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Network Processors (NPs) are set to play a key role in the next generation of networking
technology. They have the performance of ASIC-based routers whilst offering a high degree
of programmability. However, the programmability potential of NPs can only be realised
with appropriate software. In this paper we argue that specialised software to support
runtime reconfiguration is needed to fully exploit the potential of NPs. We first justify
supporting runtime reconfiguration on NPs by offering real-world scenarios and discussing
the issues associated with these. We then demonstrate how runtime reconfiguration can be
achieved in practice through a case study of our component-based programming approach
on the Intel IXP2400 NP.
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1. Introduction

Network Processors (NPs) are multiprocessor-based hardware units that have the
ability to perform relatively complex packet processing tasks in software at line
speeds when compared to contemporary devices. They typically consist of a set
of heterogeneous processors including packet processors, dedicated devices such as
hashing or encryption engines, general purpose processors, and a high-speed inter-
connect 3. These can be supported either on a single chip or across multiple chips.

NPs can be seen as an attempt by hardware vendors to fulfill the growing need
for network hardware elements that support high throughput while also offering
increased programmability. Programmability is seen as crucial in supporting sys-
tem evolution so that new protocols and services can be accommodated without
designing new hardware. In addition, their programmability makes NPs very widely
applicable—e.g. they are being applied in networked devices, as edge-network routers
and even in the network core 13.

In addition, it is now becoming recognised 20 that runtime reconfiguration is
a desirable characteristic of software for NPs. Runtime reconfiguration is useful
for a number of applications, including dynamically extensible services 16, network
resource management 10, configurable network-based encryption 12, and offloading of
processing 9. In addition the active networking (AN) community have been heavily
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involved in investigating the use of NPs in their field 14. This is because ANs require
significant data-plane processing and also require routers to expose their state to
allow reconfiguration of forwarding functions.

The aim of the research discussed in this paper is to investigate the potential and
benefits of runtime reconfiguration in NPs. Our research focuses on the provision of
generic mechanisms that can potentially be applied in a wide range of scenarios in-
cluding all of the above. Essentially, we adopt a runtime component-based approach
in which fine-grained components on the NP can be dynamically (un)loaded and
(dis)connected in a principled manner. In this paper we illustrate the generality of
our approach by focusing on applying it in a set of representative scenarios. We use
the Intel IXP 2400 6 as representative of the state of the art in NPs. We also argue
that a flexible runtime reconfiguration capability need not be bought at the expense
of performance.

The remainder of this paper is structured as follows. In section 2 we motivate
runtime reconfiguration by outlining a few reconfiguration scenarios. Section 3 then
provides background on the Intel IXP2400 and its current lack of software sup-
port for runtime reconfigurability. Section 4 then presents details of OpenCOM, our
runtime reconfiguration capable programming platform, and its deployment on the
IXP2400. In section 5 we show how the scenarios of section 2 can be realised by
OpenCOM. Finally, we discuss related work in section 6 and in section 7 offer our
conclusions and discuss future work.

2. Runtime Reconfiguration

In this section, we present a number of real-world runtime reconfiguration scenarios.
Some of these introduce new services at runtime which in the past would have
required the system to have been taken off-line and would perhaps have required
additional hardware. Others introduce fine grained adaptation mechanisms that
would not have been possible without custom hardware. We refer again to the first
two of these scenarios in section 5.1 when we illustrate their realisation using our
component-based programming model.

2.1. Dynamic Proxying

In general terms, proxying is a technique for allowing clients and devices to make
indirect connections to network services via a shared intermediary. It is used both
to limit the network load incurred in providing access to external network resources
and to provide value-added services. The proxy notion can be applied in a wide
range of settings including web caching, VoIP proxying, and media transcoding.
Furthermore, it can involve a range of generic techniques including combining client
requests, diverting connections, denying connections, or creating encrypted tunnels.

Currently, proxying is typically performed at the network edge on dedicated de-
vices. However, with NPs it becomes possible to deploy proxies on routers inside the
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network. Furthermore, such proxies could be deployed on the fly and on demand. To
support such dynamic proxys, a NP would need a software framework that incorpo-
rated a extensible classifier to identify specific flows, plus the ability to instantiate
proxy components depending on the service required. The benefits would be a min-
imisation of latency as well as a maximisation of flexibility. Deployment overhead
could also be minimised by caching proxies on the NP.

2.2. Adaptive Load Balancing

On standard network routers, flows are either not differentiated or are differentiated
in a relatively static manner (e.g. using diffserv 1). There is no capability to adapt
the resources dedicated to different flows in a fine grained manner depending on
current application needs or traffic patterns.

With NPs, however, it is possible to dynamically deploy resources to different
flows. For example, a given number of hardware threads, or packet processors, could
be dedicated to high-priority VoIP flows, depending on patterns of demand (e.g. as
a function of the time of day). As well as packet forwarding, this also applies to
per-flow processing such as in-band transcoding. Furthermore, because NPs have
the ability to process and forward traffic while simultaneously analysing the traf-
fic to determine a suitable load balancing policy, they offer the ability to perform
“intelligent” load balancing. In contrast to off-line (policy based) load balancing,
fine-grained load-balancing mechanisms can range from diverting flows to different
routes to replicating processing/classification code across multiple packet processors.

2.3. Additional Scenarios

We list here a few more noteworthy reconfiguration scenarios.
i) Fast mobile handoff
Todays wireless networks have highly segmented network architectures. A con-

sequence of this is that handoffs become more frequent as users move between cells,
which in turn implies that faster and smoother network handoffs are become in-
creasingly important to shield users from service disruption 17.

One approach to optimising handoffs in this way is to provide support on NPs
within the network infrastructure 17. On receiving a handoff request from a mobile
device, the NP instantiates a short-lived “flow routing component” to temporarily
divert flows directed to the mobile device’s old location to its new location until the
IP-level handoff has completed.

ii) IPv6 translator
Users wishing to upgrade from IPv4 to IPv6 are faced with the problem of

migrating to the new protocol whilst still supporting the old. The usual way of
proceeding is to either deploy the new protocol in parallel or to introduce dual
protocol routers. An alternative is to migrate networks incrementally to the new
protocol and use routers with IPv4-IPv6 protocol translation functionality 11.
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Rather that purchase new hardware, an NP-based solution would allow IPv4-
IPv6 translators to be dynamically deployed on new IPv6 subnets. An NP currently
deployed as a IPv4 router would, on detection of IPv6 traffic instantiate a IPv6-IPv4
translator. All IPv6 traffic would then be directed to the translator, which would
translate it to IPv6 and forward it to the IPv4 network. The translator could be
removed when the IPv4 traffic has ceased. Dynamic deployment of such functionality
would allow the router to operate at full speed whilst performing its primary protocol
forwarding.

3. Background on the Intel IXP2400

3.1. The Intel IXP2400

The Intel IXP2400 NP 6 consists of a single embedded RISC processor (an Intel
XScale), and eight packet processors called “micro-engines”. Its architecture can be
considered typical of the current generation of NPs.

Fig. 1. The Intel IXP2400 (from [9])

The IXP2400 provides a fast bus for communication between its microengines,
MAC ports and memory. It also provides shared registers and a range of memory
types (i.e. SRAM, SDRAM). In addition, it provides ‘next-neighbour’ registers that
provide a dedicated interconnect between two ‘adjacent’ microengines.

The microengines themselves are 233-600MHz CPUs whose instruction set pro-
vides for I/O to/from MAC-ports, packet queuing support, and checksumming. They
support hardware threads with zero context switch overhead and can be programmed
either in assembler or C.

In normal operation, the IXP2400 uses the microengines to support the data
plane and the more general XScale to support the control plane. The shared regis-
ters and memory are typically used together at the software level to realise inter-
processor communication.

Figure 1 illustrates the main building blocks of the NP including various memory
types, hardware assists, control units, the XScale CPU and the microengines.
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3.2. Software for the IXP2400

Intel’s MicroACE 4 is an NP-based programming platform targeted at the IXP2400
and other Intel IXA products. The MicroACE model is that proxy-like software ele-
ments (called active computing elements or ACEs) on the IXP2400’s XScale control
processor are ‘mirrored’ by blocks of code (called microblocks) that run on micro-
engines. Thanks to this mirroring, when the programmer loads a XScale element, the
corresponding microblock is transparently loaded onto a microengine as a side effect.
The microblock can choose to offload packets to its associated ACE for handling on
the slow path.

Although it provides a useful degree of abstraction, the MicroACE model is static
in nature. It does not support any type of runtime reconfiguration. Furthermore,
linkages between microblocks are implicit in the way the microblocks are written.
Thus, it is not possible to combine microblocks in unanticipated topologies or to ex-
ploit interconnect mechanisms other than those explicitly chosen by the microblock
author. Also, the ACE approach takes no account of the integrity of a running config-
uration: if a component were to be replaced in some ad-hoc manner, a neighbouring
component will inevitably fail as components expect to interact directly.

Apart from MicroACE, there is additional proprietary and non-proprietary com-
mercial software for the IXP2400 (e.g. 58). None of this, however, has any support
for runtime reconfiguration.

4. OpenCOM

4.1. Programming Model

OpenCOM 7 is a language independent component-based programming platform for
building low-level systems software.

A high-level view of the OpenCOM programming model is given in figure 2. This
depicts the central concepts of components (the filled circles), capsules (the outer
dotted box), caplets (the inner dotted boxes), interfaces (the small circles), recep-
tacles (the small cups), and bindings (the implied association between the adjacent
interfaces and receptacles).

Capsule

Caplet Caplet

Fig. 2. Illustration of capsules and caplets

• Components, capsules and caplets Components are encapsulated units of
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functionality and deployment that interact with their environment (i.e. other compo-
nents) exclusively through interfaces and receptacles. Components carry negligible
inherent overhead and can effectively be used in extremely fine grained compositions.
Crucially, OpenCOM is a runtime component model meaning that (unlike, say, NP-
Click 18) components can be dynamically deployed at any time during run-time. The
locus of component deployment is either a capsule or a caplet; the latter are sub-
scopes of the former. Different caplets can also host components written in different
component styles. Component styles are different system-level implementations of
components which may have different representations and different semantics (e.g.
because they run on different CPU types). Nevertheless, all styles still look the
same to external third-party code that loads and binds components in the standard
manner supported by OpenCOM. Accommodating heterogeneous component styles
enables OpenCOM to transparently support multiple deployment environments in
the same capsule environment. For example, it supports co-existence between C++
and Java components or, more to the point, it supports a seamless environment that
includes both the XScale processor and microengines on the IXP2400.

Each capsule offers a simple run-time API for component life-cycle management
(i.e. loading components into the capsule and instantiating and destroying them),
and interface/ receptacle binding (see below). To accomplish loading, the model
supports the notion of plug-in loaders. New loaders with different behaviours can
be added at runtime, and they can be selected according to their particular prop-
erties. Examples are given below. The loading of components into a capsule can be
requested by any component hosted by the capsule no matter which caplet it resides
in (this is referred to as third-party deployment).

• Interfaces and receptacles Interfaces are units of service provision offered
by components; they are expressed in terms of sets of operation signatures and
associated data-types. For language independence, OMG IDL is used as a specifi-
cation language (note that this does not imply an overhead of CORBA-like stubs
and skeletons!). Components can support multiple interfaces: this is useful in recog-
nising separations of concerns (e.g. between base functionality and management).
Receptacles are ‘anti-interfaces’ used to make explicit the dependencies of compo-
nents on other components. Receptacles are key to supporting a third-party style of
composition (to complement the third-party deployment referred to above): when
third-party-deploying a component into a capsule, one knows by looking at the
component’s receptacles precisely which other component types must be present to
satisfy its dependencies.

• Bindings Finally, bindings are associations between a single interface and a
single receptacle that reside in a common capsule (but not necessarily a common
caplet). Similarly to plug-in loaders, OpenCOM also supports a notion of plug-in
binders. The idea is to give access to a range of binding mechanisms with vary-
ing characteristics. See below for examples. As mentioned, the creation of bindings
is inherently third-party in nature; it can be performed by any party within the
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capsule (i.e. not only by the ‘first-party’ components whose interface or receptacle
participates in the binding).

4.2. Higher-level abstractions

Above the granularity of individual components, a key pattern employed in Open-
COM programming is to construct applications or systems in terms of component
frameworks (CFs). CFs are tightly-coupled sets of components that work together
to address some specific area of functionality. They accept ’plug-in’ components,
deployed at runtime, which somehow modify the CF’s behaviour. CFs also impose
constraints on their plug-ins to guard against nonsensical compositions. As an exam-
ple, consider a “protocol stack” CF which accepts protocol components as plug-ins,
and constrains these plug-ins to be composed linearly. In addition, it is the CFs re-
sponsibilty to maintain and transfer state consistently when reconfigurations occur.
A CF that we employ specifically in NP environments, the Router CF, is discussed
in section 4.5.

We also support a number of generic services that facilitate the construction of
complex systems. These are themselves implemented in terms of components and
are thus optional in any given capsule configuration. Key among these is a set of
reflective meta-models 7 that facilitate dynamic reconfiguration of systems by per-
mitting different system aspects to be inspected, adapted and extended at runtime.
As examples: the architecture meta-model exposes the compositional topology of the
components in a capsule in terms of a causally-connected graph structure; the inter-
face meta-model allows one to discover information about interface types at runtime
and to invoke interface instances that are dynamically discovered at runtime; and
the interception meta-model allows one to interpose interceptors at bindings between
component interfaces.

4.3. OpenCOM on the Intel IXP2400

We now consider how the above-described OpenCOM concepts are applied in NPs
such as the IXP2400. First, the scoping-related notions of capsules and caplets are
useful in distinguishing different processors and types of processors on the NP in a
generic manner. Thus we map a single capsule onto the entire NP, and sub-scope
individual microengines, and the XScale control processor, as caplets. The capsule
runtime reside on the XScale where it runs in a standard operating system environ-
ment. Microengine caplets are implemented on the bare microengine hardware. An
alternative mapping could encapsulate all the microengines within a single caplet.
Then, a plug-in loader associated with this caplet could perform intelligent load
balancing of components across microengines, thus providing a higher level of ab-
straction than the first alternative. The notion of caplets is also useful in isolating
untrusted code, which is important in active networking environments. For example,
a Java sandbox could be isolated as a caplet on the XScale.
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The pluggable loader concept is closely associated with capsules/caplets. Typi-
cally, at least one loader is provided for each type of caplet, and each will know how
to load components into the hardware (and/ or language) environment underlying
its particular caplet type. For example, we employ one loader for the XScale caplet
and another for the microengine caplets. Importantly, the OpenCOM API allows
selective transparency in the use of loaders. If full loader-selection transparency is
desired, one can issue a call of the form load(component c1, caplet 1) which will
deduce an appropriate loader type from meta-data attached to component c1, and
use this to load the component into the designated caplet. This masks the fact
that different components may be implemented in different machine languages. Fur-
ther transparency can be achieved by issuing a call of the form load(component c1)
which causes the runtime to load component c1 into a default capsule using a default
loader (again, the default is selected on the basis of meta-data). Alternatively, one
can opt for complete control and zero transparency by issuing a call of the form
load(component c1, caplet 1, loader 3).

The pluggable binder concept is equally central to the component model’s ab-
straction power—in this case over the available communication hardware mecha-
nisms available on the IXP2400. For example, we provide a cross-microengine-caplet
binder based on the IXP2400’s next-neighbour register mechanism. Again, the use of
plug-in binders is selectively transparent. If we don’t know or care in which caplets
our two target components are located, we can say bind(interface 1, receptacle 15)
and an appropriate loader will be selected according to location-related meta-data
attached to the components that own the specified interface and receptacle. On
the other hand, if it is important to select a particular mechanism, we can say
bind(interface 1, receptacle 15, loader 4). And so on.

A final crucial property of the component model is its radically third-party nature
in terms of loading and binding. Thanks to this, a component on a microengine can
load and bind two components on the XScale, and a component on the XScale can
load and bind microengine components using exactly the same syntax as if it were
dealing with local XScale components.

As an example of this, and of OpenCOM’s ability to abstract over heterogeneity
of the IXP2400, consider the following pseudocode segment:

template mtemp, xtemp;
comp_inst mcaplet, mloader, xcaplet, xloader,

mcomp, xcomp, binding, cbinder;
ipnt_inst iface, recpt;

/* load and instantiate the components */
xtemp = load(XSCALECOMP1, xloader, xcaplet);
mtemp = load(MICROCOMP1, mloader, mcaplet);
xcomp = instantiate(xtemplate);
mcomp = instantiate(mtemplate);
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/* bind the two components using
* a cross-caplet binder
*/
binding = bind(xcomp.iface, mcomp.recpt, cbinder);

This example assumes that two caplets have been established: xcaplet is a caplet
on the XScale and mcaplet is a caplet on one of the microengines. The code loads
and instantiates two components, one in each caplet, and then binds the two using
a cross-caplet binder. Of course, programming would normally be done at the level
of component frameworks (see below for an example of this) which raises the level
of abstraction still further; but this simple example shows the abstraction power of
OpenCOM even at its lowest level. Note especially the ’third-party’ nature of the
programming model: this code could be executed unchanged with the same effect
from within any component in any currently installed caplet. (To execute such code
on a microengine caplet a thin proxy transparently forwards the calls and their
arguments to the XScale caplet where they are executed under the central capsule
runtime.) This means that component developers do not need to know or care which
caplet their component will execute in. Furthermore, the programming model is
the same regardless of whether the components involved are implemented as Linux
shared objects or as blocks of microengine code. Finally, the binding between the two
components can exploit the most efficient mechanisms available in the deployment
environment (see below): in this case through registers shared between the XScale
and the microengines.

4.4. Implementation of Loaders and Binders

The mapping we currently employ of OpenCOM capsules and caplets to the IXP2400
involves a single capsule that encompasses both the XScale and the microengines,
and contains separate caplets for: i) the XScale (implemented as a single Linux
process); and ii) each of the eight microengines. The OpenCOM runtime runs in the
XScale caplet; all the other caplets are ‘slaves’ of this ‘central’ runtime and incur
only minimal memory overheads. The memory footprint of the central runtime itself
is of the order of 300KB.

The central runtime in the XScale caplet communicates with the other caplets by
means of so-called caplet channels. The role of these is to bootstrap plug-in loaders
and binders associated with non-central caplets, and to support communication
between their two parts: such loaders/ binders are implemented as a ‘delegator’
part that resides in the central XScale caplet, and a (minimal) ‘delegate’ part that
resides in the other caplet. As examples, we now briefly describe example loader and
binder plug-ins that are associated with the microengine caplets.

The microengine loader plug-in is of interest in that it provides the illusion of
dynamic loading despite the fact that the microengine hardware only allows mod-
ification of its instruction store when the CPU is stopped 4. The basic capability
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provided by the microengine hardware is to i) stop the microengine, ii) read/ write
arbitrary instruction store locations, and then iii) restart it at a hard-wired address.
To achieve transparent dynamic loading it is therefore necessary for the loader to
not only load the new component but also to patch the (hard-wired) restart address
so that subsequent execution resumes at the point it left off. The loader also has
the ability to autonomously move code around within the instruction store to avoid
memory fragmentation as components are loaded and unloaded. The loader is also
of interest in that it constrains the form of OpenCOM components it is willing to
load. The general notion of particular loaders somehow restricting the components
they can work with is a powerful feature of OpenCOM. In the present case, the
interfaces of loaded components are restricted to supporting operations that ac-
cept and return a single integer. This restriction, which is enforced by inspecting
the component’s IDL meta-data at load time, is imposed partly to simplify the de-
sign of the associated binder (see below), and partly because the assumed model of
component composition on the microengines is that components are bound into a
more-or-less linear sequence and cooperatively work on queues of network packets
whose addresses are passed as integer arguments.

Our intra-microengine binder plug-in is strongly coupled to the loader just de-
scribed. It builds on the NetBind-pioneered technique of creating bindings by ‘mor-
phing’ jump instructions 2. Together with the loader discussed above, the binder
supports multiple instantiations of components (NetBind only supports singleton
components). The single argument and return value are passed via a designated
register. The necessary entry and exit point information is obtained from IDL meta-
data attached to the packaged component, which is transformed from relative offsets
to absolute offsets by the loader. The overhead of a binding created by this binder
in calling a null operation with no arguments or return values is only five (1-cycle)
instructions. These subsume passing on the stack a pointer to the per-instance state
vector of the called component, and the return address. Note that the performance
of the OpenCOM programming model as a whole is almost entirely dependent on
the performance of the binding mechanisms used. Almost all the value-added fea-
tures of OpenCOM are confined to the central runtime and do not ‘get in the way’
when components communicate with each other on the NP’s fast path.

Apart from the microengine loader and binder discussed above, we have a loader
that loads components into the XScale caplet; and binders that bind components
between and within the two caplet types. Bindings between the microengines and
the XScale are more complex than intra- and inter-microengine bindings as they
require stubs and skeletons to map the parameter and return value to a bus packet.
To minimise memory overhead, the microengine-side stubs/skeletons can be hand
coded rather than generated automatically from the IDL specification.
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4.5. Router CF

We have designed a “Router CF” which accepts, as plug-ins, OpenCOM components
that perform arbitrary, user-defined packet-forwarding functions (we also provide
“standard” components that interface to network cards and wrap efficient kernel-
user space communications mechanisms). All components (see figure 3) are required
to conform to the following rules, which are checked by the CF at run-time when
the component is loaded:
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Fig. 3. A valid Router CF component

• compliant components must support appropriate numbers and combina-
tions of specific packet passing interfaces/ receptacles (called IPacketPush
and IPacketPull): these respectively enable push- and pull- oriented inter-
component communication); it is possible to dynamically add/ remove in-
stances of these interfaces as long as the CF’s rules remain satisfied

• compliant components may (optionally) support an IClassifier interface
which exports an operation register filter() that is used to install packet-
filters; if IClassifier is supported, the component must honour the semantics
of installed filter specifications in terms of the particular named outgoing
IPacketPush and IPacketPull interface(s) on which each incoming packet
should be emitted;

• compliant components may be composite, in which case all their internal
constituents must (recursively) conform to the CF’s rules; additionally com-
posite components should contain a so-called controller component that man-
ages the other internal constituents.

The scenarios discussed in the following section use the “Router CF” as a basis.

5. Runtime Reconfiguration on the Intel IXP2400

In this section we illustrate how runtime reconfiguration can be achieved using Open-
COM on the IXP2400. This is illustrated, in 5.1, by revisiting the three scenarios
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introduced in section 2. We discuss some general issues arising from consideration
of the scenarios in section 5.2.

5.1. Realising the Scenarios

5.1.1. Dynamic Proxying

We have implemented a dynamic in-band transcoding scenario that is straight-
forwardly built on top of the programmable classifier discussed above. In-band
transcoding (e.g. MPEG) has not been possible in the past without intercepting
the multimedia traffic and offloading it to a separate server. As noted earlier, this
requires introducing new hardware into the system and also potentially increases
the end-to-end latency of media transmission.

In our implementation, a manager component residing in the XScale caplet,
programs the classifier by dynamically adding classification rules to detect flows of
interest (i.e. as designated by out-of-band control messages from an application).
On learning of these, the manager component loads and instantiates a suitable
transcoder on the XScale (or a microengine as appropriate). On doing so, the router
CF selects an appropriate loader and checks the loaded component (using the in-
terface meta-model) for conformance to its rules. The manager then instructs the
classifier to bind to this component and to forward the flow to it. Finally, it uses the
architecture meta-model to locate the forwarder and bind the transcoder to it using
an appropriate binder. The manager may also choose to use the interception meta-
model to add an interceptor to the binding that monitors usage of the transcoder
as an input to a policy that determines when to discard the transcoder (e.g. based
on resource constraints on the NP and on the amount of traffic in the flow).

This implementation is illustrated in Figure 4 which shows the state of a router
with the transcoder manager deployed. The figure shows the reconfigured area
(within the dashed line) containing the manager on the XScale and a number of
transcoders on both the XScale and the microengines. Note that the microengines
can only support primitive transcoders such as frame-droppers; note further, though,
that the programming model makes it as straightforward to deploy a transcoder on
a microengine as on the XScale.

classifier forwarder
fast−path

sched.

sched.

...
...

Transcoder

Manager Transcoder

output
receptacles

interface

input

microengine

environment

XScale

environment

Fig. 4. Transcoding Service mapping to Intel IXP2400
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5.1.2. Adaptive Load Balancing

The options for load balancing on the Intel IXP2400 are numerous. In typical oper-
ation, the bulk of packets traversing the IXP2400 are processed and forwarded by
the microengines. At different times in the lifecycle of a typical deployment the load
on particular microengines will be increased or decreased. Therefore, to balance in-
creased packet load in the IXP2400 one of the options we have is to replicate packet
processing code on additional microengines.

Figure 5 shows the placement of components after a simple method of load bal-
ancing has been performed. Before the load-balancing is performed, the top four
components constitute the deployment in the microengine. Load-balancing is per-
formed by replicating the “IPv4 header processing” and “forwarding” components
on additional microengines. As can be seen from the diagram, the classifier is load
balancing across the two chains of components. The dashed line indicates the re-
configured area. This style of load-balancing would be appropriate when there is a
significant increase of a type of packet flow which needs additional processing by
the NP.

MEv2 MEv2

MEv2MEv2MEv2

MEv2

MEv2

MEv2

MEv2

Header
IPv4

Header
IPv4

Packet Flow Packet Flow

Forwarder

Forwarder

SchedulerClassifier Processing

Processing

Fig. 5. Simple Load Balancing using Packet Processors

Before processing incoming packets, the classifier diverts a proportion of packet
flows to a secondary classifier on a additional microengine. The mechanism of in-
stallation of the additional classifier could be either pro-active by a system admin-
istrator or reactive by the classifier detecting the increased packet load (either by
the primary classifier or by a additional component or system).

This scenario shows that, based on the network situation, the NP control pro-
cessor can add and remove components to alter the processing capacity of the NP.
NPs generically contain a number of packet processors, which perform the majority
of in-band packet processing 15. Therefore this style of load balancing should be
applicable in other NP architectures.

In addition to load balancing being performed by the packet processors, it is
also possible to load balance with other devices on the internal bus of the IXP2400.
This could include the XScale CPU and hardware assist units, but it could also be
other IXP2400 NPUs or other NPs. This yields the possibility of more complex load
balancing styles than the one illustrated here. The microengines on the IXP2400 also
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have the feature of multiple hardware threads, which introduces further possibilities
for load balancing within a microengine.

5.1.3. Network Support for fast Mobile Handoff

This scenario can be considered as a subset of the dynamic proxying scenario. A
difference between this scenario and the previous scenario is that the mobile node
itself drives the installation of the flow routing component. For the NP to support
fast handoffs it must have logic that detects mobile nodes performing a handoff.
The logic required to do this involves examining the mobile nodes packets in greater
detail than a classifier would generally do, therefore a additional semi-permanent
component is necessary.

The classifier would divert all packets from mobile nodes to the component that
detects mobile handoffs. Upon detection of a handoff, a flow routing component is
installed onto a unused microengine. Rules will be added to the classifier to continue
to route traffic destined for to the mobile client to the flow routing component. The
flow routing component will additionally be bound to the classifier and components
downstream in the NP. Once the mobile handoff is completed, any traffic mis-routed
to the mobile clients old location will be forwarded by the flow routing component
to the mobile nodes new location.

The flow routing component would continue to route mis-routed packets to the
mobile nodes new address until the mobile handoff has been deemed to be completed
and no more packets will be mis-routed. The lifespan of the flow routing component
is dependent on the continuation of packets destined for the mobile device. This
would be determined by internal policies of the flow routing component. The danger
of lost data if the flow routing component is removed would mean that the flow
routing component would have to be resident for as long as possible. Therefore the
lifespan of the flow routing component will depend heavily on the working capacity
of the NPs microengines. This inevitably limited capacity on a NP means that flow
routing component may handle more than one fast mobile handoff and thus have a
longer lifespan.

5.2. Performance

One of the main determining factors in the acceptance of support for runtime recon-
figuration on NPs is the overhead incurred. This breaks down into two aspects: i)
the overhead of actually performing reconfiguration operations; and ii) the inherent
overhead of potentially-reconfigurable software. We discuss these in turn.

The major determinant of the overhead of reconfiguration operations on the
IXP2400 is that the microengines need to be stopped before new code can be loaded.
Our measurements show that to halt, update and restart a microengine takes a total
time of 60ms. Our IXP2400 development board contains 3 OC-48 ports which can
each deliver 2.488Gbps, a total of 7.464Gbps. A delay in the system would therefore
require a maximum theoretical of 56MB to buffer all incoming packets and avoid
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dropping packets, well within the means of a NP. Furthermore, wholesale reconfig-
urations of all the microengines would be relatively uncommon. More likely would
be a localised reconfiguration of a single microengine or a group of microengines.
In this case it would be necessary only to buffer the packets being passed to the
component(s), this would be considerably less than that of reconfiguring the whole
system. It may not even be necessary to perform any buffering, especially in scenar-
ios where reconfiguration is infrequent and where TCP can be relied on to recover
from network-level packet loss.

Furthermore, wholesale reconfigurations of all the microengines, or of the clas-
sifier, requiring a complete system halt would be relatively uncommon. More likely
would be a localised reconfiguration of a single microengine or a group of micro-
engines, like those illustrated by the scenarios in the previous sections. In this case
it would be necessary only to buffer the packets being passed to the component(s),
this would be considerably less than that of reconfiguring the whole system. It may
not even be necessary to perform any buffering, especially in scenarios where recon-
figuration is infrequent and where TCP can be relied on to recover from network-level
packet loss.

The second factor to be considered is the inherent overhead of potentially-
reconfigurable component-based software; mainly attributed to the bindings between
components. To evaluate the throughput overhead of instantiating OpenCOM com-
ponents on the IXP2400, we utilised two Dell Precision 340 Workstations with 2Ghz
P4’s and 512MB RDRAM running Linux 2.6.12. Two 3COM 3C996-SX network in-
terface cards were used to send and receive packets through a Radysis ENP-2611
which consists of a IXP2400 NP and 3X 2.5Gbps fibre ports. The XScale CPU of the
IXP2400 was bootstrapped with Linux 2.6.11 and all microengine code was loaded
and bound from an OpenCOM instantiation on the XScale CPU. The following
throughput results where collected using the Thrulay tool which uses a client/server
approach to measure TCP throughput.

A single OpenCOM component which performed a simple layer 2 bridging op-
eration between two fiber channel connections was deployed on a single thread of
a microengine. The component was capable of processing packets at a sustained
rate of 632.42Mbps end-to-end compared to a monolythic Intel implementation at
632.81Mbps (also running on a single thread of a single microengine). Additional
‘null’ components were then instantiated directly in the data-path between the send
and receive portions of the bridging component. To isolate the effect of these compo-
nents on the throughput of the bridging operation, the components were instantiated
in the same thread and microengine of the bridging component.

Table 1 presents end-to-end throughput and latency figures for different numbers
of ‘null’ OpenCOM components instantiated on the IXP2400 as described. It shows
that the overhead of inserting five or less OpenCOM microengine components is
minimal, inserting between 10 and 20 components introduces a sizable lag into the
system, this might be considered acceptable for the advantages offered. The insertion
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Table 1. Throughput and Latency of OpenCOM
Microengine Components

Number of Components Throughput Latency

Intel Implementation 632.81Mbps 0.52ms

1 Component 632.42Mbps 0.54ms

5 Components 614.86Mbps 0.59ms

10 Components 603.25Mbps 0.64ms

15 Components 589.82Mbps 0.88ms

20 Components 567.39Mbps 1.17ms

50 Components 496.03Mbps 2.81ms

100 Components 435.72Mbps 3.65ms

of ten or more components introduces a sizable lag into the system which would be
considered unacceptable for a high-speed router. In addition the figures for latency
correlate with the throughput figures with increasing latency with more components.

However, in a real world deployment there would be many different flows re-
quiring processing by different sets of microengine and XScale components, thus
the effect of adding a single component would be reduced. The implication of these
results is that the most effective way to deploy OpenCOM components is using
multiple short pipelines of five or less components.

6. Related work

NetBind 2 provides the abstraction of a set of packet-processing components that can
be bound into a data path. This is done by adopting the convention of a standard
entry and exit instruction sequence for microblocks, and offering the capability to
dynamically ‘morph’ jump instructions in these sequences so that execution is trans-
ferred to the entry point of the microblock to be executed next. This separates the
raw functionality of a microblock from the way it is composed with others, and also
gives the NetBind programmer the ability to dynamically reconfigure compositions
of microblocks.

NetBind goes beyond MicroACE in supporting flexible composition of mi-
croblocks, but it offers no abstraction over the NP’s memory organisation, inter-
connects, or over different sorts of processors (e.g. the microengines, XScale, and
workstation host of an IXP1200-based router). It therefore offers no more design
portability across different NPs than MicroACE.

NP-Click 18 is another component-based programming model for NPs; it is de-
rived from an earlier PC-based software router model called Click. Again, NP-Click
has been primarily targeted at the IXP1200. It is founded on a much richer model
of components than NetBind. While communication between NetBind microblocks
takes place over low-level untyped entry and exit points, Click components have
typed ports; and connections between ports can be designated as either ‘push’ or
‘pull’ which provides declarative control over flow of control and threading. In addi-
tion, NP-Click abstracts, to a degree, over the different memory technologies offered
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by the IXP1200 by providing keywords such as ‘global’, ‘regional’ or ‘local’ which
cause the associated component to be automatically allocated an appropriate mem-
ory type. Furthermore, it provides low level abstractions such as malloc() and free()
to facilitate and manage the allocation of NP resources such as microengine LIFO
registers.

NP-Click does a much better job of abstracting NP architecture than NetBind,
but it still falls short of providing a generic approach to NP programming. While it
abstracts particular features of the IXP1200, it has no notion of abstracting arbi-
trary architectures in a principled way, and thereby encouraging design portability
and transferable skills across NP types. That is, there is no necessary commonality
between the abstractions provided over different architectures (e.g. NPs other than
the IXP1200 may not use LIFOs). In addition, NP-Click provides no support for
dynamic reconfiguration.

VERA 19 is an extensible software router architecture that comprises three layers:
the top layer provides the abstraction of a router, the bottom layer abstracts the
hardware, and a middle ‘distributed operating system’ layer mediates between the
two. The latter layer organises the available packet processors into a hierarchy of
levels. Initial classification occurs on a ‘low level’ processor attached to the MAC-
port, and if the packet requires further or more complex processing then a ‘higher
level’ processor is used. This provides a high degree of abstraction, but it is heavily
dependent on the IXP1200 architecture.

7. Conclusions

We have argued that developing NP software with support for runtime reconfigura-
tion enables the full potential of NPs to be realised, and that this yields significant
benefits for high-speed routing platforms. More specifically, we have introduced a
number of runtime reconfiguration scenarios for NP platforms and showed how they
can be implemented on the Intel IXP2400 using our OpenCOM programming plat-
form.

We also argue the approach we outline is in principle applicable not only to the
IXP2400, but to a range of NP architectures. This claim is made on the basis of
the generality of the OpenCOM platform as discussed in 4.3 and on the basis of a
study of the mapping of OpenCOM to other NP architectures 15. Future work will
include the exploration of using OpenCOM in other NP environments to provide
further evidence for the generality of our approach.
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