II, S, and Ty to maximize the average yield. In order to minimize
the effects of noise factors on performance characteristics, the S/N ratio must be
maximized. Fig. 4(b) recommends levels Type I, S, and T}. The results obtained from

the EDFL analysis is exactly the same as the results obtained from the traditional

methods.

12
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5 Case Study: Solder Paste Printing

5.1 Process

This case study is an application of fractional factorial EDFL for the solder paste
printing stage of Surface Mount Technology (SMT) (Chung et al., 1995; Ekere et al.,
1994). The solder paste printing process starts by placing a metal stencil over the
printed circuit board (PCB). Stencil openings (apertures) correspond to pad locations
on the PCB where solder paste is required. A moving squeegee is located on top of

the stencil to force the solder paste, rolling in front of the squeegee into the stencil

13



Fig. 6. A schematic of solder paste stencil printing.
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Fig. 7. Membership functions of factor D (volume of solder paste in front of squee-
gee).

openings. When the squeegee has traveled past all stencil openings, the stencil is re-
moved and the PCB is ready for component placement. Fig. 6 illustrates a schematic
diagram of solder paste stencil printing stage of surface mount PCB assembly.

The height, area and volume of the solder paste deposit is ideally, equal to the
shape of the apertures. Solder paste deposit for 1.25 mm pitch? and higher is gener-
ally reliable and close to the ideal shape. The problem arises when fine-pitch elements
(< 0.6 mm pitch) are present on the PCB. Because of the increased height to width
ratio and small aperture opening, it is more likely that incomplete filling will occur
(skipping). The solder paste may also slump due to poor paste viscosity. For the sten-

cil printing process to deliver the best results, a balance of interactive factors must be

2Pitch is the distance between two adjacent pads.
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achieved. There are many factors which can influence stencil printing performances,
either directly or through interaction with other factors. The list of dominant factors

is provided in the next section.

5.2 Choice of Factors

In our experiment, six factors were chosen at three levels each. The factors are listed

in Table 3 and they can be distinguished in different categories as follows:

e Printer related factors
A: squeegee speed

B: squeegee load

e Solder paste related issues
C: viscosity of paste

D: volume of solder paste in front of squeegee

e Environmental factors
E: temperature

F: humidity

The output of the experiment was measured by determining the percentage volume

paste volume
aperturevolume

of solder paste in the stencil aperture ( x 100%). The experiment used

a Lig array with 4 replication (not shown for economy of space). The stainless steel

15



Table 3: Experimental factors and levels for stencil printing.

Level
Factors Level 1 Level 2 Level 3

A: 10 mm/s 60 mm/s 110 mm//sec
B : 10N 15N 20 N

C: 650 Kcps 1000 Kcps 1350 Kcps
D: |small (10 mm ) | medium (=~ 20 mm ) | large (~ 30 mm )
£ 21°c 23° 25°

F: 30% 45% 60%

stencil (thickness 0.6 mm) and metal squeegee were used. The experiment was re-
peated for three different rectangular apertures. They are 0.2 x 1.1 mm (small),
0.3 x 1.4 mm (medium) and 0.6 x 1.3 mm (large).

It is very difficult to measure the volume of solder in front of squeegee (factor D).
We have asked the expert operator to specify three different levels and the measure-
ment is performed only by operator’s observation. This shows the importance of the
EDFL which can easily incorporate the linguistic information. The MFs defined for
these three levels are shown in Fig. 7. To convert the levels of other factors to their
fuzzy values (fuzzify), Gaussian MFs are employed.

After forming the fuzzy rule-base using the Lg orthogonal array for three different
aperture sizes, the effect of each factor is calculated. The affect of each individual
variable factor for the three different apertures are depicted in Figs. 8(a-f). In each

figure, there are three lines, each of which represents a different size of stencil opening.

16
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Fig. 8. Estimated effects of factors on the percentage of deposit volume for three
different apertures: (a) squeegee speed (b) squeegee load (c) viscosity of paste (d)

volume of solder paste in front of squeegee (e) temperature (f) humidity.
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The lowest line is for the small aperture size (0.2 x 1.1), the middle one is for the
medium size (0.3 x 1.4) and the top one is for the large aperture (0.6 x 1.3).

Fig. 8(a) is suggesting that to increase the percentage of deposit volume, the
squeegee speed must be increased. A higher squeegee speed produces an increase in
deposit volume for all three sizes of aperture. The effect of volume of paste in front
of squeegee is shown in Fig. 8(d). It recommends that the volume of paste in front
of the squeegee should be small to maximize the deposit volume.

If it is difficult to conclude a certain decision from the effect of individual variable
factors, the interaction surface of two factors produces more useful information. For
instance Fig. 8(a) identifies only the ideal squeegee speed. When information about
the squeegee load is also required two sets of data should be combined. The interaction
response surface between squeegee load and squeegee speed for 0.2 x 1.1 mm aperture
is shown in Fig. 9(a) and suggests that the load should be kept at a low level and
squeegee speed must be high. The result obtained for squeegee speed confirms the
same decision obtained from the Fig. 8(a) considering only the effect of squeegee
speed. Fig. 9(b) similarly shows the estimated interaction surface between squeegee
load and paste viscosity. It shows that both the squeegee speed and the paste viscosity
should be high to maintain a high volume of paste deposit.

When EDFL is used, it is not necessary to apply a linear or nonlinear regressor
to predict the relationship between variable factors and process parameters, but that
the relationship has been created automatically. The data formed in fuzzy rules
can be used as a model for the process. To produce the model from which the

conditions which maximize the paste deposit volume can be determined, the whole

18
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Viscosity of paste 650 10 Squeegee speed (b)

Fig. 9. Estimated response surface for 0.2 x 1.1 mm aperture: (a) squeegee speed

and squeegee load (b) squeegee speed and viscosity of paste.

data contained in Figures 8(a-f) should be combined.

6 Conclusions

The idea presented in this paper has introduced a generalization of the experimental
design methods. It has shown that simply by substituting the levels of experimental
design with their equivalent fuzzy labels, the experimental procedure can be formu-
lated into a fuzzy rule-base system and a complete interaction surface between the
different parameters generated. A number of examples has been presented which

illustrate the underlining idea of EDFL.
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