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Abstract

On low contact angle hysteresis superhydrophobitases, droplets of water roll easily. It is
intuitively appealing, but less obvious, that wiseich material is immersed in water, the liquid will
flow more easily across its surface. In recent erpents it has been demonstrated that
superhydrophobic surfaces with the same high comatagle and low contact angle hysteresis may
not, in fact, have the same drag reducing promerfiekey performance parameter is whether the
surface is able to retain a layer of air (i.e. aspbon) when fully immersed. In this report, we
consider an analytical model of Stokes flow (iavIReynolds numbeReg creeping flow) across a
surface retaining a continuous layer of air. Thetay is based on a compound droplet model
consisting of a solid sphere encased in a sheataygy of air and is the extreme limit of a solid
sphere with a superhydrophobic surface. We dematestinat an optimum thickness of air exists at
which the drag on this compound object is minimized that the level of drag reduction can
approach 20 to 30%. Physically, drag reductionasgsed by the ability of the external flow to
transfer momentum across the water-air interfaceigging an internal circulation of air within the
plastron. We also show that the drag experiencetthdoplastron-retaining sphere can be viewed as
equivalent to the drag on a non-plastron retaispigere, but with the no-slip boundary condition
replaced by a slip boundary condition. If the plastlayer becomes too thin, or the liquid-gas
interface is rigidified, circulation is no longeogsible and drag increases to the value expected fo
solid object in direct contact with water. We dissuhe implications of this physical understanding
in terms of its general applicability to the initgdint design of drag reducing superhydrophobic
surfaces at lonRe We emphasize that the length scales and conitgabilv surface topography
generating superhydrophobicity are also likely édedmine whether a plastron is of a suitable size
to reduce drag.
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1. Introduction

In recent years there has been increasing interdsie use of topography to amplify the
effects of hydrophobic surface chemistry to crestgerhydrophobic surfacésMethods for
creating such surfaces with both nano-scale andorsitale features are well developedid this
has allowed studies to be extended to include bplesffects beyond simple non-wetting
properties. One area of significant focus has kkenbehaviour of superhydrophobic surfaces
when fully immersed in watérlt has long been recognized by arthropod physistsgthat the
silvery reflections observed from some aquatic déts@nd spiders are caused by thin films of air
retained underwater by natural (superhydrophobiojpimlogical adaptations to their bodfés.
Within the natural world, plastrons enable oxygem &arbon dioxide exchange between these
arthropods and water thereby enabling underwatgpinaion without the need for gills. An
advantage of plastron respiration compared to leutgspiration is that the pinning of the air-liquid
interface by rigid hydrophobic hairs stabilizes thger of gas and effectively stiffens the gas
bubble! In the modern era of superhydrophobicity, theigbdf superhydrophobic materials to
perform the same function as an arthropod plastvas first demonstrated, by several of the
current authors, using a superhydrophobic sol-gelrf with complementary calculations
presented in Flynn and Bugh.

One property of superhydrophobic surfaces witlydaadvancing contact angle and low
contact angle hysteresis is their ability to shedpbbts of water with ease; so-called slippy
superhydrophobic surfaces. This has led to coreider of whether superhydrophobic surfaces
can reduce the drag of liquids flowing across th&M although it is not obvious whether low
contact angle hysteresis (i.e. whether a surfaséifipy or sticky?) would be an important factor.
Experiments on drag reduction, or equivalently éastjp lengths, have used a range of different
experimental approaches including micro-particleage velocimetry and pressure drop
measurements;** hydrofoil measurements, cone-and-plate rheometéfspressure drop and
flow-rate measurement$,and quartz crystal microbalance resonat6fS Most of these methods
involve a fixed surface subject to a flgw.

Recently, two of the current authors describedl@mrative approach involving the settling
of a sphere with a superhydrophobic coating inrgelacylinder of watef® In the experiments
reported, a method, inspired by the insect phygipoliderature, of comparing the same sphere with
and without a plastron was developed using an etl@e-wetting out procedure. It was suggested
in that work that a key feature of the reductiordrag was the ability of a plastron to support an
internal circulation of air thus implying that a mmum thickness plastron was required for a
superhydrophobic surface to display drag reduatioapparent slip. The possible relevance of this
viewpoint to both laminar and turbulent flow regsneas discussed in a recent artichlost
recently, a similar terminal velocity of a settlisghere experiment has been reported, but using
heat to generate a uniform encapsulating layeapburvia the Leidenfrost effect, and this showed
drag reduction of over 85% in the sub-critical &ition to a turbulent flow regin'é.

To assist in the interpretation of experimentalits, and also add some physical context to
the use of plastrons for drag reduction rather thespiration in the natural wofftl we
theoretically investigate a model of drag on adsslpherical object possessing a surface-retained

* Note added to postprint: See also P. Muralidhar=étrer, R. Daniello and J.P. RothsteinFluid Mech 2011, 680,
459-476.
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layer of air (a plastron) in the low Reynolds numfmeeping flow) regime. The plastron in this
idealized model is of uniform thickness; as such, a@nsider the limit of a solid sphere with a
perfect superhydrophobic surface. In flow past @lgzbble or droplet attached to a wall, flow can
result in deformations of the bubble or dropleface* and contribute to drag. However, because
the air layer within a plastron is supported byigidr hydrophobic surface structure it is a
reasonable assumption that the layer is of unifamd constant thickness independent of the
precise details of the external flow. (Formallysthiequires capillary forces to dominate shear
forces so that, in the absence of fluid inerti®, ¢hpillary numberCa, is less than approximately
0.5%°) Note, moreover, that distortions and ripples lé gas-liquid interface are less likely to
contribute significantly to drag at low Reynoldsmiers.

From our model, we show that there is an optimuastpbn thickness for drag reduction:
the plastron must be thick enough to allow for riné air circulation but thin enough that the
additional cross-section of the compound objed&. @olid plus plastron) does not become too
large. We derive a relationship between drag redlu@nd an apparent slip length and investigate
their relationship with the thickness of the plastrMoreover, we show that in a terminal velocity
experiment, the reduction in drag caused by anplastan be sufficiently large that it overcomes
the additional buoyancy created by the air conthimihin the plastron — a plastron-retaining
sphere can fall faster than one not encased byea t& air. We discuss the relevance of these
results to real systems by addressing the desigdra-reducing superhydrophobic surfaces.
Finally, we consider a particular example from matwhere the plastron function is associated
specifically with drag reduction.

2. Theoretical Approach
2.1 Fluid Mechanics Formulation

The defining equations of fluid mechanics are ree@ below so that all assumptions are
stated explicitly. In the small Reynolds numberitickescribing creeping flow (i.eRe << 1), the
Navier-Stokes equations of motion reducé’to,

Op=n0%u 1)

whereu andp are the local fluid velocity and pressure ani the viscosity. Any solution for the
fluid velocity must also satisfy the continuity eqion,

bu=0 (2)

Axisymmetric flows for which dependent variables ardependent of the azimuthal anglean be
examined by introducing a streamfunctiag(r,6), wherer and & denote, respectively, the radial
distance and polar angle. Thus the non-zero ragidlangular components of fluid velocity,and
Ug, can be written as,

__ 1 oy(r6) _ 1 oy(r6)
u,(r.6) r’sind 08 and - u,r.0) rsind or ®)

respectively. For the streamfunction to be a sotubf the equation of motion, Eqg. (1), it must
satisfy the equation,



2 snga( 1 o\ B
L?r2+ r %(sin&@ﬂ wr.6)=0 )

Trial solutions to Eq. (4) of the formfsin’8, show thamn=-1, 1, 2, and 4 are possible so that the
general solution is of the forf,

: 1 1 D
r,@)=sin®g -—Ar* -=Br+Cr® +— 5
y(r.6) HLO > r} (5)
This general solution can be made specific to argigituation by applying boundary
conditions. For flow around an obstacle, one of bloendary conditions is that the radial and
tangential components of velocity must tend toftee stream velocity)., at larger, i.e.

u (r,8) -~ -U_ cosd and u,(r,8) - U, sing (6)

2.2 Encapsulated Droplet Solution

Our interest is in the difference in flow and cemgent drag force that occurs when a solid
spherical object of radius, is enveloped in a persistent, concentric sphlestvall of sheathing air.
This problem, illustrated schematically in fig.id4 a special case of a three-phase system in vehich
compound droplet consisting of a core fluid (phasenveloped by a sheathing fluid (phase 1) of
radiusa=b/g, wheree < 1, moves through an external medium (phase Zhisngeneral case, there
is a streamfunction, defined by Eq. (5), for eadhtte three phases. Rushton and D&Vies
considered this problem in 1983 and matched thendemy conditions requiring the velocity
components to remain finite (includingrat0), the velocity and tangential stresses to béimoous
at the boundaries between adjacent phases andothealnvelocity components to vanish at the
boundaries (so that phases do not rfiixyheir solution for the frictional drag forc€s°, on the
compound fluid object reads,

c_2 Ny + 675G(€) +17,,(2+ 375, )F (€) | _ o
Fd - 2 Fd (a)
3 ,732 + 4’7126(8) + 2,712 (1+,732)F (E)

(7)
whereFg°(a) = -6rv.aU. is the Stokes drag force on a solid sphere olusali 7=/ n; and the
functionsF(¢) andG(¢) are defined by,

L-¢°)
(1-£)(ag? +7¢ +4)

Fle)= (1+£)2e% +£+2)

(1-e)ae? + 76+ 4) and  6le)=

(8)

The corresponding streamfunctions were not giverRushton and Davies’'s study, but were
reported in the related investigation of Ferreitaal?® The general solutions are algebraically
intricate and are reproduced in the supplementafigrmation (Appendix A) for completeness,
where we also consider the limiting cagg- o, pertinent to a compound droplet with a solid core
(Egs. A6-A8).

Rushton and Davié§discussed the limits of the frictional drag formed showed that a
sphere of a single fluid of radiws (i.e. £~ 0) has a drag correction compared to Stokes’ law of
Mr=(2/3)(1+3712/2)/(1+1715), which is the Hadamard-Rybczinski resiiit? for a bubble of air in
water, 7712 is small (i.e. less than about 0.02), and thua teery good approximationyr=2/3.
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Rushton and Daviésalso showed that if the encapsulating phase # fliextremely thin (i.e.
£-1) the compound fluid experiences the same dragpfas a solid particle of radiasdespite the
core being a fluid. The source of this (possiblgpsiging) result is that the circulation of fluid the
encapsulating fluid shell becomes suppressed anthesgphase 1 fluid becomes immobile and
unable to transfer momentum across the boundaoytive encapsulated fluid (phase 3). This is an
equivalent effect to the adsorption of surfactamtsnpurities on a bubble rigidifying the gas-liqui
interface and so rendering the interface immdbifé Rigidifying the gas-liquid interface prevents
momentum transfer and results in higher drag epuiilat predicted by Stokes’ latf.

phase 2
(liquid)

Figure 1. Schematic of a plastron-bearing solid sphereliguad ambient.

3. Results for Plastron-Bearing Superhydrophobic Slpere
3.1 Drag Formula

To assess the effect of a plastron of thickdesm a solid sphere of radibs we modify the
above notation by writingjy, /7 ands— oo, respectively, in place ofi, 7. and ;. Next we note
thath(¢) is given by,

h(e) = (k—gjb )

&

or in terms ofg, &=b/(b+h). From Eg. (7), the frictional drag force then bees

SH _E 1+ 3/79|F(€) St
Fo" = 3[1+ 2n,F(9) JF" (@) (10)

where the superscript SH denotes a superhydroplsoiiace. In our case, the comparison of drag
forces is not between a compound droplet and d splhere both of radiws but between a solid
sphere of radiug and a plastron-retaining solid sphere of net adib+h. Using Eq. (10), the
correction factorésy, for the drag force due to the presence of a agriceplastron is therefore,



— FdSH el 1+ 3”9' F (‘9)
don = -6/m,bU,, 35{1+ 2n,F (©) ah

The drag force correction depends on two dimenegmVariabledyb and s . In drag experiments
the measured quantity is often the coefficient r@igdCp; for the plastron-retaining sphei@, can
be written as,

Fd 24fSH

C, = (12)

whereRe=20U.b/ 17 is the Reynolds number written in terms of the dgngs, of the solid sphere.

1) Analytical Limits

The first limit we examine is that of a vanishiniggiron withh- 0, which corresponds to
-1 andb-a. SinceF(g) - ase-1, &y — 1 from Eg. (11) and so we recover the usual Stokes
drag for a solid sphere of radibs* In this limit, it is important that the viscositgtio, g1, of gas-
to-liquid is not assumed zero even though it islbrithe Stokes limit is approached from below
and is only fully realized when the air circulatisthin the plastron is suppressed. Analytically, a
expansion of Eq. (11) can be performed usitbgas the small parameter (which me&fg™ is also
small) thereby yielding,

1

1+
_} 3,79IF(‘9) 1— _ 1 ~1— i_ D
e L 68{1 6f7g.F(£)} ' [% 1]b+"' .
2n,F (¢)

Providedry<1/4, the first order correction for a plastrontlotknessh causes a reduction of total
drag compared to the same solid spherical objetiowt a plastror®

In the opposite limit oh- o, the radius of the compound object is approxinyateind since
F(0)- 1/2, Eg. (10) gives a drag force of,

2|1+ 2
FdSH 3’7g| / St (h) (14)
3 1+ My

which is the Hadamard-Rybczynski result for a galshite?®*°*?Here & increases proportional to
2(1+/b)/3 so that the drag is essentially that of a baldflradiusb+h. This drag clearly increases
with the plastron thickness.

In light of the above results, there must existfgx1/4 an optimum plastron thickness,>
0, for which the drag force is a minimum. WHer h', there is a balance between the reduction of
drag associated with air circulation inside thesptan and the increase of drag associated with
expanding the physical dimension of the compoundabbHere, one can make a helpful analogy
with a problem from heat transfer, namely the addiof insulating material to a body whose mean
temperature is moderately larger, say, than th#tefmbient. Such an addition of material reduces
the thermal connectivity between the body andutsosindings but also increases the surface area
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over which heat transfer may occur. If the layesufficiently thin, addition of insulation theretor
increases, rather than decreases, heat loss footivectively cooling bodif.

i) Numerical Calculations

To further elucidate how the drag of a plastraiaireng sphere depends on the thickness of
the plastron, fig. 2 shows the Stokes drag cowadtctor,ésy, as a function of normalized plastron
thickness h/b. Using the viscosity values at @ for air and water (i.e,;=18.3%10° kg mi* s*
and 7=1.00x10° kg m'* s%), the ratio of viscosities i%;=0.0183 and a minimum value of
é51=0.807 is predicted to occur whérb=0.0835. Thus, for a sphere of radibisplastrons of
uniform thicknesses Gbland 0.0b should reduce drag by around 19% and 8.7%, rasphbct

1.1

06 I I I I
0 0.1 0.2 0.3 0.4 0.5

Figure 2. [Colour] Drag correction factorésy, as function of normalized plastron
thickness, h/b. The gas-to-liquid viscosity ratios argy=1x10", 75=1.34x107
N4=2.68<107, ... 175=0.187,14=0.2. The arrow shows the direction of increasigg
Star symbols indicate the global minimum of eactveuThe (red) dashed line has a
slope of 2/3.

Corresponding to the above drag calculations, Jiglots streamlines of the interior and exterior
flow for values of plastron thickness below, abawel at the optimum plastron thicknelss, When
the plastron is extremely thin, the streamline grattreproduces that expected for creeping flow
around a sphere (fig. 3a). As the plastron thickmesreases, an internal circulation of air witthie
plastron can be observed in a similar manner tovitéch occurs for a gas bubble retaining a non-
rigid gas-liquid interface when immersed in a flagiliquid (fig. 3b, 3c). As the plastron increases
further in thickness the cross-sectional area efdbmpound object becomes notably larger (fig.
3d). This sequence demonstrates the physical mdeading to an initial reduction then progressive
increase in drag dsgrows in magnitude.
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Figure 3. [Colour] Normalized streamline patterns aroundasgpon-retaining sphere
for 1775=0.0183 and variouk/b including, in panel (b), the drag-minimizing optim
thicknessh /b=0.0835. The streamline pattern within the plastics ¢/(Ub?), is
shown with the colour contours. Outside of the tptas streamlines are shown
at ¢4/(U,b%=0.01, 0.04, 0.1, 0.175 and 0.3.

3.2 Apparent Slip

When there is no layer of air at the solid-liquiderface the usual boundary condition for a
simple liquid, such as water, flowing past a smosahd is the no-slip boundary condition. The
concept of a slip boundary condition is that th&apolation of the velocity profile of the flow in
the external liquidy,'(r), to match that of the solid,(r), occurs at a location, sayb-ls, other than
the physical interface=b, between the solid and the liquid. Using a Tageries expansion, we
write

w6)=ul(b-1,)=u] (b)—us[f’“ijrzb (15)

or

wherels, is the slip length. Eq. (15) allows the slip ldngp be defined in terms of the mismatch in
velocities at the boundary and the shear stresilédi by the viscosity of the liquigi),?®

I, ~Au, (bﬂ aa“r: j (16)

Often, a slip parameter or coefficieft=r/ls, is used in the literature since this is the rafighe

shear stress at the interface for a given velonigmatch. If one believes the mismatch in velositie
to represent a real effect, then the slip is terneadl slip. However, a plastron interposed betwaeen
solid boundary and an external flow lubricates flbev and gives rise to an apparent slip. The
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effect of the air layer is to replace the boundaogdition for the external flow by a continuity of
shear stress condition.

Basset’ found that the drag forc€,®, on a solid sphere in a liquid subject to a sbpridary
condition can be expressed as a correction totthleS drag assuming no-slip using,

_ R [
0 = s mu, _L+ 3 /ﬂo} &

Previous researchers have commented that the udedutow field caused by the migration of a
slip solid sphere is the same as the external field generated by the same motion of a spherical
fluid drop with a value of3=37/b.33%° Thus, the slip length is one third of the radifishe sphere,
i.e. Is=b/3. With a plastron-bearing superhydrophobic sefptiere, however, this is not the correct
physical situation: the solid core remains solidt tetains a layer of air of a finite thickness. We
therefore expect the slip length to depend onhiekness of the plastron. Comparing Eq. (17) with
Eq. (11) for the drag correction factor due toasplbon gives,

RESGEEAY

pB=1 (18)
IGRERG

The slip length is then given by,
| @ ‘Ej(sg'ig)] '@
REe

Using /7|g:(/79|)'1=54.5, we note that the slip length becomes negativenh/b > 0.454. To the left

of this point,ls reaches a maximum value lgh=0.458 ath/b=0.0835 at which point the drag is a
global minimum (fig. 3b). For smali/b (i.e. up to 0.01)ls is directly proportional to the plastron
thickness. Analytically, Eq. (19) givds=(-1+74/4)h demonstrating that the slip length can be an
order of magnitude larger than the plastron thisknethis is consistent with the “order of
magnitude” estimate given by Eq. (2.4) of Vinogreal® The dependence of the slip length on the
plastron thickness is shown in fig. 4.

(19)
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Figure 4. Normalized slip lengthg/b, as a function of normalized plastron thickness,
h/b, for the range of viscosity ratios indicated iguiie 1. The arrow shows the
direction of increasingsy (or decreasingng). Star symbols indicate the global
maximum of each curve.

3.3. Terminal Velocity

If a plastron-bearing superhydrophobic spherel@vad to freely settle in a large volume of
water containing no impurities or surfactants, téreninal velocity will, in general, differ from tha
for a smooth solid sphere of the same density addis. At lowRe the two competing effects
caused by the plastron will be the decrease in diegto the drag correction factégy and the
increase in buoyancy due to the layer of air inglastron.

At terminal velocity, the drag, buoyancy and gratdnal forces must balance and
consequently,

-470°(pe* +[1-£%)o, - )0

Q(SH FdSt (b) = 353

(20)

where ps, o and gy << ps, A are the densities of the solid, air (gas) in theston and the water
(liquid), andg=9.81 m & is the acceleration due to gravity. Using Stoklag formulaf4°(b) = -
6/mbUr>" whereU:>" denotes the terminal velocity, gives,

20°(p,* +{1-£%)p, - o1 )o
9e°n,bés,

SH _
ust =

(21)

which can be re-written as,
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SH _ UTS{ _ (1_‘&3)Aplg
s $sm |_1 g Dp, 22)

whereAoy=0-py andAps=ps-0 and Ur>is the terminal velocity given by Stokes’ law farsolid
sphere devoid of plastron. In the limit of a thasgshell, (1£%)/£&=3h/b, which becomes vanishingly
small ash - 0. Thus the correction factor for the terminal witpis given byl/ésp=1+(1/4-1)/b;
providedsy > 4 (i.e.ng < 1/4), drag reduction will outweigh the retardigffect associated with the
buoyancy of the plastron. Conversely at latgebuoyancy dominates to the extent that the
compound object rises rather than falls. Eq. (B2htrecovershe known result for a bubble of gas
rising at a terminal velocity dictated by the Ha@dadiRybczynski result. Correspondingly, we
expect there to be a limited range of plastronktiésses for which the terminal velocity;y>",
exceeds the value predicted by Stokes’ law and iguanthicknessh’, for which U™ is
maximized. This prediction is corroborated by figwhich shows solutions to Eq. (22) for various
Ny and two solid-to-liquid density ratiog/a = 2.5 anda/a = 5.

(a) psfpl =25 (b) pslpl =5

0 0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0.8
h/b h/b

Figure 5. The effect on the terminal velocity of a settligghere carrying a plastron (i.e.
UHU+>Y as a function of plastron normalized thicknégs, for the range of viscosity ratios
indicated in figure 1. The arrow shows the direttaf increasingyy. (a) o/0=2.5, and (b)
oJp =5. In either case, the inset shows the behavimusmall /b and Ut>/U+! close to
unity. In the special circumstant#o=0, Ur>"/U>=1 for all 7y, i.e. the limit prescribed by
Stokes’ law is recovered.

The insets to fig. 5 make clear thdtis a function both ofyq and p/a. This dependence
contrasts with the drag reduction of fig. 2 ang $ingth of fig. 4, neither of which vary with the
density ratio, and which therefore have extremaefgiby the star symbols) at identical values of
h/b. From the pre-factoésy® on the right-hand side of Eq. (22), it is evidémat the point of
maximum drag reduction will coincide with the poiot maximum terminal velocity when the
density of the solid is much larger than that & kiquid, and hence also of the gas. Physically, th
buoyancy of the plastron is irrelevant in this caseng to the very large density of the solid. A
similar coincidence is anticipated whgg=0. By contrast, under less extreme circumstariceg
< o, 11g>0), we expecth” and h’ to differ and, more specifically, th&f>h’. Both of these
predictions are indicated in fig. 6, which show# andh’/b as functions of the density ratim/g
and the viscosity ratigyy. Consistent with figs. 2 and & /b is independent op/o and is,
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moreover, first an increasing then a decreasingtiom of 775. On the other hand, and further to fig.
5, h'/b depends both upon the density and viscosity rafibe qualitative variation df'/b on 75y is
similar to that associated with/b. Converselsh’/b is a monotonically increasing function of g,
which again reflects the fact that thicker plassresan be accommodated when the solid denaity,
is large.

(a) Minimum drag (b) Maximum velocity

Figure 6. [Colour] Optimum plastron thickness as a functaf p/a and 77g. In (@),h'/b
corresponds to the plastron-retaining sphere hawiagninimum drag. In (bjy'/b corresponds
to the plastron-retaining sphere having the maxinbenminal velocity.

4. Discussion

The present analysis examines a model of a pesigmerhydrophobic surface, namely a
solid sphere that is encased within a sheathirngrnola of uniform thickness. Within the context of
this idealized model, it is assumed that the infaeeof surface tension outweighs that of viscosity
so that the air-water interface does not def8trs discussed in the introduction, in a plastrom th
interface is effectively stiffened and maintaingdaaconstant thickness due to the hydrophobic
surface structure supporting and maintaining the lgger. We assume, moreover, that conditions
are such that the interior and exterior flows ascatibed by Stokes’ flow. Formally, our analysis is
restricted to the small capillary and Reynolds nerabiegimes i.e€Ca<0.5,Re<<1.

Of course, the ability of a superhydrophobic swefac retain an encapsulating air layer
depends in part on surface chemistry but also erétails of the surface topography; for long term
effectiveness in drag reduction the air layer alseds to be persistefftin the case of aquatic or
semi-aquatic insects, for example, the integumdeinoconsists of a dense array of long, waxy
hairs, which are bent near the tip and therefdte the shape of an inverted ‘L’ (see figs. 6, 18 an
11 of Thorpé or fig. 3 of Flynn and Bush By contrast, biomimetic engineered surfaces are
typically characterized by a regular array of in@¢ions and/or protrusiofs. In either
circumstance, the presence of these micro-scalerésais expected to depress air velocities within
the plastron due to the additional viscous dragaated with flow past this micro-topography. So
whereas the curves of figure 2 exhibit unambiguousgma corresponding to the smallest possible
drag experienced by a plastron-retaining superipftbbic sphere, the associated predictions of
(&s)min @andh'/b may be conservative.
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In extreme cases, e.g. meridionally-aligned ridgesvering the surface of a
superhydrophobic sphere, the scale of the air latiom cells may be dictated by the ridge-spacing
rather than the sphere diameter. Such is the cageinumerical study of Gao and Féhgvho
studied flow over a superhydrophobic surface tlatamprised of a series of posts with non-
penetrating liquid bridging between adjacent pasis thus consists of a periodic surface with a set
of air bubbles within the surface structure. Gad Beng® found that air circulation cells develop
within each bubble, which are qualitatively simitarthe larger cells exhibited in figure 3. Indeed
they argued that depinning of the contact linesiadoeach bubble can promote the formation of a
continuous layer of air. Whilst we are unaware 0§ aolutions to the equations of Rushton and
Davies’ that are not of the form exhibited in figure 3,0Gand Feng's numerical results suggest it
should be possible to extend the approach in ouk w a series of connected air volumes co-
located on the solid hydrophobic surface. In thating case, isolated bubbles of the type examined
in a different context by Sugiyama and Sbragaylae expected. From the analysis of Gao and
Feng® it is known that the relationship between drag eincLilation cell size is a sensitive function
of the fraction of exposed solid surface, at laasthe Cartesian geometry examined in their
investigation. However, for the regime of interésre where surface tension dominates over
viscosity (and inertia is negligible), their fig8. and 10a suggest that the drag is essentially
independent of cell size.

The above considerations add extra constraintisercontext of superhydrophobic material
design and fabrication: adjacent surface topograpl@ments must be positioned close enough to
maintain the integrity of the plastron but not utk an orientation as to stifle zonal air flow athw
a symmetry or density that impedes the connectigitjthe space. Although quantifying these
geometric considerations for a particular applaratremains the topic of on-going research, it
should be recalled that reproducible drag reducivas measured in recent experiments in which
solid spheres were coated with a random array @fdphobic sand grairfs.An important point of
difference between these experiments and the thdesgribed above is the relatively large
Reynolds number (i.eRe-1x10" to 3x<10%) applied in the former. In this inertia-dominategjime,
interface rigidification by surfactant accumulatioa expected to be negligible and, more
significantly, flow separation is anticipated iretlee of the sphere. A thick plastron can be exuect
to modify the separation poiits and/or wake cross-sectional dreand thereby depress the drag
in greater proportion than is reported in fig. 2wy, which considers the Stokes line<<1/?
Indeed, this effect that has recently been reparsaalg a terminal velocity experiment with a solid
sphere retaining a Leidenfrost induced vapour 1&@he fact that McHalet al’s experiments
employed irregular hydrophobic surfaces suggesis rtbntrivial drag reduction can be achieved
even for non-optimized surface topography.

Returning briefly to the natural world, not allledgic and semi-aquatic arthropods use their
plastron for respiratory purposes. A case in p@ihe 1.5 mm long intertidal midg&unio, which
was the topic of a recent theoretical and experiedénvestigation by Neumann and Woerm@hn
They remark that, upon submersion, “parts of theudies are covered by a thin layer of air, other
parts are surrounded by [a thick] air bubble logdtetween body and extremities” (see their fig. 1).
The function of the plastron is to prote€lunio “against shearing forces which otherwise could
injure the insect’s extremities during submersiorthie churning sea.” Such protection would be

* Note added to postprint: See also P. Muralidhar=étrer, R. Daniello and J.P. RothsteinFluid Mech 2011, 680,
459-476.
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especially substantial in the case of a surfaaigidified air-water interface, although ocean
turbulence could then transport the plastron-retgimsect longer distances than would be the case
for a clean, free-slip interface. Neumann and Waewf? further remark thaClunio specimens
adhered to the inner surface of the (glass) comtamwhich they were submerged in the laboratory.
To the limited extent thaClunio may be able to adhere to rocky substrate wherckstioy an
incoming wave or its spray, the presence of anmndating air bubble will reduce the drag forces
experienced by the insect and thereby decreadikéfiaood of it being washed away.

Biological plastrons are not limited to the adulige of development, but appear also in
insect eggs, particularly terrestrial eggs laiémvironments subject to occasional floodtf§® Egg
plastrons fill the chorionic void spaces and alspear along the chorion surface yielding a silvery
sheen, e.g. along the dorsal side of blow-fly é§galthough the respiratory function of these
plastrons is well-established, there is also tresidity that they serve a drag-reducing role.olio
best knowledge, this alternative has not been pusly considered and will comprise the topic of a
future investigation. Likewise, we intend to invgate the possibility that the air circulation sell
depicted in figure 3 enhance the transport of orymed carbon dioxide within insect and insect egg
plastrons. If this conjecture is valid, it sugged$ts example, that the spacing between adjacent
breathing tubes in insect integument, and indeedstale of the plastron, is not dictated solely by
molecular diffusion.

5. Conclusion

In this work drag reduction at low Reynolds numbiensa superhydrophobic sphere has
been considered using a simple analytical moded obntinuous sheathing plastron. It has been
shown that significant (i.e. 20 to 30%) reductiamsirag are possible due to the induced internal
circulation of the gas within the plastron. The gamce of a plastron results in a competition
between drag reduction from the internal gas catomh and drag increase from expanding the
effective cross-sectional area of the compoundabbjehis competition yields an optimum plastron
thicknessh’, for drag reduction. The overall drag reductiosugficiently large that in the context
of a solid sphere settling in water under gravitgan outweigh the effect of the increased buoyanc
from the air in the plastron. At small plastronckmesses, the drag reduction can be equated to an
effective slip length and, for an air-water systehs slip length is an order of magnitude larger
than the plastron thickness, which itself is seth®ysize of the topographic features. Our resualts
thereby guide the design of drag-reducing supedpjasbic surfaces; they suggest, for instance,
that topographic features should be large enougpraeide an optimum thickness plastron, yet
designed and distributed such that circulation iwittme plastron is not suppressed. Finally, the
relevance of this model to intermediate and higginRils number flows and to the possibility that
some insect plastrons fulfil a drag reduction rodéher than just a respiration role, are discussed
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Appendix A — Streamfunctions

Ferreiraet al. give the streamfunction solutions for single andltiple compound droplets in a
creeping flow regimé.For a fluid-encapsulated fluid core of radinsin axisymmetric creeping
flow the three stream functions are,

Core(O=r<h)

U_r2sin’6(n,,S r2
et ) =

where&=b/a anda is the radius of the fluid core together with #reapsulating fluid (see fig. 1 of
the manuscript). Her&,, is the free stream velocity at largeand 77:o=1/1; is the ratio of the
viscosity of the sheathing fluid (phase 1) to tkeemal fluid (phase 2).

Sheathing fluidb<r<b/¢)

2 cin2 213 N 3
g, = Yersin 6( 1 5)(G(£)j{2’712(£r _T+T_b_%j+,732(1_8)(uir R Wb Xt; H

2 1-¢ A r r &a r

(A2)

where n32=n3/1, is the ratio of the viscosity of the core fluid gse 3) to the external fluid (phase
2).

External fluid(b/e<r)

~Dlsin?
) (2 enre)on wnton.clelen 1221 2)] a2

2
where
B =1y, + 405G ) + 27, (L+ 172, )F () (A4)
and
5. le2+3e4) (A5a)
(1-¢)lae? +7¢ + 4)
((1 :)) e et e+ (ASb)
U=(e+2) (ASc)
V = (3¢ + 652 + 45 +2) (A5d)
W = (267 + 462 + 66 +3) (A5e)
% = (26 +1) (A1)
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In the limit of a solid core (i.e7;2— ), these equations reduce to,

W, = 0 0<r<b
(A6)
PRI CHNES [V g P
2 1+2n,F(e)\T) b? a
(A7)
b) .
Umr[r—jsmzﬁ
_ £ 1 _b b
w, = > (1+2/712F(£)j{1+,712(1 erj(2+grj|:(£)} ble<r
(A8)

Note thatys vanishes at both andb/g, and ¢, vanishes ab/¢ (see fig. 3 of the manuscript). In the
limit r oo, the stream functiogs — 0.5U.r?sin’6, which is the expected free stream value.
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