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Abstract 
 

Acoustic wave devices with shear horizontal displacements, such as quartz crystal 

microbalances (QCM) and shear horizontally polarised surface acoustic wave (SH-SAW) 

devices provide sensitive probes of changes at solid-solid and solid- liquid interfaces. 

Increasingly the surfaces of acoustic wave devices are being chemically or physically 

modified to alter surface adhesion or coated with one or more layers to amplify their response 

to any change of mass or material properties. In this work, we describe a model that provides 

a unified view of the modification in the shear motion in acoustic wave systems by multiple 

finite thickness loadings of viscoelastic fluids. This model encompasses QCM and other 

classes of acoustic wave devices based on a shear motion of the substrate surface and is also 

valid whether the coating film has a liquid or solid character. As a specific example, the 

transition of a coating from liquid to solid is modelled using a single relaxation time Maxwell 

model. The correspondence between parameters from this physical model and parameters 

from alternative acoustic impedance models is given explicitly. The characteristic changes in 

QCM frequency and attenuation as a function of thickness are illustrated for a single layer 

device as the coating is varied from liquid-like to that of an amorphous solid. Results for a 

double layer structure are given explicitly and the extension of the physical model to multiple 

layers is described. An advantage of this physical approach to modelling the response of 

acoustic wave devices to multilayer films is that it provides a basis for considering how 

interfacial slip boundary conditions might be incorporated into the acoustic impedance used 

within circuit models of acoustic wave devices. Explicit results are derived for interfacial slip 

occurring at the substrate-layer 1 interface using a single real slip parameter, s, which has 

inverse dimensions of impedance. In terms of acoustic impedance, such interfacial slip acts as 

a single-loop negative feedback. It is suggested that these results can also be viewed as arising 

from a double-layer model with an infinitesimally thin slip layer which gives rise to a 

modified acoustic load of the second layer. Finally, the difficulties with defining appropriate 

slip boundary conditions between any two successive layers in a multilayer device are 

outlined from a physical point of view. 

 

Keywords: Acoustic waves, quartz crystal microbalances, sensors, slip, contact angles, 

wetting. 
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I. Introduction 

Acoustic wave devices provide a simple and effective means for probing changes at the 

interface between a solid film or a liquid. An example of such a device is the quartz crystal 

microbalance (QCM) which uses a transverse-shear mode oscillation. Sauerbrey1 showed that 

the decrease in resonant frequency of the device due to loading the surface by a thin film of a 

rigidly coupled material is proportional to the mass (change) of the film, ∆m, and to the 

square of the frequency, f. In this case, no change in damping of the resonance occurs and so 

only an energy storage is occurring. When a QCM is operated in a liquid the oscillation of the 

device surface is coupled into the liquid and induces an oscillation in the liquid. This 

oscillation does not extend throughout the bulk of the liquid, but is damped within a small 

distance, ( ) 212 ff ωρηδ = where ηf is the viscosity, ρf is the density and fπω 2=  is the 

angular frequency. As a consequence of this viscous entrainment of the liquid, the frequency 

decrease is related to the square root of the density viscosity product and to a lower power of 

the frequency2,3, f 3/2. In addition, a damping of the QCM resonance, also related to the square 

root of the density viscosity product occurs indicating that energy loss is occurring. 

 

In recent years, the application of acoustic wave devices has been extended to include in-situ 

monitoring of film deposition, e.g. in electrochemistry4,5, and chemical and biological 

sensing, e.g. sensing with polymer coated devices6-9. A common feature of these applications 

is that the device surfaces are coated with materials that are neither purely rigidly coupled 

mass nor simply Newtonian type liquids. It has therefore become essential that models of 

acoustic device response to layers of viscoelastic materials be developed. Moreover, these 

models need to allow for multiple and finite thickness coatings and operation of devices in 

liquid. A general approach is to consider the acoustic impedance, ZL, at the interface between 

the acoustic device and the coating. This surface acoustic impedance summarizes the overall 

acoustic load acting on the acoustic device and can be applied to single and multilayer 

arrangements10. With some approximations, this model can be translated into equivalent 



 4 

circuit models used in electrical engineering11-13. The imaginary part of the impedance gives 

the frequency shift and the real part gives the damping. An alternative approach, applied to 

the change in response of a QCM due to a Newtonian liquid, was developed by Rodahl and 

Kasemo14. They considered the motion of the unloaded QCM surface to be a damped simple 

harmonic oscillator and then deduced the increase in damping due to shear stress on the 

surface arising from immersion in a liquid. They have recently extended this theory to two 

polymer layers with the viscoelastic material modelled as a Voigt element15. McHale et al16 

have also considered the extension of the simple harmonic oscillator model to include a single 

polymer layer, but using a Maxwell model for the viscoelasticity and allowing for a range of 

acoustic wave devices. An implication of this extension is that the results of the simple 

harmonic oscillator model are valid not only for QCM devices, but also all classes of acoustic 

wave devices based on shearing of the surface loadings. This alternative physical approach to 

modelling acoustic wave device response has the advantage of providing access to the 

physical boundary conditions.  

  

One aspect of QCM response that has generated controversy is the possible role of interfacial 

slip. It appears clear from the work of Krim et al17,18 that when certain atoms are adsorbed 

onto the surface of a QCM in ultra high vacuum conditions they can lock together as the layer 

coverage approaches a monolayer and slide on the surface. However, whether slip occurs 

when a QCM is operated in a liquid or with a polymer coating is far less certain. Several 

authors have reported an apparent dependence of the acoustic impedance on the contact angle 

of the liquid, and hence surface wettability19-21. Martin et al22,23 have argued that apparently 

anomalous results for the acoustic impedance can arise from surface roughness. The argument 

is that air or liquid can be trapped within small pits on a device surface. Trapped liquid could 

act as a rigid mass loading in the Sauerbrey manner while trapped air prevents such a 

mechanism. This would distort the response that would be expected if only viscous 

entrainment, in the Kanazawa and Gordon manner, occurred. Contact angle dependence then 

arises in the acoustic response as liquid penetration into small surface aspherities and is 
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determined by surface wettability. Whilst it is clear air trapping could occur, it is not clear that 

all anomalies in measured acoustic impedances are due to this mechanism. An obvious 

alternative mechanism for anomalous acoustic response that could depend on interfacial 

energy is slip. It is anticipated that should slip be a mechanism influencing QCM response it 

could have its greatest impact in biological sensor applications where the hydrophobicity and 

hydrophilicity of the interface may change. 

 

A particular difficulty in assessing whether slip is occurring when QCM devices are operated 

in liquids is that few models exist that can predict how device response would be altered. 

Such models need to be sufficiently flexible to allow for both bare devices operated in liquid 

and for coated devices.  Whilst circuit models of QCM response are useful, and can be 

extended to multiple viscoelastic layers, they do not offer a simple and transparent way of 

including interfacial slip. Hayward and Thompson24,25 have presented a model that included 

both interfacial slip and multiple viscoelastic layers. However, the inclusion of slip involved 

complex slip parameters that were not explicitly related to the impedance of the layers. 

 

In this work, we first review the physical model16 of acoustic wave device response with a 

single viscoelastic layer. Previously presented expressions are reformulated in the form of the 

general complex shear modulus and the acoustic impedance, since it is this impedance which 

is often most directly related to the values measured in experiments (Section IIa). The model 

is then extended to include multiple viscoelastic layers and so provide a simple, but general, 

framework in which to consider interfacial slip (Section IIb). The no-slip boundary condition 

at the device-viscoelastic first layer interface is then relaxed using a Stokes friction law, as 

previously suggested for a QCM in contact with a Newtonian fluid14. This boundary condition 

introduces a single real slip parameter, s, and results in a simple recipe for the inclusion of slip 

in the response of any acoustic wave device based on shearing motion induced in viscoelastic 

layers (Section IIc). The physical significance of the slip parameter is discussed and an 

acoustic load concept is introduced as an interpretation of interfacial slip in a single layer 
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device. Finally, boundary conditions for slip occurring at the interface between any two layers 

in a multiple layer device are considered.  

II. Theory 

IIa. Single layer and no slip 

Experimental measurements can involve oscillators measuring the frequency shift and 

electrical amplification to compensate damping, configurations measuring the damping of an 

oscillation following excitation at the resonant frequency or impedance analysers measuring 

the complex electrical impedance. It is therefore useful to note that in sensor applications 

changes in (angular) frequency, ∆ω, acoustic energy dissipation, ∆D, and electrical 

impedance, Z, are caused by surface mechanical impedance (or acoustic load) changes. The 

surface mechanical impedance of the film, ZL, can be defined by, 
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where ρq and tq are the density and thickness of the substrate. Eqs. (2) and (3) can be derived 

within the damped simple harmonic oscillator model. In terms of a QCM the surface 

impedance is related to the quartz substrate parameters by,    
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where Zq and acoustic impedance of the quartz substrate, αq is the wave phase shift in the 

quartz substrate and K is a value of electromechanical coupling10,26,27 Ff is the force exerted by 
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the film on the quartz substrate per unit area and sq& is the speed of displacement of the quartz 

substrate14. In this paper, we will use the real part of the impedance and dissipation or energy 

loss as interchangeable terminology. Similarly, the imaginary part of the impedance will also 

be referred to as frequency shift or energy storage. 

 

To evaluate the force exerted by a Newtonian liquid on the substrate it is necessary to obtain a 

profile of fluid flow by solving the Navier-Stokes equations for a viscous and incompressible 

fluid. This approach can be extended to other classes of acoustic wave devices by replacing 

the quartz density by the substrate density, ρs, and the quartz thickness tq by ξλ where λ is the 

acoustic wavelength in the (unloaded) substrate and ξ is a parameter representing the depth of 

substrate oscillating16. For a QCM ξ=½ and for a shear horizontal surface acoustic wave (SH-

SAW) ξ∼1. Fig. 1 shows the relative direction of oscillations for a QCM, a SH-SAW and the 

in-plane component of a Rayleigh acoustic wave (SAW). For a SH-SAW or SAW 

propagating along a path covered by a fluid Eq. 3 can be replaced by a loss per unit length, L 

of 
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where v is the (unloaded) speed of the acoustic wave. 

 

In our previous works we included viscoelasticity in the model by a complex shear modulus, 

Gf, or by modifying the Navier-Stokes equations and the equation for the shear stress in the 

fluid. The equation for fluid flow is then, 

 i v
G

i
vf

f

f
fω ωρ= ∇2     (6) 

where ρf is the density of the fluid, vf is the fluid velocity, and a time dependence eiωt has been 

assumed. Eq. (6) is the wave equation for bulk shear waves propagating in a viscoelastic 

medium and a solution can be found using the velocity profiles, 
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and the two boundary conditions, 
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Eq. (10) is the no-slip condition at the film-substrate interface and Eq. (11) is the continuity of 

shear stress at the free surface of the film, which is of thickness tf. The solution for the fluid 

speed vf(z) is identical for all three types of device provided vsh
2<<v 2, where vsh is the shear 

speed of the film, and is given by, 
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The corresponding impedance is then given by, 
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which is exactly the same result as derived from the transmission line model for the acoustic 

load of a single (viscoelastic) film.10,13  

 

The Maxwell model for viscoelasticity views the total rate of strain as a spring and a dashpot 

connected in series. The complex shear modulus is then, 
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where τ=ηf/µf  is the relaxation time, and µf is the high frequency shear modulus. In the 

notation of Behling26,27, ωτ=1/κ where κ is the loss factor of the polymer and is the ratio of 

the viscous to elastic contributions to the shear modulus. The Maxwell model contains the 

limits of Newtonian liquids and rigid solid overlayers and so the theory can represent a large 

number of device configurations that are relevant to sensing applications. In this formulation 

we can define a complex effective penetration depth, δ , of, 
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which gives more physically obvious forms for the fluid speed,  

 v z q

i z t

it
f s

f

f

( ) &

cosh
( )

cosh

=

−















































2

2

δ

δ

   (16) 

and the film impedance, 
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IIb. Multiple layers and no slip 

Model definition 

In the case of an acoustic wave device with n multiple layers of thickness tk, we simplify solve 

the general problem by assuming that vshk
2<<v 2, where vshk is the shear wave speed in any one 

layer. The oscillation in each layer induced by the substrate motion will satisfy the equivalent 

of Eq. (6), 
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where ρk is the density of the layer k and Gk is the complex shear modulus of the layer. The 

general solution for each layer is then of the form, 
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where,  
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To obtain specific solutions it is necessary to impose boundary conditions at the interface 

between the substrate and the first layer, all intermediate interfaces and at the free surface of 

the top most layer. Assuming no-slip the appropriate boundary conditions are, 
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 v t v tk p
p

k

k p
p

k

( ) ( )
=

+
=

∑ ∑=
1

1
1

   (22) 

 G
dv

dz
G

dv

dzk
k

z t
k

k

z tp
p

k

p
p

k









 =











= ∑
+

+

= ∑
= =1 1

1
1    (23) 

 G
dv

dzn
n

x tp
p

n










∑

=
=

=1

0    (24) 

Eqs. (22) and (23) represent a set of equations with k=1 to n-1 and the summations simply 

define the z location of the relevant interface. The acoustic impedance presented to the 

substrate by the combined overlayers is given by the shear stress acting at the substrate-first 

layer interface, 
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In the no-slip case, Zf is related to the first coefficient in the solution, Eq. (19), through the 

factor 2A1-1. Eqs. (19)-(25) define the problem for the acoustic impedance for an arbitrary 

number of finite thickness viscoelastic layers. Solving these equations enables the calculation 

of energy storage and energy loss due to shearing motion induced in the viscoelastic 

overlayers by a range of acoustic wave devices. The transmission line model relates the 

overall acoustic impedance of a multilayer arrangement to the surface acoustic impedance at 

the device-first film interface with a chain matrix technique10,13, starting from the front 
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acoustic port. The acoustic impedance for the k-th layer with the acoustic load, Zk+1, at the 

outer surface is28: 
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where kkck GZ ρ=  is the characteristic acoustic impedance of the kth layer. The 

impedance calculated for k = 1 is the surface acoustic load impedance, ZL. 

 

Solution for two layers 

It is useful to obtain the analytical solution for a system with two arbitrary thickness 

overlayers so that the consistency of the method can be verified. After some algebra we find, 
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where 
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is the acoustic impedance of each individual film. Within the Maxwell model, the relationship 

to a fluid-like layer can be made more obvious by using the analogous relation to Eq. (17), 

which explicitly introduces a viscous penetration depth through kk i δα 2= . Eqs. (27) and 

(28) agree with results from transmission line models27. In general, the total acoustic 

impedance for a multilayer system is not simply the sum of the individual impedances of each 

layer (Eq. (28)). Lucklum et al29,30 have discussed how the existence of the denominator in 

Eq. (27) can be used to obtain amplification in sensors by making the first layer a rubbery 

polymer. 

IIc. Slip boundary condition 

Device-layer one interface 
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One difficulty with the transmission line approach to modelling the acoustic impedance is that 

the method for inclusion of slip at interfaces is not obvious. The transmision line model 

assumes continuity of mechanical tension and particle velocity. With the physical model 

interfacial-slip can be accounted for by altering the boundary conditions, eqs. (21)-(24), in the 

solution for the motion of the layers. In the model for Newtonian fluids on QCM’s, Rodahl 

and Kasemo13, argued that slip at the device interface could be related to the shear stress 

acting on the substrate due to the liquid. They invoked a Stokes law and suggested that Eq. 

(21) be replaced by, 

 ( )χm q v z FML s f& ( )− = =1 0     (29) 

 where χ is the coefficient of friction between the film and the surface and mML is the mass per 

unit area of a monolayer of the film. Within the context of viscoelastic layers of finite 

thickness we replace the factor of χmML occurring in Eq. (29) by a single real parameter 1/s1. 

Applying this boundary condition to a multilayer model we find the simple result that the total 

acoustic impedance calculated without slip can be mapped to the total acoustic impedance 

allowing for slip by a simple replacement rule for the first layer, 

 Z
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The essential idea in introducing slip is that a discontinuity in the speed occurs so that the 

speeds obtained by approaching the device-layer one interface from either side no longer 

match. Hayward and Thompson24,25 have used a slip boundary condition in a multilayer 

system, but their solution involves simply scaling one speed by a complex slip factor. This 

type of approach has several limitations. Each interface involves a complex slip factor and 

hence two parameters. More importantly, the relationship of the slip factor to material and 

drive parameters, such as the shear modulus, layer thickness and density, and oscillation 

frequency are not well-defined within the approach. In the Stoke’s law approach, the effect of 

Eq. (29) on the speeds at the device-layer one interface is to introduce a mis-match of, 
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Using Eq. (31) as the defining slip boundary condition for a single layer device will recover 

the result of Eq. (30). The advantage of this boundary condition is that material and drive 

parameters are introduced in a well-defined manner by the acoustic impedance calculated 

from the no-slip problem. In effect, Eq. (31) provides a definition of the complex slip 

parameters used by Hayward and Thompson24,25 through the single real parameter, s1. When 

slip is weak, s1, is small and the mis-match in speeds vanishes, thus recovering the no-slip 

boundary condition. When slip is strong, s1 is large and the speed of the layer vanishes so that 

the layer is decoupled from the underlying motion of the substrate. It is worth cautioning that 

this last statement is a simplified interpretation as the layer impedance is a complex number 

involving a tanh() function with a complex argument. In essence, Eq. (31) can be viewed as 

introducing a first order approximation using a single-loop negative feedback system with a 

forward element of Z1 (the open-loop term) and a feedback term of s1 as shown in Fig. 2. 

III. Results and Discussion 

IIIa. Viscoelastic overlayer with no-slip boundary condition 

Eqs. (13) and (17), for a device coated with a single layer of viscoelastic material, provide 

two complementary views of the acoustic impedance. For small relaxation times where the 

relaxation time is the ratio of the viscosity to high frequency shear modulus, the effective 

penetration depth reduces to the penetration depth and the Kanazawa and Gordon result for 

Newtonian liquids is recovered from Eq. (17). For large relaxation times and small argument 

(phase angle) in the tanh() function of Eq. (13) we recover the Sauerbrey result for mass 

loading by a thin rigid mass film. In the case that the argument of the tanh() function is not 

small the acoustic impedance provides a method of measuring the shear modulus of the film31. 

In examining thick films care is needed as the argument of the tanh() function is complex and 

this can lead to damped shear wave resonances. Experimentally, locating these resonances is 

one method by which the shear modulus of a film can be determined16. One consequence of 

the physical basis presented in this work is that the unified interpretation provided for QCMs, 
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which typically operate in the 1-10 MHz range, and SH-SAW devices, which can operate in 

the 100 MHz to GHz range, allows a wider frequency range to be investigated. 

 

In Figs. 3 and 4 we use a Maxwell model with a single relaxation time to show the generic 

changes in acoustic impedance that can be expected as the layer thickness and viscoelasticity 

are altered. The normalised impedance fffnorm ZZ ηωρ=  depends on only two 

parameters ωτ and tf/δ,. For Newtonian liquids, which have ωτ small, both real and imaginary 

parts of the impedance increase with film thickness until a saturation occurs after a few 

penetration depths. For these thick Newtonian films the impedance is only sensitive to the 

properties of the liquid at the device interface; in this regime a device could also be used to 

sense the area of interface covered by the liquid. As ωτ increases the influence of 

viscoelasticity increases, the effective penetration depth δ  lengthens and oscillations occur in 

the impedance. For very large relaxation times the liquid appears as an amorphous solid and 

the oscillations take on the character of sharp shear wave resonances, indicating the ability of 

the shear waves to travel to the free film surface, to reflect and interfere constructively. In this 

amorphous solid limit and for very thin films (h/δ<<1 ) the real part of the acoustic impedance 

(energy dissipation) vanishes and only energy storage (imaginary part of the impedance) 

occurs. This corresponds to the Sauerbrey equation for rigidly coupled mass in which 

frequency decreases (i.e. positive Im[Zf]) occur without loss of quality of the resonance. In 

assessing whether changes in the response of an acoustic wave device, such as a QCM, are 

due to changes in the viscoelasticity of the film it is necessary to compare the trends in the 

energy loss with those of the energy storage29. For films much thinner than the viscous 

penetration depth increasing viscoelasticity results in decreases in the resonant frequency and 

a broadening of the resonance (see Fig. 4 and Fig. 5). For films much thicker than the 

penetration depth the frequency will increase back towards the unloaded resonant frequency 

as the viscoelasticity increases, but the attenuation initially increases and then decreases, so a 

broadening is followed by a sharpening of the resonance. In the region between these two 
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limits, it is possible to find a decreasing resonant frequency (i.e. Im[Zf] positive and becoming 

larger) and a sharpening of the resonance (i.e. Re[Zf] positive and becoming smaller) as ωτ 

increases from 1 to 4. It is important to emphasise that changes in viscoelasticity of a film can, 

in principle, lead to all four combinations of increasing/decreasing resonant frequency and 

increasing/decreasing attenuation. It is also worth noting that extreme viscoelasticity may 

even result in a resonant frequency higher than the unloaded device as shown by the change 

in sign in Fig. 4. 

IIIb. Slip at the substrate interface 

For an acoustic wave device with a single layer we would expect slip to simply decouple the 

motion of the substrate from the layer. In order to assess whether this might occur an order of 

magnitude estimate for the slip parameter, s1, is useful. This parameter occurs in Eq. (31) in a 

combination (1+s1Z1) and we therefore anticipate that s1 will have dimensions of inverse 

impedance. Moreover the slip parameter must be related to both the layer and the device 

substrate and so a possible candidate is, 
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where Zc1 =√(ρ1G1) is the characteristic impedance of the layer and χ, is a co-efficient of 

friction. For a glassy layer with G1∼109 and ρ1=1000 kg m-3, Zc1 ∼ 106 Rayls and taking a 

typical coefficient of friction of the order between 0.01 and 1 suggests that a slip parameter 

would have an order of magnitude of 10-5 to 10-7. For a liquid, the characteristic impedance 

would be several orders of magnitude lower and the slip parameter would be correspondingly 

smaller. Normalising the impedance containing the slip factor (Eq. (30)) gives, 
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normslip Zs

Z
Z
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   (33) 

and this has a dependence on a parameter ffss ηωρ= , which involves the frequency in 

addition to the two parameters ωτ and tf/δ. Using the density and viscosity of water and a 

5 MHz oscillation frequency gives s ∼ 5.6 s whereas using the density and viscosity of a 
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10 000 cSt polydimethylsiloxane (PDMS) oil gives s ∼ 1.8x106 s. In Figs. 7-10, we have 

chosen s = 0, 0.5 and 1 to illustrate the structure of changes to the acoustic impedance that 

interfacial slip, within the model developed here, could produce; these values of s are not 

intended to be taken as suggested values for experiments. For the Newtonian liquid in Figs. 7 

and 8 our previous order of magnitude estimate of s is far lower than 0.5. In contrast, for 

PDMS the estimate is consistent with an s of the order of magnitude used in Fig. 9 and 10. 

 

Figs. 7 and 8 show the effect of slip with s = 0, 0.5 and 1 on a QCM device coated with a 

single layer of a Newtonian liquid (i.e. ωτ=0). For this layer, when the thickness is much 

greater than the viscous penetration depth, the effect of slip is to reduce the acoustic 

impedance in the manner anticipated by a decoupling of the liquid from the substrate. 

However, these curves show that the effect of slip is different when the film thickness is less 

than about one viscous penetration depth. In this case, the energy storage systematically 

decreases as slip increases, but in contrast the energy dissipation now increases rather than 

decreases. This model of slip may provide a basis for consideration of the effect of 

hydrophilic and hydrophobic surfaces and of surface roughness through their influence on the 

co-efficient of friction. 

 

Figs. 9 and 10 show the effect of slip with s = 0, 0.5 and 1 on a device coated with a single 

layer having an amorphous solid character (i.e. ωτ=50). Close to the shear wave film 

resonance, the effect of slip is to dampen and broaden the acoustic impedance. For thin films 

the effect of increasing slip is to increase the real part of the acoustic impedance and reduce 

the imaginary part. In this respect, the qualitative behaviour of thin films is the same whether 

the film is of a liquid or solid character although the slope of the imaginary part of the 

acoustic impedance with layer thickness changes to concave rather than convex. Whilst Figs. 

9 and 10 only show the thin film limit, the thick film limit for an amorphous solid is similar to 

the Newtonian liquid thick film limit. The predicted behaviour of the thin amorphous solid 
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film is consistent with the experimental observations17 on sliding friction during the 

adsorption of a monolayer of Kr atoms on a gold electrode QCM at 80 K. Initially as atoms 

are adsorbed the frequency shift increases, but as the coverage becomes greater the frequency 

shift then decreases; this decreasing frequency shift is interpreted as a decoupling of the 

adsorbed atoms from the surface.  

IIIc. Acoustic load concept 

The treatment of interfacial slip in this paper has been based on the physical boundary 

condition at the substrate-first layer boundary and has used an approach based on mechanics. 

It is possible to interpret the results for slip in a single layer system (Eq. (30)) as arising from 

a generalised acoustic load. To do so we imagine a substrate coated with two layers, an 

infinitesimally thin intermediate layer with acoustic impedance Zi immediately adjacent to the 

substrate and a second finite layer with acoustic impedance Z1. Assuming a no-slip boundary 

condition, Eq. (27) gives a total acoustic load for this double layer system of, 
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This generalised acoustic load, ZL, will give the same result as Eq. (30) obtained for a single 

layer of acoustic impedance Z1, directly in contact with the substrate, but with a slip boundary 

condition, provided we choose, 
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where Zci is a characteristic impedance and χi is dimensionless “friction” coefficient. Thus, in 

this interpretation, slip generates a certain impedance for an intermediate layer. The concept 

of an intermediate, or boundary, acoustic impedance then allows for an additional magnitude 

and phase change of the propagating wave, which is presented as an additional magnitude and 

phase change of the overall acoustic load32. 
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IIId. Slip at intermediate interfaces in multilayer devices 

How to include slip at intermediate interfaces, other than the device-layer one interface, in a 

multiple overlayer structure is not obvious as Stoke’s law (Eq. (29)) does not easily 

generalise. At such an intermediate interface in a multilayer structure there are two boundary 

conditions, Eqs. (22) and (23), rather than the single boundary condition occurring at the 

device-layer one interface, Eq. (21). We can derive a solution where the speeds are 

discontinuous, but nonetheless keeping the continuity of the shear stress. The alternative 

formulation of Stoke’s law involving a mismatch of the interface speeds (Eq. (31)) can be 

generalised to, 

 v t
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s Zk p
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k k p
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1
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where ZL is the total load impedance of the k’th and higher layers calculated using a no-slip 

boundary condition. One approximation to ZL would be to sum the individual impedances of 

the (n-k) top most layers. Whilst Eq. (36) is an obvious extension of Eq. (31) it is not the only 

choice that could be made. Alternatives include using the impedance of the k’th layer 

calculated using a no-slip boundary condition in place of ZL in the denominator in Eq. (36). It 

is likely that Eq. (36) will be a reasonable condition in a double layer system with slip at 

either of the two interfaces. Solving the model for two layers using the boundary conditions 

given by eqs. (21), (23), (24) and (36) gives the result, 
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  (37) 

The first factor in the right hand side of Eq.  (37) is the result for two-layers obtained using 

the no-slip boundary condition. The second factor is the correction allowing for slip. 

Examining Eq. (37), we find that it arises from the no-slip result for two layers using a simple 

replacement rule analogous to Eq. (30), i.e. 
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    (38) 

The consistency of the result in Eq. (37) with the result for a single-layer on a device can be 

checked by imagining the thickness of the first layer tends to zero. The result of Eq. (30) is 

then recovered. A second method of verifying the consistency is to imagine strong slip at the 

layer 1-layer 2 interface. The slip parameter s2 then dominates the second factor in Eq. (37) 

and, after cancellations, Eq. (37) reduces to the acoustic impedance of the first layer. 

Physically, strong slip at this interface between the layers decouples the second layer and the 

device sees the same impedance as it would if it was covered by only a single layer. Using the 

single loop negative feedback view, illustrated in Fig. 2, the result for the two layer 

calculation suggests that slip at any layer, treated using the approximation represented by the 

slip boundary condition Eq. (36), will result in a replacement rule analogous to Eq. (38) with 

the index simply equal to the layer index k. 

IV. Conclusion 

A physical model for viscoelastic contributions to the sensor response of a range of acoustic 

wave devices has been developed in terms of the surface acoustic impedance. Results for a 

device with a single viscoelastic layer have been shown to contain the limits of rigid mass 

loading and loading by Newtonian liquids. The effects of the viscoelasticity on the effective 

viscous penetration depth and the development of shear wave resonances with increasing 

viscoelasticity have been illustrated. All four combinations of frequency increase/decrease 

and attenuation increase/decrease with changing viscoelasticity are shown to be possible. The 

extension of the model to multiple viscoelastic layers has been described and results explicitly 

derived for a two-layer system. These results are consistent with transmission line models of 

QCMs with two layers. The no-slip boundary condition at the interface between layers has 

been reconsidered. An alternative slip boundary condition based on a speed discontinuity 

related to the layer impedance calculated using a no-slip boundary condition has been 

introduced for a single layer system. For a system with a single thick layer, both liquid and 
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solid, slip reduces energy storage and energy loss whilst for thin liquid-like layers, slip can 

increase the energy loss. A generalized acoustic load concept has been introduced as an 

interpretation of the results for slip in a single layer QCM device. The inclusion of slip at any 

interface in a multiple layer system is more complicated and a possible modification of the 

boundary conditions has been suggested. 
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Figure Captions 

 

Figure 1 Three possible modes of oscillation of acoustic wave devices. The transverse 

waves in the QCM and SH-SAW devices and the longitudinal component of the 

Rayleigh SAW induce shearing of any viscoelastic overlayer. 

 

Figure 2 The effect of the slip boundary condition can be interpreted as a single-loop 

negative feedback system where the forward transfer is the impedance calculated 

with a no-slip boundary condition, Zf, and the feedback block is s.  
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Figure 3 The change in the real part of the acoustic impedance of a single viscoelastic 

overlayer as a function of thickness and relaxation time using a Maxwell model. 

The transition in the nature of the film from liquid-like to amorphous solid is 

accompanied by the onset of shear wave resonances. 

 

 

Figure 4 The change in the imaginary part of the acoustic impedance of a single viscoelastic 

overlayer as a function of thickness and relaxation time using a Maxwell model. 

The change in sign of the imaginary part of the film impedance indicates that 

frequencies larger than the unloaded resonant frequency can occur when devices 

are operated as resonators. 
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Figure 5 Changes in dissipation for ωτ=0, 1 and 4 (solid line, long dashes and short dashes, 

respectively). Increasing the relaxation time, and hence the viscoelasticity, 

increases the dissipation for thin films with thickness much less than the viscous 

penetration depth. However, for thicker films both increases and decreases can be 

seen.  

 

Figure 6 Changes in energy storage for ωτ=0, 1 and 4 (solid line, long dashes and short 

dashes, respectively). Depending on film thickness, it is possible to have 

frequency decreases or frequency increases as the relaxation time increases. In 

both cases, the corresponding changes in loss (Fig. 5) can be either increases or 

decreases depending on film thickness. 
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Figure 7 The real part of the film impedance for a single layer Newtonian liquid (ωτ=0) 

with slip parameters of s = 0, 0.5 and 1 (solid line, long dashes and short dashes, 

respectively). For thick layers, slip decouples the fluid and the dissipation reduces. 

For thin layers slip can lead to increased dissipation. 

 

Figure 8  The imaginary part of the film impedance for a single layer Newtonian liquid 

(ωτ=0) with slip parameters of s = 0, 0.5 and 1 (solid line, long dashes and short 

dashes, respectively). For thick layers, slip decouples the fluid and the frequency 

shift from the unloaded value reduces. 
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Figure 9 The real part of the film impedance for a single layer of an amorphous solid 

(ωτ=50) with slip parameters of s = 0, 0.5 and 1 (solid line, long dashes and short 

dashes, respectively). The effect of slip is to reduce the amplitude and broaden the 

shear wave film resonance. For thin layers slip increases the dissipation. 

 

Figure 10 The imaginary part of the film impedance for a single layer of an amorphous solid 

(ωτ=50) with slip parameters of s = 0, 0.5 and 1 (solid line, long dashes and short 

dashes, respectively). The broadening of the film resonance is evident. For thin 

layers increasing slip reduces the energy storage and hence the frequency shift. 

 


