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Abstract

Acoustic wave devices with shear horizontal disphaents, such as quartz crystal
microbalances (QCM) and shear horizontally polariserface acoustic wave (SH-SAW)
devices provide sensitive probes of changes atl-solid and solid- liquid interfaces.
Increasingly the surfaces of acoustic wave deviaes being chemically or physically
modified to alter surface adhesion or coated with or more layers to amplify their response
to any change of mass or material properties. iork, we describe a model that provides
a unified view of the modification in the shear matin acoustic wave systems by multiple
finite thickness loadings of viscoelastic fluidshi§ model encompasses QCM and other
classes of acoustic wave devices based on a slotmmnof the substrate surface and is also
valid whether the coating film has a liquid or dotiharacter. As a specific example, the
transition of a coating from liquid to solid is madkbd using a single relaxation time Maxwell
model. The correspondence between parameters fi@mphysical model and parameters
from alternative acoustic impedance models is gegplicitly. The characteristic changes in
QCM frequency and attenuation as a function ofkiméss are illustrated for a single layer
device as the coating is varied from liquid-liketkt@at of an amorphous solid. Results for a
double layer structure are given explicitly and ¢x¢éension of the physical model to multiple
layers is described. An advantage of this physaggiroach to modelling the response of
acoustic wave devices to multilayer films is thafpriovides a basis for considering how
interfacial slip boundary conditions might be ingorated into the acoustic impedance used
within circuit models of acoustic wave devices. Eoipresults are derived for interfacial slip
occurring at the substrate-layer 1 interface usingingle real slip parametes;, which has
inverse dimensions of impedance. In terms of atoirepedance, such interfacial slip acts as
a single-loop negative feedback. It is suggestatltttese results can also be viewed as arising
from a double-layer model with an infinitesimallizirt slip layer which gives rise to a
modified acoustic load of the second layer. Finathe difficulties with defining appropriate
slip boundary conditions between any two succestyers in a multilayer device are

outlined from a physical point of view.

Keywords: Acoustic waves, quartz crystal microbalances, @snsslip, contact angles,

wetting.



l. Introduction

Acoustic wave devices provide a simple and effectmeans for probing changes at the
interface between a solid film or a liquid. An exgenof such a device is the quartz crystal
microbalance (QCM) which uses a transverse-shederscillation. Sauerbréghowed that
the decrease in resonant frequency of the deviedalioading the surface by a thin film of a
rigidly coupled material is proportional to the maghange) of the film4dm, and to the
square of the frequenci,In this case, no change in damping of the restmacurs and so
only an energy storage is occurring. When a QCbpisrated in a liquid the oscillation of the
device surface is coupled into the liquid and irefu@n oscillation in the liquid. This

oscillation does not extend throughout the bulkhe liquid, but is damped within a small
distance,0 = (2/7f /wpf )]/thereqf is the viscosityg is the density ande = 27 is the

angular frequency. As a consequence of this viseatreinment of the liquid, the frequency
decrease is related to the square root of the geviscosity product and to a lower power of
the frequend?, f ¥2 In addition, a damping of the QCM resonance, ed$ated to the square

root of the density viscosity product occurs intliogithat energy loss is occurring.

In recent years, the application of acoustic waedaks has been extended to includsitu
monitoring of film deposition, e.g. in electrochatny’°>, and chemical and biological
sensing, e.g. sensing with polymer coated de¥ices common feature of these applications
is that the device surfaces are coated with médettiet are neither purely rigidly coupled
mass nor simply Newtonian type liquids. It has ¢fi@re become essential that models of
acoustic device response to layers of viscoelastterials be developed. Moreover, these
models need to allow for multiple and finite thieles coatings and operation of devices in
liquid. A general approach is to consider the atousipedanceZ,, at the interface between
the acoustic device and the coating. This surfaceigtic impedance summarizes the overall
acoustic load acting on the acoustic device and lmarapplied to single and multilayer

arrangementS. With some approximations, this model can be teed into equivalent



circuit models used in electrical engineeliffd The imaginary part of the impedance gives
the frequency shift and the real part gives the piagn An alternative approach, applied to
the change in response of a QCM due to a Newtdigaid, was developed by Rodahl and
Kasemd*. They considered the motion of the unloaded QCMase to be a damped simple
harmonic oscillator and then deduced the increasdamping due to shear stress on the
surface arising from immersion in a liquid. Theywbaecently extended this theory to two
polymer layers with the viscoelastic material méghklas a Voigt elemefit McHale et al®
have also considered the extension of the simpladwic oscillator model to include a single
polymer layer, but using a Maxwell model for theogelasticity and allowing for a range of
acoustic wave devices. An implication of this esien is that the results of the simple
harmonic oscillator model are valid not only for j@evices, but also all classes of acoustic
wave devices based on shearing of the surfacengadihis alternative physical approach to
modelling acoustic wave device response has thergdge of providing access to the

physical boundary conditions.

One aspect of QCM response that has generatedeerdy is the possible role of interfacial
slip. It appears clear from the work of Kriet af'”*® that when certain atoms are adsorbed
onto the surface of a QCM in ultra high vacuum étiods they can lock together as the layer
coverage approaches a monolayer and slide on tifieceu However, whether slip occurs
when a QCM is operated in a liquid or with a polyneeating is far less certain. Several
authors have reported an apparent dependence atdstic impedance on the contact angle
of the liquid, and hence surface wettabifit§/. Martin et af*** have argued that apparently
anomalous results for the acoustic impedance d¢ae fiom surface roughness. The argument
is that air or liquid can be trapped within smatsn a device surface. Trapped liquid could
act as a rigid mass loading in the Sauerbrey mawinle trapped air prevents such a
mechanism. This would distort the response that ldvche expected if only viscous
entrainment, in the Kanazawa and Gordon manneyraet. Contact angle dependence then

arises in the acoustic response as liquid penatratito small surface aspherities and is



determined by surface wettability. Whilst it isa&tair trapping could occur, it is not clear that
all anomalies in measured acoustic impedances aeetal this mechanism. An obvious
alternative mechanism for anomalous acoustic respdhat could depend on interfacial
energy is slip. It is anticipated that should &lga mechanism influencing QCM response it
could have its greatest impact in biological sersgaplications where the hydrophobicity and

hydrophilicity of the interface may change.

A particular difficulty in assessing whether slgpdccurring when QCM devices are operated
in liquids is that few models exist that can prediow device response would be altered.
Such models need to be sufficiently flexible tmwadlfor both bare devices operated in liquid
and for coated devices. Whilst circuit models dEND response are useful, and can be
extended to multiple viscoelastic layers, they @b offer a simple and transparent way of
including interfacial slip. Hayward and Thomp$bft have presented a model that included
both interfacial slip and multiple viscoelastic éay. However, the inclusion of slip involved

complex slip parameters that were not explicithated to the impedance of the layers.

In this work, we first review the physical motfebf acoustic wave device response with a
single viscoelastic layer. Previously presentedesgions are reformulated in the form of the
general complex shear modulus and the acousticdamoe, since it is this impedance which
is often most directly related to the values meaduin experiments (Section Ila). The model
is then extended to include multiple viscoelastigeks and so provide a simple, but general,
framework in which to consider interfacial slip ¢€8en IIb). The no-slip boundary condition
at the device-viscoelastic first layer interfacehen relaxed using a Stokes friction law, as
previously suggested for a QCM in contact with amian fluid. This boundary condition
introduces a single real slip parameszgnd results in a simple recipe for the inclusibslip

in the response of any acoustic wave device basethearing motion induced in viscoelastic
layers (Section llc). The physical significance tbé slip parameter is discussed and an

acoustic load concept is introduced as an inteapoet of interfacial slip in a single layer



device. Finally, boundary conditions for slip oatnig at the interface between any two layers

in a multiple layer device are considered.

. Theory

[la. Singlelayer and no slip

Experimental measurements can involve oscillatoeasuring the frequency shift and
electrical amplification to compensate damping,fignmations measuring the damping of an
oscillation following excitation at the resonantduency or impedance analysers measuring
the complex electrical impedance. It is therefoseful to note that in sensor applications
changes in (angular) frequencyla acoustic energy dissipatioryD, and electrical
impedance/Z, are caused by surface mechanical impedance ¢ustc load) changes. The

surface mechanical impedance of the filin,can be defined by,

Z, =— 1
L O 1)

In a linear approximation these relations for a Q& given by,
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wherep, andt, are the density and thickness of the substrate. 9 and (3) can be derived
within the damped simple harmonic oscillator model.terms of a QCM the surface

impedance is related to the quartz substrate paeasrigy,
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where Z; and acoustic impedance of the quartz substegtés the wave phase shift in the

quartz substrate aritlis a value of electromechanical coupfit@j?’F; is the force exerted by



the film on the quartz substrate per unit area id the speed of displacement of the quartz

substrat¥. In this paper, we will use the real part of thepédance and dissipation or energy
loss as interchangeable terminology. Similarly,ithaginary part of the impedance will also

be referred to as frequency shift or energy storage

To evaluate the force exerted by a Newtonian liguidhe substrate it is necessary to obtain a
profile of fluid flow by solving the Navier-Stokesgjuations for a viscous and incompressible
fluid. This approach can be extended to other ela®d acoustic wave devices by replacing
the quartz density by the substrate dengifyand the quartz thicknegsby {1 whereA is the
acoustic wavelength in the (unloaded) substratefaad parameter representing the depth of
substrate oscillati§ For a QCMé&=Y2 and for a shear horizontal surface acoustic wa¥e (
SAW) &/1. Fig. 1 shows the relative direction of oscillatofor a QCM, a SH-SAW and the
in-plane component of a Rayleigh acoustic wave ($AWor a SH-SAW or SAW
propagating along a path covered by a fluid Egar8 lee replaced by a loss per unit lengith,

of
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wherev is the (unloaded) speed of the acoustic wave.

In our previous works we included viscoelasticitytihe model by a complex shear modulus,
G, or by modifying the Navier-Stokes equations ama eéquation for the shear stress in the

fluid. The equation for fluid flow is then,

. _ Gf 2
Ia}‘_/f _i&pf 0 \_/f (6)

wherep is the density of the fluidy is the fluid velocity, and a time dependerthas been
assumed. Eq. (6) is the wave equation for bulk rsiaseves propagating in a viscoelastic

medium and a solution can be found using the viglqgebfiles,



QCM v, =(v, (2)€“ 00) (7)
SH-SAW v, =0V, (2€“™ 0) (8)
SAW Vi =(v (2€“™ Ou (2)€"“7) ©)

and the two boundary conditions,

vi(z=0)= g (10)

and
&(ﬁ+&j 0 "
iw\ & & Z:tf' (11)

Eg. (10) is the no-slip condition at the film-suiast interface and Eq. (11) is the continuity of
shear stress at the free surface of the film, wisabf thicknesd;. The solution for the fluid

speedw(z) is identical for all three types of device providgg?«vz, wherevg, is the shear

—2an); (z-t;)
COs
G, 5
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The corresponding impedance is then given by,

Z, =P G tanr{ia)tf /g—f} (13)
f

which is exactly the same result as derived froentthnsmission line model for the acoustic

speed of the filmand is given by,

Vv, (2) = ¢, (12)

load of a single (viscoelastic) filift*

The Maxwell model for viscoelasticity views thedbtate of strain as a spring and a dashpot
connected in series. The complex shear modulleis t

= Ia]]f
1+iowr

f (14)



where r=n/1x is the relaxation time, ang: is the high frequency shear modulus. In the
notation of Behling®?’, wr=1/k wherex is the loss factor of the polymer and is the rafio
the viscous to elastic contributions to the sheadufus. The Maxwell model contains the
limits of Newtonian liquids and rigid solid overlens and so the theory can represent a large

number of device configurations that are relevargdnsing applications. In this formulation

we can define a complex effective penetration deﬁthof,

= o
0= —= (15)
N1+iwr
which gives more physically obvious forms for théd speed,
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o

(16)
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and the film impedance,

O
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I[Ib. Multiplelayersand no dlip

Model definition

In the case of an acoustic wave device withultiple layers of thickneds, we simplify solve
the general problem by assuming thar<<v?, wherevgis the shear wave speed in any one
layer. The oscillation in each layer induced by shbstrate motion will satisfy the equivalent
of Eq. (6),

(=8 %D

18
iap, dZ° (18)

where g is the density of the layédrandGy is the complex shear modulus of the layer. The

general solution for each layer is then of the form

V()= o] A&+ B & (19)



where,

W’ o,
a’=-——— (20)
k Gk

To obtain specific solutions it is necessary to ésg boundary conditions at the interface
between the substrate and the first layer, alkinggliate interfaces and at the free surface of

the top most layer. Assuming no-slip the appropriaiundary conditions are,

Vl(Z: 0) = a, (21)
k k
Ve Q1) = Vi Qo 1) (22)
p=1 p=1
dvk - dVk+1
Gk[ dZ :|z:£ . - Gk+1[ dZ :|Z=§ . (23)
d
Gn[ V”} . =0 (24)
dz =3 t,

Egs. (22) and (23) represent a set of equatiorts ksl to n-1 and the summations simply
define thez location of the relevant interface. The acoustippédance presented to the
substrate by the combined overlayers is given kysthear stress acting at the substrate-first

layer interface,
F -
Z, :_f:i[%j (25)
z=0

In the no-slip caseZ; is related to the first coefficient in the solutjdeqg. (19), through the
factor 2A-1. Egs. (19)-(25) define the problem for the acaustipedance for an arbitrary
number of finite thickness viscoelastic layers.v8a these equations enables the calculation
of energy storage and energy loss due to sheariatiominduced in the viscoelastic
overlayers by a range of acoustic wave devices. fféresmission line model relates the
overall acoustic impedance of a multilayer arrangeito the surface acoustic impedance at

the device-first film interface with a chain matriechniqué®®® starting from the front
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acoustic port. The acoustic impedance for the layter with the acoustic loady.;, at the

outer surface &

Zy = Zek Zy+1 + § Zex tanle(pi/ Zoi i) (26)
Zo + 1 Zisr tan(el oy / Zgi i)

where Zg =+/pcGx is the characteristic acoustic impedance of Kielayer. The

impedance calculated fér= 1 is the surface acoustic load impedarge,

Solution for two layers
It is useful to obtain the analytical solution far system with two arbitrary thickness
overlayers so that the consistency of the methadeaverified. After some algebra we find,
Z1+7Z
Z, = B Sl 27)

14 4122

P&

Z, =p.G, tan}{iaxk /%j k=1,2 (28)
k

is the acoustic impedance of each individual fifithin the Maxwell model, the relationship

where

to a fluid-like layer can be made more obvious king the analogous relation to Eq. (17),
which explicitly introduces a viscous penetrati@pth througha, = \/E/gk . Egs. (27) and

(28) agree with results from transmission line nisfde In general, the total acoustic
impedance for a multilayer system is not simplyshen of the individual impedances of each
layer (Eq. (28)). Lucklunet af**° have discussed how the existence of the denomniirato

Eq. (27) can be used to obtain amplification insses by making the first layer a rubbery

polymer.

Ilc. Slip boundary condition

Device-layer oneinterface

11



One difficulty with the transmission line approadohmodelling the acoustic impedance is that
the method for inclusion of slip at interfaces i@t mbvious. The transmision line model
assumes continuity of mechanical tension and partielocity. With the physical model
interfacial-slip can be accounted for by alterihg boundary conditions, eqgs. (21)-(24), in the
solution for the motion of the layers. In the mottel Newtonian fluids on QCM'’s, Rodahl
and Kasemb, argued that slip at the device interface couldrddated to the shear stress
acting on the substrate due to the liquid. Theykad a Stokes law and suggested that Eq.

(21) be replaced by,

xmy (6 - w(z=0)= F (29)
wherey is the coefficient of friction between the filmdthe surface anthy, is the mass per
unit area of a monolayer of the film. Within thentext of viscoelastic layers of finite
thickness we replace the factor pfy,. occurring in Eq. (29) by a single real paramétisy.
Applying this boundary condition to a multilayer ded we find the simple result that the total
acoustic impedance calculated without slip can la@pad to the total acoustic impedance
allowing for slip by a simple replacement rule fioe first layer,

z 4
' 1+s7

(30)

The essential idea in introducing slip is that scditinuity in the speed occurs so that the
speeds obtained by approaching the device-layeriieeface from either side no longer

match. Hayward and Thomps8A® have used a slip boundary condition in a multitaye
system, but their solution involves simply scalimge speed by a complex slip factor. This
type of approach has several limitations. Eachrfate involves a complex slip factor and

hence two parameters. More importantly, the refastigp of the slip factor to material and

drive parameters, such as the shear modulus, thjgkness and density, and oscillation

frequency are not well-defined within the approdalthe Stoke’s law approach, the effect of
Eqg. (29) on the speeds at the device-layer ondauiis to introduce a mis-match of,

Qs

v,(z=0) = 1+s2

(31)
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Using Eg. (31) as the defining slip boundary cdnodiffor a single layer device will recover
the result of Eq. (30). The advantage of this bampctondition is that material and drive
parameters are introduced in a well-defined maryethe acoustic impedance calculated
from the no-slip problem. In effect, Eq. (31) prde$s a definition of the complex slip
parameters used by Hayward and Thomfsorihrough the single real parametsr, When
slip is weak,s;, is small and the mis-match in speeds vanishes, técovering the no-slip
boundary condition. When slip is strorggjs large and the speed of the layer vanishesao th
the layer is decoupled from the underlying motidéithe substrate. It is worth cautioning that
this last statement is a simplified interpretatamnthe layer impedance is a complex number
involving a tanh() function with a complex argumelmt essence, Eq. (31) can be viewed as
introducing a first order approximation using agdnloop negative feedback system with a

forward element oZ; (the open-loop term) and a feedback termg @fs shown in Fig. 2.

1. Results and Discussion

II1a. Viscodastic overlayer with no-dip boundary condition

Egs. (13) and (17), for a device coated with alsihgyer of viscoelastic material, provide

two complementary views of the acoustic impedafae. small relaxation times where the

relaxation time is the ratio of the viscosity tglhifrequency shear modulus, the effective
penetration depth reduces to the penetration depththe Kanazawa and Gordon result for
Newtonian liquids is recovered from Eq. (17). Fangk relaxation times and small argument
(phase angle) in the tanh() function of Eq. (13) meover the Sauerbrey result for mass
loading by a thin rigid mass film. In the case ttie argument of the tanh() function is not
small the acoustic impedance provides a methodeaifsaring the shear modulus of the flm

In examining thick films care is needed as the argnt of the tanh() function is complex and
this can lead to damped shear wave resonancesriEepéally, locating these resonances is
one method by which the shear modulus of a film lsardetermined. One consequence of

the physical basis presented in this work is thatunified interpretation provided for QCMs,

13



which typically operate in the 1-10 MHz range, &id-SAW devices, which can operate in

the 100 MHz to GHz range, allows a wider frequeraryge to be investigated.

In Figs. 3 and 4 we use a Maxwell model with a knglaxation time to show the generic

changes in acoustic impedance that can be expasttte layer thickness and viscoelasticity

are altered. The normalised impedanZﬁ;mm:Zf/,/cqofnf depends on only two

parametersgor andti/ d,. For Newtonian liquids, which hawer small, both real and imaginary
parts of the impedance increase with film thicknassil a saturation occurs after a few
penetration depths. For these thick Newtonian fithres impedance is only sensitive to the
properties of the liquid at the device interfagethis regime a device could also be used to

sense the area of interface covered by the ligQsl. wr increases the influence of

viscoelasticity increases, the effective penetmﬂepthg lengthens and oscillations occur in
the impedance. For very large relaxation timeslitheéd appears as an amorphous solid and
the oscillations take on the character of sharpuisivave resonances, indicating the ability of
the shear waves to travel to the free film surféceeflect and interfere constructively. In this
amorphous solid limit and for very thin filmk/@<<1) the real part of the acoustic impedance
(energy dissipation) vanishes and only energy gor@maginary part of the impedance)
occurs. This corresponds to the Sauerbrey equdtiorrigidly coupled mass in which
frequency decreases (i.e. positive Zf)[ occur without loss of quality of the resonante.
assessing whether changes in the response of astacwave device, such as a QCM, are
due to changes in the viscoelasticity of the fitnisinecessary to compare the trends in the
energy loss with those of the energy stofagEor films much thinner than the viscous
penetration depth increasing viscoelasticity rasutdecreases in the resonant frequency and
a broadening of the resonance (see Fig. 4 and FjigFor films much thicker than the
penetration depth the frequency will increase bagkards the unloaded resonant frequency
as the viscoelasticity increases, but the atteomaitiitially increases and then decreases, so a

broadening is followed by a sharpening of the rasge. In the region between these two

14



limits, it is possible to find a decreasing resdrfegguency (i.e. In¥] positive and becoming
larger) and a sharpening of the resonance (i.eZRepsitive and becoming smaller) ag
increases from 1 to 4. It is important to emphagisé changes in viscoelasticity of a film can,
in principle, lead to all four combinations of ieasing/decreasing resonant frequency and
increasing/decreasing attenuation. It is also waoudking that extreme viscoelasticity may
even result in a resonant frequency higher tharutheaded device as shown by the change

in sign in Fig. 4.

[11b. Slip at the substrate interface

For an acoustic wave device with a single layenwoeld expect slip to simply decouple the
motion of the substrate from the layer. In ordeassess whether this might occur an order of
magnitude estimate for the slip paramesgris useful. This parameter occurs in Eq. (31) in a
combination(1+s,Z;) and we therefore anticipate thgtwill have dimensions of inverse
impedance. Moreover the slip parameter must beecklto both the layer and the device
substrate and so a possible candidate is,

1
Xo

5 = (32)

where Z;; =0G,) is the characteristic impedance of the layer gnis a co-efficient of
friction. For a glassy layer witfs,[110° and p,=1000 kg ¥, Z; 0 10° Rayls and taking a
typical coefficient of friction of the order betwe®.01 and 1 suggests that a slip parameter
would have an order of magnitude of°l® 10°. For a liquid, the characteristic impedance
would be several orders of magnitude lower andstipeparameter would be correspondingly
smaller. Normalising the impedance containing thefactor (Eq. (30)) gives,

Z
Z . - norm 33
slip—norm 1+ §Z ( )

norm

and this has a dependence on a paran®tes,/ap, /), , which involves the frequency in

addition to the two parametetar andt/d. Using the density and viscosity of water and a

5 MHz oscillation frequency gives [0 5.6s whereas using the density and viscosity of a

15



10 000 cSt polydimethylsiloxane (PDMS) oil givésd 1.8x10s. In Figs. 7-10, we have
chosens = 0, 0.5 and 1 to illustrate the structure of clentp the acoustic impedance that
interfacial slip, within the model developed heceuld produce; these values 8fare not
intended to be taken as suggested values for eneets. For the Newtonian liquid in Figs. 7
and 8 our previous order of magnitude estimates of far lower than 0.5. In contrast, for

PDMS the estimate is consistent with &of the order of magnitude used in Fig. 9 and 10.

Figs. 7 and 8 show the effect of slip wigh= 0, 0.5 and 1 on a QCM device coated with a
single layer of a Newtonian liquid (i.eur=0). For this layer, when the thickness is much
greater than the viscous penetration depth, theckefdf slip is to reduce the acoustic
impedance in the manner anticipated by a decoupdihghe liquid from the substrate.

However, these curves show that the effect ofisligifferent when the film thickness is less
than about one viscous penetration depth. In thisecthe energy storage systematically
decreases as slip increases, but in contrast thig\emnlissipation now increases rather than
decreases. This model of slip may provide a basiscbnsideration of the effect of

hydrophilic and hydrophobic surfaces and of surfatgghness through their influence on the

co-efficient of friction.

Figs. 9 and 10 show the effect of slip wigh= 0, 0.5 and 1 on a device coated with a single
layer having an amorphous solid character (iw#=50). Close to the shear wave film
resonance, the effect of slip is to dampen anddaodhe acoustic impedance. For thin films
the effect of increasing slip is to increase thedl part of the acoustic impedance and reduce
the imaginary part. In this respect, the qualitdehaviour of thin films is the same whether
the film is of a liquid or solid character althougfre slope of the imaginary part of the
acoustic impedance with layer thickness changestaave rather than convex. Whilst Figs.
9 and 10 only show the thin film limit, the thiclknfi limit for an amorphous solid is similar to

the Newtonian liquid thick film limit. The predialebehaviour of the thin amorphous solid

16



film is consistent with the experimental observastd on sliding friction during the
adsorption of a monolayer of Kr atoms on a golatetele QCM at 80 K. Initially as atoms
are adsorbed the frequency shift increases, bilteasoverage becomes greater the frequency
shift then decreases; this decreasing frequendy ishinterpreted as a decoupling of the

adsorbed atoms from the surface.

Il1c. Acoustic load concept

The treatment of interfacial slip in this paper Haen based on the physical boundary
condition at the substrate-first layer boundary bad used an approach based on mechanics.
It is possible to interpret the results for slipairsingle layer system (Eq. (30)) as arising from
a generalised acoustic load. To do so we imagisaibstrate coated with two layers, an
infinitesimally thin intermediate layer with acoigcsimpedance; immediately adjacent to the
substrate and a second finite layer with acoustjgeidanceZ;. Assuming a no-slip boundary
condition, Eq. (27) gives a total acoustic loadtfos double layer system of,

Z +Z,

Z = —55 (34)
1+ ZiZl

2
ci

This generalised acoustic loaf, will give the same result as Eq. (30) obtainedasingle
layer of acoustic impedan&g, directly in contact with the substrate, but watklip boundary

condition, provided we choose,

2
Zi = Zcizl (35)
Xizlz - Zcizl _Xizczi

whereZ; is a characteristic impedance gnds dimensionless “friction” coefficient. Thus, in
this interpretation, slip generates a certain inapeeé for an intermediate layer. The concept
of an intermediate, or boundary, acoustic impeddhege allows for an additional magnitude
and phase change of the propagating wave, whigtegented as an additional magnitude and

phase change of the overall acoustic faad
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I11d. Slip at intermediate interfacesin multilayer devices

How to include slip at intermediate interfaces,entthan the device-layer one interface, in a
multiple overlayer structure is not obvious as $teklaw (Eq. (29)) does not easily

generalise. At such an intermediate interface muétilayer structure there are two boundary
conditions, Egs. (22) and (23), rather than thglsirboundary condition occurring at the

device-layer one interface, Eq. (21). We can dervesolution where the speeds are
discontinuous, but nonetheless keeping the comyinii the shear stress. The alternative
formulation of Stoke’s law involving a mismatch thfe interface speeds (Eq. (31)) can be

generalised to,

k
. vk-l(pZ_ltp)
Vi (;tp) = 1vsz (36)

whereZ, is the total load impedance of tk¢h and higher layers calculated using a no-slip
boundary condition. One approximationZowould be to sum the individual impedances of
the (n-k) top most layers. Whilst Eq. (36) is an obviouseaston of Eq. (31) it is not the only
choice that could be made. Alternatives includengisihne impedance of thkth layer
calculated using a no-slip boundary condition iacel ofZ_ in the denominator in Eq. (36). It
is likely that Eq. (36) will be a reasonable commitin a double layer system with slip at

either of the two interfaces. Solving the model hwo layers using the boundary conditions

given by egs. (21), (23), (24) and (36) gives #mult,

Z1+Zp || 1+5,2175/(21 + Z5)

7,7
G 1+Szzz/[1+ 2122]
Pr PGy

ZL:

(37)

=

The first factor in the right hand side of Eq. X3F the result for two-layers obtained using
the no-slip boundary condition. The second facwrthe correction allowing for slip.
Examining Eq. (37), we find that it arises from tieeslip result for two layers using a simple

replacement rule analogous to Eq. (30), i.e.

18



7, . 2 (39)

1+5,7,
The consistency of the result in Eq. (37) with tasult for a single-layer on a device can be
checked by imagining the thickness of the firstelatends to zero. The result of Eqg. (30) is
then recovered. A second method of verifying thestgiency is to imagine strong slip at the
layer 1-layer 2 interface. The slip parametethen dominates the second factor in Eq. (37)
and, after cancellations, Eq. (37) reduces to tbeustic impedance of the first layer.
Physically, strong slip at this interface betweles layers decouples the second layer and the
device sees the same impedance as it would ifstasered by only a single layer. Using the
single loop negative feedback view, illustrated Rig. 2, the result for the two layer
calculation suggests that slip at any layer, tccatgng the approximation represented by the

slip boundary condition Eq. (36), will result irrgplacement rule analogous to Eq. (38) with

the index simply equal to the layer index

V. Conclusion

A physical model for viscoelastic contributionstke sensor response of a range of acoustic
wave devices has been developed in terms of tHacguacoustic impedance. Results for a
device with a single viscoelastic layer have besows to contain the limits of rigid mass
loading and loading by Newtonian liquids. The effecf the viscoelasticity on the effective
viscous penetration depth and the development eérstwvave resonances with increasing
viscoelasticity have been illustrated. All four deimations of frequency increase/decrease
and attenuation increase/decrease with changingelssticity are shown to be possible. The
extension of the model to multiple viscoelasticglesyhas been described and results explicitly
derived for a two-layer system. These results arsistent with transmission line models of
QCMs with two layers. The no-slip boundary conditiat the interface between layers has
been reconsidered. An alternative slip boundaryditimm based on a speed discontinuity
related to the layer impedance calculated usingoslip boundary condition has been

introduced for a single layer system. For a systéth a single thick layer, both liquid and

19



solid, slip reduces energy storage and energyudsist for thin liquid-like layers, slip can
increase the energy loss. A generalized acoustid koncept has been introduced as an
interpretation of the results for slip in a sintdger QCM device. The inclusion of slip at any
interface in a multiple layer system is more cowggtitd and a possible modification of the

boundary conditions has been suggested.
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Figure Captions

Figure 1 Three possible modes of oscillation ofustic wave devices. The transverse
waves in the QCM and SH-SAW devices and the lodgial component of the

Rayleigh SAW induce shearing of any viscoelastiertayer.

Figure 1 - McHale et al (J. Appl. Phys.)
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Figure 2 The effect of the slip boundary conditioan be interpreted as a single-loop
negative feedback system where the forward transfére impedance calculated

with a no-slip boundary conditio@;, and the feedback blockss

Figure 2 - McHale et al (J. Appl. Phys.)
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Figure 3 The change in the real part of the acoustpedance of a single viscoelastic
overlayer as a function of thickness and relaxatiore using a Maxwell model.
The transition in the nature of the film from ligdike to amorphous solid is

accompanied by the onset of shear wave resonances.

Figure 3 — McHale et al (J. Appl. Phys.)
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Figure 4 The change in the imaginary part of treuatic impedance of a single viscoelastic
overlayer as a function of thickness and relaxatiore using a Maxwell model.
The change in sign of the imaginary part of thenfimpedance indicates that

frequencies larger than the unloaded resonant érexyucan occur when devices

are operated as resonators.

Figure 4— McHale et al (J. Appl. Phys.)

172
)

L
S :
s amorphous
=
N solid
E
59 liquid-like

24



Figure 5 Changes in dissipation fer=0, 1 and 4 (solid line, long dashes and shortekgsh
respectively). Increasing the relaxation time, amehce the viscoelasticity,
increases the dissipation for thin films with thielss much less than the viscous

penetration depth. However, for thicker films bothreases and decreases can be

seen.

Figure 5 — McHale et al (J. Appl. Phys.)
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Figure 6 Changes in energy storage dar=0, 1 and 4 (solid line, long dashes and short
dashes, respectively). Depending on film thicknei$sjs possible to have

frequency decreases or frequency increases asellweation time increases. In
both cases, the corresponding changes in loss %lrigan be either increases or

decreases depending on film thickness.

Figure 6 — McHale et al (J. Appl. Phys.)
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Figure 7 The real part of the film impedance fosimgle layer Newtonian liquidafr=0)
with slip parameters of = 0, 0.5 and 1 (solid line, long dashes and shashéds,
respectively). For thick layers, slip decouplesfth&l and the dissipation reduces.

For thin layers slip can lead to increased disgipat

Figure 7 — McHale et al (J. Appl. Phys.)
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Figure 8 The imaginary part of the film impedarfoe a single layer Newtonian liquid

(awr=0) with slip parameters of = 0, 0.5 and 1 (solid line, long dashes and short
dashes, respectively). For thick layers, slip detesithe fluid and the frequency

shift from the unloaded value reduces.

Figure 8 — McHale et al (J. Appl. Phys.)
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Figure 9 The real part of the film impedance fosiagle layer of an amorphous solid
(wr=50) with slip parameters & = 0, 0.5 and 1 (solid line, long dashes and short
dashes, respectively). The effect of slip is taumedthe amplitude and broaden the

shear wave film resonance. For thin layers slipaases the dissipation.

Figure 9 — McHale et al (J. Appl. Phys.)
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Figure 10 The imaginary part of the film impedafmea single layer of an amorphous solid
(wr=50) with slip parameters &f = 0, 0.5 and 1 (solid line, long dashes and short
dashes, respectively). The broadening of the fidsonance is evident. For thin

layers increasing slip reduces the energy storadgéance the frequency shift.

Figure 10 — McHale et al (J. Appl. Phys.)
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