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Summary 
 

A complex series of events involving inflammation, cell migration and proliferation, 

ECM stabilisation and remodelling, neovascularisation and apoptosis are crucial to the 

tissue response to injury. Wound healing involves the dynamic interactions of multiple 

cells types with components of the extracellular matrix (ECM) and growth factors.  

Impaired wound healing as a consequence of aging, injury or disease may lead to serious 

disabilities and poor quality of life. Abnormal wound healing may also lead to 

inflammatory and fibrotic conditions (such as renal and pulmonary fibrosis). Therefore 

identification of the molecular events underlying wound repair is essential to develop 

new effective treatments in support to patients and the wound care sector. 

Recent advances in the understating of the physiological functions of tissue 

transglutaminase a multi functional protein cross-linking enzyme which stabilises tissues 

have demonstrated that its biological activities interrelate with wound healing phases at 

multiple levels. This review describes our view of the function of tissue trasnglutaminase 

in wound repair under normal and pathological situations and highlights its potential as a 

strategic therapeutic target in the development of new treatments to improve wound 

healing and prevent scarring. 
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Overview of wound healing 

 

Wound healing is characterised by three interrelated and overlapping phases: 

inflammation, tissue formation/stabilisation and tissue remodelling. It is a complex and 

dynamic process involving the interactions of different cell types that vary depending on 

the type of tissue involved.  It employs an intercalating array of signalling peptides such 

as. growth factors and cytokines that control and regulate a co-ordinated cellular and 

extracellular matrix remodelling to repair the lesion.  For example, following injury to the 

skin, which is probably the most well characterised process (Singer and Clark 1999; 

Harding et al 2002 [and references therein]), the wound is normally filled by a blood clot 

which re-establishes hemostasis and serves as a temporary matrix for the migration of 

cells from adjacent tissue. It consists mainly of transglutaminase-mediated (factor XIIIa) 

cross-linked fibrin with incorporated plasma fibronectin (FN). In particular FN acts as a 

provisional matrix for cell migration and cell adhesion by interaction of its epitopes with 

trans-membrane receptors. These are predominantly the integrin class of receptors, which 

mainly recognise the ArgGlyAsp (RGD) epitope within the FN type III10 domain and the 

heparan sulfate proteoglycans (HSPG) class of receptors (primarily syndecan-4), which 

mainly bind the FN C-terminal HepII epitope (Burridge and Woods and Couchman 

2001). Cells within the thrombus, predominantly activated platelets, release many wound 

healing mediators (such as platelet-derived growth factor, PDGF) leading to  the 

inflammatory response by the recruitment and activation of macrophages and fibroblasts. 

Macrophages have a key role in phagocytosis of microrganisms and remanants of the 

ECM and in the secretion of wound healing cytokines such as PDGF, vascular 

endothelial growth factor (VEGF) and also transforforming growth factor β (TGF-β) and 

basic and acidic fibroblast growth factor (FGF), which mediate the transition between 

inflammation and tissue repair. . Fibroblasts are key cells in the formation of new tissue 

in the wound space. After migrating into the wound area, they synthesise new ECM with 

gradual replacement of the provisional matrix with a collagen matrix. Several matrix 

metalloproteases (MMPs) and tissue inhibitors of matrix metalloproteases (TIMPs) are 

expressed during wound healing and are responsible for matrix remodelling by degrading 

existing matrix in/around the wound edge and by creating a path for cell migration while 
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new matrix is deposited (McCawley and Matrisian 2001). Matrix degradation is also 

thought to lead to the release of protein fragments that provide novel biological activities 

within the injury site important to facilitate repair (Davis et al 2000). Fibroblasts 

subsequently assume a myofibroblast phenotype, express α-smooth muscle actin and 

initiate tissue compaction and wound contraction. 

Endothelial cells, stimulated by the local secretion of angiogenic factors such as those 

belonging to the epidermal growth factor family (EGF) and the FGF family, are 

responsible for the neovascularization in the wounded area in the granulation tissue thus 

supporting the nutritional requirement of proliferating keratinocytes and fibroblasts. 

During the transition from granulation to scar tissue collagen is continuously remodelled 

with the formation of large collagen bundles and intermolecular crosslinks. Fibroblasts 

stop producing collagen and the granulation tissue is replaced by a scar,  which is a 

relatively a-cellular matrix (Singer and Clark et al 1999). This decrease in cellularity is 

mediated by apoptosis  (Desmouliere et al 1995). Many new blood vessels formed to 

sustain the granulation tissue are also eliminated as a result of apoptosis (Singer and 

Clark 1999). 

This brief description of wound healing demonstrates the wide array of molecular and 

cellular events underlying this process. 

 

Tissue transglutaminase adds to the families of genes implicated in wound healing 

 
In recent years, targeted disruption of genes encoding for growth factors and ECM 

components has revealed novel and specific roles in wound healing for a wide range of 

gene families. An example for this is demonstrated by targeted disruption of 

thrombospondin genes (TSP1 and TSP2), which has highlighted their function in the 

angiogenesis and  inflammation steps of the wound healing process.  Excisional wounds 

of TSP2-null mice are characterized by increased neovascularization and heal at an 

accelerated rate, suggesting a role for TSP2 in angiogenesis inhibition (Kyriakides et al 

1998; Agah et al 2002|). In contrast, absence of TSP1, a potent chemotactic factor for 

inflammatory cells, leads to delayed wound healing (Agah et al 2002; Bornstein and Sage  

2002). Delayed skin wound healing has been observed in mice lacking FGF2 (basic 
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fibroblast growth factor) and mice deficient in MMPs display impaired wound repair 

(McCawley and Matrisian 2001). Delayed wound healing has been reported in TGF-β1 

deficient mice lacking T and B cells (Crowe et al 2000). Recently, alteration of the FN 

alternatively splicing in mice has demonstrated that while disruption of the FN gene is 

lethal mice, animals devoid of EDA exon (extra domain A) display abnormal skin wound 

healing and both mice with complete exclusion or constitutive inclusion of the EDA exon 

have shorter lifespan than wild-type mice, possibly because defective wound repair 

(Muro et al 2003). 

 

A novel component of the cell/tissue response to cell damage and stress is tissue 

transglutaminase (tTG; TG2; EC2.3.2.13), a multifunctional protein which modulates 

cell-matrix interactions, tissue stability and a variety of cell functions (Aeschlimann and 

Thomazy 2000; Griffin et al 2002; Fesus and Piacentini 2002; Lorand and Graham 2003). 

A definitive role for tTG in tissue repair, which is the main focus of this review, has been 

recently confirmed in tTG-deficient mice (Nanda et al 2001; De Laurenzi and Melino,  

2001) which presented with impaired skin wound healing (Mearns et al 2002). Tissue 

transglutaminase is the first described member of the transglutaminase family, which so 

far includes nine members. Unlike other transglutaminases, tTG is characterised by 

unique structural features which leads to a wide range of biological activities and 

physio/pathological implications. Although some controversy and redundancy of 

information is present on the definitive functions of tTG, rapid advances have been made 

in the past few years and a triple mechanism of action for tTG (protein transamidation 

activity; GTPase activity; structural adhesion activity) can be proposed. tTG is 

characterised by a papain-like catalytic triad (CysHisAsp) responsible for a Ca2+-induced 

transamidating activity which catalyses a range of tTG-mediated  reactions leading to 

post-translational modifications of proteins, of which the cross-linking of proteins by ε-

(γ-glutamyl)lysine bonds is probably the most frequent (Lorand and Graham 2003). 

Integrated with the Ca-regulated transamidase active site is a GTP binding and hydrolysis 

site, which is responsible for the G-protein/signal transduction function of tTG, which for 

this role is also known as Ghα.  Binding of GTP negatively regulates the protein 

transamidation activity of tTG by inducing a conformational change that blocks the 
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access of substrates to the transamidating active site (Liu et al  2002). Reciprocally, the 

binding of Ca2+ inhibits the binding of GTP. Tissue transglutaminase is expressed 

ubiquitously and the expression level depends on the type of tissue. Typically, high levels 

of tTG can be found in cells naturally subject to insult such as endothelial cells and 

mesangial cells (Fesus and Thomazy 1988). 

tTG is localised in three major cell compartments (cytosol, plasma membrane and 

nucleus) and unlike other transglutaminases is secreted and deposited in the ECM.  The 

mechanism of secretion is unusual because tTG lacks a signal peptide and is not secreted 

by a classical endoplasmic reticulum/Golgi-dependent mechanism. It is known that tTG 

secretion requires the active-state conformation of tTG (Balklava et al 2002) and an intact 

N-terminal FN binding site (Gaudry et al 1999) but due to its atypical secretion 

mechanism, tTG is not efficiently released.  However its release dramatically increases in 

situations of tissue damage and cellular stress (Upchurch et al 1991, Johnson et al 1999, 

Haroon et al 1999) when it accumulates in the ECM initially in complex with FN. The 

protein cross-linking activity of tTG is tightly regulated both inside the cell, by the 

Ca/GTP:GDP ratio and outside the cell by matrix binding and red-ox state of the Cys 

active site (Verderio et al 2003; Cocuzzi and Chung 1986). An in situ transglutaminase 

activity assay based on small-size fluorescent primary amine substrate has clearly shown 

that tTG is in a catalytically active state while present at the cell surface. In contrast, the 

tTG transamidating activity would be mostly latent intracellularly (Smethurst and Griffin 

1995; Verderio et al 1998). More recently, a cross-linking independent “structural” 

function of TG has been found in the extracellular space by many authors (Akimov et al 

2000; Balklava et al 2002; Verderio et al 1993).  

 

Due to its multiple activities and cellular distribtion, tTG can potentially target the tissue 

repair process at multiple levels. The complex interrelations between the actions of tTG 

and the repair process are schematically depicted in Fig.1 and described in the next 

sections.  
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Secretion of tTG in response to tissue injury and stress 

 

During tissue injury cells in the wound site are induced to synthesise and release 

molecules which participate in the regulation of the tissue injury response. These are 

typically ECM components such as osteopontin, SPARC, thrombospondins alternatively 

spliced FNs and collagen (Davis et al 2000). Studies on skin by Bowness et al (1988) 

reported increased transglutaminase activity during wound healing in rats. At the cellular 

level, Upchurch et al (1991) demonstrated binding of endogenous tTG to the ECM 

following puncture wounding a fibroblast cell monolayer and persistence of tTG around 

the wound area for many hours afterwards. Haroon et al (1999) reported not only an 

increase in tTG activity but also an increase in tTG expression by day 3 post-wounding 

following punch biopsy wounds in rats. Immunohistochemical detection of TG 

expression (with the monoclonal anti-tTG antibodies TG100 and Cub7402 at 

concentrations which are non reactive to factor XIIIa) and its isopeptide bond activity 

product (814 MAM CovalAb) during rat dermal wound healing showed that tTG is 

expressed and active in endothelial cells, macrophages and skeletal muscle cells in all 

stages of wound healing (Haaron et al 1999).  

Therefore tTG adds to the list of matrix components that are induced following tissue 

injury. Evidence is provided by the literature of regulation of tTgase expression by 

cytokines implicated in the repair process such as transforming growth factor β1 (TGF-

β1), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) (George et al 1990; Suto et al. 

1993; Ikura et al 1994; Kuncio et al 1998). TGF-β1 plays a central role in the wound 

response acting at a multiplicity of levels and influencing the inflammatory response, 

ECM deposition and remodelling and angiogenesis (Shah et al 1999). IL-6 is an 

important inflammatory cytokine whose suppression in transgenic mice leads to impaired 

wound repair (Gallucci et al 2000). TNF-α is mainly released by neutrophils and leads to 

pleiotropic expression of growth factors. Evidence for tTG regulation by cytokines is 

sustained at the molecular level by the isolation of the regulatory regions of the tTGase 

gene (Ritter and Davies 1998). Our recent work suggests that cell stress resulting from a 

number of external stimuli can result in the regulated release of tTG from cells.  For 

example, exposure of Swiss 3T3 fibroblasts to the mitochondrial dysfunction agent 3 
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nitropropionic acid (3-NP) leads to early stress induced release of tTG prior to release of 

the intracellular marker lactate dehydrogenase. [Li et al 2002] 

 

We have also recently reported that many of the stress factors e.g. hyperglycaemia [Skill 

et al 2003], acidosis (Johnson et al 2002) and hypoxia (Fisher et al 2002) associated with 

the progressive deterioration of kidney function and architecture can also lead to changes 

in cellular distribution of tTG in a number of different kidney tubular epithelial cell lines.  

As with 3-NP induced release of tTG  which is subsequently found at the cell surface and 

in the extracellular matrix appears to be a controlled and regulated process.  Interestingly, 

in these tubular epithelial cell lines potential inducers of tTG such as TGFβ1, TNFα, IL-

1β1, retinoic acid and dexamethasone fail to alter tTG expression (Johnson et al 2002) 

raising questions as which stress factors lead to cellular release of the enzyme.  Studies in 

liver fibrosis suggest that NFKβ (Mirza et al 1997) may be a key player but little of the 

upstream signalling was defined.    

 
Role of tTG in the cell-extracellular matrix events important in wound repair 

 
The entire tissue repair process is regulated by the interaction of cells with the 

surrounding ECM, thus ensuring cell adhesion, survival and proliferation. (Sechler and 

Schwarzbauer. 1998; Singer and Clark 1999).   

For example the production of FN by fibroblasts along with its cell-surface receptors, is 

an essential step in the formation of new granulation tissue.  FN participates in the 

regulation of the wound-repair response by providing a provisional matrix prior to 

collagen deposition which is essential for adhesion, migration and proliferation (Davis et 

al 2000).  

 

Biochemical observations first made by Lorand and confirmed by other authors have 

clearly demonstrated that FN has a high affinity binding site for tTG which would lie on 

the N-terminal gelating binding fragment of FN (LeMosy et al 1992;  Radek et al 1993; 

Gaudry et al 1999). tTG appears as a globular protein bound to the N-terminal portion of 

FN, when visualised by rotary shadowing electron microscopy (LeMosy et al 1992).  
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Many of the extracellular roles of tTG which have implications in the early stages of 

wound repair involves its interaction with FN.  

Our studies and those of other groups have confirmed that tissue transglutaminase is a 

FN-binding protein in cultured cells (Verderio et al 1998; Gaudry et al 1999) and it is 

able to modulate the FN matrix by forming non reducible Ca2+-dependent ε-

(γ−glutamyl)lysine cross-links(Jones et al 1997; Verderio et al 1998). Once released from 

cells, following cellular damage, inflammation or cell stress (Upchurch et al, 1991; 

Johnson et al, 1999; Haroon et al, 1999), tTG binds tightly to FN, as we have recently 

visualised by immunofluorescence and immunogold electron microscopy (Gaudry et al 

1999, Verderio et al 1998, Verderio et al 1999). Binding of FN to tTG protects tTG from 

proteolytic degradation (Belkin et al 2001) and also leads to downregulation of tTG 

transamidating activity. Conversely,  cell-surface tTG modulates and alters FN matrix 

stability by multimerisation following cell damage (Gross et al 2003). It has also been 

proposed that by interacting with the gelatin binding domain of FN, tTG may cooperate 

with α5β1 integrins in the assembly of the FN matrix (Akimov and Belkin 2001).  

 

The cross-linking function of tTG in the extracellular matrix leading to ECM 

stabilisation/remodelling has been identified in a number of biological processes 

important for tissue repair (Aeschliman and Thomazy 2000; see also section “tTG and 

abnormal healing leading to fibrosis and scarring”). However an increasing number of 

reports indicate that the extracellular function of tTG is not solely dependent on its 

crosslinking activity, which may be downregulated by matrix binding (LeMosy et al 

1992; Verderio et al 2003). tTG participates in cell matrix interactions which are 

fundamental in the tissue repair process such as cell adhesion, cell spreading and cell 

movement of fibroblasts. Rather than through increased matrix stability tTG can affect 

cell-matrix interactions either as an adhesion co-receptor of β1 and β3 integrins, or as an 

independent cell adhesion protein. (Akimov et al 2000; Gaudry et al 1999b; Balklava et 

al 2002; Belkin et al 2001; Isobe et al  1999). We have also proposed a mechanism 

whereby tTG function is strictly dependent on its specific association with matrix FN and 

in this complex tTG would support an RGD-independent cell adhesion process that is not 
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linked to its transamidating activity (Verderio et al 2003) (also see section “Role of tTG 

in RGD-independent cell adhesion and cell survival”).  

 

Role of tTG in matrix stabilisation 

Cell proliferation, cell movement and cell interactions with matrix active sites depends on 

a regulated balance between matrix synthesis and matrix degradation.  tTG-catalysed ε-

(γ-glutamyl)lysine cross-links are stable to proteolytical and mechanical damage, 

therefore confer increased stability and resistance to degradation to the modified 

extracellular matrix proteins ((Johnson et al. 1999)).  

Haroon et al (1999) reported the increased expression of tTG found in endothelial cells 

and macrophages invading the fibrin clot results in the formation of transglutaminase-

mediated cross-linking in both fibrin and the new granulation tissue during wound 

healing (Haaron et al 1999).  This finding is consistent with the observation that human 

umbilical vein endothelial cells (HUVEC) are a rich source of tTG, the synthesis of 

which is up-regulated by thrombin.  (Auld et al 2001). tTG retains activity in the ECM of 

HUVEC, contributing to the stability of the matrix (Mitchell et al 2002).  Factor XIIIa 

and possibly tTG are thought to contribute to the cross-linking of plasminogen activator 

inhibitor 2 (PAI-2) and α2-antiplasmin, which are inhibitors of fibrinolysis, to different 

lysine residue of fibrin(ogen), thus further contributing to the stabilisation of the fibrin 

clot (Ritchie et al 2000).  In the epithelial layer tTG is expressed at the dermo-epidermal 

junctions, where it may serve to attach the epithelial layer to the dermo-epidermal 

junction (Ragunath et al 1996).  The ability of tTG to form non reducible multimers of 

extracellular marix FN leading to its stabilisation (Martinez et al 1994, Jones et al 1997; 

Verderio et al 1998, Gross et al 2003) is also well demonstrated.  Exposure of human 

dermal fibroblasts to non lethal ultraviolet doses (UV) results in increased tTG activity 

which does not require de novo protein synthesis and leads to multimerisation of FN into 

non reducible high molecular weight polymers.  These data are consistent with a role for 

tTG in the rapid stabilisation of tissue following UVA damage (Gross et al 2003). .  

Following wounding of a monolayer of Swiss 3T3 cells induced to overexpress tTG, a 

dramatic increase in tTG cross-linking activity could be measured at the edge of the 

wound bed by monitoring the incorporation of a fluorescent amine substrate for tTG.  
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Following wounding massive intracellular crosslinking (detected by incorporation of 

labelled primary amine) was also evident in both Swiss 3T3 cells and in an endothelial 

cell line ECV304 which has high constitutive levels of tTG (Fig. 2).  It is likely that this 

increased activity of tTG both in the intracellular and extracellular environment would 

lead to in vivo stabilisation of the wound area. Increased multimerisation by tTG may 

serve to stabilise the matrix and/or increase matrix valency thus enhancing cell-matrix 

interactions such as cell adhesion and migration in the wound area to promote wound 

healing.  

 

Other members of the TG family which are likely to contribute to the stabilisation of the 

provisional matrix are factorXIIIa, and also epidermal transglutaminase, which is 

expressed in keratinocytes and other epithelial-derived cells (Lorand and Graham 2003).  

However, unlike factor XIIIa, tTG does not require thrombin activation and therefore 

could continue to  serve as a matrix stabiliser in the absence of thrombin when the latter 

is removed from the site of injury. 

We have reported that increased tTG expression in Swiss3T3 fibroblasts using a 

tetracycline-regulated system, leads to an increased pool of FN fibrils compared to non-

induced cells expressing low background level of tTG, suggesting that modulation of tTG 

expression affects the insoluble FN fraction. The increased FN deposition in this cell 

model may result from increased matrix stabilisation, since Swiss3T3 cells 

overexpressing TG display a fourfold increase in ε(γ-glutamyl)lysine crosslink when 

compared to the noninduced cells, which is likely to be mostly formed extracellulary 

(Verderio et al 1998).   

 

During the transition from granulation tissue to scar, tissue remodelling plays a key role 

and depends on the balance between the synthesis and degradation of collagen (Singer 

and Clark 1999). Collagen remodelling leads to the formation of large bundles with the 

creation of new intermolecular crosslinks, which give tensile strength to the scar. We 

have demonstrated using in vitro studies that collagen I when cross-linked either in the 

presence or absence of FN by tissue transglutaminase leads to increased stability to 

MMP-1 (Johnson et al 1999 ). Apart from collagen 1, tissue transglutaminase has been 
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shown to cross-link a number of different types of collagen (II, III V XI) and other ECM 

proteins (Aeschlimann et al 1996; Aeschlimann and Thomazy 2000; Nomura et al 2001; 

Griffin et al 2002; Lorand and Graham 2003).   

 

Crosslinking-independent roles of tTG in cell migration 

FN and fibrin provide a provisional matrix for the concomitant migration of 

inflammatory cells, fibroblasts and endothelial cells (Singer and Clark 1999).  

The contribution of tTG to cell adhesion and migration has now been defined in a number 

of different cell systems.  For example, induction of  tTG expression in Swiss 3T3 

fibroblasts transfected with the catalytically active  and inactive tTG (cys277 ser mutant) 

under control of the tet regulatory system (Verderio et al 1998) is accompanied by a 

decrease in cell migration on FN (Balklava et al 2002) when cell motility was assayed by 

measuring outward cell migration from an agarose droplet on FN (Balklava et al 2002). 

This data suggest that the crosslinking activity of tTG is not responsible for the observed 

effect of tTG on cell motility. 

 

In agreement with these data, assays of in vitro wound closure tests revealed a slower rate 

of migration of tTg transfected Swiss3T3 fibroblasts when induced to over-express tTG 

compared to cells expressing a low background level of tTG (Fig. 3). In addition the 

ability of anti-tTG monoclonal antibody Cub7402 to reduce cell migration in a dose-

dependent manner (Balklava et al 2002) indicates that cell-surface tTG is an important 

component in the migration of cells. Indeed incubation of cells with Cub 7402 leads to 

loss or reduction of cell attachment in these (Verderio et al 1998) and other cell types 

(Jones et al 1997; Heath et al 2001), in a similar manner as described for cells incubated 

with antibodies directed against cell surface integrin receptors β1 and α5 (Fogerty et al 

1990).  In a different cell system Akimov and Belkin (2001b) have demonstrated that 

tTG, which is expressed on the surface of monocytic cells, is also involved in the 

adhesion and migration of monocytic cells on a FN matrix. During the differentiation of 

monocytes into macrophages tTG expression is increased. 
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These in vitro models are likely to represent only a fraction of a more complicated 

mechanism in vivo. However, as previously referred to, initial in vivo studies on wound 

healing using punch biopsy-induced skin lesions appear to show a significant delay in 

wound closure in tTG-deficient mice compared to control wild type littermates (Mearns 

et al 2002).  

 

Role of FN-bound tTG in mediating RGD-independent cell adhesion and cell survival 

During tissue injury when the composition of the ECM and its molecular structure are 

altered in several significant ways, modulation of cell adhesion as a result of matrix 

alterations, may be an important step in wound-repair responses, which involves the 

dynamic interactions of multiple cells types with the extracellular matrix (ECM) (Davis 

et al 2000). 

 

In a recent study (Verderio et al 2003)  we demonstrated that matrices of FN in complex 

with tTG, prepared either in vitro using purified proteins, or by cell-secretion forming a 

physiological ECM (tTG-FN), have a distinctive adhesive role. In response to tTG-FN, 

various cell types (e.g. fibroblasts, osteoblasts and endothelial-like cells) could largely 

restore loss of cell adhesion following inhibition of the classical FN ArgGlyAsp (RGD)-

dependent adhesion pathway mediated by α5β1 integrin receptors.  In contrast, the simple 

binding of purified guinea pig liver tTG to either tissue culture plastic or the gelatin 

binding domain of FN, which contains the tTG binding site, did not enhance cell 

adhesion, which requires the specific complexation of tTG with FN.  This matrix 

complex was sufficient to support the formation of focal contacts in the presence of RGD 

peptide, which are visualised by indirect fluorescent staining of vinculin in Fig. 4, and the 

assembly of associated actin stress fibers (Verderio et al 2003). Inhibition of RhoA by 

C3-exotransferase completely blocked RGD-independent formation of actin stress fibers  

by tTG-FN.   A PKCa inhibitor (Gö6976) (Gschwendt et al 1996), negatively affected 

RGD-independent cell adhesion to tTG-FN, suggesting the involvement of PKCa. 

Analysis of focal adhesion kinase (FAK) activation implicated an enhanced tyrosine 

phosphorylation of FAK during this process. 
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We have no evidence so far of a direct activation of FAK by PKCα in response to tTG-

FN. Recently it was shown that activation of RhoA stimulates FAK Tyr397 

phosphorylation and that PKC activity is not involved in this process (Wilcox-Adelman 

et al 2002). However it was also proposed that both pathways, PKC and Rho are 

separately required for full cell adhesion (Woods and Couchman 2001 [and reference 

therein]). 

 

At this stage it is still not entirely clear how these intracellular mediators convey signals 

from the extracellular tTG-FN. 

Cell adhesion to tTG-FN is not linked to the intrinsic tTG ability to modify the FN matrix 

by calcium-dependent transamidation, which is consistent with the previously described 

transamidating-independent role for tTG in cell-matrix interactions (Belkin et al 2000; 

Balklava et al 2002).  Treatment of HOB cells with heparitinase, an enzyme that catalyses 

the eliminative cleavage of heparin and heparan sulfate, greatly diminish the RGD-

independent adhesion in response to tTG-FN, suggesting that cell-surface HSPGs may 

mediate RGD-independent cell adhesion to tTG-FN 

 

It is accepted that the RGD-mediated cell adhesion plays a central role in cell survival 

and synthetic peptides containing the RGD motif induce apoptosis in many cell types, by 

acting as competitive inhibitors of FN-integrin interaction and activators of caspase 3 

(Hadden and Henke 2002; Buckley et al 1999). 

The observation that tTG-FN can rescue tTG-null primary dermal fibroblasts from 

detachment-induced apoptosis mediated by RGD peptide is consistent with the finding 

that RGD-independent cell adhesion to tTG-FN is linked to the intracellular cell survival 

kinase FAK (Frisch et al 1996; Frisch and Screaton. 2001).   

Such a complex of tTG and FN may be necessary to ensure adhesion-mediated cell 

survival in situations of cell wounding or cell stress, where the increased expression of 

matrix-degrading metalloproteinases triggered by the inflammatory response, would lead 

to fragmentation of the ECM, disruption of cell adhesion-mediated integrin-signalling 

and finally apoptosis (Kapila et al 1999).  
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Role of tTG in the inflammatory response 

 
As outlined earlier, thrombus formation re-establishes hemostasis after tissue injury and 

provides a provisional ECM for cell migration. Trapped platelets within the clot trigger 

an inflammatory response and secrete wound healing factors such as PDGF that attract 

macrophages and fibroblasts. Much attention has focused on macrophages, which 

mediate the transition between inflammation and repair, by the secretion of wound 

healing mediators such as PDGF, VEGF and other cytokines such as those of the TGF-β 

and FGF families (Singer and Clark 1999). The tTG antigen was found to be particularly 

expressed in macrophages, adjacent to the re-epithelialization zone and in the provisional 

fibrin matrix during rat dermal wound healing (Haaron et al 1999). 

By using mice deficient in tTG, Szondy et al (2003) have recently found that lack of tTG 

in macrophages prevents efficient phagocytosis of dead cells.  The phagocytosis of 

apoptotic cells was defective in the thymus of TG2-deficient mice after induction of 

apoptosis by  either a dose of anti-CD3 monoclonal antibody, a dexamethasone-acetate 

injection or gamma irradiation. The defect in clearance of dead cells by macrophages 

leading to increased inflammation was related to the impaired activation of TGF-β1, 

which is specifically released by macrophages on recognition of dead cells and play an 

important function in downregulating the inflammatory response (Szondy et al 2003). 

 

Crosslinking of intracellular proteins by tTG (see Fig 2), which occurs if the insult 

produces a loss in calcium homeostasis (Verderio et al 1998; Johnson et al 1998; 

Nicholas et al 2003), may also be significant to prevent leakage and lysis of dying cells, 

thus maintaining their structural integrity and the integrity of the tissue within which the 

damaged cells are dying thus further containing the inflammatory response (Nicholas et 

al 2003). 

 

Inflammation occurs as a defence response to physical damage. The initial local 

vasodilation and vascular permeability is followed by the release of arachidonic acid 

from the cell membrane by the enzyme phosholipase A2, which is the rate limiting step in 
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the biosynthesis of eicosanoids by cyclo-oxygenase (COX). The levels and activities of 

these lipid mediators have been associated with the regulation of the inflammatory 

response and a number of pathological states including asthma, pulmonary fibrosis, as 

well as other inflammatory lung diseases. tTG activity is found to be upregulated in 

various inflammatory conditions and in diseases which are characterised by mucosal 

inflammation, such as celiac disease, Crohn’s disease, ulcerative colites (Lorand and 

Graham 2003).  The activity of sPLA2s (secretory isoforms of phospholipase A2), a 

membrane protein which releases arachidonic acid during inflammation, is enhanced by 

tTG either through the formation of an isopeptide bond within sPLA2 or through its 

polyamination (Cordella-Miele et al 1990 and 1993).  Sohn et al (2003) have recently 

shown that new chimeric peptides which are derived from pro-elafin and antinflammins, 

can inhibit sPLA2, tTG activity and tTG-mediated modification of sPLA2 and display 

strong in vivo anti-inflammatory activity.  In a transgenic mouse model overexpression of 

tTG in ventricular myocytes under the control of a alfa-myosin heavy chain promoter, 

leads to upregulation of cycloxygenase-2 (COX-2), thromboxane synthase (TxS) and 

results in cardiac failure (Zhang et al 2003). 

 

Role of tTG in neovascularisation 
 

Neovascularization is necessary to support the new granulation tissue, which form and 

invade the wound space after injury. It is a complex and dynamic process involving 

stimulation of endothelial cells by both serum factors (VEGF, FGF, TGF-β) and the 

ECM environment in the wound bed. The migration of endothelial cells and the 

formation of new vessels is affected by the composition of both the granulation tissue and 

the endothelial basement membrane (Zhang and Kirsner 2003). 

Following injury tTG is externalised, binds to  the ECM and affects both the stability and 

structure of the ECM by virtue of its dual cross-linking and structural role. By 

modulating matrix storage of latent TGF-β1, tTG participates in the activation of this 

important wound healing cytokine (Taipale et al 1994; Kojima et al 1993; Nunes et al 

1997; Verderio et al 1999). All these tTG-mediated events are likely to influence 

angiogenesis during wound repair. Haroon et al (1999) have found that recombinant tTG 

 15



enhances blood vessel length density if applied topically in an in vivo dorsal skin flap 

window chamber, suggesting the implication of tTG in promoting angiogenesis in wound 

repair.   

In contrast if tTG is administered in the matrix in a pre-reduced activated state at 

sustained high doses (Patent Application PCT/GB01/03574), thus overtaking its 

physiological control mechanisms, it can suppress endothelial tube formation without cell 

toxicity in an in vitro co-culture angiogenesis model (Griffin et al 2002b). Following this 

sustained tTG-treatment, the ECM embedding the capillary vessels displays a high level 

of transglutaminase activity (measured in situ via fluorescein-cadaverine incorporation) 

and increased matrix stability.  

Interestingly gene array analysis of differential gene expression during human capillary 

morphogenesis in 3D collagen matrices has classified tTG among the genes which are 

regulated during this process. Indeed tTG was found to be remarkably downregulated, 

approximately 4-fold at 8 hour and 10-fold at 24 and 48 hour of endothelial cell cultures 

in 3D collagen matrix (Bell et al 2001), thus confirming that lowered levels of tTG 

expression are required during the initial stages of  angiogenesis. 

 
tTG and abnormal healing leading to fibrosis and scarring 

 

As outlined at the start of this review wound healing is characterised by three interrelated 

and overlapping phases: inflammation, tissue formation/stabilisation and tissue 

remodelling.  However, once these phases are completed there must be resolution of the 

inflammatory response, clearance of the inflammatory cells and a return to normal ECM 

homeostasis.  If the insult continues (eg diabetes, chronic infection, genetic disease, toxic 

exposure, chronic inflammation e.g. as a result of auto immunity)  or alternatively the 

termination / resolution of part of the wound response fails to initiate correctly, a period 

of chronic wounding ensues that can lead to progressive scarring and fibrosis.  In the 

major organs such as liver, heart and kidney this progressive scarring is the major cause 

(over 95%) of organ dysfunction and failure.  The mechanisms underlying progressive 
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scarring have been the subject of intensive research over several decades, yet there is still 

no effective therapy for this treatment.  

The observation that tTG may be involved in progressive scarring was first reported in 

the lung (Griffin et al. 1978), although similar observations have subsequently been 

reported in liver (Mirza et al. 1997; Grenard et al. 2001), heart (Small et al. 1999), 

vasculature (Bowness et al. 1994) and perhaps most extensively in the kidney (Johnson et 

al. 1997) (see fig 5 and fig 6).   In 1978 using a paraquat induced model of pulmonary 

scarring we reported an upregulation of TG activity (Griffin et al. 1978).  In a series of 

studies by Bowness and colleagues (Bowness et al. 1987; Bowness et al. 1989; Bowness 

and Tarr 1990; Bowness et al. 1994;) increased TG found in atherosclerotic plaques 

correlated with increases in the ε−(γ−glutamyl) lysine crosslink.  TG mediated 

crosslinking was associated with stabilisation of the collagen III – lipoprotein interface 

surrounding the sclerotic plaque.  Later Mirza (Mirza et al. 1997) and colleagues reported 

increased tTG in hepatic fibrosis with mRNA analysis showing an upregulation of tTG in 

most liver cell types.  In later studies Small and colleagues (Small et al. 1999), using a 

transgenic mouse with enhanced cardiac tTG expression showed that those animals 

developed cardiomyopathy.  In the kidney, we first reported changes in TG in tubular 

epithelial cells in renal scarring in a subtotal nephrectomy model that led to increased 

ε−(γ-glutamyl) lysine levels found predominantly in the tubulointerstitium (Johnson et al. 

1997).  Later studies demonstrated that this increase was due to an elevated synthesis and 

cellular export of tTG by these tubular cells (Johnson et al 1999).  Similar studies in a 

streptozotocin model of early diabetic nephropathy further demonstrated the presence of 

increased levels of ε−(γ-glutamyl) lysine that were similarly located in the interstitial 

space, but also found in the glomerular basement membrance and in the expanding 

mesangial matrix with the mesangial cells being the primary source of tTG in the 

glomeruli (Skill et al. 2001).   This study was particularly interesting since it showed that 

increased levels of tTG could be exported to the ECM independently of changes in tTG 

synthesis.  More recently, we have been able to expand observations of tTG in kidney 

scarring to the clinical situation whereby 136 renal biopsies with varying degrees of 

scarring from a range of original etiologies were studied (Johnson et al. 2003).  This 
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showed that changes in tTG and ε−(γ-glutamyl) lysine correlated exceptionally well with 

the degree of scarring and that changes were independent of the original disease. 

 

The major problem with these changes observed for tTG in vivo in aberrant wound 

healing is that the insult is never removed, therefore the key question is whether these 

prolonged increases in tTG is one of the major causes in switching normal wound healing 

to pathological scarring or whether they are an attempt to minimise damage from a 

continuing insult.  In order to address these issues we have recently undertaken pilot 

studies using irreversible site directed inhibitors of tTG in the subtotal nephrectomy 

model of renal scarring using direct intra-renal delivery from an implanted osmotic 

minipump (Johnson et al. 2003).  Our preliminary data indicate that inhibition of TG 

activity from the initiation of the insult preserves both renal architecture and function and 

that the degree of scarring (including deposited collagen) is vastly reduced.  Interestingly 

however, if one over inhibits TG activity this leads to an extensive infiltration by 

monocytic derived inflammatory cells further suggesting that TG may have a role in 

modulating the immune response. The actual mechanism as to how inhibition of TG leads 

to a reduction in scarring which is essentially a reduction in collagen deposition 

following tissue remodelling still remains an open question.   Evidence suggests that the 

storage of latent TGF-β1 through latent TGF-β binding protein 1 (LTBP-1) in the ECM 

(Taipale et al 1994) is an important early step in the proteolytic activation of TGF-β1.  As 

previously eluded to, LTBP-1 is a substrate for tTG in vitro (Nunes et al 1997) and in 

cells in culture (Verderio et al 1999), and tTG may mediate both matrix storage and 

activation of TGF-β1.   Both excess TGF-β and increased expression of tTG have been 

implicated in a number of fibroproliferative conditions (Griffin et al., 1979; Mirza et al., 

1997; Johnson et al., 1997)   Hence reducing tTG activity should in theory reduce the 

levels of TGFβ1 thus reducing collagen deposition by an indirect mechanism [See Fig 7]  

An alternative mechanism is that tTG mediated crosslinking of collagen and /or 

associated proteins has a direct effect on their deposition as previously eluded to earlier in 

this chapter. 
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In 1995 Kleman and colleagues (Kleman et al 1995) using a rabhydosarcoma cell line 

demonstrated that tTG was able to cause lysyl oxidase independent crosslinking of 

collagen V and XI leading to stabilisation of the fibrillar structure.  Although similar 

studies have not been demonstrated for other collagen types the abilityof tTG to crosslink 

collagen fibrils in the terminal maturation step of collagen deposition, thought to be the 

preserved role of lysyl oxidase, suggested that tTG might be able to modify the rate at 

which collagen is deposited.  Such a step cou;ld be crucial in the scarring process since 

upto 95% of the collagen molecules which are normally produced in massive excess are 

degraded prior to their deposition. (Mays et al 1991).  Hence any step which tips the 

balance towards matrix deposition is likely to have a major influence on ECM 

homeostasis. 

 

If excessive crosslinking does occur in the ECM during progression of the diseased state, 

then by definition this makes qualitative changes to the matrix. This may not only alter 

some of the properties of the ECM, but may alter its resilience to enzymatic decay.    

There are several enzyme systems involved in the breakdown of the matrix, with plasmin, 

cathepsins and the matrix metalloproteinases (MMP) being the major players.  Of these, 

the 18 membered MMP family is the most prominent, with sub classes of MMPs such as 

the gelatinases, stromeolysin and interstitial collagenases targeting specific classes of 

ECM proteins.  As referred to earlier, Kleman et al indicated that tTG caused 

intramolecular crosslinking within the collagen V & XI fibrils in the N and C termini of 

the collagen molecules. Interestingly this is the same region in which interstitial 

collagenases such as MMP 1 and MMP 8 target to excise the lysyl oxidase catalysed 

pyridinoline / pyrrole trivalent crosslinks that stabilise the collagen fibril (Batge et al. 

1990; Wu et al. 1990; Hasty et al. 1993). Therefore if ε(γ-glutamyl) lysine crosslinking 

occurred adjacent to the pyridinoline / pyrrole crosslinks then the removal of these lysyl 

oxidase catalysed  bonds may not be sufficient to solubilise the collagen molecule 

essential for matrix turnover. 

 To test this hypothesis we initially employed a modification of the collagen fibril assay 

where isolated collagen 1 was formed into fibrils and crosslinked with tTG before 

exposure to MMP1.  tTG crosslinked collagen 1 was  3 x less susceptible to the action of 
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MMP-1 than a normal collagen fibril, and even less susceptible if FN is crosslinked to the 

collagen fibril by tTG (Johnson et al. 1999).   

 

In a more recent study we have added exogenous tTG to cultures of human dermal 

fibroblasts to mimic the release of tTG that occurs following exposure to damaging 

agents such as prolonged exposure to UVA.  Our results indicate that increased levels of 

tTG that might be deemed pathological lead to an increase in collagen deposition and a 

slowed rate of collagen turnover which would contribute to the scarring process 

consistent with that of skin aging induced by solar radiation [Gross et al 2003].  Our 

preliminary studies with kidney tubular epithelial cells also indicate that increased 

expression of tTG in these cells brought about either via transfection or by exposure to 

high glucose levels typical of those found in diabetic nephropathy leads to changes in 

collagen deposition that may be independent of TGFβ1 levels. 

 

Hence if tTG is able to enhance the rate of ECM deposition and/or restrict the rate of 

ECM decay as our preliminary data suggests, then overexpression and cellular release of 

the enzyme would promote ECM accumulation leading to rapid wound closure and 

maintenance of tissue integrity.  If however, the insult is prolonged then the accumulation 

of tTg in the ECM becomes pathological leading to excessive scar formation and fibrosis. 

 These observations are consistent with and give further clarification to earlier findings 

that tTG activity is increased in hypertrophic scarring, resulting in excess-healing and 

accumulation of ε-(γ-glutamyl) lysine cross-links to form insoluble collagen matrices. 

Importantly the observation that this condition  could be inhibited by 50 mM putrescine, 

a competitive primary amine substrate of transglutaminase that would reduce 

crosslinking, led to investigating the clinical effect of 50 mM putrescine in a eutectic 

vehicle (Fibrostat) which was studied in phase II clinical trial (Dolynchuk et al 1994 and 

1996) The compound has so far reached Phase IIb clinical trial and represents a unique 

topical pharmaceutical preparations with an active pharmaceutical ingredient that reduces 

hypertrophic scarring. 
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Given the strong affinity of tTgase for FN (Jeong et al., 1995) and the high affinity of FN 

for other ECM proteins, it is possible that tTgase may also play a pivotal role in the cross-

linking of other wound healing factors to the ECM, thus providing a further means of 

regulating the wound response. 

Thymosin Beta 4 (Tß4) is the most abundant member of a family of highly conserved and 

extremely water-soluble 5 kDa polypeptides; it is expressed in most cell types and is 

regarded as the main intracellular G-actin sequestering, regulating the growth and 

differentiation of actin and playing a role in wound healing (Malinda et al 1999).  There 

is increasing evidence for extracellular functions of Tß4, which increases endothelial cell 

adhesion and migration, stimulates angiogenesis and down regulates a number of 

inflammatory cytokines,  and it was recently found that tissue transglutaminase can cross-

links Tß4 to proteins such as fibrin and collagen (Huff et al 1999 and 2002). After 

activation of human platelets with thrombin, Tß4 is released and cross-linked by 

transglutaminase (factor XIIIa), thus accumulating at sites of clots and tissue damage, 

where it may contribute to wound healing, angiogenesis and inflammatory responses 

(Huff et al 2002).  

 

Tß4 represents a novel class of drugs in development to accelerate the healing process, 

speed the growth of blood vessels, and decrease inflammation (Philp et al 2003).  A  

Phase 1 clinical trial with a chemically synthesized copy of Tß4 has recently begun in 

2003. 
 

Conclusions  

 

In summary (see Fig 7), following tissue injury, accumulation of tTG in the matrix of the 

surrounding area appears to lead to the intermolecular crosslinking of many ECM 

components (especially collagens and fibronectin), probably leading to their accelerated 

rate of deposition.  During normal wound healing tTG transamidating activity is likely to 

be rapidly downregulated by binding to matrix proteins such as FN and by the oxidizing 

extracellular environment. Importantly, binding of tTG to FN may also form a complex 

with novel pro-survival characteristics which mediates cell signalling through the HSPG 
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class of transmembrane receptors.  In addition, extracellular tTG may control the storage 

of latent TGF-β, thus influencing the activation of TGF-β, which is not only a major 

player in the inflammatory response, but also crutial in regulating ECM homeostasis via 

its regulation of MMP and TIMP synthesis.. In the initial insult to a tissue loss of Ca2+ 

homeostasis in cells could also promote rapid intracellular crosslinking by tTG providing 

an alternative fast mechanism to apoptosis for preventing loss of intracellular components 

and thus limiting the inflammatory response. 

 

If however, the insult to the tissue is maintained  leading to massive accumulation of both 

intracellular and extracellular levels of tTG then the preservation of tissue integrity leads 

to a pathological event promoting ECM accumulation and excessive tissue scarring. 
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Figure legends 
 

Fig. 1 

Complex interrelations between the actions of tTG (tranglutaminase -2) and the 

repair process 

The scheme depicts the phases of cutaneous wound healing, however most of the repair 

process applies to other tissues. 

Abbreviations:    FXIIIa factor XIII subunit a;  kTG, keratinocyte transglutaminase;  tTG, 

epidermal transglutaminase; TG5, transglutaminase type 5 (Grenard et al 2001; Candi et 

al 2003);  sPLA2, secretory isoform of Phospholipase A2;  FN, fibronectin;  ECM, 

extracellular matrix;  MMP, matrix metalloproteinase;  PA, plasminogen activator;  PAI-

2, plasminogen activator inhibitor 2;  TGF-β, transforming growth factor β;  PDGF, 

platelet-derived growth factor;  VEGF, vascular endothelial growth factor;  FGF, 

fibroblast growth factor;  DEJ, dermo-epidermal junction. 

 

Fig. 2 

Time course of tTG activity in wounded cell monolayers of Swiss 3T3 cells 

(A) ECV 304 cells were wounded using a sterile plastic pipette tip.  They were then  

incubated in the presence of the primary amine tTG substrate biotinylated cadaverine 

(BTC) for 20 min and detected by DAB stain and visualised using light microscopy.  

Control, no BTC(panel i).  +BTC (panel ii).  +BTC and 5 mM putrescine (panel iii).  

Cells were counterstained with propidium iodide.  (B)  ECV 304 cells wounded as 

described above and then incubated in the presence of BTC and incorporation revealed 

using streptavidin-FITC.   x10 magnification using conventional fluorescence microscopy 

(panel i).  x 63 magnification using confocal laser microscopy, showing a 1μm section 

through the middle of the cells (panel ii).  Cells are counterstained with propidium iodide.  

(C)  Swiss 3T3 cells (clone TG3) induced to overexpress tTG and wounded as previously 

described in the presence of the primary amine tTG substrate fluorescein-cadeverine and 

then examined after 20 min at x 10 magnification (panel i) and x 40 magnification (panel 

ii) using a Leica TCSNT confocal laser microscope.  The micrographs shown are 1μm 

sections through the middle of these cells.  Arrows indicate the direction of wounding, 
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and scale bars represent 10μm.  Taken from Nicholas et al (2003) with permission of 

authors and permission of the Biochemical Society. 

Fig. 3 

In vitro migration analysis of transfected Swiss 3T3 fibroblasts (clone TG3). 

Fibroblasts non-induced (A) and induced (B) to overexpress tTG by withdrawal of 

tetracycline from the medium, were cultured in DMEM with 10% FCS until confluency. 

In vitro wound clousres test were performed by introducing a wound in the monolayers 

with a plastic tip (diamter 1 mm). The monolayers were then covered with fresh medium 

and incubated for a 20-h period. Following fixation of cells and staining with crystal 

violet the number of cells migrated in the cleared area was assessed by examining 

cells“in blind”. Bar, 20 μM. Quantifications of the migrated cells (C) showed that cells 

over-expressing tTG migrated into the wound bed significantly less (p<0.05) compared 

with non-induced controls. 

Results are form a typical triplicate experiment. 

 

Fig. 4 

Confocal laser fluorescence microscopy of RGD-independent focal adhesion in 

response to tTG-FN. 

Primary human osteoblasts were seeded in 0.79 cm2-wells of chamber slides (8x104/well) 

previously coated with FN and FN with immobilised tTG as described (Verderio et al 

2003) and allowed to adhere for ~ 20 minutes.  Focal adhesions formed by cells on FN in 

the presence (A) or absence of RGD peptide (B) and on tTG-FN with (C) or without (D) 

RGD peptide, were detected on fixed and pereabilised cells by indirect 

immunofluorescent staining for vinculin, using a monoclonal anti-vinculin antibody 

followed by secondary antibody conjugated to FITC.  After nuclear staining with 

propidium iodide, cells were imaged by confocal fluorescent microscopy using a Leica 

TCSNT confocal laser microscope system, equipped with an argon/krypton laser adjusted 

at 488 nm for fluorescein excitation.  Bar, 10μM.  
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Fig. 5 

Involvement of tissue transgluaminase in renal scarring.  

Panels A-D.  Tissue Transglutaminase staining (red) in Normal Glomruli (A) and cortical 

tubulointerstitium (B) compared to that in renal scarring resulting from Focal Segmental 

Glomerulosclerosis.  Arrow 1 indicates increased staining in the expanded 

tubulointerstitium, arrow 2 the mexangial matrix/glomerular basement membrane and 

arrow 3 periglomerular. 

 

Panels E-F ε(γ-glutamyl) lysine staining (red) in biopsies from implanted allgrafts 

(Glomeruli (E) and cortical tubulonerstitium (F)) compared to that in scarred grafts 

resulting from chronic rejection.  Arrows indicate as in panels A-D. 

 

Panels I-L.  Transglutaminase in situ activity (red) in normal rat kidney (I) and that from 

the 5/6th subtotal nephrectomy model of renal scarring (J-L).  Panel K excludes 

autofluorescent emissions (green) showing renal morphology.  Arrow 4 shows activity is 

strongest peritubular in the tubular basement membrane and that tTg in the expanded 

ECM loses most of its activity. 

 

Panels M-Q.  Tissue tranglutaminase in situ hybridisation (black) in normal rat kidney 

(M) and that from a 5/6th subtotal nephrectomy model of renal scarring (N,O).  Arrow 5 

shows that proximal tubular cells are the predominant source of tTg in renal scarring, 

although arrow 6 indicates isolated patches of interstitial cells (Macrophages or 

myofibroblasts) are also able to synthesis tTG.  Panel P shows a glomeruli from a patient 

with crescentic nephritis with tTG synthesis within the scarring crescent (arrow 7) 

(myofibroblasts) and panel Q shows mesangial cell synthesis in a patient with mesangial 

proliferative glomerulonephritis. 

 

 

 

 

 

 41



Fig 6 

Correlation of tissue transglutaminase and protein crosslinking to renal scarring. 

Quantification of staining for soluble tTG (A), insoluble tTG (B) and ε(γ-glutamyl) lysine 

staining (C) in 136 renal patients from a range of initial aetiologies correlated to the level 

of renal scarring as assessed by point counting of Masson’s Trichrome stained sections.  

Insoluble tTG and ε(γ-glutamyl) lysine staining where measured using emission 

intensities from confocal microscopy, whereas soluble tTG was assessed by point 

counting. 

 

Fig 7 

Importance of tTG in the maintenance of tissue integrity following cell stress/injury 

Tissue TG is normally in the extracellular matrix in relatively low amounts depending on 

the tissue.  Following stress or insult, up-regulation of tTG often occurs, resulting in 

further enzyme externalized into the matrix.  Insult leading to cell damage can also lead 

to increased tTgase leaking into the matrix.  This is accompanied by the massive 

intracellular cross-linking of the tTgase containing dying cells following loss of Ca2+ 

homoeostasis.  Once increased in the matrix, the enzyme has both direct and indirect 

effects on the matrix, either through direct protein cross-linking leading to matrix 

stabilization or indirectly via the activation of matrix-bound TGFβ1 leading to matrix 

deposition.  Matrix-bound tTG can also act as an independent cell-adhesion protein when 

bound to fibronectin preventing cell death by anoikis.  The end result is would healing 

and maintenance of tissue integrity.  Abreviations: tTG,tissue transglutaminase MMP, 

Matrix Metalloproteinase; TIMP, tissue inhibitor of matrix metalloproteinase;  LTBP, 

Latent TGFB, binding protein; LAP, Latency associated peptide. 
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