3,4-[2,2-Bis(methoxyethoxymethoxymethyl)propylenedithio]-3',4'-(ethylenedithio)tetrathiafulvalene: a spiro-substituted BEDT–TTF analogue

Andrew C. Brooks, Peter Day and John D. Wallis

Acta Crystallographica Section C: Crystal Structure Communications specializes in the rapid dissemination of high-quality studies of crystal and molecular structures of interest in fields such as chemistry, biochemistry, mineralogy, pharmacology, physics and materials science. The numerical and text descriptions of each structure are submitted to the journal electronically as a Crystallographic Information File (CIF) and are checked and typeset automatically prior to peer review. The journal is well known for its high standards of structural reliability and presentation. Section C publishes approximately 1000 structures per year; readers have access to an archive that includes high-quality structural data for over 10000 compounds.

Crystallography Journals Online is available from journals.iucr.org
The crystal structure of the title compound [systematic name: 2-(1,3-dithiolio[4,5-b][1,4]dithiin-2-ylidene)-6,6-bis(methoxyethoxyethoxymethyl)-1,3-dithiolio[4,5-b][1,4]dithiepine], C_{38}H_{30}O_{8}S_{6}, a spiro-substituted BEDT-TTF analogue [BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene], has a strongly bent heterocyclic framework. The seven-membered ring adopts a pseudo-chair conformation with notably widened ring bond angles, especially at the methylene C atoms [119.49 (11) and 117.60 (11)°]. The axial side chain adopts an extended conformation, but the equatorial side chain curls back on itself and the O atom nearest the ring system is involved in three short contacts to H atoms (2.45–2.53 Å). The molecules pack in centrosymmetrically related pairs, which are isolated from each other by columns of the polyether side chains. This study emphasizes the ease of distortion of the neutral bis(propylenedithio)tetrathiafulvalene ring structure, and how the need to accommodate side chains can easily override the tendency of these donor systems to form stacks in the crystalline state.

Comment

The radical cation salts of BEDT–TTF, (1), have shown a wide variety of electrical behaviour (Rovira, 2004), examples being bifunctional materials where conductivity is enhanced with magnetic properties. Particular highlights are the superconductor (BEDT–TTF)_{2}Cu(NCS)_{2} (Williams et al., 1991), the paramagnetic superconductor (BEDT–TTF)_{4}H_{2}O·Fe·(C_{6}H_{3}O)_{2}·C_{4}H_{5}CN (Kurmoo et al., 1995) and the ferromagnetic conductor (BEDT–TTF)_{3}CrMn(oxalate)_{2} (Coronado et al., 2000). A range of substituted BEDT–TTF derivatives has become available (Wallis & Griffiths, 2005), including some with expanded outer rings (Ozturk et al., 2001). We report here the crystal structure of the title donor, (2), which contains one propylenedithio ring with two methoxyethoxymethoxy-

methyl substituents on the central Csp^3 atom. We were interested to see whether the substituents would inhibit the usual packing modes of such donors, in which they pack in one- or two-dimensional stacks. Donors (3) (Karrr et al., 1987; Matsumiya et al., 1993), (5) (Yamada et al., 1997) and (6) (Yang et al., 2008) retain the traditional packing modes, despite the increasing bulk of the substituents, while the racemic tetaethyl donor, (4), does not (Kini et al., 1999).

The molecular structure of compound (2), measured at 120 K, is shown in Fig. 1. Selected bond distances, angles and torsion angles are given in Table 1, and details of the hydrogen bonding are given in Table 2.

The most notable feature is the very pronounced bend in the structure of the organosulfur core. Thus, although the four central S atoms (S3, S4, S5 and S6) are almost coplanar [to within 0.0132 (2) Å], the outer four S atoms are displaced by ca 1 Å to the same side of that plane (Table 3). Formation of the seven-membered ring has led to expansion of the ring bond angles, most notably at the two methylene atoms, C9 and C11 [119.49 (11) and 117.60 (11)°, respectively], as well as at the two sp^2 atoms, C7 and C8 [126.75 (12) and 126.63 (12)°, respectively]. The angles at atoms S7 and S8 are 103.63 (7) and 102.91 (7)°, respectively. The widest angle at the quaternary centre, C10, is also in the ring system [112.07 (13)°]. The bond lengths from S to the methylene C atoms [1.8166 (16)–1.8182 (16) Å] are considerably longer than those to the Csp^2 atoms [1.7485 (15)–1.7511 (16) Å] (see Table 1).

The dihydrothiopine ring adopts a pseudo-chair structure, with the two side chains taking up axial and equatorial positions. The equatorial side chain makes smaller angles [105.49 (12) and 106.23 (12)°] with the adjacent ring C–C bonds than the axial side chain [110.75 (13) and 111.79 (13)°]. The first C–O bonds along each chain are anti to a ring C–C bond [C9–C10–C12–O1 = 178.90 (12) and C11–C10–C17–O4 = –170.24 (13)°]. These two substituents adopt quite different conformations (Table 1) and twist for the most part in the opposite sense to each other. The most notable differences are in the conformations about the (ring-C)–C–O–C bond, with only the axial side chain adopting a fully extended conformation [177.13 (18) cf. –134.64 (14)°], and in the...
conformations about the (−C)—O—C—(CH₂OMe) bond [134.65 (15) cf. 146.78 (14)°] and the only O—C—C—O bond [−75.23 (19) cf. −65.53 (19)°], which, in contrast with the rest of the chain, twist in the same sense. The result is that the axial side chain is much more extended, while the equatorial side chain curls back on itself. The first O atom along the equatorial side chain, O₄, is involved in three close intramolecular contacts to H atoms (Table 2), from the ring system (H9B, 2.53 Å), from the axial side chain (H12A, 2.45 Å) and from within the side chain (H19A, 2.50 Å). The corresponding contacts to atom O₁ of the axial side chain are ca 0.15 Å longer. The acetate linkages involving the third and fourth bonds along each chain have similar gauche conformations about both C—O bonds. The ethylene bridge at the other end of the donor molecule is disordered between two envelope conformations in which one Csp³ atom is displaced strongly to the same side of the plane of the other four atoms of the dithiine ring [C₁ by −0.826 (4) Å and C₂A by −0.70 (1) Å], with the other Csp³ atom lying close to this plane [C₂ displayed by −0.068 (5) Å and C₁A by 0.078 (8) Å].

Only a few structures of this donor system and the closely related TTF fused to two dihydro-1,4-dithiepine rings have been measured, and these carry either two fluoro groups (Dautel & Fournigue, 2000, 2001), two H atoms (Porter et al., 1987), two hydroxymethyl groups (Liu et al., 2004) or a spiro-dioxolane ring (Marshalsay et al., 1993) as substituents in place of polyether side chains. All adopt the pseudo-chair conformation in the seven-membered ring, apart from the bis(hydroxymethyl) derivative, (7), for which O—H···O hydrogen bonding plays an important role in the determination of the crystal structure. Only two of these structures, the unsubstituted bis(dithiepine)–TTF and the analogue of (2) bearing a spiro-dioxolane group on the seven-membered ring, show a similar bending of the donor skeleton to that observed in (2). In all these structures, there is no evidence for conformational disorder in the seven-membered ring, which is in contrast with the six-membered rings in BEDT–TTF and its radical cation salts, and indeed in the structure of (2). Comparison of the two rings of the TTF unit in (2) show that there is little difference in their geometries on fusion to a six- or seven-membered ring; the bonds from S atoms to the seven-membered ring junction are just slightly shorter [1.7587 (16) and 1.7643 (15) Å] than those to the six-membered ring junction [1.7699 (17) and 1.7724 (16) Å] (see Table 1).

In the crystal structure of (2), the molecules are packed in centrosymmetrically related pairs, with the best planes containing the four central S atoms lying ca 3.28 Å apart (Fig. 2). However, these pairs do not stack face-to-face with others, but are isolated from one another. These pairs of molecules lie more or less on edge in the bc plane, with the side chains extending initially in this plane but penetrating into the a and −a directions as the side chains twist, with one side chain much more extended than the other. The side chains cluster together and form columns of polyether groups stacking in the a direction, at the corners and at the centre of the unit cell, and they are separated by the pairs of organosulfur units. Within these clusters there is a short H···O contact (H18A···O3¹ = 2.59 Å; see Table 2 for details). In contrast, the closest related donor is the bis(hydroxymethyl) donor, (7), which forms stacks in the solid state (Liu et al., 2004). However, its 2:1 salt with triiodide contains orthogonal sets of dimers of the donor. Hydrogen bonding of the hydroxyl groups plays an important role in these particular structures.

![Figure 1](image1.png)

Figure 1
A view of the molecular structure of compound (2), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

![Figure 2](image2.png)

Figure 2
The crystal packing of compound (2), viewed along the a axis.

Experimental

Preparative details have been reported previously (Ozturk et al., 2001). Crystals of (2) were obtained by recrystallization from ethanol. Analysis found: C 39.7, H 4.7%; C₂₁H₉₀O₆S₈ requires: C 39.6, H 4.8%.

[¹H NMR (270 MHz, CDCl₃): δ 4.70 (4H, s, 2 × OCH₂O), 3.71 (4H, br s, 6.6-CH₂O), 3.64 (4H, m) and 3.57 (4H, m) (2 × OCH₂CH₂O), 3.39 (6H, s, 2 × CH₃), 3.28 (5'- and 6'-H), 2.75 (4H, s, and 7-H); ¹³C NMR (270 MHz, CDCl₃): δ 129.6 (br, 3a- and 8a-C), 114.6 and 114.1 (2', 3a' and 7a'-C), 109.8 (2-C), 95.7 (OCH₂O), 71.7 and 69.4]
(2 × OCH₂); 69.4 (br, 6.6-CH₂), 66.9 (2 × OCH₂), 59.0 (2 × OCH₃), 44.2 (5- and 7-C), 37.0 (6-C), 30.1 (5’ and 6’-C); IR (KBr, νmax cm⁻¹): 1300, 1244, 1197, 1172, 1137, 1098, 1040, 1012, 892, 864, 847, 837, 770, 722; n(ν) (EI): 634 (M⁺, 100), 606 ([M – CH₂OCH₃]⁺, 18).

Crystal data

<table>
<thead>
<tr>
<th>C₂₂H₄₀O₈S₂</th>
<th>V = 2738.1 (4) Å³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mₐ = 634.93</td>
<td>Z = 4</td>
</tr>
</tbody>
</table>

Monoclinic, P2₁/n

a = 6.8227 (10) Å

b = 19.7775 (4) Å

c = 20.3661 (4) Å

β = 94.9050 (10)°

Data collection

Bruker–Nonius KappaCCD
diffractometer
45147 measured reflections
6272 independent reflections

Absorption correction: multi-scan
(SADABS; Bruker, 2001)
Tmax = 0.85, Tmin = 0.95

Refinement

R[F² > 2σ(F²)] = 0.029
wR(F²) = 0.063
S = 1.04
6272 reflections

Table 1

<table>
<thead>
<tr>
<th>S1</th>
<th>C3</th>
<th>1.7541 (17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1–C1</td>
<td>C4</td>
<td>1.7699 (17)</td>
</tr>
<tr>
<td>S1–C1</td>
<td>C1</td>
<td>1.7617 (16)</td>
</tr>
<tr>
<td>S1–C1</td>
<td>C5</td>
<td>1.7764 (15)</td>
</tr>
<tr>
<td>S2–C2</td>
<td>C6</td>
<td>1.7506 (16)</td>
</tr>
<tr>
<td>S2–C2</td>
<td>C8</td>
<td>1.7511 (16)</td>
</tr>
<tr>
<td>S2–C2</td>
<td>C9</td>
<td>1.8182 (15)</td>
</tr>
<tr>
<td>S3–C3</td>
<td>C7</td>
<td>1.7581 (16)</td>
</tr>
<tr>
<td>S3–C3</td>
<td>C6</td>
<td>1.7845 (16)</td>
</tr>
<tr>
<td>S4–C5</td>
<td>C8</td>
<td>1.8166 (16)</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>D–H···A</th>
<th>D–H</th>
<th>H···A</th>
<th>D–A</th>
<th>D–H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2–H₂A···O₈S</td>
<td>0.99</td>
<td>2.26</td>
<td>3.181 (4)</td>
<td>154</td>
</tr>
<tr>
<td>C9–H₂B···O₄</td>
<td>0.99</td>
<td>2.53</td>
<td>2.951 (2)</td>
<td>106</td>
</tr>
<tr>
<td>C12–H₂A···O₄</td>
<td>0.99</td>
<td>2.45</td>
<td>2.812 (2)</td>
<td>101</td>
</tr>
<tr>
<td>C12–H₂B···O₇</td>
<td>0.99</td>
<td>2.87</td>
<td>3.2839 (17)</td>
<td>106</td>
</tr>
<tr>
<td>C18–H₂B···O₃S³</td>
<td>0.99</td>
<td>2.59</td>
<td>3.528 (2)</td>
<td>154</td>
</tr>
<tr>
<td>C19–H₂A···O₆</td>
<td>0.99</td>
<td>2.50</td>
<td>2.904 (2)</td>
<td>104</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) −x + 2, −y, −z + 1; (ii) −x, −y, −z + 1.

Table 3

<table>
<thead>
<tr>
<th>S1</th>
<th>S7</th>
<th>S8</th>
<th>S6</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.9035 (8)</td>
<td>−1.2026 (7)</td>
<td>−1.0328 (8)</td>
<td>−1.0717 (8)</td>
</tr>
</tbody>
</table>

A 0.664 (7):0.336 (7) disorder between two positions for the C1/ C1A and C2/C2A atoms in the dihydroxazine ring was refined without applying any constraints. All H atoms were placed in calculated positions and treated as riding atoms, with C–H = 0.98–0.99 Å and Uiso(H) = 1.5 or 1.2Ueq(C).

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (Professor M. B. Huskisson, Southampton University, UK) for a data set, and Nottingham Trent University and University College, London, for funding a studentship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SU3017). Services for accessing these data are described at the back of the journal.

References

Brooks et al. • C₂₂H₄₀O₈S₂ o247