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Abstract  

Purpose: This study examined whether metabolite accumulation, induced by prior upper 

body exercise, affected the power-duration relationship for leg cycle ergometry. Methods: 

Seven males performed, to the limit of tolerance and both without (L) and with (AL) prior 

severe-intensity arm-cranking exercise, an incremental cycling test and four constant power 

cycling tests to determine the parameters of the power-duration relationship: critical power 

(CP) and W  . Results: At the onset of cycling exercise plasma lactate (L vs. AL: 1.2  0.1 vs. 

11.6  2.9 mEqL
-1

) and hydrogen ion (40.4  1.3 vs. 53.1  4.3 nEqL
-1

) concentrations were 

higher during AL compared to L, whereas the strong ion difference (37.8  1.8 vs. 32.4  2.0 

mEqL
-1

) and bicarbonate concentration (25.7  0.7 vs. 18.3  1.9 mEqL
-1

) were lower 

during AL compared to L (P < 0.01). During incremental exercise maximum cycling power 

(358  15 vs. 332  21 W) and peak oxygen uptake ( 2OV peak) (4.31  0.36 vs. 3.71  0.44 

Lmin
-1

) were lower during AL compared to L (P < 0.05). The rate of increase in plasma 

potassium concentration during constant power cycling was greater during AL compared to L 

(0.09  0.08 vs. 0.14  0.13 mEqL
-1
min

-1
) (P < 0.05) and exercise duration was 35  15% 

shorter (P < 0.01). CP was not different between L and AL (267  19 vs. 264  20 W), 

whereas W   was lower in AL (17.3  5.7 vs. 11.8  4.2 kJ) (P < 0.01). Conclusion: The 

reduced W   following prior upper body exercise indicates that the magnitude of W   is partly 

dependent on metabolite accumulation.  
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Introduction 

Paragraph Number 1 The duration for which severe-intensity constant power exercise can be 

tolerated increases as a hyperbolic function of decreasing power (19, 22). This power-

duration relationship is characterized by two parameters: a power asymptote termed critical 

power (CP) and a curvature constant termed W  . The CP represents the lower boundary of 

the severe-intensity exercise domain (23, 28) and, thus, the power that evokes the highest 

sustainable rate of oxidative metabolism. Exercise above CP is thus characterized by an 

inexorable accumulation of fatigue-related metabolites (e.g. La
-
, H

+
, and inorganic 

phosphate), a continual decline in intramuscular phosphocreatine concentration, and an 

increasing pulmonary oxygen uptake ( 2OV ) towards 2OV max (22, 23, 28, 33).  

Paragraph Number 2 The W   reflects the maximum amount of work that can be performed 

above CP irrespective of the rate of W   utilization (17). Once W   is expended exhaustion 

will ensue unless exercise intensity is reduced below CP to allow restoration of W   (10, 11). 

However, compared to CP the mechanistic bases of W   are less well defined. The W   is 

commonly described as a finite energy store determined by oxygen bound to myoglobin, 

intramuscular phosphocreatine and glycogen (22, 25, 31). In support, and in the absence of 

any change in CP, oral creatine supplementation increases W   (31), whereas glycogen 

depletion decreases W   (25). Partial depletion of intramuscular phosphocreatine may also 

explain, in part, why prior exercise at powers above CP reduces W   (13, 14, 27, 34). 

However, additional mechanisms are likely to exist since the recovery kinetics of 2OV  (a 

proxy for intramuscular phosphocreatine recovery) are faster than the recovery kinetics of 

W   (13). There is growing support for the notion that W   may thus also depend on the 

accumulation of fatigue-related metabolites to a critical tolerable limit, which occurs in 

proportion to the rate of W   utilization (13, 14, 21, 22, 33). The reduction in W   due to prior 

exercise is therefore difficult to interpret because all exercise was performed using the same 
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muscle groups and thus energy store depletion presumably coincided with metabolite 

accumulation.  

Paragraph Number 3 The influence of metabolite accumulation on exercise tolerance and 

W   may be examined more discretely by performing upper body exercise before the criterion 

bout of leg cycle exercise (3, 24, 26). Severe-intensity upper body exercise elevates blood 

and muscle [La
-
] and [H

+
] without affecting leg muscle concentrations of ATP, 

phosphocreatine, and glycogen (2, 3). Furthermore, during subsequent leg exercise K
+
 efflux 

from the active leg muscle, and increases in interstitial [K
+
], are accelerated and exercise 

tolerance is reduced (3, 26). Prior upper body exercise thus allows the effects of metabolite 

accumulation on W   to be examined without the confounding, concomitant influence of 

intramuscular energy store depletion.  

Paragraph Number 4 Therefore, the aim of this study was to investigate the effects of 

metabolite accumulation, induced by prior severe-intensity upper-body exercise, on 

parameters of the power-duration relationship for leg cycle ergometry. We hypothesized that 

prior upper body exercise would reduce W   without affecting CP. 

Methods 

Participants 

Paragraph Number 5 Seven healthy, non-smoking, moderately trained males (age: 26  4 

years; height: 182  4 cm; body mass: 83  4 kg) provided written informed consent to 

participate in the study. Participants refrained from caffeine on test days and alcohol and 

strenuous exercise the day preceding and day of a test. Participants reported to the laboratory 

at least 2 h post-prandial. The study was approved by the Nottingham Trent University 

Human Ethics Committee, and all procedures were conducted in accordance with the 

Declaration of Helsinki. 
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Experimental design 

Paragraph Number 6 Participants attended the laboratory on ten separate occasions, at a 

similar time of day, separated by at least 48 h. The initial five visits comprised a maximal 

incremental cycling test and four constant power cycling tests for determination of the power-

duration relationship. All cycling tests were performed to the limit of tolerance. The cycling 

tests were then repeated, in randomized order, during the subsequent five laboratory visits, 

with each test preceded by severe-intensity intermittent arm-cranking exercise. Hereafter, 

incremental and constant power cycling tests performed without and with prior arm-cranking 

exercise are referred to as LINC and ALINC, and LCONST and ALCONST, respectively. Cycling 

tests during LINC and LCONST trials were preceded by a 20.5 min rest period, which matched 

the experimental protocol duration preceding the onset of cycling exercise in ALINC and 

ALCONST.  

Equipment and measurements 

Paragraph Number 7 Measurements were taken using equipment and techniques described 

previously (7, 20). Exercise was performed using electromagnetically-braked cycle 

(Excalibur Sport; Lode, Groningen, The Netherlands) and arm-cranking (Angio; Lode, 

Groningen, The Netherlands) ergometers. During all tests participants wore a facemask 

(model 7940; Hans Rudolph, Missouri, USA) connected to a flow sensor (ZAN variable 

orifice pneumotach; Nspire Health, Oberthulba, Germany) that was calibrated using a 3 L 

syringe. Gas concentrations were measured using fast responding laser diode absorption 

spectroscopy sensors, which were calibrated using gases of known (5% CO2, 15% O2, 

balance N2) concentration (BOC, Guilford, UK), and ventilatory and pulmonary gas 

exchange variables were determined breath-by-breath (ZAN 600USB; Nspire Health, 

Oberthulba, Germany). During all tests 2OV peak was defined as the highest recorded value 

over any 30 s period. Heart rate was measured using short-range telemetry (Polar S610; 
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Polar, Kempele, Finland) and arterial oxygen saturation was estimated (SpO2) using a finger 

pulse oximeter (Model 8500; Nonin Medical, Minnesota, USA). Arterialized venous blood (6 

mL) was drawn from a heated dorsal hand vein via an indwelling 21-G cannula. Blood was 

analyzed immediately for PCO2 and pH (ABL520; Radiometer, Copenhagen, Denmark), and 

values were corrected for changes in rectal temperature (1000 Series Squirrel; Grant 

Instruments, Cambridge, UK). PCO2 and pH were used to calculate plasma bicarbonate 

concentration ( ][HCO-

3 ) using the Henderson-Hasselbalch equation: 

 
2

3

PCO0.03

HCO
logpKpH






 

Plasma acid-base balance was examined using the physicochemical approach (20, 32), which 

describes the dependency of [H
+
] and ][HCO-

3  on the three independent physicochemical 

variables: strong ion difference ([SID]), PCO2, and the total concentration of weak acids 

([Atot
-
]). Thus, a portion (5 mL) of each blood sample was immediately centrifuged for 10 

min at 3000g and the plasma supernatant was removed. Plasma [La
-
] was subsequently 

determined using an automated analyzer (Biosen C_line Sport; EKF Diagnostics, Barleben, 

Germany). Plasma [Na
+
], [K

+
], and [Cl

-
] were determined using ion selective electrodes and 

total protein concentration ([PPr
-
]) was assayed by immunoturbidimetry (ABX Pentra 400; 

Horiba, Northampton, UK). [Atot] was calculated as 2.45  [PPr
-
] (30). Plasma strong ion 

difference ([SID]) was calculated as the sum of the strong cations minus the sum of the strong 

anions (32): 

[SID] = ([Na
+
] + [K

+
]) – ([Cl

-
] + [La

-
]) 

During all trials blood samples were taken, and heart rate and SpO2 were recorded, at rest, 

immediately before the prescribed cycling test (CYCONSET), and at the limit of cycling 

exercise tolerance (CYCEND). 

Maximal incremental cycling test 
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Paragraph Number 8 Participants performed an incremental cycling test to the limit of 

tolerance, which was defined as the point at which cycling cadence fell below 60 rpm. Tests 

began at 0 W and power was increased by discrete 20 W increments every 60s. Cycling 

cadence was self-selected and matched during LINC and ALINC. Ventilatory and pulmonary 

gas exchange variables were averaged over 10s periods and the functional gain (i.e. slope of 

 2OV /W) was determined, using linear regression, from 1 min into the incremental test up 

to either 2OV peak or where 2OV  began to plateau (4). Maximum power output ( W max) 

was calculated as the sum of the power output in the last completed stage plus the product of 

ramp increment (20 W) and the fraction of the final stage actually completed.    

Power-duration relationship 

Paragraph Number 9 The power-duration relationship was determined from four constant-

power cycling tests performed to the limit of tolerance. Each participant adopted the same 

self-selected cycling cadence for all tests, which were terminated when cadence fell below 60 

rpm. The initial LCONST test was performed at 85% of the W max achieved during the 

preliminary LINC test, and subsequent tests were performed at powers prescribed to elicit 

exercise intolerance over a range of times between approximately 3-15 min (19). Identical 

cycling powers were used during LCONST and ALCONST trials. CP and W   were estimated 

using the non-linear power-time model, and the linear work-time and power-(1/time) models. 

The power-(1/time) model was associated with the lowest SEE for the parameter estimates 

and was therefore chosen for further analysis (18).  

Arm-cranking protocol 

Paragraph Number 10 The arm-cranking protocol was adapted from that described 

previously (3, 26). Following a 5 min rest period participants performed eight 1 min arm-

cranking exercise bouts, interspersed with 30s rest, at a work rate of 1.5-2.0 Wkg
-1

 body 

mass. The center of the arm-crank shaft was aligned to shoulder level and subjects were 
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seated in an upright position so that the elbow was slightly flexed when the hand was most 

distal. Cadence was maintained between 90-100 rpm. Consistent with the procedures of 

Nordsborg et al. (26), the final arm-cranking exercise bout was followed by a 4 min rest 

period, during which participants immediately transferred to the cycle ergometer in 

preparation for the prescribed cycling test. Ventilatory and pulmonary gas exchange variables 

were averaged over the final 30s of each arm-cranking exercise bout and over the final 30s of 

each minute during the 4 min rest period prior to the prescribed cycling test. 

Statistical analyses 

Paragraph Number 11 Data were analyzed using a two-way (trial x time) repeated measures 

ANOVA and Student’s paired t-tests, as appropriate. Relationships between variables were 

examined using Pearson’s product-moment correlation coefficient (r). Statistical significance 

was set at P < 0.05. Results are presented as mean  SD unless otherwise stated.  

Results 

Physiological effects of arm-cranking exercise 

Paragraph Number 12 All participants successfully completed the arm-cranking protocol. 

Physiological data at rest were pooled from all trials. Repeated measures ANOVA revealed 

no between-test differences in the ventilatory and pulmonary gas exchange responses to arm-

cranking exercise (P > 0.05) and therefore these data were pooled. Furthermore, repeated 

measures ANOVA revealed no between-test differences in physiological responses at 

CYCONSET during L and AL trials (P > 0.05) and therefore data from L and AL trials were 

pooled separately. Ventilatory and pulmonary gas exchange responses during intermittent 

arm-cranking exercise, and during the 4 min rest period preceding the subsequent cycling test, 

are shown in Figure 1. During AL trials EV , 2OV  and 2COV  were still elevated above rest 

at CYCONSET (P < 0.01). Heart rate, SpO2 and plasma acid-base balance responses at 

CYCONSET are shown in Table 1. Heart rate was higher at CYCONSET during AL compared to 
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L (P < 0.01), whereas SpO2 was not different between trials. Arm-cranking resulted in 

different plasma acid-base balance responses between L and AL trials at CYCONSET. 

Specifically, at CYCONSET [Na
+
] and [La

-
] were 3 and 10.4 mEqL

-1
 higher (P < 0.05 and 0.01, 

respectively), [Cl
-
] was 2 mEqL

-1
 lower (P < 0.05), and [PPr

-
] was 0.7 gdL

-1
 higher (P < 

0.01) during AL compared to L. These differences in plasma ions and [PPr
-
] affected the 

independent acid-base variables: [SID] was 5.4 mEqL
-1

 lower, and [Atot] was 2.0 mEqL
-1

 

higher, during AL compared to L (P < 0.01). These differences in the independent acid-base 

variables also affected the dependent acid-base variables: [H
+
] was 12.7 nEqL

-1
 higher, and 

][HCO-

3  was 7.4 mEqL
-1

 lower, during AL compared to L (P < 0.01).  

Paragraph Number 13 There was a tendency for the  2OV /W slope to be lower during 

ALINC (9.3  0.6 mLmin
-1
W

-1
) compared to LINC (10.5  1.3 mLmin

-1
W

-1
) (P = 0.06). 

Exercise duration (17.9  0.8 vs. 16.6  1.0 min), W max (358  15 vs. 332  21 W), and 

peakOV 2
  (4.31  0.36 vs. 3.71  0.44 Lmin

-1
) were lower during ALINC compared to LINC 

(P < 0.05). That a maximal effort was exerted during ALINC is evidenced by all participants 

demonstrating a plateau in 2OV , defined as an increase in 2OV  of <50% of the expected 

increase for a 20 W increment as determined from each participant’s  2OV /W slope ((29)). 

The reduction in peakOV 2
  during ALINC was not correlated with the reduced exercise 

duration (r = 0.52, P = 0.23) or W max (r = 0.54, P = 0.22), but was correlated with the 

reduced  2OV /W slope (r = 0.75, P < 0.05). A representative example of the 2OV  

response to incremental exercise is shown in Figure 2. 

Paragraph Number 14 At CYCEND heart rate was higher during LINC compared to ALINC (P 

< 0.01), whereas SpO2 was not different between trials (Table 1). [La
-
] and [K

+
] were 2.4 and 

0.48 mEqL
-1

 higher during LINC compared to ALINC (P < 0.05), whereas there were no 
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differences between trials for the independent acid-base variables [SID], [Atot] and PCO2. The 

dependent acid-base variable [H
+
] was 9.9 nEqL

-1
 higher (P < 0.01), whereas ][HCO-

3  

tended to be lower (P = 0.08), during LINC compared to ALINC.  

Power-duration relationship and physiological responses at CYCEND during constant 

power exercise 

Paragraph Number 15 Constant power exercise duration was 35  15% shorter during 

ALCONST compared to LCONST trials (P < 0.01). The power-duration relationship was well 

described by the power-(1/time) model following both LCONST (r
2
 = 0.996  0.003) and 

ALCONST (r
2
 = 0.993  0.002) trials. CP was not different following LCONST (267  19 W, 

95% confidence interval: -8 to 8 W) and ALCONST (264  20 W, 95% confidence interval: -10 

to 11 W) trials. Conversely, W   was 32  6% lower following ALCONST (11.8  4.2 kJ, 95% 

confidence interval: -2.7 to 2.6 kJ) compared to LCONST (17.3  5.7 kJ, 95% confidence 

interval: -3 to 3 kJ) trials (P < 0.01) (Fig. 3). The SEE was low for both CP (2  2 and 3  1 

W, representing 0.9  0.7 and 1.1  0.5% of the mean CP following LCONST and ALCONST 

trials, respectively) and W   (0.93  0.69 and 0.77  0.42 kJ, representing 4.9  2.1 and 6.3  

1.3% of the mean W   following LCONST and ALCONST trials, respectively). Furthermore, 

estimates of CP and W   from the power-(1/time) model were not different from those 

determined from the non-linear power-time model (LCONST: 268  21 W and 16.9  6.4 kJ; 

ALCONST: 262  22 W and 12.7  4.7 kJ) and linear work-time model (LCONST: 267  20 W 

and 17.0  5.9 kJ; ALCONST: 263  21 W and 12.1  4.5 kJ) and each pair of values was 

highly correlated following LCONST (CP: r = 1.00; W  : r  0.97; P < 0.01) and ALCONST (CP: 

r = 1.00; W  : r  0.99; P < 0.01) trials. The parameter estimates were therefore associated 

with low levels of uncertainty (19, 20).  
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Paragraph Number 16 The mean peakOV 2
  was not different between LCONST (4.11  0.19 

Lmin
-1

) and ALCONST (3.95  0.35 Lmin
-1

). Heart rate and SpO2 at CYCEND were not 

different between LCONST and ALCONST (Table 1). Conversely, [K
+
] was 0.14 mEqL

-1
 lower, 

and [La
-
] was 0.9 mEqL

-1
 higher, during ALCONST compared to LCONST (P < 0.05). The 

absolute increase in [K
+
] from CYCONSET to CYCEND was similar between ALCONST (0.61  

42 mEqL
-1

) and LCONST (0.66  41 mEqL
-1

), although the shorter exercise duration in 

ALCONST meant that the rate of increase in [K
+
] was greater in ALCONST (0.14  0.13 mEqL

-

1
min

-1
) compared to LCONST (0.09  0.08 mEqL

-1
min

-1
) (P < 0.05). At CYCEND [PPr

-
] was 

0.3 gdL
-1

 higher during ALCONST compared to LCONST, which resulted in a 0.7 mEqL
-1

 higher 

[Atot] (P < 0.05). There were no differences between LCONST and ALCONST for the independent 

acid-base variables [SID] and PCO2, or the dependent acid-base variables [H
+
] and ][HCO-

3 . 

Discussion 

Paragraph Number 17 Consistent with our hypothesis, the major finding of the present study 

was that prior severe-intensity upper body exercise reduced leg cycling W   without affecting 

CP. A novel aspect of the present study was that our experimental model allowed us to 

manipulate plasma, and presumably leg muscle, metabolite accumulation by performing prior 

upper body exercise. Although not measured in the present study, previous studies have 

reported constancy in leg intramuscular energy stores (ATP, phosphocreatine, and glycogen) 

following severe-intensity upper body exercise (2, 3). Therefore, the reduction in W   due to 

prior upper body exercise provides novel empirical support for the notion that the magnitude 

of W   is partly dependent on metabolite accumulation. Furthermore, the constancy of CP 

means that the reduced exercise tolerance during ALCONST was exclusively dependent on the 

reduction in W  , and, consistent with previous studies (13, 14, 27, 34), that the physiological 

bases of CP are insensitive to metabolite accumulation. 
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Paragraph Number 18 Existing empirical support for the notion that W   may depend on 

metabolite accumulation rather than intramuscular energy stores per se resides in a limited 

number of indirect observations. Firstly, during severe-intensity exercise intramuscular 

phosphocreatine concentration may decline to a minimum well before exercise intolerance 

ensues (33), and at the limit of severe-intensity exercise tolerance considerable reserve exists 

in intramuscular phosphocreatine (10-40% of baseline) and ATP (83% of baseline) 

concentrations (10, 13, 23, 33) (although depletion of individual muscle fibers is possible). 

Furthermore, continuation of exercise (via restoration of W  ) after the limit of severe 

intensity exercise tolerance has been reached is only possible if work-rate is reduced below 

CP (10, 11). Presumably this is because net clearance of fatigue-inducing metabolites can 

only occur at work rates below CP (10, 11), although restoration of intramuscular 

phosphocreatine may also play a role. Secondly, irrespective of work-rate, the limit of 

tolerance during severe-intensity exercise is associated with a consistent, and thus potentially 

“critical”, intramuscular pH and concentrations of inorganic phosphate and ADP (33). 

Thirdly, the recovery kinetics of 2OV  (a proxy for intramuscular phosphocreatine recovery) 

following severe-intensity exercise are slower than the recovery kinetics of W   (13). Lastly, 

whilst leg intramuscular energy stores are unaffected by inspiratory muscle training, blood 

[La
-
] and [H

+
] are attenuated (7) and W   is increased in the absence of a change in CP (21).  

Paragraph Number 19 Although these observations collectively suggest that W   may 

depend on metabolite accumulation, to our knowledge no previous study has characterized 

the power-duration relationship following the discrete manipulation of fatigue-inducing 

metabolites. Interestingly, when prior severe-intensity cycling exercise was performed before 

the criterion cycling exercise (i.e. the same muscle groups were used for both prior and 

criterion exercise) W   was reduced by broadly the same extent (-34%) as the current findings 

(-32%) and CP was also unchanged (14). Despite dissimilar prior exercise protocols the 
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reductions in W   followed broadly similar changes in the metabolic milieu: immediately 

prior to the constant power cycling tests used to determine the power-duration relationship 

plasma [La
-
] was 11.6 mEqL

-1 
in the current study

 
whereas whole blood [La

-
] was 8.6 

mEq.L
-1

 in the study of Ferguson et al. (14). It may seem surprising, therefore, that W   was 

not reduced to a greater extent following prior exercise using the same muscle groups 

because in addition to metabolite accumulation partial depletion of leg intramuscular energy 

stores must have also occurred. Consequently, resolving the relative impact of these two 

factors on reducing W   is not possible and represents a limitation of the work of Ferguson et 

al. (14). Comparison of these studies is further complicated because “priming” effects 

resultant from prior exercise differ depending on whether the same (large influence) or 

different (negligible influence) muscle groups are used in the priming and criterion exercise 

bouts (16). Our experimental model allowed us to avoid the priming effect associated with 

prior exercise using the same muscles and presumably retain the leg intramuscular energy 

stores at CYCONSET (2, 3). Therefore, by discretely manipulating the temporal profile of 

plasma and, presumably, leg muscle metabolite accumulation during subsequent cycling 

exercise our findings provide novel empirical support for the notion that W   at least partially 

depends on the accumulation of fatigue-inducing metabolites.  

Paragraph Number 20 The mechanism(s) by which prior upper body exercise affects leg 

cycling exercise tolerance and hence W   may partly reside in the effect of elevated plasma 

metabolites on previously resting leg muscle function (8). Although intracellular acidosis has 

long been considered a key mediator of muscle fatigue during severe-intensity exercise (15), 

this view has been challenged (3, 8, 26). Conversely, muscle fatigue during severe-intensity 

exercise has been causatively linked with an increased interstitial [K
+
], which induces a loss 

of excitability and contractility (8). Using the microdialysis technique Nordsborg et al. (26) 

demonstrated a similar interstitial [K
+
] at the onset of single leg knee extensor exercise during 
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L and AL. However, during leg exercise K
+
 efflux from the active muscle, and increases in 

interstitial [K
+
], were accelerated during AL compared to L and exercise tolerance was 

reduced. Consistent with these observations, we observed an accelerated increase in plasma 

[K
+
] during ALCONST compared to LCONST. However, muscle fatigue is a multifaceted process 

(1, 8, 15) that is difficult to resolve based on humoral measures per se, and greater insight 

into the mechanism(s) by which W   is reduced during AL would come from studies utilising 

interstitial measurements, muscle biopsies or 
31

P magnetic resonance spectroscopy. Using the 

latter technique Vanhatalo et al. (33) have shown that the limit of tolerance during severe-

intensity knee extensor exercise coincides, irrespective of the work-rate, with the attainment 

of consistently low values of intramuscular phosphocreatine concentration and pH. Whether 

the limit of severe-intensity cycling exercise tolerance, following prior upper body exercise, 

is also associated with a consistent “critical” intramuscular milieu thus provides an interesting 

avenue for future investigation.  

Paragraph Number 21 Exercise duration was 7% shorter during ALINC compared to LINC, 

which is considerably less than the 35% shorter exercise duration observed during ALCONST 

compared to LCONST. This difference may be attributed to the duration spent at sub-CP 

exercise intensities during the incremental exercise test, which would have prolonged the 

recovery period and thus increased restoration of W   (13). Nevertheless, exercise 

duration/ W max, 2OV peak, and the  2OV /W slope were still lower during ALINC 

compared to LINC. These findings contrast those of Boone et al. (5) who reported no change 

in these parameters during incremental cycling exercise preceded by maximal incremental 

arm-cranking exercise. However, compared to the present study, Boone et al. (5) used a 

longer intervening recovery period (6 min rest followed by 3 min of cycling at 50 W) and 

blood [La
-
] at CYCONSET (8.4 mEqL

-1
) was lower, which may explain these differences.  
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Paragraph Number 22 Elucidating the physiological mechanisms responsible for the lower 

 2OV /W slope and 2OV peak during ALINC compared to LINC was beyond the scope of the 

present study and therefore the reasons for these observations remain unclear. The 2OV  

response to incremental cycling exercise is known to depend on changes in muscle blood 

flow (i.e. oxygen transport) and muscle fiber recruitment (i.e. oxygen utilization) (6). Indeed, 

during incremental exercise  2OV /W and 2OV peak are reduced when oxygen transport is 

limited by breathing hypoxic air (35), whereas 2OV  during constant power exercise is 

reduced by prior preferential fatigue or glycogen depletion of type II muscle fibers (9, 12). 

These observations indicate that the lower 2OV  response during ALINC compared to LINC 

may be explained by a limitation in oxygen transport and/or utilization, although further 

research is necessary to elucidate their relative contributions and the mechanism(s) by which 

they are influenced by prior upper body exercise.  

Paragraph Number 23 In conclusion, prior severe-intensity upper body exercise reduced leg 

cycling W   without affecting CP. This finding therefore provides novel empirical support for 

the notion that the magnitude of W   is partly dependent on metabolite accumulation, rather 

than a finite energy store per se.  
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TABLE 1. Physiological responses at rest, immediately prior to cycling exercise (CYCONSET), 

and at the limit of cycling exercise tolerance (CYCEND) during incremental (INC) and 

constant power (CONST) exercise. Data in column ‘Rest’ reflects pooled data from all trials. 

Data in columns ‘L’ and ‘AL’ reflect data pooled separately from all trials performed without 

(L) and with (AL) prior arm-cranking exercise. Data are mean  SD. 
 

Rest 

CYCONSET CYCEND 

 L AL LINC ALINC LCONST ALCONST 

Heart rate (bpm) 63  11 61  11 96  9†† 181  9 173  11** 171  12 171  11 

SpO2 (%) 98  1 98  1 97  0 95  1 96  1 95  1 95  2 

Plasma ions and [PPr-]       

[Na+] (mEqL-1) 138  3 138  2 141  3† 143  2 142  2 142  2 143  3 

[K+] (mEqL-1) 3.99  0.09 3.93  0.11 3.86  0.13 5.12  0.47 4.64  0.33* 4.60  0.30 4.46  0.30+ 

[La-] (mEqL-1) 1.2  0.1 1.2  0.1 11.6  2.9†† 15.5  1.7 13.1  2.0* 15.3  2.6 16.2  2.6++ 

[Cl-] (mEqL-1) 103  2 103  1 101  1† 103  2 103  2 102  1 102  1 

[PPr-] (gdL-1) 7.0  0.4 7.0  0.4 7.7  0.4†† 7.9  0.4 7.9  0.2 7.8  0.3 8.1  0.4+ 

Independent acid-base  

variables 

  

[SID] (mEqL-1) 38.0  1.8 37.8  1.8 32.4  2.0†† 29.8  1.5 31.1  1.7 29.5  1.8 29.8  1.6 

[Atot] (mEqL-1) 17.2  0.9 17.0  0.9 19.0  1.0†† 19.4  1.0 19.3  0.6 19.1  0.8 19.8  1.1+ 

PCO2 (mmHg) 43.0  2.1 43.4  2.6 40.6  3.0 37.8  3.5 36.1  4.8 38.0  4.3 37.4  4.6 

Dependent acid-base  

variables 

  

[H+] (nEqL-1) 40.0  0.9 40.4  1.3 53.1  4.3†† 60.8  3.4 50.9  3.3** 60.8  6.6 60.9  7.1 

][HCO-
3 (mEqL-1) 25.6  0.7 25.7  0.7 18.3  1.9†† 14.9  1.6 17.0  2.5 15.0  2.1 14.8  2.1 

Different from L (
†
P < 0.05, 

††
P < 0.01). Different from LINC (*P < 0.05, **P < 0.01). 

Different from LCONST (
+
P < 0.05, 

++
P < 0.01). 
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Figure Captions 

 

FIGURE 1-Ventilatory and pulmonary gas exchange responses to intermittent arm-cranking 

exercise. Dashed vertical lines represent the start and end of the arm-cranking protocol. Data 

points are mean  SD and reflect the mean responses over the final 30s of each arm-cranking 

exercise bout and over the final 30s of each minute during the 4 min rest period prior to the 

prescribed cycling test. 
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FIGURE 2- 2OV  responses from a representative participant during LINC (■) and ALINC (□). 

Note the lower 2OV  slope and 2OV peak during ALINC compared to LINC. 

 

 

FIGURE 3-The power-duration relationship in a representative participant following LCONST 

() and ALCONST () trials. CP and W   are denoted by the y-intercept and slope, respectively, 

of the linear regression. 
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