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ABSTRACT 

We investigated 1) the relationship between the baseline and inspiratory muscle training 

(IMT) induced increase in maximal inspiratory pressure (PI,max) and 2) the relative 

contributions of the inspiratory chest wall muscles and the diaphragm (Poes/Pdi) to PI,max prior 

to and following-IMT. Experiment 1: PI,max was assessed during a Müeller manoeuvre before 

and after 4-wk IMT (n=30). Experiment 2: PI,max and the relative contribution of the 

inspiratory chest wall muscles to the diaphragm (Poes/Pdi) were assessed during a Müeller 

manoeuvre before and after 4-wk IMT (n=20). Experiment 1: PI,max increased 19% (P<0.01) 

post-IMT and was correlated with baseline PI,max (r=-0.373, P<0.05). Experiment 2: baseline 

PI,max was correlated with Poe/Pdi (r=0.582, P<0.05) and after IMT PI,max increased 22% and 

Poe/Pdi increased 5% (P<0.05). In conclusion, baseline PI,max and the contribution of the chest 

wall inspiratory muscles relative to the diaphragm affect, in part, baseline and IMT-induced 

ΔPI,max. Great care should be taken when designing future IMT studies to ensure parity in the 

between-subject baseline PI,max.  
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1.0 Introduction  

The maximal inspiratory pressure (PI,max) generated during a Müeller manoeuvre reflects the 

volitional force output of the inspiratory muscles working in synergy and is an established 

and reliable measure of global inspiratory muscle strength in health (e.g., Romer and 

McConnell, 2004) and disease (e.g., Larson et al., 1993). Inspiratory muscle training (IMT) 

specifically targets and progressively overloads these muscles and the resulting change in 

PI,max may reflect morphological adaptation of these muscles (Downey et al., 2007) and/or 

changes in inspiratory muscle recruitment patterns. PI,max is frequently reported as an 

outcome measure used to quantify the efficacy of such interventions (Brown et al., 2012).  

 

The between-participant improvements in PI,max following IMT is highly variable ranging 

from ~10% up to ~55% (Brown et al., 2012; Leith and Bradley, 1976; Romer et al., 2002b; 

Volianitis et al., 2001b). It has been postulated that the baseline (i.e. resting and untrained) 

PI,max may explain, in part, the variability in the relative increase in PI,max following IMT 

(Johnson et al., 2007) as the window for physiological adaptation is reduced in participants 

with a greater baseline strength (Kraemer et al., 1996). This notion has gained support from 

studies demonstrating a negative relationship between the baseline and ΔPI,max following IMT 

in healthy and clinical populations (Brown et al., 2008; Winkler et al., 2000). Therefore, 

understanding this relationship may be important when designing IMT-based interventions in 

order to maximise confidence in the outcomes of the intervention. However, this hypothesis 

has yet to be systematically addressed using individuals with a wide range of baseline PI,max 

values and a range of outcome measures. Therefore, the first aim of this study was to 

investigate the relationship between baseline PI,max and the changes in PI,max and a wide range 

of outcome measures including inspiratory muscle endurance and dynamic inspiratory muscle 

function following a period of IMT (Experiment 1). These data aim to provide important 
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methodological guidelines for participant recruitment for future IMT based intervention 

studies which have the potential to influence a large number of research trials (c.f., Illi et al., 

2013).  

 

In addition to the between-participant variability in ΔPI,max following IMT, baseline measures 

of inspiratory muscle strength are also highly variable between individuals. For example, in 

motivated, healthy participants fully familiarised with the Müeller manoeuvre and using the 

same predictive equation (Wilson et al., 1984), some studies report PI,max values ~137% of 

predicted (Johnson et al., 2007) while others, despite the same sex and similar age are 

considerably lower ~90% of predicted (Romer et al., 2002a). The mechanism(s) explaining 

this phenomenon are unknown but may be accounted for by the degree of relative activation 

of the diaphragm and the accessory chest wall inspiratory muscles during inspiratory efforts 

(Hershenson et al., 1989). During maximal inspiratory efforts at greater muscles lengths, the 

weakest inspiratory muscles (i.e., the chest wall muscles) are maximally activated and the 

strongest inspiratory muscle (the diaphragm) is sub-maximally activated (Hershenson et al., 

1988; Nava et al., 1993). However, despite the markedly different intrathoracic pressures 

generated and activation patterns, the relative strengths of these muscles must be equal. If the 

neural activation of the diaphragm was maximal during these efforts, the thoracoabdominal 

configuration would be distorted, thereby reducing respiratory system compliance (Kenyon et 

al., 1997) and increasing the potential for shearing injuries (Hershenson et al., 1988). 

Consequently, increasing the strength of the weaker chest wall inspiratory muscles through 

targeted training should increase their neural activation and maximal force generating 

capacity, resulting in greater activation of the diaphragm and thus increased PI,max 

(Hershenson et al., 1988). Therefore, the second aim of this study was to evaluate the 

relationship between the relative contributions of the chest wall inspiratory muscles and the 
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diaphragm to global inspiratory muscle strength before and after IMT (Experiment 2) in 

attempt to explain the variability in PI,max at baseline and following specific training.  
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2.0 Materials and methods  

 

2.1 Participants 

Following ethics approval and written informed consent, 50 non-smoking, recreationally 

active individuals volunteered for this study. Participants abstained from alcohol, caffeine 

and exercise in the 24 h prior to testing and arrived at the laboratory 2 h post-prandial. All 

laboratory visits were separated by at least 48 h and performed at a similar time of day.  

 

2.2 Experiment 1 

Participants (n=30; age 22.8  6.6 years, body mass 69.9  12.0 kg, stature 1.72  0.07 m) 

were initially familiarised with all testing procedures and subsequently attended the 

laboratory on two occasions prior to and following a 4 wk control period and then following a 

4 wk IMT period; in total visiting the laboratory on 9 occasions (of which two were for 

inspiratory muscle strength measurements during the intervention periods; see Intervention, 

below). In this repeated measures design, the post-control data served as the pre-IMT 

baseline data. During the first visit, participants completed pulmonary and maximal 

inspiratory muscle function tests. In the second visit maximal dynamic inspiratory muscle 

function and inspiratory muscle endurance were assessed.  

 

2.3 Visit 1: pulmonary and maximal inspiratory muscle function 

Pulmonary function was assessed in accordance with published guidelines (ATS/ERS, 2005) 

using a pneumotachograph (ZAN 600USB, Nspire Health, Oberthulba, Germany). The 

pneumotachograph was calibrated prior to all trials with a 3 L syringe according to the 

manufacturer guidelines. PI,max was measured as an index of global inspiratory muscle 

strength using a hand-held mouth pressure meter fitted with a flanged mouthpiece 
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(MicroRPM, Micro Medical, Kent, UK) calibrated over the physiological range using a 

digital pressure meter (Pirani strain gauge, MKS Barathon, MKS Instruments, MA, USA). 

The mouthpiece assembly incorporated a 1 mm orifice to prevent glottic closure and 

minimise the contribution of the buccal muscles during inspiratory efforts. Manoeuvres were 

performed standing, initiated from residual volume (RV), and sustained for at least 1 s. A 

minimum of 3 and maximum of 8 manoeuvres were performed every 30 s, and the maximum 

value of 3 measures that varied by <5% was used for subsequent analysis (ATS/ERS, 2002). 

In addition, the PI,max data was also combined with that of our previous studies for further 

analyses (Brown et al., 2008, 2010, 2012; Johnson et al., 2007) which was collected using 

identical equipment and the procedures stated above. 

 

2.4 Visit 2: Dynamic inspiratory muscle function and inspiratory muscle endurance 

Maximal dynamic inspiratory muscle function was assessed to determine the pressure-flow 

relationship of the inspiratory muscles using a pressure threshold arrangement 

(POWERbreathe
®
, HaB Ltd, UK) as described previously (Romer and McConnell, 2004). 

Inspiratory mouth pressure was measured by a differential pressure transducer (± 400 

cmH2O; TSD104A, BIOPAC systems Inc., California, USA), calibrated over the 

physiological range (Pirani strain gauge, MKS Barathon, MKS Instruments, MA, USA), 

inserted in to the ceiling of the device. Inspiratory airflow was measured using a calibrated 

pneumotachograph (TSD160A Fleisch number 3 Pneumotachograph, BIOPAC systems Inc., 

California, USA) connected distally to the inspiratory port of the device. The pressure and 

flow signals were digitised at 200 Hz and recorded using bespoke software (Acqknowledge 

version 3.7.3, BIOPAC systems Inc., California, USA). Inspiratory pressure at zero flow (P0) 

was measured by closing the inspiratory port of the device and exposing a 1 mm leak to 

prevent glottic closure. Participants performed in random order 3 maximal inspiratory efforts 
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from RV at ~0, 20, 25, 35, 50 and 65% P0 separated by 30 s. The product of inspiratory 

pressure (PI) and flow ( IV ) at each %P0 defined inspiratory muscle power ( IW ). Maximal 

inspiratory flow ( maxVI
 ) and power ( IW max) were calculated from extrapolation of the 

linear pressure-flow relationship and identification of the asymptote of the power-flow 

relationship, respectively. Optimal flow ( optV , L∙s
-1

 and maxV% I
 ) and optimal pressure 

( optP , cmH2O and %P0) were subsequently calculated. The maximal rate of inspiratory 

pressure development (MRPD) was assessed during inspiratory efforts at P0 and was defined 

as the positive peak of the pressure derivative as a function of time.  

 

Incremental threshold loading (ITL) assessed inspiratory muscle endurance using a weighted 

plunger inspiratory pressure threshold device as described previously (Johnson et al., 1996, 

1997). The initial threshold pressure was 10 cmH2O and increased by 5 cmH2O·min
-1

 until 

task failure. Task failure (endurance time) was defined as the inability to maintain tidal 

volume or the target pressure for three consecutive breaths despite verbal encouragement 

(ATS/ERS, 2002). Participants performed the test seated and were required to maintain tidal 

volume at resting levels while breathing frequency and duty cycle were paced by an audio 

metronome (breathing frequency = 15 breaths·min
-1

, duty cycle = 0.5) (Johnson et al., 1997). 

Online integration of inspiratory flow measured using a calibrated Fleisch number 3 

pneumotachograph (TSD160A, BIOPAC systems Inc., California, USA) attached to the 

inspiratory port of the device provided continual visual feedback of the target tidal volume. 

Inspiratory mouth pressure was measured using a differential pressure transducer (± 400 

cmH2O; TSD104A, BIOPAC systems Inc., California, USA), calibrated over the 

physiological range, inserted into the ceiling of the device.  
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2.5 Intervention 

Throughout the 4 wk control period participants performed no IMT. During the 4 wk 

intervention period 30 consecutive maximal dynamic inspiratory efforts were performed 

twice daily over a 4 wk period using a pressure-threshold device (POWERbreathe
®
, HaB Ltd, 

UK) with a training load of 50% PI,max. This protocol is known to be effective in eliciting an 

adaptive response (Brown et al., 2008, 2010, 2012). Each inspiratory effort was initiated from 

RV and participants strove to maximise tidal volume such that task failure was reached at 

around the 30
th

 inspiratory effort. Measurement of PI,max following 2 wk of the intervention 

period permitted the resistance of the device to be adjusted to ensure the appropriate relative 

training load. Participants were instructed to record IMT adherence in a training diary. Post-

intervention trials were conducted at least 48 h following the cessation of the intervention 

period. 

 

2.6 Experiment 2 

Participants were initially familiarized with all testing procedures, divided into a control 

(n=10; age 27.0  4.5 years, body mass 75.0  8.2 kg, stature 1.80  0.08 m) or an IMT group 

(n=10; age 21.3  2.9 years, body mass 72.4  10.1 kg, stature 1.76  0.06 m) and completed 

pulmonary and inspiratory muscle function tests (for protocol see visit 1: Experiment 1). 

Subsequently, prior to and following a 4 wk control period (no IMT) or a 4 wk IMT 

intervention (see Intervention, Experiment 1), PI,max, oesophageal (Poe), gastric (Pga) and the 

transdiaphragmatic pressure (Pdi) were assessed during repeated Müeller manoeuvres. 

Volitional manoeuvres were favoured above non-volitional techniques due to their superior 

between-day (i.e., pre to post intervention) reliability (Hart et al., 2001; Romer and 

McConnell, 2004). Every 30 s, 8 efforts were performed from RV and following a 5 min 

break from functional residual capacity (FRC) in order to minimise the effects of the elastic 
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recoil pressure of the lung and chest wall upon PI,max (ATS/ERS, 2002). During efforts from 

FRC an end-expiratory Poe of approximately -2.0 to -5.0 cmH2O ensured a constant end-

expiratory lung volume (Romer et al., 2007). All efforts were performed while standing to 

minimise the compressive effects of the mediastinal compartment on Poe (Baydur et al., 1982) 

and efforts were performed against a calibrated mouth pressure meter. The device was fitted 

with a flanged mouthpiece (MicroRPM, Micro Medical, Kent, UK) aligned at the mouth 

using a table-mounted clamp. Data were obtained from the maximum Pdi of 3 measures that 

varied by <5% (ATS/ERS, 2002). 

 

2.7 Intrathoracic pressure measurements 

Poe and Pga were measured via two latex nasopharyngeal balloons sealed over a single 

catheter (Milic-Emili et al., 1964) (Nspire health, Oberthulba, Germany). The oesophageal 

and gastric balloons were passed in to the stomach and filled with 1 and 2 ml of air, 

respectively, according to their optimal pressure-volume characteristics. The oesophageal 

balloon was withdrawn until a negative pressure deflection was observed during inspiration 

and then withdrawn a further 10 cm to ensure correct placement within the oesophagus; 

positioning was confirmed using the occlusion technique (Baydur et al., 1982). Participants 

were instrumented with the same catheter during their experimental trials and the internal 

length of the catheter passed in to the participant was recorded on the first trial and repeated 

in all subsequent trials. Each catheter was connected to a differential pressure transducer (± 

400 cmH2O; TSD104A, BIOPAC systems Inc., California, USA) calibrated across the 

physiological range using a digital pressure meter (Pirani strain gauge, MKS Barathon, MKS 

Instruments, MA, USA). The pressure signal was digitised at 200 Hz and recorded using 

bespoke software (Acqknowledge version 3.7.3, BIOPAC systems Inc., California, USA). Pdi 
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was calculated by online subtraction of Poe from Pga. The pattern of relative chest wall muscle 

recruitment was expressed by the Poe/Pdi ratio (Nava et al., 1993). 

 

2.8 Statistical analyses 

Differences between variables were assessed using a paired or independent samples t-test. 

Pearson’s product moment correlation assessed the relationships between selected variables. 

Statistical significance was set a-priori at P0.05. Data are presented as mean  SD unless 

stated otherwise. 
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3.0 Results 

3.1 Experiment 1 

Pulmonary, static and dynamic inspiratory muscle function and inspiratory muscle endurance 

prior to and following the control and intervention periods are shown in Table 1. One 

participant failed to complete the post-IMT measures and their data were omitted from the 

analyses. All variables were unchanged following the control period. Baseline median PI,max 

(% predicted: according to the equation of Wilson et al., 1984) was 156 cmH2O (147%) and 

ranged from 82 (66%) to 278 cmH2O (227%). Throughout the intervention, IMT compliance 

was 87  11% which is similar to previous training studies (Illi et al., 2013). PI,max increased 

19  10% following the intervention (P<0.001, range 6 to 45%) and was negatively 

correlated with the baseline PI,max (n=29; r = -0.373, P<0.05: medium effect; Figure 1A). 

When results were combined with data previously collected within our laboratory the 

relationship improved further (n=67; r = -0.48, P<0.01: large effect; Figure 1B). Pulmonary 

function remained unchanged following IMT and as expected, with the exception of 

maxV% I


 
and %P0, all measures of dynamic inspiratory muscle function were improved 

(P<0.05; Table 1). Baseline PI,max was negatively correlated with the relative increase in 

maxWI
  (r = -0.458, P<0.05) and maxVI

  (r = -0.383, P<0.05). Inspiratory muscle endurance 

increased by 27% following IMT (P<0.05).  

 

3.2 Experiment 2 

Baseline PI,max at RV and FRC and pulmonary function for the control and IMT groups are 

shown in Table 2. Two participants from the IMT group failed to complete the post-

intervention trials and their data were omitted from the analyses. All variables were 

unchanged following the intervention period in the control group. Throughout the 

intervention, IMT compliance was 92  9%. PI,max increased in the IMT group 22  24% at 
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RV (pre: 170  50 cmH2O vs. post: 196  55 cmH2O; P<0.05) and 20  21% at FRC (pre: 

137  30 vs. post: 156  24; P<0.05). Intrathoracic pressures at RV and FRC for both groups 

prior to and following the intervention period are shown in Table 3. Following IMT, Poe 

decreased (i.e. became more negative) (RV: 14  11%, FRC: 18  13%; P<0.01), whereas 

increases were observed in Pdi (RV: 9  9%, FRC: 15  14%; P<0.05) and Poe/Pdi (RV: 5  

5%, RV 3  3%; P<0.05).  

 

Pooled baseline PI,max was positively correlated with pooled baseline Poe/Pdi at RV (r = 0.582, 

P<0.05) and FRC (r = 0.523, P<0.05). Pooled baseline PI,max was also correlated with Pdi at 

both RV (r = 0.561, P<0.05) and FRC (r = 0.515, P<0.05). Following IMT the absolute (r = 

0.707, P<0.05) and relative (r = 0.759, P<0.05) increase in Pdi was correlated with the 

absolute increase in Poe at RV. No relationship was observed however between %ΔPI,max and 

ΔPoe/Pdi following IMT at RV (r = 0.16, P>0.05) and FRC (r = -0.25, P>0.05).  
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4. Discussion  

4.1 Main findings 

The aim of this study was to investigate the determinants of PI,max before and after IMT. In 

Experiment 1, baseline PI,max was negatively correlated with IMT-mediated increases in 

PI,max, maxWI
  and max.VI

 In Experiment 2, although baseline PI,max was positively 

correlated with Poe/Pdi and Pdi, IMT-mediated increases in these measures were not 

correlated.  

 

4.2 Experiment 1 

The negative relationship observed between baseline PI,max and the IMT-mediated increase in 

PI,max (Figures 1A and 1B) suggests that care must be taken to ensure parity in baseline PI,max 

between participants/experimental groups when designing IMT-based interventions. We have 

identified for the first time that the baseline strength of these muscles may affect the efficacy 

(when based on PI,max) of the IMT intervention. This relationship confirms and extends the 

suggestions of previous studies in healthy (Brown et al., 2008) and clinical (Winkler et al., 

2000) populations and may explain the differentiated IMT-induced increase in PI,max observed 

in previous studies (range: 10% to 55%) (Brown et al., 2008, 2010, 2012; Leith and Bradley, 

1976; Romer et al., 2002b; Volianitis et al., 2001b). The large range of %ΔPI,max after IMT 

(>45%) demonstrates the great plasticity of the inspiratory muscles and importantly, that 

these muscles behave similarly to other non-respiratory skeletal muscles during strength 

training. For example, in limb skeletal muscles the physiological potential for adaptation 

following strength training has been shown to be inversely related to the baseline strength; 

therefore, the closer the muscles are to their physiological ceiling, the smaller the potential 

for physiological adaptation (Häkkinen, 1994; Kraemer et al., 1996). However, since baseline 

PI,max explained 23% of the variance in %ΔPI,max (Figure 1B), other factors must also 
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influence the inspiratory muscle training response and this presents an interesting avenue for 

future investigation.   

 

Whilst the existence of a physiological ceiling may explain some of the %ΔPI,max, PI,max is 

also prone to a learning effect (Volianitis et al., 2001a; Wen et al., 1997) probably because of 

the volitional, effort-dependent nature of the Müeller manoeuvre. Thus, as cautioned 

previously (Polkey et al., 2011) participants with lower baseline PI,max may also develop 

greater aptitude with the Müeller manoeuvre during IMT, which is technically very similar. 

Although inspiratory muscle recruitment patterns during IMT have not been examined, 

participants performing repeated inspiratory pressure-threshold loading tests adjust their 

breathing, and thus presumably inspiratory muscle recruitment, pattern in order to optimise 

inspiratory muscle endurance (Eastwood et al., 1998; Roussos et al., 1979). Therefore, some 

of the %ΔPI,max after IMT may also reflect a change in inspiratory muscle recruitment to 

“maximise” PI,max, and this may occur to a greater extent in those with lower baseline PI,max.  

 

4.3 Experiment 2 

Baseline PI,max was positively correlated with both Pdi and Poe/Pdi indicating that diaphragm 

and relative chest wall muscle recruitment are important determinants of PI,max. Diaphragm 

and inspiratory intercostal muscle hypertrophy has been reported after IMT (Downey et al., 

2007; Enright et al., 2006; Ramirez-Sarmiento et al., 2002) and such changes may have 

contributed to the IMT-mediated improvements in inspiratory muscle function observed in 

the present study. Furthermore, the increases in Pdi  (in the absence of a change in Pga) and 

Poe/Pdi during the Müeller manoeuvre after IMT also indicates greater diaphragm activation 

and relative inspiratory chest wall muscle recruitment, respectively. Understanding the nature 

of these increases is, however, complicated due to the complex synergism between the 
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diaphragm and the inspiratory intercostals during inspiration (De Troyer et al., 2005; Roussos 

et al., 1979). Specifically, voluntary activation of the diaphragm during a Müeller manoeuvre 

is dependent on lung volume, such that activation is lowest (80%, although inter-individual 

variability exists) at RV (McKenzie et al., 1996) and increases with increasing lung volume, 

with full activation being achieved at and above FRC (Gandevia et al., 1990; McKenzie et al., 

1996). The submaximal activation of the diaphragm during a Müeller manoeuvre at RV may 

result from reflex inhibition of the phrenic motoneurones (McKenzie et al., 1996) and serve 

to minimise chest wall distortion (De Troyer et al., 2005). Given these observations, the 

increased Pdi measured at RV after IMT in the present study may have been permitted 

because of greater chest wall muscle activation and subsequently less reflex inhibition of the 

phrenic motoneurones.  

 

Reasons for the increased Poe/Pdi after IMT remain somewhat less clear, as does the 

functional significance of this change given the absence of a relationship between %ΔPoe/Pdi 

and %ΔPI,max. The length-tension relationships of the diaphragm and inspiratory intercostals 

are not matched over the vital capacity range (De Troyer et al., 2005) and thus the relative 

loads placed on these muscles during IMT may differ. Indeed, McConnell et al. (2002) 

speculate that IMT imposes a greater relative training load on the inspiratory chest wall 

muscles compared to the diaphragm (McConnell et al., 2002), which might explain, in part, 

our observed increase in Poe/Pdi. However, this suggestion is based on there being 

submaximal diaphragm activation, and greater chest wall muscle recruitment, during a 

Müeller manoeuvre that evokes PI,max, whereas it seems unlikely that such inhibition would 

be seen during IMT at 50% PI,max. Indeed, during submaximal inspiratory loading the 

diaphragm and inspiratory chest wall muscles undergo periodic recruitment and de-

recruitment, which may limit/delay fatigue of these muscles (Roussos et al., 1979). Thus, 
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rather than IMT evoking preferential loading of inspiratory chest wall muscles, an alternative 

explanation is that repeated IMT simply enhanced the participants ability to recruit the 

inspiratory chest wall muscles during loaded inspiratory efforts. This notion could be 

examined in future studies using periodic measures of inspiratory muscle recruitment 

throughout an IMT intervention.  

 

4.4 Conclusions 

This study demonstrates that baseline PI,max is an important, though not the only, determinant 

of the IMT-mediated increase in PI,max and that great care must therefore be taken in 

standardising PI,max when recruiting participants for IMT-based interventions. The IMT-

mediated increases in Pdi and Poe/Pdi during the Müeller manoeuvre indicates that all 

inspiratory muscles are targeted by IMT. Furthermore, the increase in Pdi at RV during the 

Müeller manoeuvre may have been permitted due to greater recruitment of the inspiratory 

chest wall muscles after IMT. Whether IMT-mediated increases in Poe/Pdi reflect a greater 

relative training load placed on the inspiratory chest wall muscles or a shift in recruitment 

strategy remains unknown.  

 



18 

 

References 

ATS/ERS, 2002. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care 

Med 166, 518-624. 

ATS/ERS, 2005. Standardization of spirometry: ATS/ERS Task Force. 2005;26:319–38. 

European Respiratory Journal 26, 319-338. 

Baydur, A., Behrakis, P.K., Zin, W.A., Jaeger, M., Milic-Emili, J., 1982. A simple method 

for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126, 788-

791. 

Brown, P.I., Sharpe, G.R., Johnson, M.A., 2008. Inspiratory muscle training reduces blood 

lactate concentration during volitional hyperpnoea. Eur J Appl Physiol 104, 111-117. 

Brown, P.I., Sharpe, G.R., Johnson, M.A., 2010. Loading of trained inspiratory muscles 

speeds lactate recovery kinetics. Med Sci Sports Exerc 42, 1103-1112. 

Brown, P.I., Sharpe, G.R., Johnson, M.A., 2012. Inspiratory muscle training abolishes the 

blood lactate increase associated with volitional hyperpnoea superimposed on exercise and 

accelerates lactate and oxygen uptake kinetics at the onset of exercise. Eur J Appl Physiol 

112, 2117-2129. 

De Troyer, A., Kirkwood, P.A., Wilson, T.A., 2005. Respiratory action of the intercostal 

muscles. Physiol Rev 85, 717-756. 

Downey, A.E., Chenoweth, L.M., Townsend, D.K., Ranum, J.D., Ferguson, C.S., Harms, 

C.A., 2007. Effects of inspiratory muscle training on exercise responses in normoxia and 

hypoxia. Respir Physiol Neurobiol 156, 137-146. 

Eastwood, P.R., Hillman, D.R., Morton, A.R., Finucane, K.E., 1998. The effects of learning 

on the ventilatory responses to inspiratory threshold loading. Am J Respir Crit Care Med 158, 

1190-1196. 

Enright, S.J., Unnithan, V.B., Heward, C., Withnall, L., Davies, D.H., 2006. Effect of high-

intensity inspiratory muscle training on lung volumes, diaphragm thickness, and exercise 

capacity in subjects who are healthy. Phys Ther 86, 345-354. 

Gandevia, S.C., McKenzie, D.K., Plassman, B.L., 1990. Activation of human respiratory 

muscles during different voluntary manoeuvres. J Physiol 428, 387-403. 

Häkkinen, K., 1994. Neuromuscular adaptation during strength training, aging, detraining and 

immobilization. Critical Reviews in Physical and Rehabilitation Medicine 63, 161-198. 

Hart, N., Sylvester, K., Ward, S., Cramer, D., Moxham, J., Polkey, M.I., 2001. Evaluation of 

an inspiratory muscle trainer in healthy humans. Respir Med 95, 526-531. 

Hershenson, M.B., Kikuchi, Y., Loring, S.H., 1988. Relative strengths of the chest wall 

muscles. J Appl Physiol 65, 852-862. 



19 

 

Hershenson, M.B., Kikuchi, Y., Tzelepis, G.E., McCool, F.D., 1989. Preferential fatigue of 

the rib cage muscles during inspiratory resistive loaded ventilation. J Appl Physiol (1985) 66, 

750-754. 

Illi, S.K., Held, U., Frank, I., Spengler, C.M., 2013. Effect of respiratory muscle training on 

exercise performance in healthy individuals: a systematic review and meta-analysis. Sports 

Med 42, 707-724. 

Johnson, M.A., Sharpe, G.R., Brown, P.I., 2007. Inspiratory muscle training improves 

cycling time-trial performance and anaerobic work capacity but not critical power. Eur J Appl 

Physiol 101, 761-770. 

Johnson, P.H., Cowley, A.J., Kinnear, W.J., 1996. Evaluation of the THRESHOLD trainer 

for inspiratory muscle endurance training: comparison with the weighted plunger method. 

Eur Respir J 9, 2681-2684. 

Johnson, P.H., Cowley, A.J., Kinnear, W.J., 1997. Incremental threshold loading: a standard 

protocol and establishment of a reference range in naive normal subjects. Eur Respir J 10, 

2868-2871. 

Kenyon, C.M., Cala, S.J., Yan, S., Aliverti, A., Scano, G., Duranti, R., Pedotti, A., Macklem, 

P.T., 1997. Rib cage mechanics during quiet breathing and exercise in humans. J Appl 

Physiol 83, 1242-1255. 

Kraemer, W.J., Fleck, S.J., Evans, W.J., 1996. Strength and power training: physiological 

mechanisms of adaptation. Exerc Sport Sci Rev 24, 363-397. 

Larson, J.L., Covey, M.K., Vitalo, C.A., Alex, C.G., Patel, M., Kim, M.J., 1993. Maximal 

inspiratory pressure. Learning effect and test-retest reliability in patients with chronic 

obstructive pulmonary disease. Chest 104, 448-453. 

Leith, D.E., Bradley, M., 1976. Ventilatory muscle strength and endurance training. J Appl 

Physiol 41, 508-516. 

McConnell, A.K., Romer, L.M., Volianitis, S., Donovan, K.J., 2002. Re: Evaluation of an 

inspiratory muscle trainer in healthy humans (Respir Med 2001; 95: 526-531). Respir Med 

96, 129-133. 

McKenzie, D.K., Allen, G.M., Gandevia, S.C., 1996. Reduced voluntary drive to the human 

diaphragm at low lung volumes. Respir Physiol 105, 69-76. 

Milic-Emili, J., Mead, J., Turner, J.M., Glauser, E.M., 1964. Improved Technique for 

Estimating Pleural Pressure from Esophageal Balloons. J Appl Physiol 19, 207-211. 

Nava, S., Ambrosino, N., Crotti, P., Fracchia, C., Rampulla, C., 1993. Recruitment of some 

respiratory muscles during three maximal inspiratory manoeuvres. Thorax 48, 702-707. 

Polkey, M.I., Moxham, J., Green, M., 2011. The case against inspiratory muscle training in 

COPD. Against. Eur Respir J 37, 236-237. 

Ramirez-Sarmiento, A., Orozco-Levi, M., Guell, R., Barreiro, E., Hernandez, N., Mota, S., 

Sangenis, M., Broquetas, J.M., Casan, P., Gea, J., 2002. Inspiratory muscle training in 



20 

 

patients with chronic obstructive pulmonary disease: structural adaptation and physiologic 

outcomes. Am J Respir Crit Care Med 166, 1491-1497. 

Romer, L.M., McConnell, A.K., 2004. Inter-test reliability for non-invasive measures of 

respiratory muscle function in healthy humans. Eur J Appl Physiol 91, 167-176. 

Romer, L.M., McConnell, A.K., Jones, D.A., 2002a. Effects of inspiratory muscle training on 

time-trial performance in trained cyclists. J Sports Sci 20, 547-562. 

Romer, L.M., McConnell, A.K., Jones, D.A., 2002b. Inspiratory muscle fatigue in trained 

cyclists: effects of inspiratory muscle training. Med Sci Sports Exerc 34, 785-792. 

Romer, L.M., Miller, J.D., Haverkamp, H.C., Pegelow, D.F., Dempsey, J.A., 2007. 

Inspiratory muscles do not limit maximal incremental exercise performance in healthy 

subjects. Respir Physiol Neurobiol 156, 353-361. 

Roussos, C., Fixley, M., Gross, D., Macklem, P.T., 1979. Fatigue of inspiratory muscles and 

their synergic behavior. J Appl Physiol Respir Environ Exerc Physiol 46, 897-904. 

Volianitis, S., McConnell, A.K., Jones, D.A., 2001a. Assessment of maximum inspiratory 

pressure. Prior submaximal respiratory muscle activity ('warm-up') enhances maximum 

inspiratory activity and attenuates the learning effect of repeated measurement. Respiration 

68, 22-27. 

Volianitis, S., McConnell, A.K., Koutedakis, Y., McNaughton, L., Backx, K., Jones, D.A., 

2001b. Inspiratory muscle training improves rowing performance. Med Sci Sports Exerc 33, 

803-809. 

Wen, A.S., Woo, M.S., Keens, T.G., 1997. How many maneuvers are required to measure 

maximal inspiratory pressure accurately. Chest 111, 802-807. 

Wilson, S.H., Cooke, N.T., Edwards, R.H., Spiro, S.G., 1984. Predicted normal values for 

maximal respiratory pressures in caucasian adults and children. Thorax 39, 535-538. 

Winkler, G., Zifko, U., Nader, A., Frank, W., Zwick, H., Toifl, K., Wanke, T., 2000. Dose-

dependent effects of inspiratory muscle training in neuromuscular disorders. Muscle Nerve 

23, 1257-1260. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

Table 1 Experiment 1: Inspiratory muscle strength, pulmonary function, dynamic inspiratory 

muscle function and inspiratory muscle endurance prior to (Baseline) and following the 4 wk 

control period (Post-control/pre-IMT) and following 4 wk inspiratory muscle training (Post-

IMT).  

 Baseline Post-Control  / 

pre-IMT 

Post-IMT 

Maximal inspiratory pressure and pulmonary function 

PI,max (cmH2O) 147  48  149  45 174 ± 48* 

FVC (L) 4.67  0.86  4.68  0.89 4.70  0.89 

FEV1 (L) 3.89  0.69  3.84  0.74 3.84  0.74 

FEV1/FVC (%) 83.6  6.5  82.3  6.9 82.2  6.7 

PEF (L∙s
-1

) 8.39 ± 1.76  8.38  1.77 8.46  1.87 

MVV10 (L∙min
-1

) 152.5  36.3  154.4  37.1 158.7  38.4 

Dynamic inspiratory muscle function and inspiratory muscle endurance 

P0 (cmH2O) 143 ± 41 150 ± 43 172 ± 49* 

maxVI
  (L·s

-1
) 7.26 ± 1.44 7.16 ± 1.43 7.55 ± 1.35* 

maxWI
  (cmH2O·L

-1
·s

-1
) 246.7 ± 94.8 244.1 ± 89.4 328.8 ± 109.0* 

optV  (L·s
-1

) 3.70 ± 0.70 3.64 ± 0.73 3.82 ± 0.78* 

optP  (cmH2O) 64.1 ± 18.3 66.5 ± 16.5 83.6 ± 22.0* 

% maxVI
  (%) 50.5 ± 5.3 50.9 ± 3.6 50.5 ± 4.6 

% max0P  (%) 44.9 ± 7.0 48.6 ± 5.3 49.2 ± 6.1 

MRPD (cmH2O·ms
-1

) 0.51 ± 0.19 0.47 ± 0.17 0.76 ± 0.69* 

ITL (min) 13.58 ± 4.98 13.43 ± 5.30 16.03 ± 4.76* 

Values are expressed as means  SD. * P<0.05 vs. post-control. For abbreviations see methodology, Experiment 

1. 
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Table 2 Experiment 2: Baseline inspiratory muscle strength and pulmonary function of the 

control and inspiratory muscle training (IMT) groups.  

 Control IMT 

PI,max RV (cmH2O) 155  44  170  50  

PI,max FRC (cmH2O) 148  408  137  30 

FVC (L) 5.43  0.92  4.92  0.66  

FEV1 (L) 4.22  0.78  3.92  0.77  

FEV1/FVC (%) 77.7  7.4 79.3  6.4  

PEF (L∙s
-1

) 10.04  1.81  8.43  1.64  

MVV10 (L∙min
-1

) 186.1  36.4  172.4  41.0  

* P<0.05 between groups. For abbreviations see methodology, Experiment 1. 
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Table 3 Experiment 2: Intrathoracic pressures during a Müeller manoeuvre in the control and 

IMT groups prior to and following the intervention period. 

 RV pre RV post FRC pre FRC post 

Control Group  

Poe (cmH2O) -129.3  46.0 -129.7  52.3 -132.0  36.4 -133.2  39.2 

Pga (cmH2O) 20.8  24.8 23.8  23.6 29.7  22.0 27.6  18.5 

Pdi (cmH2O) 150.0  40.8 153.6  36.9 161.8  41.8 160.8   43.8 

Poe/Pdi (%) 85.2  85.1 84.8  18.2 82.2  13.3 83.4  11.8 

IMT Group  

Poe (cmH2O) -126.3  20.0 -144.6  29.9** -117.2  26.9 -136.8  31.5** 

Pga (cmH2O) 28.8  27.1 24.6  23.9 35.6  24.9 31.2  28.3 

Pdi (cmH2O) 152.1  32.7 166.7  39.9* 147.8  33.3 168.0  35.2* 

Poe/Pdi (%) 84.4  10.1 88.3  12.2* 80.4  14.0 82.6  14.5* 

* P < 0.05 and ** P < 0.01 vs. pre. Poe = oesophageal pressure; Pga = gastric pressure; Pdi = transdiaphragmatic 

pressure. 
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Figure captions 

 

 
 

Figure 1 Relationship between baseline maximal inspiratory pressure (Baseline PI,max) and 

the relative change in PI,max (PI,max) following 4 wk inspiratory muscle training with (A) 

data from Experiment 1 [n=29] and (B) data from Experiment 1 combined with data from our 

previous studies [n=67] (Brown et al., 2008, 2010, 2012; Johnson et al., 2007). An 

exponential model fit was used in both (A) and (B). 


