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Abstract—Ambient Intelligent (AmI) technology can be used
to help older adults to live longer and independent lives in their
own homes. Information collected from AmI environment can
be used to detect and understanding human behaviour, allowing
personalized care. The behaviour pattern can also be used to
detect changes in behaviour and predict future trends, so that
preventive action can be taken. However, due to the large number
of sensors in the environment, sensor data are often complex and
difficult to interpret, especially to capture behaviour trends and
to detect changes over the long-term.

In this paper, a model to predict the indoor mobility using
binary sensors is proposed. The model utilizes weekly routine to
predict the future trend. The proposed method is validated using
data collected from a real home environment, and the results
show that using weekly pattern helps improve indoor mobility
prediction. Also, a new measurement, Mobility Entropy (ME), to
measure indoor mobility based on entropy concept is proposed.
The results indicate ME can be used to distinguish elders with
different mobility and to see decline in mobility. The proposed
work would allow detection of changes in mobility, and to foresee
the future mobility trend if the current behaviour continues.

I. INTRODUCTION

Global human population has a rapid growth and the rate of
the elderly people is increasing in the population. The results
published by United Nation is predicting that the number of
the elderly people will be approximately 1.2 billion in 2025
[1]. The rate of the elderly in developed countries is about
28%. It is projected that by 2050, people aged 65-79 will
constitute almost a third of the population of Europe, whilst
the number of the oldest old (80+) will rise by 180% [2]. The
majority of older adults prefer to remain in their homes for
as long as possible, and nowadays technologies are available
to help them live longer and independent lives in their own
homes. One of these technologies is referred to as an Ambient
Intelligent (AmI) environment, where multiple sensors are
deployed in the home. These sensors include Passive Infra-
red (PIR), door switch, pressure mat, temperature sensor, flood
sensor, smoke detector, etc. The data collected from the sensors
can be used to monitor and detect the older adult’s activities
to provide security, support, and enhance independence living.
For example, a kettle can be automatically switched on when
a person gets up.

However, sensor data are often complex and difficult to
interpret, especially to capture behavioural trends and to detect
changes over a long-term period. The ability to detect human
behaviour will allow personalized care, and improve the under-
standing of their behaviour. The behaviour pattern can also be
used to detect changes in behaviour and predict future trends,

so that preventive action can be taken. The understanding
of human behaviour has gained significant attention from
researchers. A number of studies have been conducted to
capture and analyse human behaviour, ranging from short
temporal resolution e.g. posture and movement transition [3],
and activity recognition [4] to longer resolution such as long-
term behaviour patterns [5]. Computational intelligence tech-
niques such as neural networks [6], Hidden Markov Model [7],
fuzzy logic [8], mixture model [5], etc. as well as semantic
approaches [9], [10] have been used to model, learn, and
discover behavioural patterns.

In this study, a model to predict the indoor mobility using
binary sensors is developed. Unlike other works, the sensor
data are converted into room transitions which are then used
to capture the indoor mobility. We propose a prediction model
by utilizing day of the week patterns in a neural network. The
hypothesis is that humans generally have weekly routines, and
that their behaviour pattern can be explained by the weekly
pattern. The aim is to evaluate and compare the performance
of the model using day of the week patterns and the models
using previous indoor mobility values. We also propose a new
measurement to measure the indoor mobility based on entropy.

This paper is organized in the following order; previous
works in human behaviour prediction is reviewed in the next
section followed by the explanation about the indoor mobility
in Section III. Indoor mobility prediction is explained in
Section IV followed by detailed explanation of indoor mobility
prediction based on weekly pattern in Section V then the
proposed mobility entropy is presented in Section VI. Results
are presented in Section VII followed by discussion in Section
VIII. Pertinent conclusions are drawn in Section IX.

II. RELATED WORKS

Various attempts have been made to understand human
behaviour and to predict future events. Work by [6] studied two
types of recurrent neural network models i.e. NARX, and El-
man network, to predict the behaviour using occupancy sensors
including PIR and door entry point sensors. In their method,
the raw binary sensor data are converted into sensor start time
and duration. The results of the study indicated that the NARX
network’s performance is better than the Elman network. They
also compared the results with a moving average technique and
found that NARX produced much better results. The results
of this study indicated the powerful performance of NARX in
time-series prediction.

Another common technique for time series detection and
prediction is the Hidden Markov Model (HMM). It can be used



to learn previous input sequences and estimate future state.
An algorithm to detect behaviour patterns based on HMM is
proposed in [7]. They used binary inputs to learn the behaviour
of conference events. However, HMM suffers in performance
terms when a large amount of data is used [6].

Clustering techniques have also been used to discover
behaviour patterns. A study by [5] examined a motion sensor
system to detect behavioural patterns. They applied mixture
model methods on the time spent in one location to divide
the data into clusters. The cluster are later compared to the
person’s activity log to determine the activities that matched
the clusters. They found that the discovered clusters corre-
sponded to sleeping, changing clothes, bathroom/toilet use,
leaving/returning home, and meal preparation.

A method to recognize complex activity patterns using a
probabilistic grammar approach is proposed in [9]. Images
from a camera are used to determine the location of a person
within an environment which had been divided into different
regions such as dining, sink, stove, etc. The grammar is
used to define activities e.g. cooking and the probability of
action given the area sequence. The grammar defined must
be general enough to allow multiple instances of an activity,
but still be able to detect different actions. The grammar
definition imposes restriction of specific locations over time.
Their experimental results indicated that a good grammar
and precise locations are essential in this technique. Visual
sensors are also used in [11]. They proposed a method to learn
behaviour patterns where information of the person’s location
is extracted and action is identified using k-Nearest Neighbour,
then data mining techniques are used to discover the frequency
behaviour pattern. The experiments demonstrated the use of
their proposed method, although the studied scenarios are
limited i.e. work scenario. However, the use of such visual
sensors may not be acceptable in home monitoring application
due to privacy issues. The alternative is to utilize non-visual
sensors e.g. PIR to obtain location or events instead.

A framework is proposed in [10] to detect behavioural
patterns to help dementia patients using Workflow Mining
technology. The flow of activities are captured via an algo-
rithm called the Workflow Instance Acceptor Algorithm. The
algorithm shows how the flow of actions fits with the expected
flow and if there is any difference, it is highlighted. Based
on this information, the health professional can decide what
motivation plan to apply to the patient. The advantage of this
method is that it allows behaviour to be represented in a formal
semantic way which helps in understanding the behaviour,
especially for non-technical users. However, further analysis
on the received information, experience, and expertise would
be required to make informed decisions.

Studies shown that the older adults spend most of the
day inactive [12]. It is encouraged that the older adults are
engaged in physical activity to optimize their health outcomes
as activity level has been shown to be associated with survival
rate, independence, and quality of life [13]. Physical activity
often diminishes as age increases, especially in older women
[14]. Majority of the assessments are developed to measure
the physical activity level. However, these measurements are
mostly focused on the outdoor activities, only a few assessment
are developed to measure indoor mobility at homes. For
example, the nursing home life-space diameter (NHLSD) [15]

is developed to measure indoor mobility in nursing home en-
vironment. The nursing home spaces are divided into different
zones i.e. resident’s room, in unit, out of unit, and out of
facility. The measurement is based on how often between zones
within 2-week period. Their results shows that NHLSD is
associated with ADL. However, since NHLSD is developed on
nursing home setting, it may not effectively assess the indoor
mobility for home setting.

Another study [12] proposed a measurement to describe
indoor life-space mobility at home (LSH). The LSH is cal-
culated based on how far and how often a participant moved
from a bedroom to four locations i.e. entrance, dining room,
bathroom, and toilet, and whether a participant requires any
assistance. The distances between each room are measured
and each week the participants are asked the number of
times they moved to each location, and if they needed any
assistance. Higher LSH indicates greater indoor life-space
mobility. The results of the study indicated that LSH reflects
indoor life-space mobility and showed high correlation with
basic activities of daily living e.g. feeding, sleeping, etc. which
can be used to indicate a major decline in indoor activities
and physical abilities. It will provide a useful assessment for
older adults with difficulty in performing outdoor activities.
The limitation of these approaches is that LSH and NHLSD
are based on questionnaires as older persons are likely to forget
what activities they have done over a long period.

In this study, the same concept as NHLSD and LSH are
used such that the Indoor Mobility (IM) is calculated based
on movement within homes. However, instead of using ques-
tionnaire, the AmI sensors are used to collect the movement
information of an older adult. This allows movement data to
be collected automatically to reduce human error. The aim is
to capture the IM pattern and develop a model to predict the
future IM. We also propose a new measurement which is used
to measure the level of indoor mobility based on entropy. The
result of the study would allow detection of changes in the
person’s indoor mobility, and to foresee the future trend if the
current behaviour continues.

III. INDOOR MOBILITY

The indoor mobility is represented by the frequency of the
movement from room to room. Given a home environment
equipped with AmI sensors such as PIR, a person’s transitions
in home can be detected. For simplicity, we will consider only
binary sensors. Given any binary sensor S at location l, its
value at time t can be represented as:

Sl
t =

⇢
0 OFF
1 ON

For any given time, a sequence of any sensor data
can be written as Sl = {Sl

0, S
l
1, . . . , S

l
t} and the

transition between rooms can be written as Tr =
{(Sl1 , Sl2)st1 , (S

l2 , Sl3)st2 , . . . , (S
li , Slj )st} where i 6= j and

st is the time the person enters the location i. Then, the IM is
the total number of tuple in Tr between time T1 and T2.

IM = |(Sl1 , Sl2)st1 , . . . , (S
li , Slj )st|T2

T1 (1)



Fig. 1. An example of raw sensor data in various locations and the calculated
indoor mobility over 24-hour period.

The data sets are collected from binary sensors installed
in two single-occupancy homes. The data sets contain binary
data from sensors including PIR, door contact switch, pressure
sensor, and electrical appliance usage sensor. The information
in the data sets include the date and time when the sensor
is activated, sensor type, sensor value, and the location of the
sensor. An example of a data is shown in Table I. The data sets
are collected over a period of two months for each data set.
The data is segmented using a 1-second interval. The sensor
data are combined if they occur within the same second. For
any sensor that is fired more than once within the second,
the latest sensor value is used. Sometimes the time spend in
the room detected by the sensor is very low, this is because
a person is only passing through the room in order to go to
another location. To handle this problem, the transition that
occurs when the person spends at least 1 minute in the room
is considered. In this study, the IM is calculated using 1-hour
interval i.e. indoor mobility per hour. Fig. 1 shows the raw
input and the IM calculated on a particular day.

IV. INDOOR MOBILITY PREDICTION

In this study, neural network technique i.e. multi-layer
perceptron (MLP) and recurrent network for IM prediction
are investigated. A typical MLP is consisted of three layers
including input, hidden, and output layers. The output is
summation of the inputs and associated weights which can
be written as:

IM = f(
X

i

(wixi)) (2)

TABLE I. AN EXAMPLE OF BINARY SENSOR DATA IN A DATA SET

Date and time Sensor type Sensor value Location
2004-10-01 00:22:15.093 PIR 1 Master bedroom
2004-10-01 00:24:46.203 PIR 1 Main bathroom

where f is the activation function and is usually a sigmoid
function.

A recurrent network uses the current input and the previous
input sequences to predict the outputs. In particular, the model
is developed using a recurrent dynamic network where the
output is fed back to the input layer. The results of previous
study [6] indicated that the recurrent network provide a good
performance in predicting time-series data. To predict the
future value of IM at time t, the following function is used:

IMt = f(IMt�1, IMt�2, . . . , IMt�d) (3)

where d is the number of tapped delays. This network is
referred to as a Nonlinear Autoregressive (NAR) network. If
other time-series inputs, x, are used in the network, the future
value of IMt can be rewritten as:

IMt = f(IMt�1, IMt�2, . . . , IMt�d,

xt�1, xt�2, . . . , xt�d) (4)

This network is referred as a Nonlinear Autoregressive with
Exogenous Input (NARX).

V. INDOOR MOBILITY PREDICTION BASED ON WEEKLY
PATTERN

A model to predict IM based on the day of the week pattern
is proposed. The day of the week pattern is constructed using
data collected over a period of l days. For example, to predict
IM at time t, the previous data of l days are used to build
day of the week patterns, �D

t . The day of the week pattern
is calculated from the statistical features including minimum,
maximum, quartile at 25%, 50%, and 75%, upper and lower
whisker, and upper and lower notch of a particular day of the
week and hour e.g. Monday 8 am. The pairwise correlation
shows that quartile at 75%, upper whisker, and maximum
are highly correlated which is not surprised as upper whisker
is calculated from whi = minq3 + 1.5IQR,maximum.
Similarly, quartile at 25%, lower whisker, and minimum are
highly correlated as lower whisker can be calculated from
wlo = maxq1� 1.5IQR,minimum. Also there is a strong
correlation between lower notch and quartile at 50% and upper
notch and quartile at 50% as lower and upper notch can be
calculated from nlo = q2+ 1.57IQRp

n
and nhi = q2� 1.57IQRp

n
,

respectively. Therefore, it is possible to reduce some variables
for prediction. Consequently, the weekly pattern is represented
using quartile at 25%, 50%, and 75%, and Median Absolute
Deviation (MAD):

�D
t = {Q25, Q50, Q75,MAD} (5)

In our model, the input is the pattern of the relevant day of
the week. For example, to predict IM on Monday, the Monday
pattern will be used. All neural network models contain three
layers i.e. input, hidden, and output layers.

For MLP model, the predicted IM is based on weekly
patterns only:



ˆIM
D

t = f(�D
t ) (6)

For NAR model, the predicted IM is based on previous IM
only;

ˆIM
D

t = f(IMD
t�1, IM

D
t�2, . . . , IM

D
t�↵) (7)

Finally, in NARX model, the predicted IM at time t can
be represented as a function of a previous pattern of the day
of the week and previous IM values:

ˆIM
D

t = f(�D
t�1,�

D
t�2, . . . ,�

D
t�↵,

IMD
t�1, IM

D
t�2, . . . , IM

D
t�↵) (8)

where D is day of the week, e.g. Monday, Tuesday, etc., �D
t

represents the pattern of the day D at time t, IMD
t represents

the indoor mobility at time t, and ↵ is the number of delays
in hours. For example, �Mon

t represents the Monday pattern
at time t.

VI. INDOOR MOBILITY MEASUREMENT BASED ON
ENTROPY

A new measurement called Mobility Entropy (ME) is also
proposed to measure the human’s indoor mobility level. ME
can be used to compare mobility level between persons and to
use it as an indicator to detect changes in IM. The entropy is
a concept introduced in thermodynamic to capture the amount
of order, disorder, chaos in thermodynamic system [16]. It has
been applied in other domains, for example, the concept of
entropy is used to model spatial learning [17]. In this work,
a person who is highly active will have high indoor mobility
frequency and high dispersal throughout the day (high entropy)
comparing to a person who is less active (low entropy).
Utilizing this concept, the mobility entropy can be calculated
from the entropy of frequency (Hfrequency) and entropy of
dispersal (Hdispersal) of the mobility over a week period. The
entropy of frequency explains the frequency a person moves in
an hour, and the entropy of dispersal explains the dispersal of
movement over the day. Given IM is the frequency of indoor
mobility per hour, the mobility of 1 week period can be written
as IMW = {IM1, IM2, . . . , IM7⇥24}. The mobility entropy
can be calculated as:

HME = HFrequency +HDispersal (9)

where HFrequency = ln(
P

IMW ) and HDispersal =
ln(|IMW > 0|).

A. Validation procedure

The performance is calculated using Mean Squared Error
(MSE). Given m time series, the error can be calculated as:

MSE =
1

m

mX

i=1

(IMi � ˆIM (i))
2 (10)

where IM(i) is the indoor mobility at time i and ˆIM (i) is the
predicted mobility at time i.

The experiments are carried out using 7 days for training, 7
days for validation, 7 days for testing. Another 7 days of data is
used as additional testing data for long-term prediction. More
experiments are conducted with four different lead times to
build day of the week patterns i.e. 14, 21, 28 and 35 days.
The experiments were repeated for 5 times, hereafter this will
be referred to as 5 folds. For each model setting i.e. number
of hidden nodes, number of delay, number of lead times, 10
networks were built and the results reported are the average
performances. Table II gives an example of how the data is
separated for training and testing for a lead time of 14 days.
The number in the table represents the day e.g. day 01/09�
04/10 are used for training.

The results are compared using statistical tests at 95%
confident interval. The data is first checked for its normality
using Shapiro-Wilk. If the data had a normal distribution, then
a paired T-test is applied, otherwise Wilcoxon Signed Ranks
Test is used.

VII. RESULTS

A. Indoor mobility behaviour based on day of the week pattern

Fig. 2 shows the indoor mobility (IM) of a subject based
on a month’s data. From the graph, it can be seen that the
person normally wakes up at 8 am and goes to bed at 11 pm.
The graph also shows that the IM during day time (12�3 pm)
has a high variation. The behaviour pattern also shows that the
subject is normally active during 6� 9 pm.

Next, results of the day of the week pattern e.g. Monday,
Tuesday, etc. based over 1 month (e.g. 4 Mondays) are
investigated. According to the graph, there is no IM during
11 am to 3 pm on Monday. When inspect the data, it is found
that the subject is resting in the living room during that period
of time. Based on the behaviour patterns, it can be seen that the
subject rests between 12�2 pm on Wednesday and during 1�2
pm on Thursday. The patterns show that the subject generally
becomes active in the evening (from 4 pm) and is more active
on Friday, Saturday, and Sunday. The patterns also show that
the subject has a good sleep pattern in general. However, the
pattern shows that the subject had disturbed nights mostly on
Thursday, and Friday.

B. Prediction models

The aim of the experiment is to compare the performance
of the model using only previous indoor mobility values (NAR-
IM), the model using previous IM values and day of the week
patterns (NARX-IM), and the model using only day of the
week patterns (MLP-IM). First, the experiments are carried
out to determine the appropriate number of hidden nodes and

TABLE II. AN EXAMPLE OF HOW THE DATA ARE SEPARATED FOR
BUILDING DAY OF THE WEEK PATTERN (�D ), TRAINING (TR),

VALIDATION (VAL), TESTING (TE), AND ADDITIONAL TESTING (TE1).

Fold �D TR VAL TE TE1
1 01/09 - 04/10 5/10 - 11/10 12/10 13/10 - 19/10 20/10 - 26/10
1 15/09 - 04/10 5/10 - 11/10 12/10 13/10 - 19/10 20/10 - 26/10
2 02/09 - 05/10 6/10 - 12/10 13/10 14/10 - 20/10 21/10 - 27/10
2 16/09 - 05/10 6/10 - 12/10 13/10 14/10 - 20/10 21/10 - 27/10



Fig. 2. Box-plot representing behavioural pattern based on IM for a duration
of one month.

delays. The networks are constructed using 5 to 50 hidden
nodes and 1 to 10 hours delay. For each setting i.e. H hidden
nodes, ↵ delays, 10 models are built. The networks are trained
using the Levenberg-Marquardt algorithm and tangent sigmoid
is used as an activation function. The results are based on the
average performance on the test set and additional test set.
Experiments are also carried out to evaluate the effect of using
different periods of lead time for the day of week patterns i.e.
l=14, 21, 28 and 35 days. The performances of the models
based on the their most optimum setting on different lead times
are shown in Table III and Table V. Statistical tests are applied
to see if the differences in performances are significant. The
statistical results when comparing different models are shown
in Table IV and Table VI, for data set 1 and 2, respectively.

Using the most optimum setting obtained from earlier
experimental results, the additional test data are applied to
evaluate the models’ performances in multi-step prediction.
The performance of the models in predicting indoor mobility
in 1 day and 7 days advance are shown in Table VII and
Table IX. The results are compared using statistical tests and

the results are shown in Table VIII and Table X.

In terms of training time, in general the training time
increases when the number of hidden nodes and delays in-
creases. The training time of MLP models are less than NARX
since fewer number of inputs are used, however this is not
significant.

C. Mobility entropy validation

To validate the proposed indoor mobility, the simulated
data which represent different mobility characteristic are used.
The data for two case studies are simulated. The first case
study is used to demonstrate the mobility entropy of four
types of elders - a person with high frequency of mobility
per hour and high dispersal of mobility throughout the day
(profile 1), a person with low frequency and low dispersal
of mobility (profile 2), a person with high frequency and
low dispersal of mobility (profile 3), and a person with low
frequency and high dispersal of mobility (profile 4). The data
is generated randomly from a normal distribution where a
mean of 0.8 mobility level is used for high frequency and
0.2 is used for low frequency. The probability of a person
performing movement between rooms are generated from a
normal distribution where 70% chance of movement occurring
is used for high dispersal and 30% for low dispersal. Fig. 3
shows the mobility entropy of elders with different profiles
in 1-week period. Fig. 4 shows the graph of mobility entropy
over a 7-week period.

Another case study is used to evaluate the mobility en-
tropy to detect the decline in mobility. The data is generated
randomly to represents two elders’ profiles i.e. a person who
has high frequency then decline to low frequency of mobility
(change from 0.8 mobility level to 0.2), and the same person
who decline to low dispersal of mobility throughout the day
(change from 70% chance of performing mobility to 30%).
Fig. 5 shows the mobility entropy when elders have decline
in their indoor mobility. The data is generated randomly from
a normal distribution for a 14-week period where the changes
occur from week 8th onwards.

TABLE VII. PERFORMANCES’ OF THE MODELS IN 1-DAY AND 7-DAY
AHEAD PREDICTION USING ADDITIONAL TEST DATA FOR DATA SET 1.

Model 1-day ahead prediction 7-day ahead prediction
NAR-IM 0.0291 ± 0.0102 0.0356 ± 0.0078
NARX-IM-14 0.0270 ± 0.0089 0.0258 ± 0.0017
NARX-IM-21 0.0269 ± 0.0090 0.0252 ± 0.0017
NARX-IM-28 0.0239 ± 0.0084 0.0231 ± 0.0028
NARX-IM-35 0.0229 ± 0.0073 0.0219 ± 0.0033
MLP-IM-14 0.0197 ± 0.0095 0.0193 ± 0.0013
MLP-IM-21 0.0151 ± 0.0076 0.0166 ± 0.0009
MLP-IM-28 0.0144 ± 0.0074 0.0168 ± 0.0013
MLP-IM-35 0.0229 ± 0.0073 0.0219 ± 0.0033

TABLE IX. PERFORMANCES’ OF THE MODELS IN 1-DAY AND 7-DAY
AHEAD PREDICTION USING ADDITIONAL TEST DATA FOR DATA SET 2.

Model 1-day ahead prediction 7-day ahead prediction
NAR-IM 0.0494 ± 0.0145 0.0640 ± 0.0173
NARX-IM-14 0.0336 ± 0.0119 0.0314 ± 0.0053
NARX-IM-21 0.0360 ± 0.0129 0.0323 ± 0.0026
NARX-IM-28 0.0338 ± 0.0174 0.0308 ± 0.0037
NARX-IM-35 0.0273 ± 0.0104 0.0292 ± 0.0034
MLP-IM-14 0.0268 ± 0.0100 0.0277 ± 0.0019
MLP-IM-21 0.0218 ± 0.0103 0.0259 ± 0.0034
MLP-IM-28 0.0197 ± 0.0063 0.0237 ± 0.0014
MLP-IM-35 0.0199 ± 0.0061 0.0229 ± 0.0017



Fig. 3. The indoor mobility of elders with different profiles over a 7-week period and their mobility entropy.

Fig. 4. The Mobility Entropy of elders with different indoor mobility profiles
over a 7-week period. Profile 1 is a person with high frequency of mobility
per hour and high dispersal throughout the day, Profile 2 is a person with low
frequency and low dispersal, Profile 3 is a person with high frequency and
low dispersal, and Profile 4 is a person with low frequency and high dispersal.

Fig. 5. The Mobility Entropy of elders who have decline in their indoor
mobility over a 14-week period. Profile 1 is a person with high frequency of
mobility per hour then decline to low frequency, Profile 2 is a person with
high dispersal of mobility throughout the day then decline to low dispersal.

VIII. DISCUSSION

The results of the study show that although humans behave
differently each day, it is possible to capture the behaviour

using weekly patterns. By utilizing the indoor movement, we
can see the behaviour trend of a person, and detect abnormal
activity via behaviour pattern statistics and visual inspection.
In this study, we captured the indoor mobility (IM) using AmI
sensors and proposed to use the weekly pattern to predict future
indoor mobility. The results show that MLP models are better
than NAR and NARX models with statistical significance for
both data sets. In data set 2, NARX models are better than
NAR model. This results imply that using weekly patterns help
in indoor mobility prediction. This is because weekly pattern
captures information of l days indoor mobility. However, using
weekly patterns with previous weekly patterns (NARX models)
does not guarantee to improve the prediction performances.
From the correlation analysis, we have found that there is no
significant relationship between previous IM values and current
IM values, and previous weekly pattern and current weekly
pattern. Therefore, by using the previous IM or weekly pattern
values might not improve the prediction performance.

Regarding the effect of using different lead times, we have
found that in general there is no statistical significant difference
in NARX models, although the results show that using NARX
with 35-day lead time is the most optimum for data set 1
and NARX with 28-day for data set 2. In MLP models, using
different lead times has significant effect on the prediction
performances and the results showed that using MLP with 28-
day lead time is the most optimum for data set 1 and 35-day
for data set 2. Based on these results, it is suggested that using
the lead time of more than 28 days to create weekly patterns
will provide good prediction performances.

When we look at the performance of the models for multi-
step prediction, the results indicated that both NARX and
MLP models perform significantly better than NAR model.
The results also show that MLP models’ performances are
statistically better than NARX models. We found that NARX
with 35-day lead time are the most optimum for multi-step
prediction and MLP with 21-day are optimum setting for
data set 1 and 35-day for data set 2. These results clearly
demonstrate the effectiveness of using weekly patterns in



indoor mobility prediction.

In this paper, we also proposed a new measurement to
measure indoor mobility based on entropy. The results of the
experiments indicated that the Mobility Entropy (ME) can
be used to distinguish between elders with different mobility
profiles. A person who has high ME means high indoor
mobility. From Fig. 4, it can be seen that a person with
low frequency of mobility per hour but has high mobility
throughout the day (profile 4) has higher ME than a person
with high frequency and low dispersal (profile 3). When we
inspect the summation of IM values, we found that a person
with profile 4 has higher IM values than a person with profile
3 as well. This suggests that ME truly reflect indoor mobility
of a person. In the second case study where we simulate data
to represent elders who have decline in indoor mobility, the
results showed that using ME the decline can be detected. The
results also suggested that using ME, an elderly who has a
decline in frequency but still maintain the mobility throughout
the day (profile 1) will have higher ME comparing to an elderly
who has a decline in mobility throughout the day (profile 2).
This reflects on human behaviour such that when a person who
usually perform mobility throughout the day but suddenly stop
should have lower ME comparing to a person who can still
carry on indoor mobility but only less often in an hour.

The proposed model and indoor mobility measurement can
be used to predict future behaviour to see whether any deteri-
oration in indoor mobility would happen if the elderly carried
on with their current mobility behaviour. This would allow
intervention in their behavioural routine such that deterioration
is prevented or reduced. The proposed work can also be used
to capture individual behavioural patterns which are then used
to detect abnormal behaviour. For example, a person may
normally goes to bed at 11 pm, but this may be considered
as an abnormal behaviour for a different person. This allows
personalized care or services to suit different individuals.

IX. CONCLUSION

In this paper, we have proposed a prediction model based
on indoor mobility using binary sensor information in an
AmI environment. The proposed model is developed based
on a neural network using weekly patterns. The results of the
study show that there is a weekly pattern in human behaviour.
Based on the experimental study, using the weekly routine in
the model captured the indoor mobility behaviour. However,
enough information is required to build the weekly pattern
and a recommendation of at least 28 days is suggested. This
study also proposed mobility entropy (ME) to measure indoor
mobility based on entropy concept. The experimental results
demonstrated that ME is directly linked with indoor mobility
values. ME can be used to distinguish between persons with
different mobility and as a measurement to see the decline
in mobility. For future work, evaluation will be carried out
on the proposed work over a longer period of prediction,
and techniques to detect changes in behaviour and decline in
mobility will be explored.
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TABLE III. A COMPARISON BETWEEN THE MODELS PERFORMANCES USING DIFFERENT l LEAD TIME WHERE H IS NUMBER OF HIDDEN NODES, ↵ IS
NUMBER OF DELAYS, � IS TRAIN PERFORMANCE,  IS VALIDATION PERFORMANCE AND ⌦ IS TEST PERFORMANCE ON DATA SET 1.

Model H ↵ (hour) �  ⌦
NAR-IM 5 10 0.0183 ± 0.0065 0.0236 ± 0.0153 0.0284 ± 0.0064
NARX-IM-14 5 1 0.0241 ± 0.0038 0.0283 ± 0.0090 0.0268 ± 0.0036
NARX-IM-21 5 1 0.0220 ± 0.0024 0.0275 ± 0.0088 0.0277 ± 0.0028
NARX-IM-28 10 10 0.0150 ± 0.0063 0.0216 ± 0.0111 0.0267 ± 0.0045
NARX-IM-35 30 10 0.0107 ± 0.0052 0.0199 ± 0.0096 0.0266 ± 0.0033
MLP-IM-14 5 - 0.0152 ± 0.0070 0.0184 ± 0.0079 0.0204 ± 0.0063
MLP-IM-21 5 - 0.0178 ± 0.0088 0.0165 ± 0.0086 0.0197 ± 0.0084
MLP-IM-28 15 - 0.0130 ± 0.0042 0.0170 ± 0.0093 0.0160 ± 0.0027
MLP-IM-35 10 - 0.0127 ± 0.0048 0.0153 ± 0.0082 0.0182 ± 0.0026

TABLE IV. A STATISTICAL RESULTS (P VALUE) FOR MODELS COMPARISON ON DATA SET 1.

Model NAR-IM NARX-IM-14 NARX-IM-21 NARX-IM-28 NARX-IM-35 MLP-IM-14 MLP-IM-21 MLP-IM-28 MLP-IM-35
NAR-IM - 0.163 0.553 0.070 0.327 0.000 0.000 0.000 0.000
NARX-IM-14 0.163 - 0.013 0.502 0.935 0.000 0.000 0.000 0.000
NARX-IM-21 0.553 0.013 - 0.042 0.055 0.000 0.000 0.000 0.000
NARX-IM-28 0.070 0.502 0.042 - 0.682 0.000 0.000 0.000 0.000
NARX-IM-35 0.327 0.935 0.055 0.682 - 0.000 0.000 0.000 0.000
MLP-IM-14 0.000 0.000 0.000 0.000 0.000 - 0.045 0.000 0.042
MLP-IM-21 0.000 0.000 0.000 0.000 0.000 0.045 - 0.010 0.935
MLP-IM-28 0.000 0.000 0.000 0.000 0.000 0.000 0.010 - 0.000
MLP-IM-35 0.000 0.000 0.000 0.000 0.000 0.042 0.935 0.000 -

TABLE V. A COMPARISON BETWEEN THE MODELS PERFORMANCES USING DIFFERENT l LEAD TIME WHERE H IS NUMBER OF HIDDEN NODES, ↵ IS
NUMBER OF DELAYS, � IS TRAIN PERFORMANCE,  IS VALIDATION PERFORMANCE AND ⌦ IS TEST PERFORMANCE ON DATA SET 2.

Model H ↵ (hour) �  ⌦
NAR-IM 5 2 0.0501 ± 0.0113 0.0485 ± 0.0157 0.0569 ± 0.0176
NARX-IM-14 5 3 0.0311 ± 0.0079 0.0326 ± 0.0076 0.0373 ± 0.0056
NARX-IM-21 5 1 0.0331 ± 0.0048 0.0316 ± 0.0088 0.0355 ± 0.0050
NARX-IM-28 5 1 0.0309 ± 0.0026 0.0290 ± 0.0088 0.0337 ± 0.0040
NARX-IM-35 10 9 0.0232 ± 0.0088 0.0304 ± 0.0079 0.0352 ± 0.0059
MLP-IM-14 10 - 0.0212 ± 0.0032 0.0251 ± 0.0126 0.0288 ± 0.0031
MLP-IM-21 5 - 0.0212 ± 0.0094 0.0224 ± 0.0144 0.0271 ± 0.0068
MLP-IM-28 5 - 0.0226 ± 0.0098 0.0231 ± 0.0140 0.0265 ± 0.0086
MLP-IM-35 5 - 0.0191 ± 0.0018 0.0207 ± 0.0082 0.0236 ± 0.0027

TABLE VI. A STATISTICAL RESULTS (P VALUE) FOR MODELS COMPARISON ON DATA SET 2.

Model NAR-IM NARX-IM-14 NARX-IM-21 NARX-IM-28 NARX-IM-35 MLP-IM-14 MLP-IM-21 MLP-IM-28 MLP-IM-35
NAR-IM - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NARX-IM-14 0.000 - 0.078 0.001 0.160 0.000 0.000 0.000 0.000
NARX-IM-21 0.000 0.078 - 0.075 0.768 0.000 0.000 0.000 0.000
NARX-IM-28 0.000 0.001 0.075 - 0.157 0.000 0.000 0.000 0.000
NARX-IM-35 0.000 0.160 0.768 0.157 - 0.000 0.000 0.000 0.000
MLP-IM-14 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000
MLP-IM-21 0.000 0.000 0.000 0.000 0.000 0.000 - 0.154 0.000
MLP-IM-28 0.000 0.000 0.000 0.000 0.000 0.000 0.154 - 0.001
MLP-IM-35 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 -

TABLE VIII. A STATISTICAL RESULTS (P VALUE) FOR MODELS COMPARISON ON DATA SET 1 ON MULTI-STEP PREDICTION.

Model NAR-IM NARX-IM-14 NARX-IM-21 NARX-IM-28 NARX-IM-35 MLP-IM-14 MLP-IM-21 MLP-IM-28 MLP-IM-35
NAR-IM - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NARX-IM-14 0.000 - 0.390 0.000 0.000 0.000 0.000 0.000 0.000
NARX-IM-21 0.000 0.390 - 0.000 0.000 0.000 0.000 0.000 0.000
NARX-IM-28 0.000 0.000 0.000 - 0.000 0.000 0.000 0.000 0.000
NARX-IM-35 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000 0.000
MLP-IM-14 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000
MLP-IM-21 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000
MLP-IM-28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000
MLP-IM-35 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -

TABLE X. A STATISTICAL RESULTS (P VALUE) FOR MODELS COMPARISON ON DATA SET 2 ON MULTI-STEP PREDICTION.

Model NAR-IM NARX-IM-14 NARX-IM-21 NARX-IM-28 NARX-IM-35 MLP-IM-14 MLP-IM-21 MLP-IM-28 MLP-IM-35
NAR-IM - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NARX-IM-14 0.000 - 0.000 0.001 0.000 0.000 0.000 0.000 0.000
NARX-IM-21 0.000 0.000 - 0.000 0.000 0.000 0.000 0.000 0.000
NARX-IM-28 0.000 0.001 0.000 - 0.000 0.000 0.000 0.000 0.000
NARX-IM-35 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000 0.000
MLP-IM-14 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000
MLP-IM-21 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000
MLP-IM-28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - 0.001
MLP-IM-35 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 -


