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Abstract 

 When software reliability demonstration of safety-critical systems by statistical 

testing is treated as a TAAF (Test, Analyse and Fix) process, an optimal testing policy can be 

found, which maximises the probability of success of the whole process, over a pre-

determined  period of time. The optimisation problem is formulated, solved by stochastic 

dynamic programming, and demonstrated by two numerical examples.  
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1. Introduction 

 Reliability demonstration by statistical testing is a standard procedure for hardware 

systems[1], which has also been suggested for software systems[2]. In both cases the testing is 

based on PRST- Probability Ratio Sequential Testing [3]. An alternative method for safety-

critical systems, SRST (Single Risk Sequential Testing), has been suggested, based on the 

binomial formula [4]. Combining the SRST method with the TAAF (Test, Analyse and Fix) 

approach [5] leads to an optimisation problem, whose objective is to maximise the probability 

of success of the whole process  [6].   
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2. Problem parameters 

• The required reliability is 1-θ. Hence, θ is the maximum allowed unreliability. 

• The required confidence in the value of 1-θ is α. 

• The total time allocated to reliability demonstration testing is Tmax [hours]. 

• The average mission duration of the system is Tave [hours].  

• The estimated failure rate of the software is λ [1/hour]. 

Assumption 1: the failure rate of the software is small, and does not change much from version 

to version during the software reliability demonstration process. Hence it will conservatively 

assumed to be constant. 

• The average correction time required for correcting the current software version and 

submitting a new version for reliability demonstration testing is Tcorr [hours].   

 

3. Problem Analysis and definitions 

 The required number of tests, n, for any number of failures found, F, is the largest 

numerical solution of the following inequality, based on the binomial formula [7]: 

1-α≥ nCj (1-θ)n-j θj F=0,1,2....      (1) 
j

F

=
∑

0

Let us define nF as the required number of missions during reliability demonstration testing 

when F failures are found, and TF as the expected required time: 

TF =nF Tave          (2) 

For instance, for F=0 equation (1) reduces to: 

1-α≥(1-θ)n          (3) 

Therefore:  

n0=ln(1-α)/ln(1-θ) where n0 is the greatest n to satisfy the inequality.   

      (4)  

and  

T0= n0 Tave          (5) 
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 For any number of failures, F, there is a corresponding nF and hence a corresponding 

TF. For example, for 1-θ=0.999, α=0.95 and Tave=1 hour,  T0=2,995, T1=4,742, T2=6,294 

hours, etc. The maximum allowable number of failures during reliability demonstration, 

Fmax, is therefore the smallest F such that:  

TF+1=nF+1 Tave ≥Tmax         (6) 

 Using the TAAF approach the software reliability demonstration testing can be 

regarded as a process [6]: Test the current version to demonstrate its reliability. If no failures 

are found during T0 hours, stop testing. Clearly, Tmax must be larger than T0, otherwise there is 

no way of demonstrating the required reliability. When the Fth failure is found, choose 

between the following options: 

1. Correct the current version to produce a new version and start testing all over again. This 

option requires, of course, that for the new version Tmax≥T0+Tcorr. 

2. Go on testing, aiming at TF  hours with only f failures, f=F,F+1,... Fmax. 

Because of the time constraint (Tmax), this process can either succeed or fail.  

 

4. Problem formulation and policy definition 

 What is the optimal testing policy, in order to maximise the probability of success in 

the software reliability demonstration process? 

 Any testing policy can be defined by a decision rule P(F,t) where F is the number of 

the failure just found in the current version, and t is the time left till the deadline (Tmax 

hours). P(F,t) can only take three values: 

1. GO-ON testing; 

2. FIX and start testing;  

3. STOP testing: the reliability demonstration has either succeeded or failed.  

 The probability of success of this policy can be defined is p[P(F,t)]. Therefore, the 

optimisation problem is: 

max p[P(F,t)] for 0≤F≤Fmax, 0<t≤Tmax      (7) 
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 The maximum number of new versions when a failure is found t hours before the 

deadline can be calculated as follows: 

 Assuming that there is enough time for at least one more version, t≥ Tcorr+T0, and the 

testing of the first new version will start Tcorr hours later. If the first failure in the new version 

is found immediately, then the testing of the second new version will start at least 2Tcorr hours 

later. Similarly, the testing of the nth new version will start at least nTcorr hours later. The only 

constraint is that the time left, t-nTcorr, is still larger than Tcorr+T0. Therefore, the maximum 

number of new versions, excluding the immediate one, is the integer solution of: 

t-vTcorr≥ Tcorr+T0         (8) 

And 

vmax=v+1=1+int{[Tmax- (Tcorr+T0 )]/Tcorr}= int [(Tmax-T0 )/Tcorr]   (9) 

 The optimal policy depends on Fmax, and therefore will be considered separately for 

several cases. 

 

4.1  Case no. 0: Fmax=0  or T0≤Tmax≤T1 

 When testing begins, the optimal policy is, clearly, GO-ON testing. The optimal 

policy does not change as long as no failures are found, till T0 hours have passed, and the 

required reliability has been demonstrated. Therefore: 

P(0,t)= GO-ON  Tmax-T0<t≤Tmax 

 STOP (success)   0<t≤Tmax-T0 

 When the first failure is found there is no choice but to FIX the current version and 

start testing the new version, if there is enough time to do it. Therefore: 

P(1,t)= FIX    T0+Tcorr<t≤Tmax 

 STOP (failure)  0<t≤T0+Tcorr 

 The optimal policy is described graphically in figure 1. This figure is based on the 

fact that  T0+Tcorr>Tmax- T0, which is always true. In order for this inequality to be false, one 

gets 2T0+Tcorr<Tmax. But since Tmax<T1, and since T1 is always smaller than 2T0 [6], the figure 
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is valid. Whenever the testing of a new version is started, the same graph has to be plotted 

again, with the new value of Tmax.  

 

4.2 Case no. 1: Fmax=1 or T1≤Tmax≤T2 

4.2.1 P(0,t) 

 When testing begins, the optimal policy is, clearly, GO-ON testing. The optimal 

policy does not change as long as no failures are found, till T0 hours have passed, and the 

required reliability has been demonstrated. Therefore: 

P(0,t)= GO-ON  Tmax-T0<t≤Tmax 

 STOP (success)   0≤t≤Tmax-T0 

 

4.2.2 P(2,t) 

 When the second failure is found there is no choice but to FIX the current version and 

start testing the new version, if there is enough time to do it. Therefore: 

P(2,t)= FIX    T0+Tcorr<t≤Tmax 

 STOP (failure)  0≤t≤T0+Tcorr 

 

4.2.3 P(1,t) 

 When the first failure is found there can be two situations: 

• There is not enough time to FIX the software, i.e. t<T0+Tcorr. In this case the only choice is 

GO-ON testing, till T1 hours have passed. 

P(1,t)= GO-ON  Tmax-T1<t<T0+Tcorr 

 STOP (success)   0≤t≤Tmax-T1 

• There is enough time to FIX the software. i.e. T0+Tcorr≤t≤Tmax. In this case there is a real 

choice between GO-ON testing and FIXing the software. Since at t=Tmax the optimal 

decision is FIX and at t< T0+Tcorr the optimal decision is GO-ON testing, there may be a 

“break-even” point in this region, when the best policy shifts from FIX to GO-ON. In 
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this case, the break-even point can be found by equating the probabilities of success of 

both options. 

Figures 2 and 3 describe the optimal policies in both cases. 

 

5. Formulating the problem as a stochastic dynamic programming problem 

 Finite-stage stochastic dynamic programming deals with a process, whose state at the 

beginning of a given time period is known. After observing its state an action must be 

chosen. Based on the state and the action only, an expected reward is earned, and the 

probability distribution for the state in the next time period is determined. The optimisation 

problem is to find a policy, that maximises the expected value of the sum of rewards earned 

over a given number of time periods, or stages. The optimality equation, which enables a 

recursive solution of this problem, is given by [8]: 

Vn(i)=max [R(i,a)+ΣPij(a)Vn-1(j)]       (10) 
            a                 j  
V1(i)=max R(i,a)         (11) 
            a 
where: 

n- the total number of stages at the beginning of the process 

i- the starting state 

a- one of the possible actions 

R(i,a)- the expected (immediate) reward of action a in state i. 

Pij(a)- the transition probability from state i to state j, as a result of choosing action a. 

Vn(i)- the maximum expected return for an n-stage problem, that starts in state i. 

 This formulation assumes that R(i,a) and Pij(a) do not depend on n. It also assumes 

that the process must go through all the stages, from n to 1, because each action causes a new 

stage. 

 In order to formulate the software reliability demonstration optimisation problem as a 

stochastic dynamic programming problem, the following modifications are needed [6]: 
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1. Stage: n is defined as the maximum number of new versions which can still be produced 

and demonstrated till the deadline, which is determined only upon finding a new failure. 

Therefore it is possible to stay in the same stage or to skip stages following an action. 

The minimum value of n is 0. 

2. State: the state of the problem is defined by i, the number of the failure just found, and 

by t, the time left till the deadline. Whenever a new version arrives, i=0. The maximum i 

is Fmax- the maximum allowable number of failures.  

3. Actions: the possible actions are FIX and GO-ON. Each action determines not only the 

immediate reward and the probability distribution of the next state, but also the time left 

at the beginning of the next stage (whose number does not have to be the next smaller 

integer).    

4. Reward: the expected reward of GO-ON is the probability of demonstrating the software 

reliability of the current version without any more failures. It depends on i and t.  

Therefore the expected reward of FIX is zero.   

5. Transition probability: the transition probability from state i in stage n to state j in 

stage k depends on a, t and n.  

 Incorporating these changes to the optimality equation yields the following general 

equations: 

Vn(i,t)=max [R(i,a,t)+ΣPijk(n,a,t)Vk(j,t-Ta)]      (12) 
               a                 j,k 
 
V0(Fmax,t)=p(0,t-Tmax+TFmax)        (13) 
                 
where: 

t- the time left until the deadline upon finding a failure,  Tmax≥t>0 

i- the number of the failure just found, i=0,1,....Fmax, counted separately for each version. 

n- the maximum number of new versions which can be tested till the deadline, vmax≥n≥0 

Note: t and n are not independent, because for n≥1, T0+(n+1)Tcorr>t≥T0+nTcorr. For n=0, 

T0+Tcorr>t>0. 
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Vn(i,t) - the maximum probability of success when the maximum number of new versions is 

n, the number of the failure just found is i, and the time left is t. 

a- FIX or GO-ON 

R(i,a,t) - the probability of demonstrating the software reliability of the current version 

without any more failures (0 for the FIX option).   

Pijk(n,a,t) - the probability of transition from state i in stage n to state j in stage k following 

action a in time t, because of finding a failure.  

Note:  

In the FIX option,  j is always 0 and k is always n-1.  

In the GO-ON option: 

 For i<Fmax  j=i+1, k=0,1,....n.    

 For i=Fmax  j=0, k=0,1,..... n-1.  

Ta - the time lost in the transition to a new stage following action a: Tcorr in case of FIX, and 

the expected time till the next failure in case of GO-ON.  

Note: the time to failure is denoted by z, and its pdf is assumed to be f(z)=λexp(-λz). 

After using the above constraints these equations become: 

Vn(0,t)=p(0,T0)+ Vk(1,t-z)dz       (14) f z
k

n

( )∫∑
=0

  Vn-1(0,t-Tcorr) 
Vn(i,t)= max       i=1,....Fmax-1  (15) 

  p(0,t-Tmax+Ti)+ Vk(i+1,t-z)dz f z
k

n

( )∫∑
=0

   Vn-1(0,t-Tcorr) 
Vn(Fmax,t)=    max         (16) 

   p(0,t-Tmax+TFmax)+ Vk(0,t-z-Tcorr)dz f z
k

n

( )∫∑
=0

 The integration boundaries are as follows: 

1. i=0 

k=0   z=t-T0-Tcorr  to  T0 

k=1,2,...n-1:  z=t-T0-(k+1) Tcorr  to  t-T0-k Tcorr 

k=n:   z=0    to  t-T0-n Tcorr. 
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2. i=1,2,....Fmax-1 

k=0:  z=t- T0- Tcorr  to t-Tmax+Ti 

k=1,2,...n-1:  z=t-T0-(k+1) Tcorr to  t-T0-k Tcorr 

k=n:   z=0    to  t-T0-n Tcorr. 

3. i=Fmax   

      k=0:  z=0   to t-Tmax+TFmax 

k=1,2,...n-2:  z=t-T0-(k+2) Tcorr to  t-T0-(k+1) Tcorr 

k=n-1:   z=0    to  t-T0-n Tcorr. 

 Therefore the optimality equations become: 

   Vn-1(0,t-Tcorr)     (FIX)  

Vn(Fmax,t)=max p(0,t-Tmax+TFmax)+ Vn-1(0,t-z-Tcorr)dz+  (17) f z
t T nTcorr

( )
0

0− −

∫
   + Vk(0,t-z-Tcorr)dz+ 

k

n

=

−

∑
1

2

f z
t T k Tcorr

t T k Tcorr
( )

( )

( )

− − +

− − +

∫ 0 2

0 1

   + f z V0(0.t-z-Tcorr)dz   (GO-ON) 
t T TF

( )
max max

0

− +

∫
 

   Vn-1(0,t-Tcorr)      (FIX) 

Vn(i,t)=max   p(0,t-Tmax+Ti)+ Vn(i+1,t-z)dz+   (18) f z
t T nTcorr

( )
0

0− −

∫
(i=1,2,..Fmax-1)  + Vk(i+1,t-z)dz+   

   + f z  V0(i+1,t-z)dz   (GO-ON) 

k

n

=

−

∑
1

1

f z
t T k Tcorr

t T kTcorr
( )

( )− − +

− −

∫ 0 1

0

t T Tcorr

t T Ti

( )
max

− −

− +

∫
0

 
 

Vn(0,t)=p(0,T0)+ Vn(1,t-z)dz+ Vj (1,t-z)dz+  (19) f z
t T nTcorr

( )
0

0− −

∫
j

n

=

−

∑
1

1

f z
t T j Tcorr

t T jTcorr
( )

( )− − +

− −

∫ 0 1

0

 + V0(1,t-z)dz f z
t T Tcorr

T
( )

− −∫ 0

0

 

6. The algorithm 

 The algorithm for finding the Ti* values (i=1,2,..Fmax)  is as follows: 

1. n=0. 

2. i=Fmax.  Use eq. (17) to calculate Vn(Fmax,t). 
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3. i=i-1. If i≥1 Use eq. (18) to calculate Vn(i,t) and check for a break-even point in the 

region T0+(n+1)Tcorr>t≥T0+nTcorr. If it exists,  this is Ti*. 

4. If i=0 and n=vmax: stop. Else use eq. (19) to calculate Vn(0,t). 

5. n=n+1. Go to step 2. Do not look again for the break-even points which have already 

been found. 

 

7. Numerical examples 

 The optimal policy may be expressed by a series of  break-even points, Ti* 

(i=1,2,...Fmax) such that when the ith failure is found, the optimal policy is FIX as long as t> 

Ti* and GO-ON when t< Ti*. 

 

7.1 Numerical Example no. 1 

Data 

1-θ=0.999, α=0.95, λ=1/3000, Tmax=5,000 hr, Tave=1 hr, Tcorr=600 hr 

Preliminary calculations 

Using eq. (1) and (2):  

T0=2,995≈3,000 hr, T1=4,742≈4,750 hr, T2=6,294 hr>Tmax 

∴ Fmax=1 

Using eq. (9):  

vmax= int[(Tmax-T0)/Tcorr]=int[(5000-3000)/600]=3 

Recursive calculations 

According to eq. (17): 

V0(1,t)= p(0,t-Tmax+T1)=p(0,t-5000+4750)=exp[-(t-250)/3000]  3600>t≥2000 

Explanation: 

t can not be smaller than 2,000 hours, because then there would be no failures for at least 

3,000 hours (T0). Upon finding the first failure, the only option is GO-ON, because there is no 

time for a new version. 
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According to eq. (19): 

V0(0,t)= p(0,T0)=exp(-λT0)=exp(-1)=0.368    3600>t≥3000 

Explanation: 

If the testing of a new version starts at this stage, then once the first failure is found, there is 

no time for a new version nor enough time to demonstrate T1 hours with 1 failure. 

  V0(0,t-Tcorr)     (FIX)    
V1(1,t)=max        4200>t≥3600 

  p(0,t-Tmax+T1)+ V0(0,t-z-Tcorr)dz (GO-ON) f z
t T Tcorr

( )
0

0− −

∫
 

The value of the FIX option is: 

V0(0,t-Tcorr)=V0(0,t-600)=exp(-λT0)=0.368 

Explanation:  

for  4200>t≥3600 t-600 is between 3,000 and 3,600, in which V0(0,t)=0.368. 

The value  of the GO-ON option is the sum of two expressions. The first expression is: 

p(0,t-Tmax+T1)=p(0,t-5000+4750)=p(0,t-250)= exp[-λ(t-250)] 

The second expression is: 

f z
t T Tcorr

( )
0

0− −

∫ V0(0,t-z-Tcorr)dz= V0(0,t-z-600)dz=exp(-λT0){1-exp[-λ(t-3600)]} λ λexp( )−
−

∫0
3600t

z

And therefore: 

  exp(-λT0)     (FIX) 
V1(1,t)=max        4200>t≥3600 
  exp[-λ(t-250)]+exp(-λT0){1-exp[-λ(t-3600)]} (GO-ON) 
 
For t=3,600 the value of the GO-ON option is 0.327, less than the FIX option (0.368). 

For t=4,200 the value of the GO-ON option is 0.334, less than the FIX option (0.368). 

Therefore there is no break-even point in this region, and: 

V1(1,t)= exp(-λT0)       4200>t≥3600 

 Since the optimal policy for t<3,600 is GO-ON (there is no time for a new version), 

then t=3,600 is the break-even point for V1(1,t), and there is no need to continue the 

recursive calculations. The optimal testing policy is graphically described in figure 4. 
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7.2 Numerical Example no. 2 

Data 

1-θ=0.999, α=0.95, λ=1/3000, Tmax=5,000 hr, Tave=1 hr, Tcorr=200 hr 

Preliminary calculations 

Using eq. (1) and (2): 

T0=2,995≈3,000 hr, T1=4,742≈4,750 hr, T2=6,294 hr>Tmax 

∴ Fmax=1 

Using eq. (9): 

vmax= int[(Tmax-T0)/Tcorr]=int[(5000-3000)/200]=10 

Recursive calculations 

According to eq. (17): 

V0(1,t)= p(0,t-Tmax+T1)=p(0,t-5000+4750)=exp[-(t-250)/3000]  3200>t≥2000 

Explanation: 

t can not be smaller than 2,000 hours, because then there would be no failures for at least 

3,000 hours (T0). Upon finding the first failure, the only option is GO-ON, because there is no 

time for a new version. According to eq. (19): 

V0(0,t)= p(0,T0)=exp(-λT0)=exp(-1)=0.368    3200>t≥3000 

Explanation: 

If the testing of a new version starts at this stage, then once the first failure is found, there is 

no time for a new version nor enough time to demonstrate T1 hours with 1 failure. 

  V0(0,t-Tcorr)     (FIX)    
V1(1,t)=max        3400>t≥3200  

  p(0,t-Tmax+T1)+ V0(0,t-z-Tcorr)dz (GO-ON) f z
t T Tcorr

( )
0

0− −

∫
 
The value of the FIX option is: 

V0(0,t-Tcorr)=V0(0,t-200)=exp(-λT0)=0.368 

Explanation:  
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For  3400>t≥3200 t-600 is between 3,000 and 3,200, in which V0(0,t)=0.368. 

The value  of the GO-ON option is the sum of two expressions. The first expression is: 

p(0,t-Tmax+T1)=p(0,t-5000+4750)=p(0,t-250)= exp[-λ(t-250)] 

The second expression is: 

f z
t T Tcorr

( )
0

0− −

∫ V0(0,t-z-Tcorr)dz= V0(0,t-z-600)dz=exp(-λT0){1-exp[-λ(t-3200)]} λ λexp( )−
−

∫0
3200t

z

And therefore: 

  exp(-λT0)     (FIX) 
V1(1,t)=max        3400>t≥3200 
  exp[-λ(t-250)]+exp(-λT0){1-exp[-λ(t-3200)]} (GO-ON) 

For t=3,200 the value of the GO-ON option is 0.374, more than the FIX option (0.368). 

For t=3,400 the value of the GO-ON option is 0.398, more than the FIX option (0.368). 

Therefore there is no break-even point in this region, and: 

V1(1,t)= exp[-λ(t-250)]+exp(-λT0){1-exp[-λ(t-3200)]}    3400>t≥3200 

According to eq. (19): 

V1(0,t)=p(0,T0)+ V1(1,t-z)dz+ V0(1,t-z)dz 3400>t≥3200 f z
t T Tcorr

( )
0

0− −

∫ f z
t T Tcorr

t T
( )

− −

−

∫ 0

0

V1(0,t) is the sum of three expressions. The first expression is: 

p(0,T0)= exp(-λT0) 

The second expression is: 

f z
t

( )
0

3200−

∫ V1(1,t-z)dz= V0(,0,t-z-200)dz= exp(-λT0)= f z
t

( )
0

3200−

∫ f z
t

( )
0

3200−

∫

       =exp(-λT0){1-exp[-λ(t-3200)]}dz 

Explanation:  

When the next failure is found in V1 there is no time for demonstrating T1 hours with only 1 

failure, and the only option would be FIX.  

The third expression is: 

f z
t

t
( )

−

−

∫ 3200

3000
V0(1,t-z)dz=0 

Explanation: 
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When the next failure is found in V0, there is no time for a new version nor for demonstrating 

T1  hours with only 1 failure, and the testing is over. 

Hence: 

V1(0,t)= exp(-λT0)+ exp(-λT0){1-exp[-λ(t-3200)]}   3400>t≥3200 

According to eq. (17): 

  V1(0,t-200)          (FIX)  
V2(1,t)=max        3600>t≥3400  

  p(0,t-250)+ V1(0,t-z-200)dz+ V0(0,t-z-200)dz  (GO-ON) f z
t

( )
0

3400−

∫ f z
t

t
( )

−

−

∫ 3400

3200

 
The value of the FIX option is: 

V1(0,t-200)=exp(-λT0)+exp(-λT0){1-exp[-λ(t-3400)]}   3600>t≥3400 

The value of the GO-ON option includes three expressions. The first expression is: 

p(0,t-250)=exp[-λ(t-250)] 

The second expression is: 

f z
t

( )
0

3400−

∫ V1(0,t-z-200)dz= {exp(-λT0)+exp(-λT0){1-exp[-λ(t-z-3400)]}}dz= f z
t

( )
0

3400−

∫

= 2exp(-λT0){1-exp[-λ(t-3400)]}- exp(-λT0)λ(t-3400) exp[-λ(t-3400)]= 

=2exp(-λT0)- exp[-λ(t-3400)][2exp(-λT0)+λ(t-3400)] 

The value of the third expression is: 

f z
t

t
( )

−

−

∫ 3400

3200
V0(0,t-z-200)dz= exp(-λT0)dz= f z

t

t
( )

−

−

∫ 3400

3200

        =exp(-λT0){exp[-λ(t-3400)]-exp[-λ(t-3200)]} 

Therefore: 

  exp(-λT0)+exp(-λT0){1-exp[-λ(t-3400)]}   (FIX)  
V2(1,t)=max        3600>t≥3400  
  exp[-λ(t-250)]+ 2exp(-λT0)- exp[-λ(t-3400)][2exp(-λT0)]+ 
 
  +λ(t-3400)]+ exp(-λT0){exp[-λ(t-3400)-exp[-λ(t-3200)]} (GO-ON) 

For t=3,400 the value of the FIX option is 0.368, and the value of the GO-ON option is 0.374. 

For t=3,600 the value of the FIX option is 0.391, and the value of the GO-ON option is 0.335.  
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Therefore there is a break-even point in this region, which can be found by equating the two 

options and solving for t: 

exp(-λT0)+exp(-λT0){1-exp[-λ(t-3400)]}=exp[-λ(t-250)]+2exp(-λT0)- 

exp[-λ(t-3400)][2exp(-λT0)+λ(t-3400)]+ exp(-λT0){exp[-λ(t-3400)]-exp[-λ(t-3200)]} 

After some algebra: 

t=3400+3000{[exp(250/3000)-exp(200/3000)]/[exp(3400/3000)]} 

The solution is at t=3417.35 hr. 

 This is the break-even point for V2(1,t), and there is no need to continue the 

recursive calculations any further. This break-even point occurs before t=3,200 hours, which 

is the “forced” transition point from FIX to GO-ON (T0+Tcorr). The optimal testing policy is 

graphically described in figure 5. 

 Clearly, TFmax*, the break-even point for the last allowable failure, can exist either at 

the forced or transition point, i.e. t=T0+Tcorr, or at a larger value of t. In the latter case, it is 

called a  real break-even point.  

 

8. A Lemma about the break-even point 

Lemma: the existence of a real break-even point depends only on the specific values of Tcorr, 

Tmax and TFmax, and does not depend on the values of λ  and Fmax. 

Proof: 

According to eq. (17): 

      V0(0,t-Tcorr)      (FIX)  
V1(Fmax,t)=max         (20) 

       p(0,t-Tmax+TFmax)+ V0(0,t-z-Tcorr)dz (GO-ON) f z
t T Tcorr

( )
0

0− −

∫
 
According to eq. (19): 

V0(0,t)=p(0,T0)=exp(-λT0)        (21) 

Substituting eq. (21) in eq. (20) yields: 

      exp(-λT0)         (FIX) 
V1(Fmax,t)=max         (22) 

 15



      p(0,t-Tmax+TFmax)+exp(-λT0){1-exp[-λ(t-T0-Tcorr)]}    (GO-ON) 
 
In order to have a break-even point in this region: 

exp(-λT0)= exp[-λ(t-Tmax+TFmax)]+exp(-λT0){1-exp[-λ(t-T0-Tcorr)]}   (23) 

After some algebra: 

Tcorr=Tmax-TFmax         (24) 

Since equation (24) does not depend on t, its meaning is as follows: 

• For Tcorr>Tmax-TFmax the FIX option is better throughout the V1 region, including 

t=T0+Tcorr. Therefore, the break-even point TFmax* is at t=T0+Tcorr, which is the forced 

transition point between FIX and GO-ON. 

• For the singular case Tcorr=Tmax-TFmax the FIX and the GO-ON options are equal  

throughout the V1 region, including t=T0+2Tcorr. In this case there is a real break-even 

point at t=T0+2Tcorr.  

• For Tcorr<Tmax-TFmax the GO-ON option is better throughout the V1 region, including 

t=T0+2Tcorr. Therefore, the break-even point TFmax* is not located in this region. Since for 

t=Tmax FIX is the better option, in this case there has to be a real break-even point at some 

t> T0+2Tcorr.  

 Hence the existence of  a real break-even point depends only on the validity of the 

inequality Tcorr≤Tmax-TFmax , Q.E.D. 

 

9. Conclusions 

The optimal statistical testing policy of safety-critical systems, using the SRST method and 

the TAAF approach, is based on the notion of break-even points. For every failure found, the 

optimal policy is GO-ON testing if the time left is smaller than the break-even point value, 

and STOP testing if the time left is larger than this value. The values of the various break-

even points can be found by stochastic dynamic programming. 
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Figure 1: P(F,t) when Fmax=0 
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Figure 2: P(F,t) when Fmax=1 and T1* exists 
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Figure 3: P(F,t) when Fmax=1 and T1* does not exist 
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Figure 4: The optimal testing policy for the first numerical example 

 

Note: the break-even point is at t=T0+Tcorr=3,600 hours, which is the forced transition point.  
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Figure 5: The optimal testing policy for the second numerical example 

 

Note: the break-even point is at t=3,417 hr. which is larger than the forced transition point, 

3,200 hours (T0+Tcorr). 
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