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We have theoretically studied the possibility to control the equilibrium solubility of dopants in
semiconductor alloys, by strategic tuning of the alloy concentration. From the modeled cases of C0 in
SixGe1�x, Zn� and Cd� in GaxIn1�xP it is seen that under certain conditions the dopant solubility can be
orders of magnitude higher in an alloy or multilayer than in either of the elements of the alloy. This is
found to be due to the solubility’s strong dependence on the lattice constant for size mismatched dopants.
The equilibrium doping concentration in alloys or multilayers could therefore be increased significantly.
More specifically, Zn� in a GaxIn1�xP multilayer is found to have a maximum solubility for x � 0:9,
which is 5 orders of magnitude larger than that of pure InP.
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Attaining significantly higher equilibrium doping con-
centrations is of great importance for the development of
future semiconductor technologies. In the nonequilibrium
case, raised doping concentrations �1020 cm�3 have been
achieved by epitaxial methods in Si1�xGex:B [1–3],
GaAs:N [4], GaInAs:Be [5], GaAs:C [6], and C in diamond
[7]. Even higher, still electrically active, doping concen-
trations of up to 1022 cm�3 have been achieved in localized
layers by so called �-doping [8–10]. From a theoretical
point of view the raised nonequilibrium concentrations
have been successfully explained by the increased range
of the chemical potential of the dopant during epitaxial
growth [11–13].

In this Letter we consider ways to increase the solid
solubility to achieve higher doping concentrations under
equilibrium conditions. We study the dependence of the
equilibrium solubility of substitutional defects, including
dopants, in compound semiconductors AxB1�x. We dem-
onstrate that the equilibrium solubility of dopants need not
be monotonic in x and lie between those of the pure
materials A andB. Instead, we will show that careful tuning
of x can result in equilibrium solubilities many orders of
magnitude higher in the alloy than in either of the pure
materials.

It is well known that high doping can alter the lattice
constant of a material [14]. Here we investigate the possi-
bility of using changes in the lattice constant to control the
doping concentration. Initial indications of this have been
noted in previous experimental work [15], in theoretical
studies of dopants in silicon under applied biaxial strain
[16] and for vacancies and self-interstitials using a phe-
nomenological method [17]. However, the full implica-
tions of this possibility have not so far been realized.

Our hypothesis builds on the way in which the solubility
depends on the difference between the dopant’s and the
substituted host atom’s equilibrium bond lengths. The
solubility of a dopant atom of the same size and equilib-
rium bonding distance as the host atoms will have little

dependence on the strain of the material since the differ-
ence in bond energy will be constant. If the equilibrium
bonding distances differ, however, the solubility of the
dopant may have a strong dependence on the lattice con-
stant, such that the equilibrium solubility of smaller
(larger) dopants increases under compressive (expansive)
strain. Our results show for the first time that the equilib-
rium concentration of a defect can sometimes be orders of
magnitude higher in an alloy or multilayer than in either of
the constituents. This leads to the possibility of increasing
the equilibrium solubilities of dopants through strategi-
cally composing multilayers or alloys.

The equilibrium solubility may be predicted through the
calculation of the defect formation energy "form [18]

 C � Nse
�"form=kBT; (1)

where Ns is the concentration of possible lattice sites for
the defect. Our calculations are performed using plane
wave ab initio density functional theory [19] within the
local density approximation (LDA) together with ultrasoft
pseudopotentials [20]. A full description of technical de-
tails and more extensive results are presented elsewhere
[21] (the small formation entropy contribution is expected
to have a negligible dependence on strain).

The C0
IV impurity in SixGe1�x and the Zn�III and Cd�III

dopants in GaxIn1�xP are used here as model systems.
GaxIn1�xP was chosen due to the large difference in co-
valent radius between In and Ga. C0

IV in SixGe1�x was
chosen since the isovalency of the atoms minimizes the
ionic contributions to the bonds and the neutral charge state
of the dopant minimizes the electrostatic contributions to
the formation energy. We first consider disordered alloys,
then the CuPt-ordered [22] phase of the alloys, and finally
we study the controlled environment of thin multilayers.
All systems are relaxed fully and their lattice constants all
agree with the linear interpolation of the LDA values to an
error of less than 0.05%.
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The defect formation energy is calculated as

 "form�q� � ETot
def �q� � E

Tot
ideal �

X

i

ni�i � q�"F � "V�;

(2)

where ETot
def �q� and ETot

ideal are the total energies of the super-
cell with and without the defect in charge state q. ni is the
number of atoms of type i and chemical potential �i added
in order to form the defect. "V is the energy of the valence
band maximum and "F is the Fermi level. Since strongly
p-type materials are considered the Fermi level is approxi-
mated to be located at the valence band maximum.
Stoichiometric values are used for the chemical potentials.

Comparing the formation energies of dopants in
Si0:5Ge0:5 and CuPt-ordered Ga0:5In0:5P to those of the
pure materials, our calculations show that the formation
energy of Zn�In is 0.35 eV lower in Ga0:5In0:5P than in pure
InP, whereas that of Zn�Ga is relatively unchanged, 0.01 eV
higher than in pure GaP. The corresponding energies in the
disordered material are 0.27 and�0:07 eV on average. For
cadmium, it is instead Cd�Ga that changes the most since its
formation energy is 0.38 eV lower in Ga0:5In0:5P than in
pure GaP, while the change for Cd�In is insignificant,
0.07 eV relative to pure InP. Since Zn and Cd are isovalent
their most significant difference is size and therefore our
results suggest that the formation energy depends on the
local structure and especially the local strain of the mate-
rial. It is noteworthy that the formation energy is not a
unique function of x and unlike properties such as the band
gap or the lattice constant, it does not follow a single
monotonic relation.

To better to understand how the local environment af-
fects the formation energy of dopants, we study the same
dopants as discussed above, but in a multilayer geometry:
GaPx=InP1�x with x � 0:33, 0.5, and 0.67, and C0

IV in
Si0:5=Ge0:5. Allowing both the ions and the volume of the
multilayer supercells to relax fully, it is found that there are
tetragonal distortions of the layers. This distortion is such
that there is a lattice matching at the interface and to
preserve the unit cell volume the smaller GaP (Si) unit
cell is shortened in the direction perpendicular to the inter-
face while the larger unit cell of InP (Ge) is elongated in the
same direction. Values of the lattice constants parallel to
the interface (ak) and perpendicular to it (ai?) are tabulated
in Table I. Further, it is found that the bond distances
between two given species are constant to within 0.05 Å.
For a given x all multilayer structures considered are there-
fore found to be highly uniform within the layers of each
material type, i.e., ai? does not depend on position in the
multilayer, although there naturally are discontinuities at
the interfaces. As a result, the formation energy of a dopant
is the same inside a layer (to within 0.06 eV), independent
of the distance to the interfaces.

In Fig. 1(a) the dependence of the formation energy of
C0

IV on the lattice constant is shown for pure Si and Ge

(dotted and full lines) [23]. The lattice constant is varied
from the LDA equilibrium lattice constant of Si to that of
Ge. The same thing is shown for Zn�III and Cd�III in GaP and
InP in Fig. 1(b). Analyzing the slope of the curves it is seen
that a dopant of equal size as the substituted host atom has

TABLE I. Lattice constants of multilayer structures (Å). The
local average lattice constant is defined as ailoc: � �a

2
k
ai?�

1=3, and
the overall average as aav: � xaAloc: � �1� x�a

B
loc:. To the given

accuracy, the linearly interpolated values, as predicted by
Vegard’s law, coincide with aav: and are therefore omitted.

x ak aSi
? aGe

? aav: aSi
loc: aGe

loc:

0.5 5.50 5.30 5.71 5.50 5.43 5.57

x ak aGaP
? aInP

? aav: aGaP
loc: aInP

loc:

0.33 5.68 5.10 5.97 5.68 5.49 5.78
0.5 5.61 5.17 6.05 5.61 5.46 5.76
0.67 5.54 5.24 6.12 5.54 5.44 5.73
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FIG. 1 (color online). Correlation of formation energy of C0
IV,

Zn�III, and Cd�III and the local lattice constant (left) or the average
bond distance (right). Dotted curves show the formation energy
dependence of the pure materials. Following the analytical treat-
ment of Ref. [28] the local lattice constants of the multilayers are
calculated in the entire range x � 0! 1 and the ranges they
span are indicated by full lines. Values from multilayers, ordered
compounds and disordered alloys are denoted by �, �, and �,
respectively.
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little dependence on strain since the equilibrium bond
distances of the dopant to the host structure are close to
those of the unperturbed host. For a smaller sized dopant,
the formation energy will decrease upon compression and
the dependence on the lattice constant has a positive slope.
Following the same argumentation, the strain dependence
of dopant atoms larger than the host has a negative slope.

For multilayers one needs to use the local lattice con-
stant (Table I) as the relevant parameter. It is defined as
ailoc: � �a

2
k
ai?�

1=3. The formation energy of the Six=Ge1�x

multilayer lies very close to the data for the externally
strained materials (dotted lines). The formation energies
shown in Fig. 1(b) for the GaPx=InP1�x multilayers also
show close resemblance to the values given by the exter-
nally strained GaP and InP materials. For alloys and com-
pounds it is not possible to define a local lattice constant
and instead the average bonding distance is used as the
gauge of the lattice (dnn). It is clear that also for these
systems the formation energy lies close to the values of the
externally strained materials [24]. Hence, the data in Fig. 1
illustrates that it is the relative size of the dopant atom
which is the most important parameter that governs the
formation energy.

Following the size argument above, the formation en-
ergy dependence on strain of the smaller C dopant has a
positive slope in both Si and Ge. Since the local lattice
constant in the Si (Ge) layers of multilayer Si0:5Ge0:5 is
5.43Å (5.47 Å) as compared to 5.39 Å (5.62 Å) in pure Si
(Ge), C0

Si (C0
Ge) is expected to have a lower (higher) equi-

librium concentration in multilayer Si0:5Ge0:5 than in pure
Si (Ge). Cd is of equal size to In, therefore the formation
energy of Cd�III is expected to have a weak dependence on
the lattice constant in the InP multilayer. Further, it is
expected to cause a strain in the surrounding structure
when substituting a smaller Ga atom, which gives the
lattice dependence curve a negative slope in the GaP multi-
layer, as seen in Fig. 1(b). Zn is instead of equal size to Ga,
which results in a flat dependence of the formation energy
on the lattice constant for Zn�Ga and therefore the solubility
on Ga sites is not expected to change significantly with the
x. The formation energy of Zn�In, on the other hand, has a
strong dependence on the lattice constant. For pure InP,
x � 0, the formation energy of Zn�In is 0.39 eV but it is
reduced toward zero as x approaches 1. Since Zn will be
incorporated on the sites where it has the lowest formation
energy, this means that the equilibrium solubility of Zn in
GaxIn1�xP can be increased by several orders of magnitude
by reducing the In content and raising x. Unlike the other
dopants studied here, Zn shows that the solubility can be
considerably higher in GaxIn1�xP than in either GaP or InP.

From the results for disordered GaInP it is clear that the
sublattice in which substitution takes place is of main
importance; the formation energy of ZnIn will follow the
trend of externally strained InP independent of the nearest-
neighbor environment. That the type of atom substituted is

important shows that the size argument is synonymous to
that of strain relief; if compressive (expansive) strain is
relieved by the substitution with a smaller (larger) dopant it
will result in a lower formation energy relative to the
unstrained material. As for the internal strain, the disor-
dered alloy will have residual strain in much the same way
as multilayer structures. This means that if the local lattice
constants are known, either from experiment or through
analytical calculation, the formation energy of the dopant
can be calculated for the pure materials at those local
lattice constants to provide an estimate (	0:1 eV) of the
formation energies in the alloy or multilayer. This provides
a means of determining how alloying will influence the
dopant concentration and thereby the charge carrier
concentration.

Several experimental findings can be explained by this
size argument: Hong et al. have found that the equilibrium
solubility of Sb in Ge0:1Si0:9 decreases with compressive
strain, which can be explained by Sb being larger than both
Si and Ge [25]. The equilibrium solubility of Si in GaAs,
on the other hand, would be expected to decrease under
expansive strain due to the smaller size of the Si atom. In
accordance, it has been observed that the Si concentration,
both in the Ga and As sublattice, decreases with the in-
corporation of In, which increases the lattice constant of
Ga1�xInxAs [26]. The measured decrease in charge carrier
concentration of Ga0:8In0:2Sb, as compared to GaSb, can
also be explained by the decreasing solubility of SiSb with
increasing In content [27].

To generalize, the equilibrium solubility of a dopant in a
material can be raised by strategic alloying as follows: if
the dopant atoms are smaller (larger) in size than the host
atoms A, one should alloy with a material B which has a
lattice constant aA0 > aB0 (aA0 < aB0 ) and a formation energy
larger than that of material A, i.e. "form

A < "form
B (so that the

dopants sit on A sites). That is, a substitution that leads to
strain relief will be energetically favorable and lead to an
increasing equilibrium solubility of that dopant.

Turning back to Eq. (1), it is seen that the equilibrium
concentration is not solely determined by the formation
energy; changing xwill also change the number of possible
lattice sites Ns. Taking the example of thin multilayers, we
can rewrite Eq. (1) as a function of x which allows us to
find the value of x that maximizes the concentration. For
the case of ZnIn in GaPx=InP1�x, the number of In lattice
sites is simply NInP � �1� x�Ntot. By repeatedly minimiz-
ing the total energy for varying multilayer thicknesses
according to Ref. [28], we can find aloc:

0 as a function of
x (for consistency LDA values of aGaP

0 and aInP
0 are used).

Combining this with the formation energy’s dependence on
the local lattice constant of Fig. 1 finally gives the forma-
tion energy as a function of x. The concentration in Eq. (1)
can then be expressed entirely as a function of x. The
resulting concentration of Zn�In in GaPx=InP1�x is plotted
in Fig. 2 and it is seen that the maximum solubility is
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achieved for x � 0:9. Although this analysis is carried out
for a GaPx=InP1�x multilayer, the key mechanism of the
formation energy’s dependence on the local strain is gen-
eral and therefore the same trend should be valid for all
GaxIn1�xP structures. Figure 2 suggests that an increase of
the dopant concentration can be achieved by strategic
alloying of the host material or formation of multilayers,
and that the doping concentration can be made to increase
by 5 orders of magnitude.

To conclude, we have shown that the formation energy
of dopants can have a strong dependence on the local
lattice constant, depending on the size mismatch of the
dopant and the host atom. The formation energies of
dopants in alloys and multilayers are found to correlate
well with those of the externally strained materials at the
corresponding lattice constant. Therefore the dopant solu-
bility can be predicted in an alloy or multilayer if only the
dependence on strain and the local lattice constant are
known. Furthermore, it has been shown that the equilib-
rium solubility of a dopant can be significantly increased
by tuning the local lattice constant through strategic alloy-
ing and that it can exceed those of the pure materials by
several orders of magnitude. For Zn�III in GaxIn1�xP it has
been shown that the maximal equilibrium solubility is
achieved for x � 0:9, at which point it is increased by
5 orders of magnitude.
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FIG. 2. The Zn�In concentration in multilayered GaP=InP as a
function of x. The dotted curve corresponds to right y axis. The
relative increase of 5 orders of magnitude is reliable, although
absolute values may not be due to the sensitivity to residual
errors and neglect of formation entropy contributions.
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