
An optimal statistical testing policy for software reliability demonstration of safety-

critical systems

O. Tala,*, A. Bendellb and C. McCollinc

a Department of Mathematics, Statistics and Operational Research, Nottingham Trent University, Burton Street,

Nottingham NG1 B4U, UK

b The Management Centre, University of Leicester, University Road, Leicester LE1 7RH, UK

c Department of Mathematics, Statistics and Operational Research, Nottingham Trent University, Burton Street,

Nottingham NG1 B4U, UK

* Corresponding author. Fax: +44 115-8482998

Abstract

 When software reliability demonstration of safety-critical systems by statistical

testing is treated as a TAAF (Test, Analyse and Fix) process, an optimal testing policy can be

found, which maximises the probability of success of the whole process, over a pre-

determined period of time. The optimisation problem is formulated, solved by stochastic

dynamic programming, and demonstrated by two numerical examples.

Keywords: Reliability; Software reliability demonstration; Statistical testing; Safety-critical

systems; Stochastic dynamic programming.

1. Introduction

 Reliability demonstration by statistical testing is a standard procedure for hardware

systems[1], which has also been suggested for software systems[2]. In both cases the testing is

based on PRST- Probability Ratio Sequential Testing [3]. An alternative method for safety-

critical systems, SRST (Single Risk Sequential Testing), has been suggested, based on the

binomial formula [4]. Combining the SRST method with the TAAF (Test, Analyse and Fix)

approach [5] leads to an optimisation problem, whose objective is to maximise the probability

of success of the whole process [6].

 1

2. Problem parameters

• The required reliability is 1-θ. Hence, θ is the maximum allowed unreliability.

• The required confidence in the value of 1-θ is α.

• The total time allocated to reliability demonstration testing is Tmax [hours].

• The average mission duration of the system is Tave [hours].

• The estimated failure rate of the software is λ [1/hour].

Assumption 1: the failure rate of the software is small, and does not change much from version

to version during the software reliability demonstration process. Hence it will conservatively

assumed to be constant.

• The average correction time required for correcting the current software version and

submitting a new version for reliability demonstration testing is Tcorr [hours].

3. Problem Analysis and definitions

 The required number of tests, n, for any number of failures found, F, is the largest

numerical solution of the following inequality, based on the binomial formula [7]:

1-α≥ nCj (1-θ)n-j θj F=0,1,2.... (1)
j

F

=
∑

0

Let us define nF as the required number of missions during reliability demonstration testing

when F failures are found, and TF as the expected required time:

TF =nF Tave (2)

For instance, for F=0 equation (1) reduces to:

1-α≥(1-θ)n (3)

Therefore:

n0=ln(1-α)/ln(1-θ) where n0 is the greatest n to satisfy the inequality.

 (4)

and

T0= n0 Tave (5)

 2

 For any number of failures, F, there is a corresponding nF and hence a corresponding

TF. For example, for 1-θ=0.999, α=0.95 and Tave=1 hour, T0=2,995, T1=4,742, T2=6,294

hours, etc. The maximum allowable number of failures during reliability demonstration,

Fmax, is therefore the smallest F such that:

TF+1=nF+1 Tave ≥Tmax (6)

 Using the TAAF approach the software reliability demonstration testing can be

regarded as a process [6]: Test the current version to demonstrate its reliability. If no failures

are found during T0 hours, stop testing. Clearly, Tmax must be larger than T0, otherwise there is

no way of demonstrating the required reliability. When the Fth failure is found, choose

between the following options:

1. Correct the current version to produce a new version and start testing all over again. This

option requires, of course, that for the new version Tmax≥T0+Tcorr.

2. Go on testing, aiming at TF hours with only f failures, f=F,F+1,... Fmax.

Because of the time constraint (Tmax), this process can either succeed or fail.

4. Problem formulation and policy definition

 What is the optimal testing policy, in order to maximise the probability of success in

the software reliability demonstration process?

 Any testing policy can be defined by a decision rule P(F,t) where F is the number of

the failure just found in the current version, and t is the time left till the deadline (Tmax

hours). P(F,t) can only take three values:

1. GO-ON testing;

2. FIX and start testing;

3. STOP testing: the reliability demonstration has either succeeded or failed.

 The probability of success of this policy can be defined is p[P(F,t)]. Therefore, the

optimisation problem is:

max p[P(F,t)] for 0≤F≤Fmax, 0<t≤Tmax (7)

 3

 The maximum number of new versions when a failure is found t hours before the

deadline can be calculated as follows:

 Assuming that there is enough time for at least one more version, t≥ Tcorr+T0, and the

testing of the first new version will start Tcorr hours later. If the first failure in the new version

is found immediately, then the testing of the second new version will start at least 2Tcorr hours

later. Similarly, the testing of the nth new version will start at least nTcorr hours later. The only

constraint is that the time left, t-nTcorr, is still larger than Tcorr+T0. Therefore, the maximum

number of new versions, excluding the immediate one, is the integer solution of:

t-vTcorr≥ Tcorr+T0 (8)

And

vmax=v+1=1+int{[Tmax- (Tcorr+T0)]/Tcorr}= int [(Tmax-T0)/Tcorr] (9)

 The optimal policy depends on Fmax, and therefore will be considered separately for

several cases.

4.1 Case no. 0: Fmax=0 or T0≤Tmax≤T1

 When testing begins, the optimal policy is, clearly, GO-ON testing. The optimal

policy does not change as long as no failures are found, till T0 hours have passed, and the

required reliability has been demonstrated. Therefore:

P(0,t)= GO-ON Tmax-T0<t≤Tmax

 STOP (success) 0<t≤Tmax-T0

 When the first failure is found there is no choice but to FIX the current version and

start testing the new version, if there is enough time to do it. Therefore:

P(1,t)= FIX T0+Tcorr<t≤Tmax

 STOP (failure) 0<t≤T0+Tcorr

 The optimal policy is described graphically in figure 1. This figure is based on the

fact that T0+Tcorr>Tmax- T0, which is always true. In order for this inequality to be false, one

gets 2T0+Tcorr<Tmax. But since Tmax<T1, and since T1 is always smaller than 2T0 [6], the figure

 4

is valid. Whenever the testing of a new version is started, the same graph has to be plotted

again, with the new value of Tmax.

4.2 Case no. 1: Fmax=1 or T1≤Tmax≤T2

4.2.1 P(0,t)

 When testing begins, the optimal policy is, clearly, GO-ON testing. The optimal

policy does not change as long as no failures are found, till T0 hours have passed, and the

required reliability has been demonstrated. Therefore:

P(0,t)= GO-ON Tmax-T0<t≤Tmax

 STOP (success) 0≤t≤Tmax-T0

4.2.2 P(2,t)

 When the second failure is found there is no choice but to FIX the current version and

start testing the new version, if there is enough time to do it. Therefore:

P(2,t)= FIX T0+Tcorr<t≤Tmax

 STOP (failure) 0≤t≤T0+Tcorr

4.2.3 P(1,t)

 When the first failure is found there can be two situations:

• There is not enough time to FIX the software, i.e. t<T0+Tcorr. In this case the only choice is

GO-ON testing, till T1 hours have passed.

P(1,t)= GO-ON Tmax-T1<t<T0+Tcorr

 STOP (success) 0≤t≤Tmax-T1

• There is enough time to FIX the software. i.e. T0+Tcorr≤t≤Tmax. In this case there is a real

choice between GO-ON testing and FIXing the software. Since at t=Tmax the optimal

decision is FIX and at t< T0+Tcorr the optimal decision is GO-ON testing, there may be a

“break-even” point in this region, when the best policy shifts from FIX to GO-ON. In

 5

this case, the break-even point can be found by equating the probabilities of success of

both options.

Figures 2 and 3 describe the optimal policies in both cases.

5. Formulating the problem as a stochastic dynamic programming problem

 Finite-stage stochastic dynamic programming deals with a process, whose state at the

beginning of a given time period is known. After observing its state an action must be

chosen. Based on the state and the action only, an expected reward is earned, and the

probability distribution for the state in the next time period is determined. The optimisation

problem is to find a policy, that maximises the expected value of the sum of rewards earned

over a given number of time periods, or stages. The optimality equation, which enables a

recursive solution of this problem, is given by [8]:

Vn(i)=max [R(i,a)+ΣPij(a)Vn-1(j)] (10)
 a j
V1(i)=max R(i,a) (11)
 a
where:

n- the total number of stages at the beginning of the process

i- the starting state

a- one of the possible actions

R(i,a)- the expected (immediate) reward of action a in state i.

Pij(a)- the transition probability from state i to state j, as a result of choosing action a.

Vn(i)- the maximum expected return for an n-stage problem, that starts in state i.

 This formulation assumes that R(i,a) and Pij(a) do not depend on n. It also assumes

that the process must go through all the stages, from n to 1, because each action causes a new

stage.

 In order to formulate the software reliability demonstration optimisation problem as a

stochastic dynamic programming problem, the following modifications are needed [6]:

 6

1. Stage: n is defined as the maximum number of new versions which can still be produced

and demonstrated till the deadline, which is determined only upon finding a new failure.

Therefore it is possible to stay in the same stage or to skip stages following an action.

The minimum value of n is 0.

2. State: the state of the problem is defined by i, the number of the failure just found, and

by t, the time left till the deadline. Whenever a new version arrives, i=0. The maximum i

is Fmax- the maximum allowable number of failures.

3. Actions: the possible actions are FIX and GO-ON. Each action determines not only the

immediate reward and the probability distribution of the next state, but also the time left

at the beginning of the next stage (whose number does not have to be the next smaller

integer).

4. Reward: the expected reward of GO-ON is the probability of demonstrating the software

reliability of the current version without any more failures. It depends on i and t.

Therefore the expected reward of FIX is zero.

5. Transition probability: the transition probability from state i in stage n to state j in

stage k depends on a, t and n.

 Incorporating these changes to the optimality equation yields the following general

equations:

Vn(i,t)=max [R(i,a,t)+ΣPijk(n,a,t)Vk(j,t-Ta)] (12)
 a j,k

V0(Fmax,t)=p(0,t-Tmax+TFmax) (13)

where:

t- the time left until the deadline upon finding a failure, Tmax≥t>0

i- the number of the failure just found, i=0,1,....Fmax, counted separately for each version.

n- the maximum number of new versions which can be tested till the deadline, vmax≥n≥0

Note: t and n are not independent, because for n≥1, T0+(n+1)Tcorr>t≥T0+nTcorr. For n=0,

T0+Tcorr>t>0.

 7

Vn(i,t) - the maximum probability of success when the maximum number of new versions is

n, the number of the failure just found is i, and the time left is t.

a- FIX or GO-ON

R(i,a,t) - the probability of demonstrating the software reliability of the current version

without any more failures (0 for the FIX option).

Pijk(n,a,t) - the probability of transition from state i in stage n to state j in stage k following

action a in time t, because of finding a failure.

Note:

In the FIX option, j is always 0 and k is always n-1.

In the GO-ON option:

 For i<Fmax j=i+1, k=0,1,....n.

 For i=Fmax j=0, k=0,1,..... n-1.

Ta - the time lost in the transition to a new stage following action a: Tcorr in case of FIX, and

the expected time till the next failure in case of GO-ON.

Note: the time to failure is denoted by z, and its pdf is assumed to be f(z)=λexp(-λz).

After using the above constraints these equations become:

Vn(0,t)=p(0,T0)+ Vk(1,t-z)dz (14) f z
k

n

()∫∑
=0

 Vn-1(0,t-Tcorr)
Vn(i,t)= max i=1,....Fmax-1 (15)

 p(0,t-Tmax+Ti)+ Vk(i+1,t-z)dz f z
k

n

()∫∑
=0

 Vn-1(0,t-Tcorr)
Vn(Fmax,t)= max (16)

 p(0,t-Tmax+TFmax)+ Vk(0,t-z-Tcorr)dz f z
k

n

()∫∑
=0

 The integration boundaries are as follows:

1. i=0

k=0 z=t-T0-Tcorr to T0

k=1,2,...n-1: z=t-T0-(k+1) Tcorr to t-T0-k Tcorr

k=n: z=0 to t-T0-n Tcorr.

 8

2. i=1,2,....Fmax-1

k=0: z=t- T0- Tcorr to t-Tmax+Ti

k=1,2,...n-1: z=t-T0-(k+1) Tcorr to t-T0-k Tcorr

k=n: z=0 to t-T0-n Tcorr.

3. i=Fmax

 k=0: z=0 to t-Tmax+TFmax

k=1,2,...n-2: z=t-T0-(k+2) Tcorr to t-T0-(k+1) Tcorr

k=n-1: z=0 to t-T0-n Tcorr.

 Therefore the optimality equations become:

 Vn-1(0,t-Tcorr) (FIX)

Vn(Fmax,t)=max p(0,t-Tmax+TFmax)+ Vn-1(0,t-z-Tcorr)dz+ (17) f z
t T nTcorr

()
0

0− −

∫
 + Vk(0,t-z-Tcorr)dz+

k

n

=

−

∑
1

2

f z
t T k Tcorr

t T k Tcorr
()

()

()

− − +

− − +

∫ 0 2

0 1

 + f z V0(0.t-z-Tcorr)dz (GO-ON)
t T TF

()
max max

0

− +

∫

 Vn-1(0,t-Tcorr) (FIX)

Vn(i,t)=max p(0,t-Tmax+Ti)+ Vn(i+1,t-z)dz+ (18) f z
t T nTcorr

()
0

0− −

∫
(i=1,2,..Fmax-1) + Vk(i+1,t-z)dz+

 + f z V0(i+1,t-z)dz (GO-ON)

k

n

=

−

∑
1

1

f z
t T k Tcorr

t T kTcorr
()

()− − +

− −

∫ 0 1

0

t T Tcorr

t T Ti

()
max

− −

− +

∫
0

Vn(0,t)=p(0,T0)+ Vn(1,t-z)dz+ Vj (1,t-z)dz+ (19) f z
t T nTcorr

()
0

0− −

∫
j

n

=

−

∑
1

1

f z
t T j Tcorr

t T jTcorr
()

()− − +

− −

∫ 0 1

0

 + V0(1,t-z)dz f z
t T Tcorr

T
()

− −∫ 0

0

6. The algorithm

 The algorithm for finding the Ti* values (i=1,2,..Fmax) is as follows:

1. n=0.

2. i=Fmax. Use eq. (17) to calculate Vn(Fmax,t).

 9

3. i=i-1. If i≥1 Use eq. (18) to calculate Vn(i,t) and check for a break-even point in the

region T0+(n+1)Tcorr>t≥T0+nTcorr. If it exists, this is Ti*.

4. If i=0 and n=vmax: stop. Else use eq. (19) to calculate Vn(0,t).

5. n=n+1. Go to step 2. Do not look again for the break-even points which have already

been found.

7. Numerical examples

 The optimal policy may be expressed by a series of break-even points, Ti*

(i=1,2,...Fmax) such that when the ith failure is found, the optimal policy is FIX as long as t>

Ti* and GO-ON when t< Ti*.

7.1 Numerical Example no. 1

Data

1-θ=0.999, α=0.95, λ=1/3000, Tmax=5,000 hr, Tave=1 hr, Tcorr=600 hr

Preliminary calculations

Using eq. (1) and (2):

T0=2,995≈3,000 hr, T1=4,742≈4,750 hr, T2=6,294 hr>Tmax

∴ Fmax=1

Using eq. (9):

vmax= int[(Tmax-T0)/Tcorr]=int[(5000-3000)/600]=3

Recursive calculations

According to eq. (17):

V0(1,t)= p(0,t-Tmax+T1)=p(0,t-5000+4750)=exp[-(t-250)/3000] 3600>t≥2000

Explanation:

t can not be smaller than 2,000 hours, because then there would be no failures for at least

3,000 hours (T0). Upon finding the first failure, the only option is GO-ON, because there is no

time for a new version.

 10

According to eq. (19):

V0(0,t)= p(0,T0)=exp(-λT0)=exp(-1)=0.368 3600>t≥3000

Explanation:

If the testing of a new version starts at this stage, then once the first failure is found, there is

no time for a new version nor enough time to demonstrate T1 hours with 1 failure.

 V0(0,t-Tcorr) (FIX)
V1(1,t)=max 4200>t≥3600

 p(0,t-Tmax+T1)+ V0(0,t-z-Tcorr)dz (GO-ON) f z
t T Tcorr

()
0

0− −

∫

The value of the FIX option is:

V0(0,t-Tcorr)=V0(0,t-600)=exp(-λT0)=0.368

Explanation:

for 4200>t≥3600 t-600 is between 3,000 and 3,600, in which V0(0,t)=0.368.

The value of the GO-ON option is the sum of two expressions. The first expression is:

p(0,t-Tmax+T1)=p(0,t-5000+4750)=p(0,t-250)= exp[-λ(t-250)]

The second expression is:

f z
t T Tcorr

()
0

0− −

∫ V0(0,t-z-Tcorr)dz= V0(0,t-z-600)dz=exp(-λT0){1-exp[-λ(t-3600)]} λ λexp()−
−

∫0
3600t

z

And therefore:

 exp(-λT0) (FIX)
V1(1,t)=max 4200>t≥3600
 exp[-λ(t-250)]+exp(-λT0){1-exp[-λ(t-3600)]} (GO-ON)

For t=3,600 the value of the GO-ON option is 0.327, less than the FIX option (0.368).

For t=4,200 the value of the GO-ON option is 0.334, less than the FIX option (0.368).

Therefore there is no break-even point in this region, and:

V1(1,t)= exp(-λT0) 4200>t≥3600

 Since the optimal policy for t<3,600 is GO-ON (there is no time for a new version),

then t=3,600 is the break-even point for V1(1,t), and there is no need to continue the

recursive calculations. The optimal testing policy is graphically described in figure 4.

 11

7.2 Numerical Example no. 2

Data

1-θ=0.999, α=0.95, λ=1/3000, Tmax=5,000 hr, Tave=1 hr, Tcorr=200 hr

Preliminary calculations

Using eq. (1) and (2):

T0=2,995≈3,000 hr, T1=4,742≈4,750 hr, T2=6,294 hr>Tmax

∴ Fmax=1

Using eq. (9):

vmax= int[(Tmax-T0)/Tcorr]=int[(5000-3000)/200]=10

Recursive calculations

According to eq. (17):

V0(1,t)= p(0,t-Tmax+T1)=p(0,t-5000+4750)=exp[-(t-250)/3000] 3200>t≥2000

Explanation:

t can not be smaller than 2,000 hours, because then there would be no failures for at least

3,000 hours (T0). Upon finding the first failure, the only option is GO-ON, because there is no

time for a new version. According to eq. (19):

V0(0,t)= p(0,T0)=exp(-λT0)=exp(-1)=0.368 3200>t≥3000

Explanation:

If the testing of a new version starts at this stage, then once the first failure is found, there is

no time for a new version nor enough time to demonstrate T1 hours with 1 failure.

 V0(0,t-Tcorr) (FIX)
V1(1,t)=max 3400>t≥3200

 p(0,t-Tmax+T1)+ V0(0,t-z-Tcorr)dz (GO-ON) f z
t T Tcorr

()
0

0− −

∫

The value of the FIX option is:

V0(0,t-Tcorr)=V0(0,t-200)=exp(-λT0)=0.368

Explanation:

 12

For 3400>t≥3200 t-600 is between 3,000 and 3,200, in which V0(0,t)=0.368.

The value of the GO-ON option is the sum of two expressions. The first expression is:

p(0,t-Tmax+T1)=p(0,t-5000+4750)=p(0,t-250)= exp[-λ(t-250)]

The second expression is:

f z
t T Tcorr

()
0

0− −

∫ V0(0,t-z-Tcorr)dz= V0(0,t-z-600)dz=exp(-λT0){1-exp[-λ(t-3200)]} λ λexp()−
−

∫0
3200t

z

And therefore:

 exp(-λT0) (FIX)
V1(1,t)=max 3400>t≥3200
 exp[-λ(t-250)]+exp(-λT0){1-exp[-λ(t-3200)]} (GO-ON)

For t=3,200 the value of the GO-ON option is 0.374, more than the FIX option (0.368).

For t=3,400 the value of the GO-ON option is 0.398, more than the FIX option (0.368).

Therefore there is no break-even point in this region, and:

V1(1,t)= exp[-λ(t-250)]+exp(-λT0){1-exp[-λ(t-3200)]} 3400>t≥3200

According to eq. (19):

V1(0,t)=p(0,T0)+ V1(1,t-z)dz+ V0(1,t-z)dz 3400>t≥3200 f z
t T Tcorr

()
0

0− −

∫ f z
t T Tcorr

t T
()

− −

−

∫ 0

0

V1(0,t) is the sum of three expressions. The first expression is:

p(0,T0)= exp(-λT0)

The second expression is:

f z
t

()
0

3200−

∫ V1(1,t-z)dz= V0(,0,t-z-200)dz= exp(-λT0)= f z
t

()
0

3200−

∫ f z
t

()
0

3200−

∫

 =exp(-λT0){1-exp[-λ(t-3200)]}dz

Explanation:

When the next failure is found in V1 there is no time for demonstrating T1 hours with only 1

failure, and the only option would be FIX.

The third expression is:

f z
t

t
()

−

−

∫ 3200

3000
V0(1,t-z)dz=0

Explanation:

 13

When the next failure is found in V0, there is no time for a new version nor for demonstrating

T1 hours with only 1 failure, and the testing is over.

Hence:

V1(0,t)= exp(-λT0)+ exp(-λT0){1-exp[-λ(t-3200)]} 3400>t≥3200

According to eq. (17):

 V1(0,t-200) (FIX)
V2(1,t)=max 3600>t≥3400

 p(0,t-250)+ V1(0,t-z-200)dz+ V0(0,t-z-200)dz (GO-ON) f z
t

()
0

3400−

∫ f z
t

t
()

−

−

∫ 3400

3200

The value of the FIX option is:

V1(0,t-200)=exp(-λT0)+exp(-λT0){1-exp[-λ(t-3400)]} 3600>t≥3400

The value of the GO-ON option includes three expressions. The first expression is:

p(0,t-250)=exp[-λ(t-250)]

The second expression is:

f z
t

()
0

3400−

∫ V1(0,t-z-200)dz= {exp(-λT0)+exp(-λT0){1-exp[-λ(t-z-3400)]}}dz= f z
t

()
0

3400−

∫

= 2exp(-λT0){1-exp[-λ(t-3400)]}- exp(-λT0)λ(t-3400) exp[-λ(t-3400)]=

=2exp(-λT0)- exp[-λ(t-3400)][2exp(-λT0)+λ(t-3400)]

The value of the third expression is:

f z
t

t
()

−

−

∫ 3400

3200
V0(0,t-z-200)dz= exp(-λT0)dz= f z

t

t
()

−

−

∫ 3400

3200

 =exp(-λT0){exp[-λ(t-3400)]-exp[-λ(t-3200)]}

Therefore:

 exp(-λT0)+exp(-λT0){1-exp[-λ(t-3400)]} (FIX)
V2(1,t)=max 3600>t≥3400
 exp[-λ(t-250)]+ 2exp(-λT0)- exp[-λ(t-3400)][2exp(-λT0)]+

 +λ(t-3400)]+ exp(-λT0){exp[-λ(t-3400)-exp[-λ(t-3200)]} (GO-ON)

For t=3,400 the value of the FIX option is 0.368, and the value of the GO-ON option is 0.374.

For t=3,600 the value of the FIX option is 0.391, and the value of the GO-ON option is 0.335.

 14

Therefore there is a break-even point in this region, which can be found by equating the two

options and solving for t:

exp(-λT0)+exp(-λT0){1-exp[-λ(t-3400)]}=exp[-λ(t-250)]+2exp(-λT0)-

exp[-λ(t-3400)][2exp(-λT0)+λ(t-3400)]+ exp(-λT0){exp[-λ(t-3400)]-exp[-λ(t-3200)]}

After some algebra:

t=3400+3000{[exp(250/3000)-exp(200/3000)]/[exp(3400/3000)]}

The solution is at t=3417.35 hr.

 This is the break-even point for V2(1,t), and there is no need to continue the

recursive calculations any further. This break-even point occurs before t=3,200 hours, which

is the “forced” transition point from FIX to GO-ON (T0+Tcorr). The optimal testing policy is

graphically described in figure 5.

 Clearly, TFmax*, the break-even point for the last allowable failure, can exist either at

the forced or transition point, i.e. t=T0+Tcorr, or at a larger value of t. In the latter case, it is

called a real break-even point.

8. A Lemma about the break-even point

Lemma: the existence of a real break-even point depends only on the specific values of Tcorr,

Tmax and TFmax, and does not depend on the values of λ and Fmax.

Proof:

According to eq. (17):

 V0(0,t-Tcorr) (FIX)
V1(Fmax,t)=max (20)

 p(0,t-Tmax+TFmax)+ V0(0,t-z-Tcorr)dz (GO-ON) f z
t T Tcorr

()
0

0− −

∫

According to eq. (19):

V0(0,t)=p(0,T0)=exp(-λT0) (21)

Substituting eq. (21) in eq. (20) yields:

 exp(-λT0) (FIX)
V1(Fmax,t)=max (22)

 15

 p(0,t-Tmax+TFmax)+exp(-λT0){1-exp[-λ(t-T0-Tcorr)]} (GO-ON)

In order to have a break-even point in this region:

exp(-λT0)= exp[-λ(t-Tmax+TFmax)]+exp(-λT0){1-exp[-λ(t-T0-Tcorr)]} (23)

After some algebra:

Tcorr=Tmax-TFmax (24)

Since equation (24) does not depend on t, its meaning is as follows:

• For Tcorr>Tmax-TFmax the FIX option is better throughout the V1 region, including

t=T0+Tcorr. Therefore, the break-even point TFmax* is at t=T0+Tcorr, which is the forced

transition point between FIX and GO-ON.

• For the singular case Tcorr=Tmax-TFmax the FIX and the GO-ON options are equal

throughout the V1 region, including t=T0+2Tcorr. In this case there is a real break-even

point at t=T0+2Tcorr.

• For Tcorr<Tmax-TFmax the GO-ON option is better throughout the V1 region, including

t=T0+2Tcorr. Therefore, the break-even point TFmax* is not located in this region. Since for

t=Tmax FIX is the better option, in this case there has to be a real break-even point at some

t> T0+2Tcorr.

 Hence the existence of a real break-even point depends only on the validity of the

inequality Tcorr≤Tmax-TFmax , Q.E.D.

9. Conclusions

The optimal statistical testing policy of safety-critical systems, using the SRST method and

the TAAF approach, is based on the notion of break-even points. For every failure found, the

optimal policy is GO-ON testing if the time left is smaller than the break-even point value,

and STOP testing if the time left is larger than this value. The values of the various break-

even points can be found by stochastic dynamic programming.

References

 16

[1] USA Department of Defence (1996), MIL-HDBK-781A: Reliability Test Methods, Plans and Environments.

[2] H. Sandoh, Reliability Demonstration Testing for Software, IEEE Transactions on Reliability 40 (1) (1991)

117-119.

[3] O. Tal, A. Bendell, C. McCollin, Reliability Demonstration for Safety-Critical Systems, Discussion Paper

No. 99/4, The Management Centre, University of Leicester, 1999.

[4] O. Tal, Software Dependability Demonstration for Safety-Critical Military Avionics Systems by Statistical

Testing, PhD Thesis, the Nottingham Trent University, 1999.

[5] T.A Thayer, M. Lipow, E.C. Nelson, Software Reliability, North Holland, Amsterdam, 1978.

[6] S.M. Ross, An Introduction to Stochastic Dynamic Programming, Academic Press, New York, 1982.

 17

FIX

GO-ON

STOP (FAILURE)

STOP (SUCCESS)

Tmax To+Tcorr Tmax-To 0

F=0

F=1

Figure 1: P(F,t) when Fmax=0

 18

GO-ON

FIX GO-ON

STOP (FAILURE)

STOP (SUCCESS)

STOP (SUCCESS)

F=2

F=1

F=0

FIX

t

0

Tmax-T1
Tmax-To

To+Tcor
T1*

Figure 2: P(F,t) when Fmax=1 and T1* exists

 19

GO-ON

FIX GO-ON

STOP (FAILURE)

STOP (SUCCESS)

STOP (SUCCESS)

F=2

F=1

F=0

To+Tcorr

Tmax-To

Tmax-T1 0 t

FIX

Figure 3: P(F,t) when Fmax=1 and T1* does not exist

 20

0 1000 2000 3000 4000 5000

GO-ON

FIX GO-ON

STOP (FAILURE)

STOP (SUCCESS)

STOP (SUCCESS)

F=2

F=1

F=0

FIX

3600
T- lapsed time

2000 250 t- time remaining

Figure 4: The optimal testing policy for the first numerical example

Note: the break-even point is at t=T0+Tcorr=3,600 hours, which is the forced transition point.

 21

0 1000 2000 3000 4000 5000

GO-ON

FIX GO-ON

STOP (FAILURE)

STOP (SUCCESS)

STOP (SUCCESS)

F=2

F=1

F=0

FIX

3200
T- lapsed time

2000 250 t- time remaining

3417

Figure 5: The optimal testing policy for the second numerical example

Note: the break-even point is at t=3,417 hr. which is larger than the forced transition point,

3,200 hours (T0+Tcorr).

 22

