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Abstract 

 

We report a real-time technique for assessing the number of motile sperm in a 

semen sample. The time of flight technique uses a flow channel with detection 

at the end of the channel using quartz crystal microbalances. Data presented 

suggests that a simple rigid mass model may be used in interpreting the 

change in resonant frequency using an effective mass for the sperm.    
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Artificial insemination of farm animals is common practice in the modern 

agriculture industry with more than 100 million inseminations performed 

globally each year. Crucial to success is both the number and motility of the 

sperm in the semen sample. The most common method for evaluation of 

sperm concentration and motility involves a direct observation through a 

microscope using counting chambers or haemocytometers. The main 

disadvantages of these methods are the inaccuracy due to the rapid 

movement of the cells at high magnification and the tedious nature of the work 

for the human operator. A more objective assessment of sperm motility can 

be achieved with a computer-assisted semen analyzer (CASA)1, however this 

is a laboratory based instrument which, from program settings, can give a 

measure of different aspects of sperm movement. The combination of a 

fluorescent staining and flow cytometry2 provides a technique to analyze 

thousands of sperm per sample and achieve a higher precision than is 

obtained with microscopic assessment or CASA systems. The drawback of 

these technologies is the price of equipment and the need for a skilled 

operator. In this work we report a simple time of flight technique using 

acoustic wave devices that has the potential to be an inexpensive field 

instrument for measuring number and motility of sperm.  

Acoustic wave sensors are based on the ability of acoustic wave 

devices to detect very small changes in mass attached to their surface and 

usually contain a sensitizing layer that can recognize and bind the species we 

want to detect onto the mass sensitive surface. The most widely used 

acoustic wave device for sensor applications is quartz crystal microbalance 
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(QCM). The Sauerbrey equation3 relates the change of the crystals resonant 

frequency is proportional to the change in rigid mass on the crystal surface; 

for AT cut quartz this gives ∆f =-2.26x10-6f2∆m/A where ∆f (in Hz) is the 

change in frequency that occurs for an increase in mass ∆m (in grams) on the 

surface of area A (in cm2) with a crystal resonant frequency of f (in Hz); the 

constant comes from the crystal materials properties. A well-designed 

oscillator circuit can still resonate a crystal immersed in a liquid. The change 

in mass rigidly attached to the surface still causes a proportional change in 

frequency although changes in other parameters such as the liquids viscosity 

and density will also cause changes in frequency. The acoustic wave will only 

sense mass changes within a short distance into the liquid called the 

penetration depth4. 

Porcine semen samples were supplied by a commercial artificial 

insemination centre (JSR Genetics, Driffield, UK). Prior to despatch the 

semen was mixed with a dilutent (Androhep), cooled to 17oC packaged in 

plastic bottles, and delivered by overnight postal service. This medium is 

suitable for up to 5 days storage at ambient temperature. A flow cell was 

fabricated to use two polished 5MHz quartz crystals with gold electrodes 

(Testbourne 149211-1) as the sensing and reference as shown in figure 1a. 

The sensing crystal was coated with poly-L-lysine and the reference left 

uncoated. To prepare the poly-L-lysine coated crystals, they were initially 

cleaned with ethanol, then ozone treated for 30 minutes. The crystals were 

then placed in poly-L-lysine solution overnight; the devices were then washed 

in the PBS buffer to remove any excess. The blank crystals were cleaned with 

ethanol followed by PBS buffer. The crystals were used with Maxtek PLO10 
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phase lock oscillators interfaced to a computer and data was collected 36 

times a minute. A channel length was approximately 6cm to give a typical time 

of flight of around 10 to 15 minutes from the literature values for sperm 

velocity5,6 and the swim up medium used was PBS buffer.  

Figure 1b shows the change in frequency for the reference crystal 

(upper line) and the sensing crystal (lower line) for a period of 55 minutes; a 

0.2ml semen sample was introduced at 16 minutes. The reference crystal 

shows a small positive drift in frequency of 5Hz over the measurement period 

with a small deviation as the semen was introduced. The poly-L-lysine coated 

crystal shows a negative drift of around 0.3 Hz per minute prior to and after 

the sperm detection. At 12 minutes from the introduction of the semen a fall in 

frequency is observed which is completed after a further 8 minutes and shows 

a frequency decrease of approximately 15 Hz; the average frequency shift for 

repeated measurements on the same batch of semen gave 35.2 ± 24.7 Hz. 

Confirmation that the signals observed are from the attachment of sperm were 

made by using the flow cell with uncoated and poly-L-lysine coated glass 

slides in place of the quartz crystals for different periods of time after 

introducing the sperm. The slides were checked using conventional 

microscopy to identify the sperm concentration present. No attachment was 

observed on the uncoated slide. Measuring 18 separate areas of 200 x 250 

µm on the poly-L-lysine coated slide at the end of the flow cell gave 166 ± 88 

sperm after one hour; this corresponds to 440k±233k sperm attached to the 

sensing electrode area of 1.327 cm2 of the QCM.   

To assess if significant dissipation was taking place following the 

sperm attachment, a network analyser (Agilent 7431ET) was used to record 
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the reflected power resonance peak for a poly-L-lysine coated crystal in PBS. 

The crystal holder was arranged to have the crystal horizontal so that 

gravitational settlement could occur and hence a maximum attachment of 

sperm could be achieved. Figure 2 shows the spectrum for the crystal in PBS 

buffer (line 1), for the crystal after a 0.2ml charge of semen had been added 

and left for an hour (line 2) and after the semen had been washed out and 

clean buffer included (line 3). The frequency of the peak shown on the 

network analyser peak is expected to track the frequency that would be 

achieved using the oscillator circuit however, if significant dissipation occurs 

i.e. a non-Sauerbrey relationship hold, then it would be expected that in 

addition, the peak would broaden. The difference between line 1 and line 2 

shows such a broadening is obtained with the gravitational settlement of the 

sperm onto the crystal surface. However, after surplus sperm are removed the 

resonance of line 3 is as sharp as line 1. In a Butterworth - Van Dyke (BVD) 

equivalent circuit model for the crystal, the crystal resistance R represents 

energy loss processes, and a change in this shows departure from a rigid 

mass attachment model. The data shown in figure 2 was fitted using a BVD 

model. For the initial PBS buffer R=368.4Ω, one hour after introducing the 

sperm R=384.2Ω and after the excess have been removed and clean buffer 

introduced R=367.5Ω. This suggests that a simplified model based on the 

Sauerbrey equation and a sperm effective mass may be appropriate. Previous 

studies have estimated a dry head mass of 13pg7 and up to 70% of the sperm 

mass to be made up of water8. Applying the Sauerbrey relationship to the 

average frequency change observed and using the estimate for the number of 

sperm attached this corresponds to a pig sperm effective mass of 4.2 ± 3.7pg.  
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In summary, we have demonstrated a real-time technique for 

assessing the number of motile sperm in a semen sample and that a simple 

rigid mass model may be used in interpreting the change in resonant 

frequency using an effective mass for the sperm.  The use of higher frequency 

acoustic wave devices such as acoustic plate modes would offer increased 

sensitivity. 

 

The authors acknowledge Professor Glen McHale for helpful discussions.



 7

 

References 

1 S.Mortimer J. Androl. 21, 515 (2000) 

2 P.Christensen, D. Boelling, K.M.Pedersen, I.R.Korsgaard and J.Jensen J. 

Androl., 26,  (2005)  

3 G. Sauerbrey, Z. Phys., 155 206 (1959) 

4 K.K.Kanizawa and J.G.Gordon Anal. Chem. Acta. 175, 99 (1985)    

5 M.Hirai, A.Boersma, A.Hoeflich, E.Wolf, J.Foll, R.Aumuller and J.Braun J. 

Androl.  22, 104 (2001)  

6 C.Holt, W.Holt, H.D.M.Moore, H.C.B.Reed and R.M.Curnock J.Androl. 18, 

312 (1997)  

7 G.P.Bahr and E.Zeitler J. Cell. Biol. 21, 175 (1964)  

8 L.B.Da Silva, J.E.Trebes, R.Balhorn, S.Mrowaka, E.Anderson, D.T.Attwood, 

T.W.Barbee. J.Brase, M.Corzett, J.Gray, J.A.Koch, C.Lee, D.Kern, 

R.A.London, B.J.MacGowan, D.L.Matthews and G.Stone Science 258, 269 

(1992)  



 8

 

Figure captions 

 

Figure 1.(a) schematic diagram of experiment (b) Frequency change as a 

function of time for the reference (upper line) and sensing (lower line) crystals. 

The arrow shows the time at which the sperm sample was introduced to the 

inlet port. 

 

Figure 2. Spectrum of crystal with PBS buffer only (line 1), with sperm after 1 

hour (line 2) and with excess sperm removed and fresh buffer (line 3). 
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