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Abstract 

Tumor escape is one major obstacle that has to be addressed prior to designing and 

delivering successful immunotherapy. There is compelling evidence to support the 

notion that immunogenic tumors, in murine models and cancer patients, can be 

rejected by the immune system under optimum conditions for activating adaptive and 

non-adaptive anti-tumor immune responses. Despite this capability, a large number of 

tumors continue to grow and evade recognition and/or destruction by the immune 

system. The limited success in current immunotherapeutic strategies may be due to a 

variety of reasons: failure of effector cells to compete with the growing tumor burden, 

production of humoral factors by tumors that locally block cytotoxicity, antigen / 

MHC loss, T-cell dysfunction, production of suppressor T – cells to name but a few or 

therapy ineffectiveness for the particular malignancy being treated. To optimise 

immunotherapy strategies correction of immune activating signals, eradication of 

inhibitory factors and the evasion from newly developed immunoresistant tumor 

phenotypes need to be simultaneously considered.   

 

Introduction 

The immune defence mechanisms are the least effective and the final barrier in the 

natural mechanisms against cancer formation (carcinogenesis) (49). Both innate and 

adaptive immunity induce anti-tumor effects via the activity of NK cells, NKT cells, 

macrophages, neutrophils, eosinophils, various cytokines and specific CTLs to name 

but a few. However spontaneous regression is rarely observed in malignant tumors, 

hence the need for immunotherapeutic intervention is required in order to eradicate 

the tumor. 

 Advances in both molecular and cellular immunology have improved our 

understanding of tumor-host interactions, although much still remains elusive despite 

the progress made in identifying a large number of tumor antigens and new 

immunotherapeutic strategies. The majority of tumors manage to “escape recognition” 

and currently there are a number of mechanisms known for tumor escape which have 

been described – loss / downregulation of HLA Class I, downregulation, mutation or 

loss of tumor antigens, alterations in cell death receptor signalling, production of 

immunosuppressive cytokines and suppressor T-cells and the involvement of 



 3 

indoleamine 2,3-dioxygenase in suppression - all of which will be discussed in detail 

later. 

It is believed that a T-cell response does exist but is ineffective as the effector phase 

of the immune response is inadequate. This notion may explain why current 

immunotherapeutic strategies have limited success. From the immunological 

perspective efficient therapeutic intervention should focus on boosting existing anti-

tumor responses and to sustain large numbers of effector T cells at the tumor site.  

Recently, this was clearly demonstrated in melanoma patient where T cell responses 

to vaccines occurred primarily in the presence of pre-activated T cells prior to 

vaccination (111). Analyses of cell mediated immunity against defined melanoma 

antigens using tetramer staining and an IFN-� secretion assay suggested that specific 

T cell responses often exist during tumor progression (99). Adjuvants such as 

cytokines have been used when immunising with peptides and proteins 

(48,54,100,118). Immunisation with DNA vaccines leads to the expression of tumor 

antigens and their processing by antigen presenting cells (APCs) (112), whereas the 

direct delivery of antigens as proteins by cell fusion or cDNA to dendritic cells (DCs) 

represents a more direct attempt to generate antitumor responses (2).  

Some anti-tumor therapeutic interventions have met with limited success which has 

been attributed mainly to the “tumor – escape” phenomena i.e. tumor cells have the 

ability to evade immune recognition and/or destruction, causing major obstacles in 

using this modality for the treatment of cancer. This was clearly demonstrated in 

prostate tumor (TRAMP-C1) model where the injection of Fms-like tyrosine kinase-3 

ligand (flt3-L) induced short-term tumor stabilization and regression followed by tumor 

relapse (21). Failure of therapy in this model revealed several important 

immunosuppressive characteristics of the prostate tumor microenvironment including 

the down regulation of MHC class II in DCs, profound deficiency in the expression of 

CD3ε  (CD3epsilon) and the beta chain of the T cell receptor (TCR) of tumor-

associated T cells. Cancer cells can be detected and destroyed by cytotoxic T 

lymphocytes (CTLs) in many experimental models and human tumors but on diagnosis 

the metastasis of many human tumors can be shown to correlate with unresponsive T 

cells. Progressive tumor growth occurs, in part, because the cancer cell is capable of 

escaping immune recognition and not because the immune system is defective (16). 

CML patients for example possess CTLs detectable by tetramer staining and 
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cytotoxicity that recognise HLA-A3 restricted peptide, although the number of CTLs 

may be too few to mediate complete rejection of the cancer (23). 

 Deletion or suppression of activated CTLs can occur as well as their migration away 

from the tumor site. The precursor frequency can be too low, such that the effector cells 

fail to compete with the growing tumor burden. However, it is equally possible that the 

therapies are ineffective for the particular malignancy being treated. In order to fully 

appreciate the role of tumor escape in the failure of immunotherapy, an understanding 

of the basic principles of immunosurveillance and its role in determining tumor 

phenotypes is necessary. 

The hypothesis first proposed by Thomas & Burnet in the 1970s implied that the 

immune response to tumor occurred at an early stage in tumor development – 

“eradicating the cancer before it became apparent” (28,87). 

Many studies have evolved in support of this theory and evidence exists to suggest 

that in some models and under appropriate conditions, immunosurveillance can play 

an active role in suppressing the growth of early tumors. Hence in this paradigm, 

when tumors do successfully grow, they are thought to have escaped from 

surveillance and a number of reviews have been written to support this theory 

(56,78,97). 

The following will focus on the multiple mechanisms that exist leading to “tumor-

escape” from the immune system; these factors have to be taken into consideration 

when designing novel therapeutic strategies. The aim of this review is to highlight the 

required mechanisms of tumor escape and how they influence the failure of 

immunotherapy. 

 

Activation versus Suppression during Tumor Progression. 

Escape from immune-surveillance is a major mechanism for tumors to grow 

progressively.  Tumors may grow undetected by the immune system, being seen as 

“normal tissue” hence benefiting from any mechanism that makes them appear 

“healthy” and less dangerous i.e. exhibiting no danger signals for immune activation 

(56,86). It is believed that even during progressive growth the tumor has the ability to 

activate the immune system, and that a fine balance between activation and 

suppression exists, which determines the fate of the tumor. Tumor vaccines may 

induce activation and expansion of specific CD8+ T cells and destruction of tumor 

cells in cancer patients; this was observed in approximately 5-20% of vaccinated 
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melanoma patients. However, this activation can be fraught by the lack of appropriate 

co-stimulation or the presence of immunosuppressive cytokines such as IL-10 and 

TGF-β. The eventual fate of the tumor is therefore determined by the net effect of 

immune activation and inhibition. (56). 

Killing of tumor cells in situ by suicide gene transfer to induce cell death through a 

nonapoptotic pathway was shown to be associated with enhanced immunogeneicity 

(74). Similar observations were also reported by our group where immunisation with 

irradiated RENCA cells (murine renal carcinoma) infected with DISC-HSV (Disabled 

Infectious Single Cycle – Herpes Simplex Virus) that enhanced immunity to tumor 

challenge with live parental tumor cells that induced cell death by necrosis as opposed 

to apoptosis (5) providing the immune system with additional activation as the cells 

were undergoing necrotic cell lysis enhanced tumor antigen processing and 

presentation by APCs and hence an increase in T cell activation (59,70).  

 The mechanisms of tumor escape from immune recognition / destruction are likely to 

be multifactorial including downregulation of MHC Class I molecules (4,52,96,131), 

loss of tumor antigens (26,44), defective death receptor signalling (24,47,73,116,117), 

lack of co-stimulation (104), production of immunosuppressive cytokines (85) and 

suppressive cells (12,35,61,72,113) as shown in figure 1. 
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Figure 1:- A schematic diagram summarising the processes of activation and 
suppression during tumor progression. 
 

Involvement of Indoleamine 2,3 –dioxygenase in immunosuppression. 

 The mechanisms that mediate immune tolerance to cancer are not well understood, 

but recent findings have implicated the tryptophan/IDO (indoleamine 2,3-

dioxygenase) metabolic pathway as one of many mechanisms involved. IDO is an 

enzyme ubiquitously distributed in mammalian tissues and cells converting 

tryptophane to N-formylkynurenine (34). This cytosolic enzyme catalyses the initial 

and rate limiting step in the catabolism of tryptophan in the kynurenine pathway (76). 

Low levels of tryptophan at the tumor site causes T cells to arrest in the G1 phase of 

the cell cycle (125). Initially the enzyme was recognised for its anti-microbial activity 

by allowing cells to deplete tryptophan from intracellular pool or local 

microenvironment (114), however recently, IDO was reported to be constitutively 

expressed by most human tumors and its expression by immunogenic mouse tumor 

cells prevents their rejection in pre-immunised mice, correlating with the lack of 

specific T cell accumulation at the tumor site (125).  

IDO expression is an inducible feature of splenic DC subsets, and provides a potential 

explanation for their ability to regulate T cells. Induction of IDO completely blocked 

the clonal expansion of T cells from TCR transgenic mice following the 

administration of the immunomodulatory reagent CTLA4-Ig, whereas the same 

treatment did not block T cell clonal expansion in IDO-deficient recipients. 

Suppression of allogeneic T cell responses in vitro and in vivo by interstitial APC was 

also shown to be IDO-dependent and blockade of IDO activity with 1-MT (1-methyl-
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DL-tryptophan (3)) or addition of exogenous tryptophan allowed the recovery of T 

cell proliferation in MLR assays (115). In humans, only a discrete subset of APCs that 

co-express the cell-surface markers CD123 and CCR6 was shown to express IDO and 

inhibit T cell proliferation in vitro (79). These results clearly demonstrated that the 

IDO pathway might represent a potential mechanism for DCs to regulate the immune 

response to tumor antigens. 

 

 Loss / Downregulation of HLA Class I. 

Altered MHC class I antigen expression in tumors is a well known phenomena. The 

selective loss of MHC class I alleles was subsequently described in a variety of mouse 

models including the TL leukaemic cell line, MCA-induced tumors and murine 

leukaemia virus induced tumors. The altered phenotypes of MHC Class I antigen 

expression permits tumor cells to avoid recognition or survive attack by CD8+ T-cells 

capable of mediating cytotoxicity. This phenomenon has been studied in a series of 

tumor samples by immunohistochemical techniques and has been shown to be 

widespread (58). 

HLA Class I molecule downregulation occurs frequently in many cancers and this 

abnormality might adversely affect the clinical course of disease and the outcome of T 

cell based immunotherapies. Over the past few years HLA Class I expression has 

been characterised in human tumors. Changes in HLA Class I expression can occur 

through various mechanisms – namely, mutations in genes and abnormalities in the 

regulation and/or defects in HLA Class I dependent antigen processing. These 

mutations modulate the susceptibility of tumor cells to in vitro lysis by CTLs and 

natural killer (NK) cells. Immune selection of tumor resistant CTLs and/or NK cells 

may explain the rapid progression and poor prognosis of cancers exhibiting HLA 

Class I antigen downregulation (43). 

To date a number of investigators have classified the types of HLA Class I loss into 

different phenotypes, and Table 1 summarises the HLA phenotypes that are 

recognised. 
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Table 1: Major HLA phenotypes in tumors and the associated molecular mechanisms. 
(Adapted from Cabrera et al 2003 (16)). 
 

HLA Phenotype Mechanisms References 
(I) HLA Class I Total Loss β2m mutations 

Alterations in antigen processing 
machinery 

37,55,88 
37,105 

(II) HLA haplotype Loss LOH in chromosome 6 31,37,91,92 
(III) HLA Allelic Loss Mutations of HLA Class I genes 13,37 

(IV) HLA A, B, C locus downregulation Alteration of transcriptional factors 37,39,110 
(V) Compound phenotype 2 or more independent mechanisms 37,45,93 
 

 

 A number of studies have been carried out to assess HLA Class I expression in 

tumors. In bladder carcinomas, 72% of the tumors studied showed at least one 

alteration in HLA expression and these were classified into different phenotypes 

depending on the type of downregulation/loss (18); expression was correlated to the 

degree of differentiation and tumor recurrence. To determine the type of HLA loss 

occurring during tumor progression, tissue samples from breast, colorectal and 

laryngeal carcinomas were analysed (17). HLA-B44 allele loss was observed more 

frequently than any other HLA Class I allele – suggesting an important role for this 

allele in tumor escape.  

Furthermore, mechanisms of MHC Class I loss were also investigated in colorectal 

carcinoma (15). It was shown that β2m mutation and LMP7 / TAP2 downregulation 

were responsible for the total loss of MHC class I expression-which contribute to the 

failure of T cell recognition during the immune response. 

In murine models, the B9 primary tumor clone (H-2 negative) and its metastatic 

colonies were studied in immunocompetent Balb/c mice (37). They showed that 83% 

of the metastasis obtained in different syngeneic Balb/c mice repeatedly exhibited a 

phenotype different from the original B9 clone. The alterations were identical in 

different colonies of different syngeneic Balb/c mice.  

Variation in the MHC Class I expression following immunotherapy has been 

observed in a murine colon carcinoma model (Ahmad, Ali, and Rees, unpublished 

observation). The CT26 (colon carcinoma) murine tumor model was used to 

investigate the expression of MHC Class I antigens in mice failing to regress their 
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tumors following immunotherapy (progressor) and tumor bearer (no therapy) animals 

(6). The DISC-HSV/mGM-CSF vector used in this study is an attractive tool for the 

delivery of cytokines to the tumors (11,94,120). This vector was developed by 

genetically inactivating the HSV-2 for use as a vaccine, by the deletion of the 

essential glycoprotein H (gH) gene – restricting it to one cycle of replication (11). On 

infection, the virus would release non-infectious particles together with the transduced 

cytokine e.g. GM-CSF. In our model the DISC therapy was administered 

intratumorally to mice with established subcutaneous (s.c) tumors, and approximately 

40% of the treated animals fail therapy and the tumors continue to grow progressively 

(3,6). MHC Class I (H-2Ld) expression was investigated in both tumor bearing and 

progressor mice. The results (Table 2) clearly demonstrated that a high proportion 

(55%) of tumors from progressor mice showed loss of class I MHC antigen, unlike 

the control tumors (treated with PBS) all of which expressed MHC I antigen. 

Interestingly, the tumor cells from the progressor animals re-expressed Class I 

following overnight in vitro culture, suggesting that the tumor micro-environment 

may be responsible for the transient downregulation of Class I expression as opposed 

to a mutation in the �2m gene  (95) or a downregulation in LMP7 / TAP 2 as reported 

in other studies (15). 

 

Table 2: A total of 18 tumors were studied (11 progressors, 7 PBS controls) for the 
expression of H2Ld. The results have been combined for the immunohistochemistry 
and FACS analysis, such that 45% of the therapy failures completely lost H2Ld 
surface expression whereas the tumor bearer animals retained a degree of expression 
(low, partial or full expression) (A.Talasila – MSc. Thesis, Nottingham Trent 
University, UK). 
 
 

 

 

Recently a number of studies have investigated the expression of Class II in patients. 

Antigen – presenting cells are crucial for the induction of an antigen – specific 

immune response and downregulation / loss of expression in cell surface molecules 

such as HLA Class II may contribute to an impaired immune response.  This 

phenomena was observed in PBMs of melanoma patients (123).  A number of 

Treatment No Expression 
(%) 

Low Expression 
(%) 

Partial Expression 
(%) 

Full Expression 
(%) 

Tumor Bearer 0 29 29 42 
DISC/mGM-CSF 45 28 27 0 
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different carcinomas (breast, ovarian and prostate) have been investigated for the 

expression of MHC Class I and II antigens (62, 69, 107) where the absence / 

downregulation of these recognition molecules correlated with the tumor’s ability to 

avoid immune surveillance and development of metastatic dissemination of the 

malignancy. 

 

Down-regulation, mutation or Loss of Tumor Antigens. 

  Alterations in tumor associated antigen (TAA) expression is one of the mechanisms 

by which tumor cells can escape CTL detection. Modifications in the TAA expression 

can range from down-modulation to complete loss, and loss of antigen expression can 

occur independently of the deregulation of HLA Class I expression. Tumor antigen 

expression is known to be heterogeneous, even within the same tumor (56); and a 

decrease in the expression of gp100 and MART-1 was associated with disease 

progression (26,44). In spite of the presence of TAA-specific CTL, immunogenic 

tumors can eventually grow and kill the host in animal models. Tumor escape in the 

murine mastocytoma P815 tumor was shown to be due to the emergence of stable 

antigen-loss variants (124). 

Antigenic drift, a mechanism used by viruses to escape immune recognition, has 

recently been described for tumors. Transgenic mice expressing TCR for a single 

antigenic epitope have been used extensively in establishing antigenic mutation(s) as 

a mechanism for viral escape of T cell recognition (22,98).  A transgenic mouse line 

expressing TCR specific for tumor antigen P1A35-43 presented by H-2Ld was also 

developed and used to study tumor escape mechanisms. The recurrence of tumors in 

mice that have responded favourably to transgenic T cell adoptive therapy was found 

to correlate with the presence of tumor variants with mutations within the PIA epitope 

(9). These mutations severely diminish T cell recognition of the tumor antigen by a 

variety of mechanisms, including modulation of MHC: peptide interaction and TCR 

binding to MHC: peptide complex. In another study, using a SCID mouse model and 

MART-1/Melan-A-sepcific CD8+ T cell clone against autologuos melanoma, it was 

found that the in vivo immuno-selection of antigen-loss variants was dependent on the 

presence of sub optimal levels of antigen expression (66); and loss of the 

immunodominant T cell-defined MART-1/Melan-A antigen and downregulation of 

the TAP-1 gene has been identified in a recurrent metastatic melanoma. Restoring the 

"antigen loss" in the variant tumor cell line by simultaneously providing both the 
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MART-1/Melan-A gene (by retroviral transfer) and the TAP-1 gene (by a bioballistic 

approach) resulted in tumor cell sensitivity to MART-1/Melan-A-specific cytotoxic T 

lymphocytes suggesting antigen loss and downregulation of the peptide-transporter 

protein TAP-1 expression (68). The emergence of tumor escape variants is more 

likely to result after effective immunotherapies. 

 

Alterations in cell death receptor signalling. 

The expression of Fas Ligand (FasL), a well-known cell death receptor ligand, on 

tumor cells has been implicated in their evasion of immune-surveillance 

(20,24,90,116,117). Apoptosis mediated via CD95 (Fas/Apo-1) is a key regulator for 

the biology of normal and malignant cells. However, Fas surface expression does not 

necessarily render cells susceptible to FasL-induced death signals, suggesting a role 

for inhibitors of the apoptosis-signalling pathway.  Phosphatidylinositol 3'-kinase (PI3 

K) and Akt (protein kinase B) mediate the survival signal and allow cells to escape 

from apoptosis in various human cancers. PI3 K inhibitors, such as LY294002 

inhibited cell proliferation and increase apoptosis in the human gastric carcinoma cell 

line by the down-regulation of Mcl-2 and phosphorylated Bad proteins, which are 

anti-apoptotic factors and belong to the Bcl-2 family (84). Acquisition of apoptosis 

resistance is a typical mechanism of chemotherapy failure in small-cell lung cancer, 

which was correlated, with the over-expression of Bcl-2 (32). 

Defects in receptors/signalling can facilitate tumor cell survival and proliferation. The 

Fas/FasL complex forms and engages caspase-8 which autoactivates itself and cleaves 

caspase-3, -6 and –7 (101). The caspase-8 inhibitor, cellular FLICE-inhibitory protein 

(cFLIP) is expressed in many tumors making them resistant to death receptor 

mediated apoptosis (47). FLICE/caspase-8-inhibitory protein (cFLIP) is a recently 

identified intracellular inhibitor of caspase-8 activation that potently inhibits death 

signalling mediated by all known death receptors, including Fas, TNF-receptor (TNF-

R), and TNF-related apoptosis-inducing ligand receptors (TRAIL-Rs), The increased 

expression of cFLIP in tumor cells is thought to contribute to immunoresistance to T 

cells in vivo (73) while the downregulation/loss of Fas expression resists apoptosis. In 

patients with B-cell chronic lymphocytic leukemia (B-CLL cells), an increase in cell-

surface CD95 expression on T cells was associated with reduced progression-free 

probability and poorer survival (40). In TRAIL-mediated apoptosis, the loss of 
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expression of all TRAIL receptors can occur by many mechanisms including the loss 

of caspase-8 by chromosomal loss or mutation (42). 

 

Cells expressing low levels of Fas (Faslow) in the B16F10 tumor model grew more 

slowly in comparison to the cells expressing high levels of Fas. Faslow-cells when 

injected showed enhanced tumor growth in mice depleted of neutrophils, suggesting 

that inactivation of neutrophils was an important mechanism by which tumors could 

escape destruction (66). The expression of FasL has also been studied in cervix 

adenocarcinomas, where FasL appears to play an important role in immune evasion, 

progression and metastases of the tumor (53). In contrast, the intracellular expression 

of FasL in breast cancer and normal tissue, as determined by immunohistochemistry, 

is unlikely to be an important marker for immune evasion (90). The expression of 

membrane bound FasL (mFasL) on colon cancer cells as a potential mechanism to 

inhibit host immune function by inducing apoptosis of host lymphocytes was 

investigated  (109). mFasL can be cleaved to release a soluble FasL (sFasL) to spread 

the apoptosis induction effect within the environment. These findings have suggested 

sFasL as a mechanism by which tumor cells can avoid immune attack. 

 

Immunosuppressive Cytokines. 

Tumor cells produce a number of cytokines and chemokines that can have a 

suppressive effect on immune cells. In non-small cell lung cancer patients, the mRNA 

expression of IL-4, IL-10, TGF-alpha, and TGF-beta1 was significantly higher than 

that of IL-2, IL-12, IL-18 and INF-gamma as determined in pleural effusion and 

tumor tissue (64). This predominant expression of type II (immunosuppressive) 

cytokines mirrors an immunosuppressive state in the immunological 

microenvironment. Vascular endothelial growth factor (VEGF) is secreted by many 

tumors (121), and in the past few years VEGF has been required as a contributory 

factor in tumor escape. VEGF is not only important for tumor vascularisation but is 

also a key factor produced by solid tumors to inhibit immune recognition (82), and 

prevent DC differentiation and maturation by suppressing the transcription factor NF-

κB in haemotopoietic stem cells (85). Blocking NF-κB activation in haemotopoietic 

cells by tumor-derived factors is thought to be a mechanism by which tumor cells can 

directly down-regulate the ability of the immune system to generate an antitumor 



 13 

response (85). Elevated VEGF blood concentrations have been correlated with poor 

prognosis in human neoplasms (65), possibly as a result of its angiogenic properties 

and/or its ability to suppress DC maturation (46,65). VEGF was negatively related to 

DC infilteration in immunohistochemical studies on resected lung cancer samples (46) 

and activation status of DC and the concentration of VEGF in the peripheral blood 

have been shown to reflect the malignancy of NSCLC (30).  

Supernatants collected from tumor cells of AML patients were shown to inhibit T cell 

activation, Th1 cytokine production and to prevent activated T cells from entering the 

cell cycle (14), however, no TGF-β, IL-10 or VEGF were detected. The T cell 

immunosuppression induced by AML cells provides a mechanism by which leukemic 

clones could evade T cell mediated lysis by inhibiting the NF-κB, c-myc and pRb 

pathways (14). The production of soluble factors such as VEGF, IL-10, TNF and 

TGF-β is a proposed mechanism for tumor cells to avoid immune recognition, and the 

effects of these factors appear to be two-fold: to inhibit a) the effector function and b) 

the development of the immune cells by acting in the early stages of immunopoiesis 

(82). 

IL-10 is a cytokine often quoted as being suppressive and high levels of IL-10 have 

been reported in patients with melanoma (33) and pancreatic cancer (10,77). IL-10 

has the ability to exert its effects in many ways:- it inhibits antigen presentation, IL-12 

production and the induction of Th1 responses in vivo (25,106). 

High concentrations of TGF-β are also found in cancer patients (122) and are usually 

associated with “tumor-progression” (38) and poor responses to immunotherapy (27). 

The levels of TGF-β are higher in patients with disseminated melanoma when 

compared to those with localised disease (60). TGF-β has also been shown to induce 

the overproduction of IL-10 in tumors, leading to immunosuppression of antitumor 

responses. This suppression was reversed and Th1 responses reconstituted on the 

administration of anti-TGF-β antibodies in vivo (67). 

 

Alterations in the expression of signal transduction molecules 

Many different mechanisms may contribute to immune evasion. In pancreatic cancer, 

the loss of signal transducing CD3 zeta chain (CD3ξ ) of TILs has been attributed to 

immune escape together with the production of immunosuppressive cytokines and 
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local impairment of TILs (126); CD3 zeta loss in many cases has also been correlated 

with elevated levels of IL-10 and TGF-β. The loss of the CD3ξ  chain has been 

studied extensively and has been proposed as a mechanism by which tumors are able 

to escape. The zeta chain is present as a large intracytoplasmic homodimer in the TCR 

forming part of the TCR-CD3 complex. It functions as a single transducer upon 

antigen binding. (50). Hence any alterations in this chain could result in changes in 

the signalling pathway.   In pancreatic cancer, the loss of signal transducing CD3ξ  

chain of tumor infilterating lymphocytes (TILs) has also been attributed to immune 

escape together with the production of immunosuppressive cytokines and local 

inactivation of TILs (126). Alterations in the expression of CD3ξ  chain has also been 

correlated with elevated levels of IL-10 alone or in association with the 

downregulation of IFN-γ  (81). A general downregulation / decreased expression the 

CD3ξ  chain has been reported in tumors such as cervical and colorectal carcinomas 

(57,80,103). In cervical cancer the reduced expression of the zeta chain was 

associated with a reduction in cellular functions such as the production of TNF (57). 

In contrast, PBMCs from breast cancer and colorectal carcinomas patients do not 

show a decrease in TCR zeta expression yet the former exhibit an impairment in T 

cell function (81). 

 

Lack of co-stimulation 

Most tumors do not regress and continue to grow in spite of the presence of 

spontaneous or antigen (vaccine)-induced immune responses. The existence of 

systemic immune responses may not by itself be sufficient to cope with the complex 

nature of tumor-host interactions because of factors: insufficient co-stimulation to 

induce T-cell response may further contribute to the lack of effective immunity. There 

are a number of molecules that normally perform co-stimulatory functions by 

interacting with their counter ligand/receptor on T cells to provide the critical second 

signal for T-cell and/or APC activation including: CD80 (B7-1) / CD86 (B7-2) 

binding to CD28 and CTLA4 respectively; CD40L on activated CD4 helper cells 

binding to CD40 receptors on APCs; human CD58 and mouse CD48 (LFA-3) binding 

to CD2; and CD54 (ICAM-1) binding to LFA-1. Members of the TNFR super-family 

including CD27, CD30, 4-1BB and OX40 have also been shown to transmit a co-

stimulation signals to leukocytes (41,108). 
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It is a recognised phenomenon that T cells are rendered anergic due to the lack of co-

stimulatory molecule(s) expression by tumor cells (104). Tumor cells are able to 

induce antigen-specific tolerance or anergy on the basis of MHC-1-restricted antigen 

presentation without the expression of co-stimulatory ligand(s) (1). This 

unresponsiveness however can be reversed when tumor cells are genetically modified 

to express co-stimulation molecules. Chen et al (19) showed that the insertion of 

genes encoding B7.1 and /or B7.2 molecules into tumors generally increases their 

immunogenicity.  

Recently, fusagene vectors were developed to encode multiple gene products as 

fusion proteins from a single cistron to increase the immunogenenicity of target tumor 

cells (36). Analysis of over 100 individual clones derived from human and murine 

tumor cell lines demonstrated efficient expression and biological activity of each of 

the proteins. Tricistronic viral vectors co-expressing IL-12 and B7.1 have been used 

in the immunotherapy of cancer (128); the vectors generated could be used in 

immunotherapy for the treatment of multiple myeloma and other cancers as they were 

shown to stimulate allogeneic mixed lymphocyte proliferation and provoke increases 

in CTL responses and IFN-γ  release from normal donor lymphocytes exposed to the 

parental U266 cells. 

In addition, co-stimulation through molecules like 4-1BB was also found to be critical 

in the expansion and differentiation of CTLs. Systemic administration of an agonistic 

mAb against 4-1BB enhanced the CD8 T-cell response, leading to the eradication of 

established AG104A sarcomas and P815 mastocytomas in vivo (75).  However, 

resistance to this treatment modality by a number of poorly immunogenic tumors, 

including the TC-1 lung carcinoma and B16-F10 melanoma, was shown to be due to 

tumor antigen-specific CTLs “ignorance” rather than anergy or deletion; breaking 

CTL ignorance by peptide immunisation was necessary for the anti-4-1BB to function 

to enhance T-cell responses (129). Given the importance of co-stimulation in the 

regulation of immune responses against cancer, the manipulation of this pathway to 

increase immunity represents a promising therapeutic approach. Co-stimulation 

through OX40L for example would be advantageous, since its expression is primarily 

detected on recently stimulated antigen specific CD4+ T cells (127, our unpublished 

data), which is considered advantageous for generating CD8+ T-cell responses and 

anti-tumor immunity.   
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Immunosuppressive  cells 

There are at least 2 types of cells that when produced can impose a suppressive effect 

on the host’s immune system (CD4+/ CD25+ T cells and Gr1+/ CD11b+ myeloid 

cells), hence providing the tumor with the opportunity to escape immune recognition. 

Elucidating the mechanism(s) of T cell unresponsiveness in cancer is critical for the 

design and application of an effective cancer immunotherapy. Inhibition of a number 

of T lymphocyte functions in tumor-bearing hosts has been extensively investigated  

(63,89), and suppressor cells have been shown to play a role in the progression of 

cancer (29). CD4+ CD25+ T cells are known to be immunoregulatory and are 

important in immunological tolerance to self-antigens (72) and inhibition of T cell 

proliferation (119). They constitute approximately 5-10% of the CD4+ T cells in both 

humans and rodents and their removal induces autoimmune diseases in various 

locations in the body. Sutmuller and colleagues (113) demonstrated that the depletion 

of CD4+ CD25+ T cells followed by an injection of an antibody which blocks CTLA-4 

enhanced T-cell reactivity to a known tumor associated antigen. However, it is 

thought that the mere depletion or blocking of T regulatory cells is not sufficient to 

successfully treat established tumors (8).  

The existence of anergic and functionally suppressive CD4+CD25+T cells was 

demonstrated in patients with melanoma undergoing immunisation with known 

melanoma antigens. The degree of inhibition of T cell proliferation was proportional 

to CD4+CD25+T cells present; the addition of IL-2 reversed their hypo-responsiveness 

and abrogated their suppressive function (51). An increase in CD4+CD25+ regulatory 

T cells was shown to be correlated with immunosuppression and tumor progression in 

patients with gastrointestinal malignancies (102). Increased numbers of CD4+CD25+T 

cells secreting TGF-� was detected in tumor infiltrates from patients with early and 

late-stage epithelial tumors (130). These observations provide clear evidence for the 

contribution of CD4+CD25+T cells to immune dysfunction in cancer patients. 

Immunotherapy aimed at decreasing the role of regulatory T-cells would be 

advantageous to successfully treating cancer. 

In addition, immune suppression in tumor bearing mice has been attributed to the 

presence of cells with an immature myeloid phenotype that express the granulocyte – 

monocyte markers Gr1+/CD11b+ (12), and accumulate in the spleens and lymph nodes 

(71) and blood of tumor bearing mice (Ahmad, Ali and Rees, unpublished data). They 
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are capable of inhibiting antibody production, CTL generation, T cell function and 

lymphocytic proliferation (61,71). Accumulation of Gr1+/CD11b+ cells and their 

ability to inhibit the T cell function has been reported in cancer patients (7). The Gr1+ 

cells are also able to decrease CD3ξ  molecule expression significantly (83), and 

inhibit MHC Class I dependent antigen-specific CD8+ T-cell (35).  

 

Conclusion 

This review has highlighted the main mechanisms by which the tumors are known to 

escape from immune recognition. Given the many different potential mechanisms that 

tumors can acquire to avoid or subvert adaptive immunity, future generation 

immunotherapeutic strategies will need to consider not only how to promote antigen 

driven T and B lymphocyte responses and their effective targeting to residual tumor, 

but also to understand how the mechanism(s) of tumor escape can be dealt with. 

Current research is exploring the application of combination therapy that utilises 

several treatment modalities, which may include sequential chemo-, radio- and 

immunotherapy protocols. 
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