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The relaxed and unrelaxed formation energies of neutral antisites and interstitial defects in InP are calculated
usingab initio density functional theory and simple cubic supercells of up to 512 atoms. The finite-size errors
in the formation energies of all the neutral defects arising from the supercell approximation are examined and
corrected for using finite-size scaling methods, which are shown to be a very promising approach to the
problem. Elastic errors scale linearly, while the errors arising from charge multipole interactions between the
defect and its images in the periodic boundary conditions have a linear plus a higher order term, for which a
cubic provides the best fit. These latter errors are shown to be significant even for neutral defects. Instances are
also presented where even the 512 atom supercell is not sufficiently converged. Instead, physically relevant
results can be obtained only by finite-size scaling the results of calculations in several supercells, up to and
including the 512 atom cell and in extreme cases possibly even including the 1000 atom supercell.
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I. INTRODUCTION

Over the past decade or so first principles density func-
tional theory(DFT)1 has become a powerful tool for study-
ing the properties of defects in semiconductors. It is possible
to calculate formation energies, binding energies and migra-
tion barriers, to predict local structure and, up to a certain
point, defect levels and electrical activity. Problems and limi-
tations remain, however, and one of the greatest is the very
limited size of the systems for which calculations are fea-
sible: 10s or 100s of atoms, even when we wish to describe
physical problems involving 1000s or 10 000s. This leaves
the results heavily influenced by errors arising from the
boundary conditions. These errors must therefore be care-
fully studied so that their effects can be understood and ac-
counted for when results are interpreted. There are two types
of boundary conditions commonly used: open and periodic.
Open boundary conditions are usually encountered in cluster
calculations. The surface atoms are “terminated” with hydro-
gen to use up spare electrons, but are otherwise surrounded
by empty space. Periodic boundary conditions(PBCs),
meanwhile, are found in supercell calculations, in which a
block of atoms is surrounded not by empty space but by an
infinite array of copies of itself. Both approaches have
strengths and weaknesses. We present here a detailed study
of the problems arising from the use of the supercell approxi-
mation and we propose a method to overcome them.

Finite-size errors in supercell calculations come from two
main sources. Elastic errors often arise because the supercell
is simply not large enough to contain all of the local relax-
ation around the defect, leaving calculated formation ener-
gies too high. In addition, the defect interacts with an infinite
array of spurious images of itself seen in the PBCs, via both
elastic and electrostatic interactions. The direct elastic inter-
actions can easily be truncated by freezing all atoms lying on

the surface of the cell at their ideal lattice positions. The
electrostatic interactions, on the other hand, cannot be trun-
cated or removed. They result in errors in the calculated
formation, binding and migration energies, errors which can
be on the same order as the energies themselves. For practi-
cal supercell sizes they need not even be negligible for neu-
tral defects, since dipolar and quadrupolar interactions can
remain significant. These latter can even result in errors in
the calculated structures, since they favor certain symmetries
and local relaxation modes over others. Hence indirect elas-
tic errors cannot be avoided either. Finally, a third source of
finite-size errors is also present: The defect state wave func-
tions can overlap with their images in the PBCs leading to a
spurious dispersion of the defect levels which in turn can
affect the formation energies, especially if the defect level is
only partially filled. The errors related to this dispersion(or
tunneling) are expected to have only a fairly small and rather
short ranged(exponential) effect.

Recently, various correction schemes have been
suggested2,3 to compensate for at least the leading terms in
the errors arising from the electrostatic interactions. They are
usually based upon fits to quasiclassical models and/or mul-
tipole expansions of the electrostatic interactions. They have
met with varying levels of success but, so far at least, are
generally considered insufficiently reliable. There are more
direct approaches, however. Probert and Payne4 recently
presented a detailedab initio study of the neutral vacancy
in Si, considering all aspects of convergence, from basis
set andk-point sampling to size and symmetry of super-
cells. They demonstrated that the use of “large” supercells
s200+atomsd can be essential for obtaining the correct physi-
cal results. Meanwhile, we recently presented5 a study of the
neutral vacancies in InP. We demonstrated the advantages of
not only using large supercells but also finite-size scaling the
results obtained. We evaluated both the relaxed and unre-
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laxed formation energies of the phosphorussVPd and indium
sVInd vacancies in simple cubic supercells of 8, 64, 216, and
512 atoms. We then showed that the variation in the forma-
tion energy with supercell sizeL follows rather closely the
form

Ed
CsLd = Ed

` + a1L
−1 + a3L

−3, s1d

whereEd
CsLd is the formation energy in supercell “C” and a1

anda3 are fitting parameters.Ed
` is the finite-size scaled for-

mation energy corresponding to an infinitely large supercell.
Equation(1) has, in fact, the same form(L−1 plusL−3) as the
corrections proposed by Makov and Payne.2 We will return
to the issue of whether or not this is the correct form in Sec.
IV. For the vacancies we showed that the error bars on the
values obtained forEd

` are usually rather small: Os0.1 eVd or
less, depending also upon the level ofk-point convergence in
individual cells. Care must be taken, however, when scaling
relaxed formation energies of strongly Jahn-Teller6 active de-
fects, such as VP. In such cases rather wider error bars are
obtained if the symmetry of the relaxed structures varies with
supercell size. Numerically, we also found that(for example)
Ed

` for the unrelaxed VIn is actually,0.2 eV above the value
obtained in the 512 atom supercell, suggesting that there are
cases for which even the 512 atom cell is not large enough to
be converged, so that scaling becomes essential.

In the present paper we extend the study to that of the
other neutral native defects: the antisites and interstitials. It
should be noted, however, that our primary purpose is not the
study of the defects themselves but of the finite-size errors
which arise when calculating their formation energies. InP
has the zinc-blend structure, with two antisites PIn and InP
both with tetragonalsTdd symmetry when unrelaxed. For in-
terstitials there are three high symmetry sites: two tetragonal,
with four In or four P nearest neighbors(XisInd or XisPd) and a
quasihexagonal sitesXishexdd with six nearest neighbors(three
P and three In) and C3v symmetry. Previous work for the
isolated neutral cases has mostly been limited to the 64 atom
supercell. Here, formation energies were around 5–6 eV for
the tetrahedral interstitials7 and around 3 eV for the
antisites.8 InP displayed some Jahn-Teller behavior while PIn
did not. We will examine how these results change with
larger supercells and with scaling. In the next section we
describe the method to be used. In Sec. III we will describe
the basic scaling results for the various neutral defects and
will examine in Secs. IV and V the form of the scaling and
when it does and does not work. In Sec. VI we consider
briefly other charge states of the defects. In Sec. VII we
discuss the origin of the surprising linear scaling we find in
certain cases. In Sec. VIII we estimate the size of the other
nonfinite-size dependent errors for the purpose of compari-
son, before concluding in Sec. IX.

II. METHOD AND K-POINT CONVERGENCE

We use plane-waveab initio DFT1 within the local den-
sity approximation (LDA ) together with ultrasoft
pseudopotentials9 (US-PP) using the ViennaAb initio Simu-
lation Package(VASP).10 We recently presented11 a study of

the fZnIn−VPg complex in InP using the same technique and
potentials. Unfortunately, physical memory limitations in
even the largest parallel computer facilities available to us
mean that we must treat the 4d electrons of In as core, even
though they are comparatively shallow.(A calculation for
bulk InP in its fcc primitive cell places the In 4d states about
14.5 eV below the valence band edge at theG point when
they are treated as valence—fairly deep but still close
enough to potentially make some contributions to formation
energies.) It would be preferable to treat them as valence, but
then properlyk-point converged calculations in the 512 atom
cell—which our analysis requires—would be impossible.
The size of the resulting error will be examined in Sec. VIII.

The optimized LDA lattice constant using these pseudo-
potentials is 5.827 Å and the band gap is 0.667 eV, com-
pared to 5.869 Å and 1.344 eV in experiment. As stated
above, we will only use simple cubic supercells of 8, 64,
216, and 512 atoms, since it is important to keep to a single
supercell symmetry since the scaling is different for different
symmetries. No restrictions are placed upon the symmetry of
relaxations, but we do not allow atoms located on the surface
of the cell to relax. The exception is interstitials at the quasi-
hexagonal sites in the 8 atom cell. Here, three of the nearest
neighbors lie on the surface. Initial tests showed that the
relaxation was not stable if all of these were allowed to relax
at once so relaxations were done in stages: first, one group of
neighbors was relaxed while the others were kept fixed, then
vice versa.

The key quantity is the formation energy

Ed
C = ET

Csdefectd − ET
Csbulkd + o

i

mini , s2d

where ET
Csdefectd and ET

Csbulkd are the total energy of the
supercell with and without the defect, calculated using the
same values of plane-wave cutoff,k-point grid, etc., to make
use of the cancellation of errors. The defect is formed by
adding/removingni atoms of chemical potentialmi. We use
mP=3.485 eV andmIn=6.243 eV,11 corresponding to sto-
ichiometric conditions. A plane-wave cutoff energy of
200 eV and a Monkhorst-Pack 43434 k-point grid13 was
found sufficient11 for converged nonrelaxed calculations in
the 64 atom supercell with errors around Os0.01 eVd. Hence
grids of 83838 in the 8 atom cell and 23232 in the
larger cells should suffice. However, in this study we exam-
ine specifically the errors arising from the supercell approxi-
mation itself. k-point convergence is different in different
supercells and we do not wish to include any significant
errors due to this. Hence we need to ensure even higher
levels of convergence during this study—much higher than is
normally required or practical.(Examining the scaled prop-
erties of the native InP defects themselves, over all relevant
charge states, is left to future work, however, as it will be
done with rather different levels ofk-point convergence,
pseudopotentials, etc., once we have in the present work es-
tablished the behavior of the finite-size errors.) We use
k-point grids of up to and including 12312312, 83838,
43434, and 43434 in the 8, 64, 216, and 512 atom cells,
respectively.(Exceptions are: PIn—only 23232 needed in
the 512 atom cell, and InisInd and InisPd—63636 used in the
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216 atom cell to check convergence.) To improve conver-
gence further we use weighted averages overEd

C values cal-
culated using a series of grids. Figure 1 shows the advan-
tages clearly: The unrelaxed formation energiesEd

008sNd for
PisInd in the 8 atom cell are shown, calculated usingN3N
3N k-point grids and plotted againstN. (This case has the
most difficult k-point convergence in this paper.) To get er-
rors safely below Os0.005 eVd a k-point grid of at least 18
318318 is needed. Taking the average over all theEd

C val-
ues up to a particularN3N3N (dot-dashed line) is unhelp-
ful, but taking a weighted average

Ed
C =

o
N

wNEd
CsNd

o
N

wN

s3d

helps dramatically, as it effectively increases thek-point den-
sity: The points in a 43434 grid are not contained in a 6
3636 grid, for example. There are two obvious choices for
wN: The best iswN=N3, the number ofk points in the full
Brillouin zone, but settingwN equal to the number in the
irreducible wedge is not bad(solid and dashed lines, respec-
tively). All subsequent results will be weighted averages us-
ing wN=N3. (Incidentally, for the unrelaxed neutral vacancies
we find5 errors of 0.36 and 0.06 eV, respectively, for VP and
VIn in the 512 atom cell when comparingG point only cal-
culations to converged values, so theG point is never suffi-
cient.)

In Ref. 11 we also showed that the relaxation energy

«RelaxsNd = Ed
C:RxsNd − Ed

C:IdsNd s4d

[where Ed
C:RxsNd and Ed

C:IdsNd are Ed
CsNd with atoms at re-

laxed and ideal positions, respectively] converges faster with

k-point grid thanEd
C:RxsNd andEd

C:IdsNd themselves. The re-
laxed formation energiesEd

C:Rx are then approximated by

Ed
C:Rx < Ed

C:Id − «RelaxsNd = Ed
C:Id + Ed

C:RxsNd − Ed
C:IdsNd.

s5d

The relaxation energies used will be weighted averages using
63636 and 83838 Monkhorst-Packk-point grids in the
8 atom cell, 23232 and(if the convergence is uncertain)
43434 grids in the 64 atom cell, and 23232 in the 216
and 512 atom supercells. For the latter two we usually re-
strict thek-point grid to the irreducible Brillouin zone of the
undisturbed bulk lattice. In other words, we use just the spe-
cial k point (0.25, 0.25, 0.25). This amounts to assuming that
the distortion in the band structure due to the presence of the
defect is either localized(thus important only very nearG) or
symmetric. It introduces a small error whose significance
disappears in the large supercell limit.

III. SCALING RESULTS

In Figs. 2, 3, and 4 we show the formation energies for the
antisites, phosphorus interstitials, and indium interstitials, re-
spectively, both relaxed(minimum energy configurations)
and unrelaxed(atoms at ideal bulk lattice sites) plotted
against inverse supercell size. The solid lines are fits of the
four points to Eq.(1). The y-axis intersect of each of these
fits is the scaled formation energyEd

` corresponding to the
formation energy of a single isolated defect in an otherwise
perfect, infinite lattice. The inclusion of formation energies
from the 8 atom supercell could be questioned, since in itself
it is so far from being converged. However, the results shown
in the figures clearly support our expectation that the correct
form for the scaling has(at least) three parameters. We there-
fore need results from at least four supercells of the same
symmetry. It would have been preferable to use the 1000
atom simple cubic cell, but sufficiently convergedab initio

FIG. 1. Convergence of formation energyEd
CsNd with evenN

3N3N Monkhorst-Packk-point grids.3: calculated values of for-
mation energies. Dotted line: “converged” value(calculated using
30330330 k-point grid). Dot-dashed: running average over
Ed

CsNd. Dashed line: running average weighted by the number ofk
points in the irreducible Brillouin zone. Solid line: running average
weighted by the total number ofk points in the full Brillouin zone.

FIG. 2. Scaling the formation energy for the relaxed and unre-
laxed structures of the neutral antisite defects PIn and InP with in-
verse supercell size. Thex axis scale is in units of 1/s5.827 Åd, the
inverse of the eight atom supercell size. Hencex=1.00, 0.50, 0.33,
and 0.25 correspond to the 8, 64, 216, and 512 atom cells,
respectively.

FINITE-SIZE SCALING AS A CURE FOR SUPERCELL… PHYSICAL REVIEW B 70, 195202(2004)

195202-3



calculations for InP defects in this cell are not possible with
current facilities. In addition, the results themselves justify
the use of the 8 atom cell: The scaling mostly works very
well, producing small error bars and withEd

008 lying on or
near the curves. This, incidentally, also tells us that the
k-point convergence in the individual cells was sufficient.
The cases where the scaling does not work so well turn out
to be due to other problems, see Sec. V.

To get an idea of the accuracy of the fitting and of the
derived Ed

` values (and the individualEd
C) four more fits

(dotted lines) are added in each case. For each of these, one
of the four data points has been omitted. The spread in the
resulting y-axis intersects gives an error bar for the scaled
formation energyEd

`. (It should be emphasized that the dot-
ted lines—three parameters to three points—are not intended
to be meaningful in themselves but are merely indications of
the scale of the error in the real solid line fits.) The scaled

formation energies are listed in Table I, together with those
of the vacancies taken from Ref. 5.

The scaling curves also have a more general and rather
practical meaning: They are essentially predictions of the
formation energies inall simple cubic supercells from 8 at-
oms to infinity. For example, Table II shows the predicted
formation energies in the 1000 and 8000 atom supercells, as
they would arise fromk point and basis set converged LDA
calculations.(The 64 000 atom cell would be just as easy, but
these predictions are more likely to be tested and—
hopefully—confirmed within our lifetimes.) As a more im-
mediate test, Table II also shows the formation energies in
the 512 atom cell predicted by scaling the results from only
the 8, 64, and 216 atom cells: following along that dotted
line which does not pass exactly through the 512 atom value
for each case in the figures. The error in this prediction(as
compared to the actual calculated values) is also shown. The
errors are pleasantly small, especially considering only three
cells have been used, including the 8 atom one. The errors in
the other predictions are expected to be much smaller still.

All the relaxed structures turn out to be symmetric, with
just breathing mode relaxations. The exception is InP, which
shows some moderate Jahn-Teller behavior(see Sec. V A).
All the interstitials apart from PisPd relax outward, as does
InP, while PIn relaxes inward. This is all as expected, since P
is smaller than In. Figure 5 shows the scaling of the percent-
age volume change upon relaxation.(The volume shown is
that of the polyhedron defined by the nearest neighbors.) The
fits are described in Sec. IV and the scaled results are in
Table I. The error bars are derived in the same way as for the
formation energies, although the dotted lines are omitted
here for clarity.

The most stable neutral native defect in stoichiometric InP
turns out to be the phosphorus antisite PIn closely followed

FIG. 3. Scaling the formation energy of neutral phosphorus in-
terstitials. Those at the tetrahedral sites PisInd and PisPd are not stable
in the 216 and 512 atom supercells: If the symmetry is not restricted
then the interstitials relax towards the hexagonal site. Plotted points
are from relaxations in which the symmetry was restricted toTd to
prevent this.

FIG. 4. Scaling the formation energy of neutral indium intersti-
tials. Indium is not stable at the hexagonal site Inishexd in the 216 and
512 atom supercells and cannot be forced to stay put by restricting
relaxation symmetry.

TABLE I. Scaled relaxed and unrelaxed(ideal lattice sites) for-
mation energiesEd

`, plus the scaled percentage volume change
s%dVd upon relaxation for neutral native defects in InP, listed in
order of (relaxed) stability in stoichiometric material.(The volume
is that of the polyhedron defined by the nearest neighbors.) Note
that the error bars are not actually symmetric: see Figs. 2–4.

Defect Ideal(eV) Relaxed(eV) %dV

PIn 2.49±0.02 2.28±0.03 −19±7

VP 3.00±0.10c 2.35±0.15c −35±2c

InP 3.37±0.09 2.69±0.06 17±3

InisPd 4.15±0.30 2.95±0.20 19±3

Pishexd 4.90±0.14 3.69±0.08 12±38

PisPd 5.21±0.16 4.88±0.25a −5±7a

PisInd 5.49±0.06 4.96±0.02a 9±1a

InisInd 4.75±0.35 3.00±0.08 45±19

Inishexd 6.95±0.01 ,3.5b ,3.5b

VIn 4.95±0.10c 4.20±0.05c −43±4c

aUnstable in some cells, value results from symmetry restricted re-
laxations, see text.
bUnstable in some cells, value is rough extension with no error bar
available, see text.
cValues taken from Ref. 5.
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by the vacancy VP and then the indium antisite InP. Then
come the interstitials, of which indium is the more stable.
The least stable neutral defect is VIn. The most stable site for
the phosphorus interstitial is the quasihexagonal site Pishexd.
For indium, the two tetrahedral sites are degenerate to within
the error bars but numerically the phosphorus surrounded
site InisPd is 0.05 eV lower—which is probably correct, since
the error bars are asymmetric.(See Fig. 4.) This is a result
which is only apparent in very large supercells and the de-
generacy only appears at the 512 atom supercell. In smaller
cells InisInd seems more stable. What is more, scaling shows
that simply taking the 512 atom result would give a relaxed
formation energy about 0.4 eV too high(0.8 eV too high if
we stopped at 64 atoms) which can be large enough to make
real differences in the predicted physics of InP. As with the
formation energy5 of VIn this emphasizes the value of finite-
size scaling the results of supercell calculations, since the
largest cells for which we can actually do calculations can
still be too small to be fully converged.

There are complications with the stable interstitial sites as
a function of supercell size. While both interstitials are stable
at all three locations in the two smallest cells they are not so
in the larger cells. For indium the quasihexagonal site lies
about,1 1/2 eV above the tetrahedral sites and is not stable
in the larger cells. An indium atom placed here migrates to a
tetrahedral site upon relaxation, indicating that the quasihex-
agonal site is probably not even metastable for indium in the
real material. For the phosphorus interstitial, on the other
hand, it is the tetrahedral sites which are unstable. In this
case, however, we can still obtain(hypothetical) relaxed for-
mation energies at the tetrahedral sites by only allowingTd
breathing mode relaxations. The tetrahedral sites are 1.2 eV
higher than the quasihexagonal site. The reason for this dif-
ference in stabilities may be(partially) stearic: The unrelaxed
nearest-neighbor distances are shorter at the hexagonal site,
where the smaller phosphorus interstitials are stable and
longer at the tetrahedral site where the larger indium inter-
stitial sits.

IV. CORRECT FORM FOR THE SCALING EQUATION

A. Formation and relaxation energies

So far it has been assumed that the correct functional form
for scaling is that of Eq.(1). This need not be the case,
however. Equation(1) is based upon approximations and
predictions for the form of the errors arising from electro-
static charge multipole interactions between the defect and
its images in the PBCs and these could be incorrect. In ad-
dition, we include here relaxations within finite-sized super-
cells, so we have both elastic errors and, potentially, cross
terms between the elastic and electrostatic errors, so other
possible scalings should be considered. There is clearly a
linear term present, plus at least one higher order term, so we
consider scaling of the form

Ed
CsLd = Ed

` + a1L
−1 + anL

−n s6d

with n=2, 3, and 4. The fit quality is assessed using the “x2”
test. This is not easy to do reliably with only four points, so

TABLE II. Predictions for the unrelaxed and relaxed formation energies in the(to date) uncalculated 8000
and 1000 atom simple cubic supercells. Also shown are predictions for the 512 atom supercell formation
energies obtained by scaling the values in the 8, 64, and 216 atom cells, together with the difference(error)
between the predicated and calculated values.(Energies in electronvolts.)

Ideal structures Relaxed structures

Defect 8000 1000 512 Error 8000 1000 512 Error

PIn 2.50 2.51 2.51 −0.01 2.31 2.33 2.35 0.00

VP 2.99 2.98 3.00 0.04 2.40 2.46 2.46 20.03

InP 3.29 3.21 3.18 0.02 2.68 2.66 2.66 0.01

InisPd 4.30 4.44 4.55 0.07 3.13 3.31 3.43 0.05

Pishexd 4.90 4.89 4.91 0.03 3.68 3.67 3.68 0.02

PisPd 5.13 5.05 5.05 0.06 4.81 4.74 4.75 0.06

PisInd 5.49 5.48 5.45 0.02 4.99 5.00 5.00 0.00

InisInd 4.87 4.97 5.08 0.08 3.15 3.31 3.40 0.02

Inishexd 6.98 7.01 7.02 0.00 — — — —

VIn 4.88 4.80 4.77 0.02 4.19 4.18 4.17 20.02

FIG. 5. Scaling of the volume change with supercell size: Per-
centage volume change upon relaxation is plotted against inverse
supercell size. PIn and PisPd relax inward, the others outward.
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we average over different defects. Simply summing or aver-
aging thex2 values would bias the conclusion towards the
worst data sets. Instead, for each data set we findx2 for each
value of n, select then giving the best fitsxbest

2 d and then
calculate a quality factorQn=xn

2/xbest
2 for eachn. We then

compare the averagedQn.
We first examine the scaling of the elastic errors. To do

this we have performed a series of relaxations in the 216
atom cell for each of six defects. In these relaxations, the
number of shells of atoms permitted to relax around the de-
fect is varied from 1→4 for interstitials or 1→5 for antisites
and vacancies.(4 and 5 are the maximum numbers of com-
plete shells which fit inside the supercell.) Since the cell size
is kept constant the electrostatic interactions will be(almost)
constant so any variation inEd is due to elastic effects. In the
left panel of Fig. 6 we show the scaling of the relaxation
energy with the inverse radius of the outermost relaxing
shell.(The units have been scaled to match those in previous
figures.) The scaling is almost purely linear(solid lines in the
figure) even—within the bounds of error—for the Jahn-
Teller active defects like InP and VP. Adding a higher order
term, such asL−3 (dashed lines) clearly only improves the fit
very slightly: x2 is reduced by about 30% on average.

Having established that the scaling of the relaxation en-
ergy, and hence of the elastic errors inEd

`, is linear we turn to
the scaling of the formation energies with supercell size. Un-
fortunately there is too much scatter in several of the curves
so that whilstn=3 is best in some cases, in others it comes
an often close second ton=2 or n=4. However, since the
elastic errors are now known to be linear in relaxation radius
and hence in supercell size, we can assume that it will simply
add to the linear term in Eq.(6) , so that we can calculateQn

using all 19 data sets(Figs. 2–4 and Ref. 5). The result
obtained is that the scaling does indeed fit best withn=3,
with bothQ2 andQ4 being four times larger thanQ3. In fact,
if we calculate thehQnj using only the unrelaxed formation
energies we still findn=3 fits best and if we use the relaxed
formation energies minus that of PIn we find the same result.
Unfortunately if we use all of the relaxed energies including
PIn we get a different result:n=2 provides a better fit. This
suggests the(faint) possibility of a cubic scaling for unre-
laxed formation energies but quadratic for relaxed energies,
which shifts the predictedEd

` by 0.01→0.2 eV depending on
the defect. A quadratic scaling would seem odd, since it
comes from neither the elastic nor the electrostatic errors but
it could possibly arise from the cross terms between them.
An alternative and perhaps more likely explanation is that
the uncertainty regardingn is a result of the spurious disper-
sion of the defect levels mentioned above. This adds an ex-
ponential term to the formation energies in the smallest su-
percells, blurring the picture slightly. It seems most likely
that the scalingshouldbe cubic even for the relaxed forma-
tion energies: even now it is only one defect which seems to
particularly disagree. This should be confirmed once reliable
calculations involving the 1000 atom supercell become fea-
sible.

B. Relaxed volumes

Figure 5 shows the scaling of the percentage volume
change(going from ideal to relaxed structures) with super-
cell size, whilst the right panel of Fig. 6 shows the volume
changes scaled with the number of shells relaxed in the 216
atom supercell. For the antisites and InisInd a linear fit is again
rather good, but for all of the other data sets a higher-order
term is clearly present. We have again tried adding terms in
L−n, n=2, 3, and 4. For both supercell and shell scaling aL−2

is best. For supercell scalingQ3 is 42 times larger thanQ2
andQ4 is 124 times larger. The curves plotted in Fig. 5 are
thus quadratics, with they-axis intercepts giving the volume
change expected for a lone defect in an infinite supercell.
These scaled volumes are shown in Table I . For shell scaling
(Fig. 6) Q3 is 1.4 times larger thanQ2 and Q4 is 2.7 times
larger. The quadratic fittings are shown as dashed lines in the
right hand panels of Fig. 6. They-axis intercepts this time
give the volume change expected if an infinite number of
shells were relaxed. They are shown in Table III, where the

FIG. 6. The relaxation energys«Relaxd plus the percent volume
change as a function of the number of shells around a defect which
are allowed to relax. For InP the percent Jahn-Teller distortion in the
ADX and DAD structures(see main text) is also shown.(Relax-
ation energy and volume change are only shown for the DAD struc-
ture: those for the ADX structure are very similar.) The 216 atom
supercell is used, giving 1→5 shells for vacancies and antisites,
1→4 for interstitials. Thex axis is the inverse of the radius of the
atom shell, in units of one over the eight atom cell size. Volume
changes are outwards for all except PIn. Fits are to Eq.(6) with
(dashed) and without(solid) theL−n term. sn=2 for «Relax, n=3 for
the volumes.) Results for VP are taken from Ref. 5.

TABLE III. Scaled percentage volume changes upon relaxation,
from scaling with number of shells relaxed in the 216 atom cell and
from scaling with supercell size.

Defect Shells Supercells

PIn −15±1 −19±7

InP 20±2 17±3

InisPd 17±1 19±3

InisInd 51±40 45±19

Pishexd 23±2 12±38

VP −39±3 −35±2

C. W. M. CASTLETON AND S. MIRBT PHYSICAL REVIEW B70, 195202(2004)

195202-6



equivalent values for supercell size scaling are added for
comparison. The two sets of values agree very well, indicat-
ing that at least the breathing modes in the infinite limit are
unaffected by charge multipole interactions.

V. WHY SOME STATES SCALE BETTER THAN OTHERS

A. Jahn-Teller active defects

It is very clear from Table I that some formation energies
scale better than others. When considering the scaling for the
neutral vacancies5 we noted that the scaling becomes more
difficult to do reliably for strongly Jahn-Teller active defects
such as VP. For a Jahn-Teller active defect there is a partially
filled degenerate state at the Fermi level, which the Jahn-
Teller theorem6 says will be lifted by symmetry reducing
relaxations(if no other effect achieves this first). This leads
to poor scaling since the symmetry of the most stable relaxed
structure can vary with supercell size, so that data points
from some cells scale differently to those from others. In
order to get good error bars for scaled formation energies
each possible reduced symmetry structure must be scaled
separately. Among the current defects there is a further ex-
ample of a Jahn-Teller active defect, InP. The distortions here
are much weaker, so the error bar is ±0.06 eV even when
symmetry differences are ignored, which is still reasonable.
Nevertheless, we have done a search for the various stable
and metastable structures in the four supercells. Their vari-
ous formation energies are shown scaled in Fig. 7, together
with (a) the scaling of the lowest lying formation energy
irrespective of symmetry(labeled Min) and(b) the formation
energy when onlyTd symmetry breathing mode relaxations
are permitted(labeledTd).

In the 8 atom cell the lowest lying structure has the fullTd
symmetry of the unrelaxed antisite. Indeed, this is the only
stable structure we find in this cell. In the larger cells relax-
ation breaks theTd symmetry to give(primarily) C3v, D2h, or
C2v point groups at the defect site.C3v symmetry is reached
by the antisite atom moving either towards the midpoint of
three of its nearest neighbors(away from the fourth) in a so
called “DX”-like structure(DX in the figure) or towards one
neighbor and away from the other three—an anti-DX(ADX )
structure.C2v arises when the antisite moves toward one pair
of neighbors and away from the other pair, i.e., toward a
bond center site(BCR). The degeneracy can also be lifted
when the antisite stays still with the four antisite-neighbor
distances equal, but the angles between the bonds change.
D2h structures occur if the neighbors rotate to form two op-
posing pairs of either shorter or longer neighbor-neighbor
distances(DDM—double dimer or DAD—double antidimer,
respectively). In the 64 and 512 atom cells the lowest lying
structure is a DAD structure with two neighbor-neighbor dis-
tances, respectively, 5% and 8% shorter than the others. The
most stable structure in the 216 cell is a 7% DAD-like struc-
ture but with an additional 4% DX-like distortion, although a
4% BCR structure and a 7% pure DAD structure(with no
DX component) both come a close second.(The distortion
quoted for the BCR, DX, and ADX structures is the percent
variation in antisite-neighbor distances.) In the 512 atom cell
the potential energy surface for small(up to ,2%) DX dis-
tortions from the DAD structure is also very flat. Overall,
these results suggest that a lone InP in an infinite supercell
would have a DAD structure with a formation energy lying
about 0.4 eV below theTd structure found when only breath-
ing mode relaxations are allowed, and 0.1 eV below the for-
mation energy found by scaling the minimum formation en-
ergy irrespective of Jahn-Teller structure.

The changes in relative stability of the different structures
are due to one or a combination of two things:(a) stabilizing/
destabilizing dipolar, quadrupolar, or higher interactions,
which can in certain cases lift the symmetry without distor-
tion (in the 8 atom cell for example) or favor certain Jahn-
Teller structures over others. These effects become weaker as
the cells grow.(b) The lack of shells of atoms in the smaller
cells to absorb the elastic strain, which favors more symmet-
ric structures. In the right hand panel of Fig. 6 the variation
in the degree of Jahn-Teller distortion for the ADX and DAD
structures was plotted versus the number of shells permitted
to relax within the 216 atom cell. For the ADX structure
there is virtually no variation at all and the same was
previously5 found for VP. For the DAD structure, on the
other hand, a rather strong variation is found. This suggests
that elastic effects are involved for some local distortion
symmetries but not for others, thus further complicating the
possible variations in lowest symmetry structure with super-
cell size. At least for the ADX structure the charge multipolar
interactions act essentially in competition with the normal
Jahn-Teller mechanism, making it uncertain if the correct
structure has been found at all for smaller supercells. It is
sometimes pointed out(Ref. 14 and elsewhere) that one way
around this problem would be to usek-point integration at
the G point only, since this restores the degeneracy of the
degenerate levels(prior to relaxation). However, since for

FIG. 7. Scaling the formation energies for various Jahn-Teller
structures ofTd. In all panels the global minimum is shown(Min).
In addition we show the formation energy when only breathing
mode relaxations are allowed(Td) and nonsymmetry restricted
relaxed formation energies for the BCR, DX, ADX, and DDM
structures, plus the DAD structure with(DAD-DX ) and without
(DAD-EQ) an additional DX like distortion.(See main text for
descriptions.) Fits to Eq.(1) are solid when the structure is stable in
four cells or dashed when it is only stable in three. Dotted lines are
linear fits when the structure is stable in only two cells.
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InP (and doubtless many other materials) the G point does
not give sufficiently converged formation energies even in
the 512 atom supercell this will simply result in unconverged
results: Errors arising from the use of just theG point can be
tenths of electron volts, often the same size or larger than the
splittings between various stable and metastable Jahn-Teller
distorted structures. Here we study the relative stability of all
the possible Jahn-Teller distorted structures with converged
k-point grids and then scale them to predict which structure
will be most stable in the infinite supercell limit, where these
spurious degeneracy lifting interactions become zero.

B. Defect level dispersion and defect states outside the band gap

The scaling is also rather bad for the interstitials, even
though no Jahn-Teller behavior is anticipated or detected
whatsoever. One might have expected that the reason for this
was the defect level dispersion which was also identified in
Sec. IV as a possible source of the slight uncertainty in the
correct form for the scaling equation. The dispersion can lead
to errors in the formation energies of individual defects and
since it should decrease exponentially with cell size it could
affect the error bars on the scaled infinite supercell formation
energies. In a fully occupied defect level the dispersion
should have no direct effect as long as the defect level lies
within the gap at allk points, since the average energy of the
band should equal the energy of the level in the absence of
dispersion. On the other hand, the dispersion can lead to
hybridization of the defect level with conduction band states
of the same symmetry, thus artificially lowering the mean
value of the defect level and hence of the defect formation
energies in the smaller cells.(The same holds for empty
defect levels hybridizing with valence band states, allowing
the latter to be lowered in energy.) For partially filled defect
levels the effect upon the formation energy is more direct,
since only the lower parts of the defect level(band) will be
filled, again leading to too low a value for the formation
energy. However, the connection between the amount of de-
fect level dispersion and the size of the errors in the forma-
tion energy in a particular supercell is not simple. Indeed,
checks on the bandwidth of the defect levels find no corre-
lation at all between them and the scaling error bars: For
example the unrelaxed structures for both PIn and InisInd have
a defect level in the lower part of the gap with a rather large

dispersion(,0.6 eV in the 64 atom supercell) and yet the
scaling error bar for PIn is 0.02 eV while that for InisInd is
0.35 eV.

The main difference is actually that InisInd also has a par-
tially filled defect levelinsidethe conduction band, resulting
in an electron occupying a delocalized state at the conduction
band edge. This occurs for all of the defects which have poor
scaling error bars. This is seen clearly in Fig. 8 where we
present the level diagrams for all the neutral native defects,
shown at theG point in the 64 and 512 atom cells. While the
antisites have no delocalized states, the interstitials always
have at least one electron occupying a state at the conduction
band edge. For phosphorus at the tetragonal sites not one but
three electrons lie above the conduction band edge, which
may be why they are not stable at all in the larger supercells.
The level diagrams for the vacancies seem at first glance to
contradict the rule: VP has one delocalized electron in the
smaller cells and VIn has three delocalized holes in all four
cells, despite the fact that the scaling is rather good for these
defects. This is itself a finite-size effect, however. For VP a
triply degenerate defect level lies just above the conduction
band edge. This level Jahn-Teller splits, with one state mov-
ing downward. In the smaller cells it does not make it to the
band gap so the metastable distorted structures found must
arise from hybridization between the localized Jahn-Teller
split levels and levels at the conduction band edge. For the
largest cells, however, the lower Jahn-Teller split level drops
into the gap, so that the charge state becomes stable. In the
case of VIn we again see a triply degenerate localized defect
level, this time inside the valence band leaving three holes at
the valence band edge, and even in the 512 atom cell this is
all we see. However, as the supercell size grows the defect
level moves rapidly toward the valence band edge. Clearly,
for an isolated defect in a real material we would expect this
level to lie inside the band gap, even though the 512 atom
cell is not sufficiently large to show it. This again underlines
the need for using comparison and scaling rather than just
large supercells.(Similar effects are visible for PisInd and
PisPd, although they remain unstable.)

VI. POSSIBLE CHARGE STATES ACROSS THE BAND
GAP

Although we only consider the neutral defects in this pa-
per, the level diagrams in Fig. 8 also give a rough indication

FIG. 8. Defect levels in or near the band gap,
shown at theG point for neutral native defects in
the 64 and 512 atom supercells. Dotted horizontal
lines mark the bulk LDA valence and conduction
band edges(0.6771 eV apart). Dashed lines indi-
cate the shifted bulk and valence band edges in
the defect cells, solid lines indicate localized de-
fect levels. Black, gray, and white symbols are
(respectively) filled, half filled, and empty states.
Circles indicate localized states, diamonds delo-
calized (band) states. Filled valence band and
empty conduction band states are not marked
with symbols.
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of which charge states are most likely in different parts of the
band gap. For the indium interstitials the +1 charge state
seems the most stable in the upper part of the band gap, but
two transition levels will lie in the midgap, giving a +3
charge state forp-type material. For Pishexd we expect a +1
charge state across most of the gap. With increasing supercell
size a second defect level approaches the band edge from
below so there may be one or two transition levels near the
bottom of the gap. This is a result which is only apparent
when one compares or scales the results from different su-
percell sizes: Even in the 216 or 512 atom cells it is not
apparent. PIn has a single, filled level in the upper half of the
gap, suggesting 0 forn-type material and +1 or +2 other-
wise. InP has a threefold degenerate level containing four
electrons in the middle of the gap. A large number of transi-
tion levels across the entire gap are thus expected, ranging
from −1 or −2 inn-type material to potentially even +4 for
stronglyp-type material. VP should have two transition lev-
els in the upper half of the band gap, +1 and −1 being the
most stable charge states in stronglyp- andn-type material,
respectively. For VIn we expect the −3 charge state to be
stable from the midgap upward. However, the movement of
the threefold degenerate defect level up into the band gap
(Sec. V B) leads us to expect six transition levels all lying
near (above or below) the valence band edge. The most
stable charge state at the valence band edge itself could be
anything from 0 to +3.

VII. ORIGIN OF THE LINEAR SCALING TERM
FOR NEUTRAL DEFECTS

We expect linear scaling terms to arise from two sources:
from incomplete relaxation(elastic errors) and from electro-
static errors. For electrostatic errors, linear scaling comes2

from the monopole term in the multipole expansion of the
electrostatic interactions: Roughly speaking, it is the Made-
lung energy of the localized charge on the defect interacting
with the compensating jellium background in the image
cells. This is shown schematically in Fig. 9. Part(a) shows
the typical situation for a positively charged defect: An infi-
nite array of very tightly localized positive core charges(one
in each periodic image of the supercell) are only partially
compensated by the localized electrons in the(less tightly)
localized defect levels. The remaining charge is compensated
by jellium. Makov and Payne2 extracted the part of the sys-
tem shown in Fig. 9(b) consisting of an infinite array of
positive delta functions interacting with jellium and showed
that is gives rise to a formation energy error which is linear
in the supercell size, with a strength proportional to the
square of the charge on the defect. This error should there-
fore be absent for unrelaxed neutral defects. The fact that we
see a clear linear contribution to the unrelaxed formation
energy of, for example, the neutral InP and tetrahedral In
interstitials is thus somewhat unexpected.

The explanation lies in the localization/delocalization of
the states which become occupied and unoccupied when the
cell contains a neutral defect. In the cases of the neutral
interstitials and vacancies one or more defect level(s) lie out-

side the band gap for all or some supercell sizes. As a result
there are either electrons in delocalized band states at the
LDA conduction band edge or holes at the valence band
edge. This is shown for the example of InisPd in Fig. 10. To
quantify the localization of a particular Kohn-Sham eigen-
state we start by projecting it onto Wigner-Seitz cells15

around each atom. We then select some radiusr l around the
defect and find the average projection per atomr. over the
part of the cell wherer . r l, and similarly the averager, for
the r , r l region. The localization is then given by the ratio

FIG. 9. Schematic diagrams for the electrostatic origin of linear
formation energy error scaling.(a) A positively charged defect, with
a positive core, localized electrons in a defect level and compensat-
ing jellium. (b) Subsystem leading to linear errors: weaker effective
core charge plus jellium.(c) The effective situation for InisPd: core
charge, two localized defect level electrons and one delocalized
electron at the conduction band edge.(d) The effective situation for
the unrelaxed InP: core charge, four localized defect level electrons
and two(partially) delocalized defect level electrons.

FIG. 10. Localization of the Kohn-Sham levels corresponding to
(left panel) the valence and conduction band edges at theG point in
the cell containing InisPd; (middle panel) the defect levels in the
band gap for InisPd, PIn, and InP, calculated at theG point; (right
panel) the three InP defect levels averaged over the whole Brillouin
zone. See text for details. Lines are simple quadratic fits for guid-
ance: The correct form for this scaling has not been investigated.
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arsr ld =
r.

r,

. s7d

For an isolated defect in an otherwise perfect infinite lattice,
ar→` as r l →` if the state is localized, sincer.→0. On
the other hand,ar→1 if the state is delocalized as the two
averagesr. andr, then tend to the same value.

Here we have finiteL sized supercells, so we chooser l
such thatr. is calculated over the outermost complete shell
of atoms around the defect, plus the atoms in the cell corners.
r, is then calculated over the remaining 2, 4, and 6 complete
shells in the 64, 216, and 512 atom cells, respectively.(The 8
atom cell is too small for this analysis.) Supercell scaling of
arsr lsLdd then has the same behavior as for the isolated de-
fect. Thus, in Fig. 10,ar is plotted against one over the cell
size for various states of interest. The left panel shows the
localization scaling of the states at the LDA valence band
maximum(VBM ) and conduction band minimum(CBM) for
cells containing an unrelaxed InisPd, while the middle panel
(with a very different vertical scale) shows it for the midgap
defect levels of both InisPd and the antisites. The well be-
haved PIn is included for comparison. These localizations,
like the level diagrams in Fig. 8, have been calculated at the
G point, but using fullyk-point converged charge densities.
For InisPd the band states are delocalized and the defect level
is localized. The VBM and defect levels are filled, while the
delocalized CBM level is half filled. Hence adding the defect
to the cell has added two localized electrons and one delo-
calized electron in the vicinity of the band gap. Hence, we
have an electrostatic situation like that shown schematically
in Fig. 9(c). To a first approximation we can replace the
charge density of the delocalized electron by its average
value, thus recovering the situation of Fig. 9(a). We thus
predict a linear term in the formation energy scaling. How-
ever, the distribution of the delocalized charge is in reality
far from uniform on the scale of the atomic spacing, so it is
not clear what the prefactor and effective charge should be.
Hence, without performing the detailed mathematical deriva-
tion required(which lies beyond the scope of the current
paper) we cannot predict what gradient the linear term
should have.

The case of InP is different. There are no electrons in
delocalized conduction band states or holes in the valence
band. However, the localization of the defect level at theG
point is rather weak, certainly compared to PIn and InisPd. The
defect level of InP is threefold degenerate and partially filled.
Away from theG point this degeneracy is split by the inter-
action of the defect with its images, leading to different dis-
persions of the defect levels in different directions ink space,
with one level having lower energy(away fromGd. At most
k points this state is thus completely filled, while the other
two are partially empty. Hence, averaging the Wigner-Seitz
projection over the whole Brillouin zone(using 83838,
43434 and 23232 point Monkhorst-Pack grids in the
64, 216, and 512 atom cells, respectively) the completely
filled level becomes fully localized(right panel of the fig-
ure). The other two levels are more occupied at the origin in
k space than elsewhere and hence in real space are only

partially localized. Clearly the Jahn-Teller structural relax-
ations are required in order to properly localize these states.
In the unrelaxed structure we effectively have two localized
electrons and two partially delocalized ones in the middle of
the band gap, leading to the spatial charge distribution shown
schematically in Fig. 9(d). Electrostatically, this again be-
haves to first order like a jellium background charge sur-
rounding a positively charged, localized defect, resulting in
the linear scaling observed. As with the interstitials, predict-
ing the specific gradient expected must be left to future work.
Here, we simply note that this mechanism should also affect
the unrelaxed formation energies of other defects with par-
tially filled degenerate levels in the band gap. It seems rea-
sonable to presume that it is involved with the neutral VIn
and perhaps VP, although they also have linear terms arising
from partially filled band states.

VIII. OTHER SOURCES OF ERROR

Finite-size errors are not the only types of errors present
in these calculations: Errors also arise from the truncation of
the basis set and thek-point integration as well as from
the use of both pseudopotentials and LDA. Furthermore,
memory size limitations forced us to use pseudopotentials in
which the indium 4d shell is treated as core rather than va-
lence. Although the central aim of this paper is to study the
treatment of finite-size errors it is still informative to esti-
mate the size of these other sorts of errors for comparison. In
principle, errors arising from the pseudopotentials and the
LDA should be independent of supercell size, though some
short range dependence may still be anticipated since
changes may affect the amount of defect band dispersion.
This contribution should disappear exponentially with super-
cell size.

In Fig. 11 we show the change in the unrelaxed formation
energies when(left panel) the In 4d electrons are treated as
core rather than valence,(center panel) the US-PP are re-
placed by the projector augmented wave method16 (PAW) or
(right panel) the LDA exchange correlation functional is re-
placed by the generalized gradient approximation(GGA) of
Perdue and Wang.17 These formation energy differences are
shown as a function of supercell size for the seven stable
point defects(VIn, InP, InisInd, InisPd, VP, PIn, and Pishexd). For
the GGA and for LDA with the In 4d as valence a plane-
wave cutoff of 200 eV gives the same level of accuracy as it
does with the In 4d as core. For PAW on the other hand a
plane-wave cutoff of 300 eV is required for the same accu-
racy level. The relaxed lattice constants and band gaps also
change. For LDA with In 4d as valence we find 5.833 Å and
0.581 eV, respectively, for LDA with PAW we find 5.830 Å
and 0.597 eV while for GGA(with US-PP and In 4d as core)
we find 5.956 Å and 0.473 eV.

The errors coming from the pseudopotentials(left and
center panels of Fig. 11) are, as anticipated, largely indepen-
dent of the supercell size. The slight dependence is well de-
scribed by a two parameter fit to the general exponential

Ed
CsLd = Ed

` + aefexpsL−1d − 1g s8d

(solid lines in the figure). Changing the In 4d electrons from
core to valence has, not surprisingly, only a fairly small ef-
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fect (well below 0.1 eV) upon the phosphorus related de-
fects, but a much more significant effect upon the indium
related ones, particularly InisInd and InP where the effect is on
the same order of magnitude as the finite-size errors. PAW
produces more accurate results than any pseudopotential
method since it reconstructs the exact valence wave function
with all nodes in the core region. The replacement of US-PP
with PAW produces only small[Os0.1 eVd or less] changes
in the formation energies with virtually no size dependence:
The largest difference between the correction in the 8 atom
cell and that in the 64 atom cell is only 0.01 eV, so the
US-PP to PAW changes have not been calculated in the 216
atom cell. This demonstrates that the widely used US-PP9 are
perfectly reasonable for this type of calculation. It should
also be noted that in most cases the small correction when
PAW is introduced partially cancel that made when moving
the In 4d electrons from core to valence, at least for the
examples studied here.

The errors arising from the exchange-correlation func-
tional have two main forms. First, the band gap is(usually)
strongly reduced compared to experiment.(For InP GGA
does worse than LDA once lattice parameter optimization
has been included.) This reduction leads to ambiguities in the
definition of the formation energy for charged defects, in turn
leading to large uncertainties in predictions. For some semi-
conductors the band gap can even be reduced to zero making
the material appear metallic and dramatically altering the
properties of many defects. However, neither of these effects
occurs here, since we consider neutral defects and obtain a
nonzero band gap. Nevertheless, a second exchange-
correlation related error is present: LDA overbinds all bonds,
moving some defect formation energies up and others down.
Hence to assess the errors involved we here compare with
GGA, which is known to have the opposite effect: un-

derbinding. An exact solution to the DFT formation energies
would lie somewhere in between—and probably closer to the
LDA results since LDA gives a better lattice constant for
bulk InP. We note also that we have not allowed spin polar-
ization in our calculations, using LDA instead of the local
spin density approximation(LSDA). However, for most of
our defects the use of LSDA would simply cause further
finite-size errors since it would introduce spurious magnetic
interactions between the defect and its PBC images. The ex-
ceptions occur for the Jahn-Teller active defects(InP, VP, and
VIn) where the degeneracies can in certain cases be lifted by
Hund’s rule couplings. However, this is only important for
materials18 with more tightly localized bonds or dangling
bonds than we have here, so we may safely omit it.

The results from replacing LDA with GGA are shown in
the right panel of Fig. 11 and are somewhat surprising: There
is a clear finite-size error associated with the choice of
exchange-correlation functional for certain defects, namely
InisPd, InisInd, VP, and Pishexd. The antisites on the other hand
show no significant supercell size dependence.(VIn shows
only a small size dependence but is still fitted better by a
polynomial than by an exponential.) The defects for which
the LDA/GGA error difference depends on supercell size are
those for which the defect levels lie outside the band gap.
This indicates that the spurious delocalized states are treated
differently by different exchange-correlation functionals.
This is confirmed by checking the degree of localization of
the electrons/holes at the band edges: When GGA is used the
values ofar are 20 to 400% larger than with LDA. These
changes are linked to the change in band gap and also to the
fact that the defect bands move closer to the band edges
(at least near theG point) for these particular defects. Hence
we may expect large, supercell size dependent errors of
Os0.5 eVd from the choice of exchange-correlation func-
tional when partially filled defect bands lie outside the band
gap but we expect smaller Os0.1 eVd size independent errors
when the defect levels lie within the band gap.

Table IV compares the size of the errors arising from
different sources. The basis set errors are estimated from the
difference in formation energy in the 64 atom supercell when
the plane-wave cutoff is raised from 200 to 400 eV. The
k-point errors are different in each supercell: The errors
shown in the table are the largest occurring for any of the
supercells used, estimated as the difference between the
mean valueEd

C and the valueEd
CsNmaxd obtained using the

largest k-point grid actually calculated for the defect and
supercell in question. All other sources of error—such as
defect band dispersion, etc.—are contained within the finite-
size errors shown. Most of the errors listed are on the 0.1 eV
scale or below, which in practical calculations is usually ac-
ceptable. The finite-size errors and some of those arising
from treating the In 4d electrons as core are larger, lying on
the ,0.5 eV level. We note, however, that for charged de-
fects we anticipate even larger finite-size errors—up to
1–2 eV in many cases12—while we do not anticipate the
errors from the In pseudopotentials being significantly differ-
ent from those here. The presence of defect level dispersion
effects is confirmed by the existence of the exponentially
shrinking supercell size dependence in the errors related to

FIG. 11. Scaling of errors from other sources. Left panel: The
change in formation energy when the In 4d electrons are treated as
core rather than valence—i.e., the formation energy using an US-PP
with In 4d treated as valence minus the formation energy found
earlier with the In 4d as core. Center panel: the change in formation
energy when PAW is used rather than US-PP(both with In 4d
treated as valence). Right panel: the change in formation energy
when GGA is used instead of LDA. Solid line fits are to Eq.(8),
dashed lines are to Eq.(1).
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pseudopotentials and to the LDA for the antisites. These re-
sults also confirm that they are short ranged. Their energy
scale is rather hard to estimate directly, but the size of the
exponential components in Fig. 11 suggests that the errors
involved are only on the 0.01–0.1 eV scale even for the 8
atom cell. An alternative estimation comes from the error
bars on the scalings themselves(see Table I) which are
0.01–0.35 eV, only a small part of which comes from the
defect level dispersion.

The fact that the errors coming from the pseudopotentials
have only a small and exponentially decaying cell size de-
pendence means that it is perfectly reasonable to make the
approximations we needed to make in order to be able to do
calculations in sufficiently large supercells to correctly assess
the finite-size errors. The amplitude and sign of these nonsize
dependent errors can be calculated separately in a smaller
cell—the 64 atom cell for example—and simply added or
subtracted from the final finite-size scaled results in order to
produce much more accurate and reliable defect formation
energies than those normally published. This has been done
for the LDA formation energies of the present examples in
the last column of Table IV, but is equally valid for the errors
in the relaxed formation energies and those in the GGA(at
least if no delocalized hole/electron states have appeared at
the valence/conduction band edges).

IX. CONCLUSIONS

We have studied the finite-size errors which occur when
the supercell approximation is used in the calculation of the
formation energies and structures of point defects in semi-
conductors, using the neutral native defects of InP as an ex-
ample. We have calculated the relaxed and unrelaxed forma-
tion energies using plane-waveab initio DFT in simple cubic
supercells containing 8, 64, 216, and 512 atoms—the largest
currently computable. To examine and correct for these er-
rors we have used finite-size scaling with inverse supercell
size, which we consider to be the most reliable and accurate

way to treat the finite-size supercell approximation errors.
Unlike other methods this does not rely upon any modeling
or assumptions about the errors, other than that they are pri-
marily long ranged(polynomial rather than exponential) and
decrease with increasing supercell size. This method requires
the results of calculations in at least three supercells, and at
least four if we are to have an idea of the accuracy of the
resulting scaled energies. Hence for some difficult cases in
which the 8 atom cell is simplytoo unreliable it may occa-
sionally be necessary to use supercells with up to 1000 at-
oms.

Three sources of finite-size error have been examined: In
the case of relaxed formation energies there are elastic errors
due to the finite volume available for relaxation. We showed
that, as they should, these scale linearly with inverse super-
cell sizesL−1d with very little hint of any higher order error
term arising, even when Jahn-Teller distortions are taken into
account. The second type of error is the dispersion of the
defect levels, which has only a relatively small effect upon
the formation energies, at least when the defect levels are
completely filled. These effects appear to shrink exponen-
tially with increasing supercell size, as anticipated, but ap-
pear to slightly increase the uncertainties in the final scaled
formation energies. The third source of error is much more
significant and arises for both relaxed and unrelaxed forma-
tion energies. It is due to charged multipole interactions be-
tween a defect and its images in the PBCs. We have shown
that these errors are present and not always negligible, even
for neutral defects. Linear errors can arise if fully or partially
filled defect levels lie outside the band gap in the neutral
charge state, leading to delocalized holes at the valence band
edge or electrons at the conduction band edge. Linear errors
can also appear in unrelaxed formation energies due to the
way in which the defect/image interactions lift degeneracies
for partially filled degenerate defect states within the band
gap. Both of these ways for linear scaling errors to arise can
apply for other non-neutral defects. They indicate that the
calculation is in some way unphysical, for example that the
charge state involved is not actually stable. However, in

TABLE IV. Comparing the size of the errors arising from the various different approximations.(a)
Finite-size errors from the supercell approximation(shown for the 64 and 512 atom supercells). (b) The
treatment of the In 4d electrons as core(scaled to an infinite cell). (c) US: The use of ultrasoft pseudopo-
tentials, compared to PAW(scaled to an infinite cell). (d) The LDA, compared to GGA(scaled to an infinite
cell). (For the cases in which a finite-size term appears in the LDA versus GGA error a more valuable
comparison is of the errors in individual cells, so the values in the 64 and 512 atom cells are then given in
brackets.) (e) Basis set truncation(in the 64 atom cell), and(f) k-point integral truncation.(Shown for the cell
in which it is worst for the defect in question.) (g) “Final” shows the scaled LDA formation energy when the
pseudopotential errors are accounted for.(All energies in electron volts.)

Defect Supercell In 4d US LDA Basis k grid Final

VIn 0.40/0.20 0.11 0.00 0.25(0.24/0.23) 0.003 0.003 4.84

InP 0.41/0.21 0.30 0.10 0.12 0.003 0.0007 3.57

InisInd 0.40/0.25 0.08 0.16 0.48(0.18/0.32) 0.01 0.007 4.67

InisPd 0.55/0.33 0.47 0.06 0.32(0.05/0.17) 0.02 0.007 4.56

PIn 0.03/0.03 0.02 0.01 0.07 0.01 0.002 2.46

VP 0.12/0.03 0.07 0.00 0.40(0.23/0.31) 0.004 0.001 2.93

Pishexd 0.06/0.02 0.02 0.07 0.13(0.07/0.10) 0.04 0.009 4.85

C. W. M. CASTLETON AND S. MIRBT PHYSICAL REVIEW B70, 195202(2004)

195202-12



practice it is often necessary to calculate formation energies
of such unstable charge states in order to check which tran-
sitions levels do actually lie inside the gap. It is thus impor-
tant to be aware that large finite-size errors, such as those
reported here, can occur even in calculations for neutral de-
fects, as this can lead to transition levels calculated in indi-
vidual supercells(without scaling) to appear to lie inside the
gap when they should lie outside and vice versa.

Indeed, electrostatic errors are still present even for physi-
cally reasonable cases, such as VP and(probably) VIn, due to
defect states which enter the gap as the cell size grows. They
are even present and may remain significant for defects such
as the neutral PIn which has all of its defect levels within the
gap in all supercells. This is because neutral defects in crys-
talline solids still have higher order charge multipole mo-
ments, especially if the system is made up of more than one
type of atom with different electronegativities. We have
shown that for unrelaxed formation energies these errors
scale as the inverse cube of the supercell sizesL−3d. For
relaxed formation energies this is almost certainly the case
also, although we do find possible indications that the lead-
ing nonlinear error term may sometimes scale as the inverse
squaresL−2d. Further work with more defects is needed to
confirm or definitively rule out this possibility. It could
clearly be answered by removing the 8 atom cell from the
scaling and replacing it with the 1000 atom cell, but that
must wait for improved computing facilities. In the mean-
time, an answer may be obtained from scaling studies of

formation energies for charged defects12 since both the elec-
trostatic errors themselves and the cross terms between them
and the elastic errors will then be stronger.

To summarize: The use of large(up to 500 or occasionally
even 1000 atom) supercells with finite-size scaling has been
shown to be a very promising route around the errors which
arise in the use of the supercell approximation to calculate
formation energies of defects in III−V(and other) semicon-
ductors. Errors scale with a linear plus a higher order term,
most probably cubic. We have also found several instances
where scaling recovers physically relevant results that are
even hidden in calculations on the 512 atom cell: Formation
energies which are wrong by,1/2 eV and defect levels
which appear inside the valence or conduction bands in su-
percell calculations when they should actually lie inside the
band gap.
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